Computational Mutation Design of Diol Dehydratase: Catalytic Ability toward Glycerol beyond the Wild-Type Enzyme

A computational mutation analysis based on quantum mechanical/molecular mechanical (QM/MM) calculations is performed for the elucidation of catalytic functions of amino acid residues at the active site of diol dehydratase in the dehydration of glycerol to afford 3-hydroxypropionaldehyde. While the w...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 87; no. 9; pp. 950 - 959
Main Authors Doitomi, Kazuki, Tanaka, Hiromasa, Kamachi, Takashi, Toraya, Tetsuo, Yoshizawa, Kazunari
Format Journal Article
LanguageEnglish
Published The Chemical Society of Japan 15.09.2014
Subjects
Online AccessGet full text
ISSN0009-2673
1348-0634
DOI10.1246/bcsj.20140115

Cover

Abstract A computational mutation analysis based on quantum mechanical/molecular mechanical (QM/MM) calculations is performed for the elucidation of catalytic functions of amino acid residues at the active site of diol dehydratase in the dehydration of glycerol to afford 3-hydroxypropionaldehyde. While the wild-type diol dehydratase is subject to suicide inactivation in the dehydration process, mutants Gln336Ala and Ser301Ala are more resistant to the inactivation by glycerol (Yamanishi et al., FEBS J. 2012, 279, 793). In the present study the impact of the mutation is discussed on the basis of energy profiles of two reaction pathways for the dehydration of glycerol and the inactivation of the enzyme. Both the mutants efficiently distinguish between two possible binding conformations of glycerol, the GS and GR conformations, where the former is known to mainly contribute to the inactivation of the enzyme. The improved resistance to the inactivation observed for the mutants can be explained by a hydrogen-bonding interaction between an OH group of glycerol and Ser301 as well as steric repulsion between glycerol and Val300. The computational mutation analysis first unveils the vital role of Val300 in the discrimination of the GS and GR conformations, which was not clearly viewed in the wild-type enzyme. The present findings will encourage the application of computational mutation approach to the rational design of enzymes optimized for desired organic synthesis.
AbstractList A computational mutation analysis based on quantum mechanical/molecular mechanical (QM/MM) calculations is performed for the elucidation of catalytic functions of amino acid residues at the active site of diol dehydratase in the dehydration of glycerol to afford 3-hydroxypropionaldehyde. While the wild-type diol dehydratase is subject to suicide inactivation in the dehydration process, mutants Gln336Ala and Ser301Ala are more resistant to the inactivation by glycerol (Yamanishi et al., FEBS J.2012, 279, 793). In the present study the impact of the mutation is discussed on the basis of energy profiles of two reaction pathways for the dehydration of glycerol and the inactivation of the enzyme. Both the mutants efficiently distinguish between two possible binding conformations of glycerol, the GS and GR conformations, where the former is known to mainly contribute to the inactivation of the enzyme. The improved resistance to the inactivation observed for the mutants can be explained by a hydrogen-bonding interaction between an OH group of glycerol and Ser301 as well as steric repulsion between glycerol and Val300. The computational mutation analysis first unveils the vital role of Val300 in the discrimination of the GS and GR conformations, which was not clearly viewed in the wild-type enzyme. The present findings will encourage the application of computational mutation approach to the rational design of enzymes optimized for desired organic synthesis.
Author Kamachi, Takashi
Yoshizawa, Kazunari
Tanaka, Hiromasa
Toraya, Tetsuo
Doitomi, Kazuki
Author_xml – sequence: 1
  givenname: Kazuki
  surname: Doitomi
  fullname: Doitomi, Kazuki
– sequence: 2
  givenname: Hiromasa
  surname: Tanaka
  fullname: Tanaka, Hiromasa
– sequence: 3
  givenname: Takashi
  surname: Kamachi
  fullname: Kamachi, Takashi
– sequence: 4
  givenname: Tetsuo
  surname: Toraya
  fullname: Toraya, Tetsuo
– sequence: 5
  givenname: Kazunari
  surname: Yoshizawa
  fullname: Yoshizawa, Kazunari
BookMark eNp1kU1PxCAQhonRxPXj6J2jlyqUtku9mVVXE40XjcdmSqcuG1oqsDH468XsejHxNMzkeQk8c0T2RzsiIWecXfC8qC5b5dcXOeMF47zcIzMuCpmxShT7ZMYYq7O8motDcuT9OrWyLOoZmRZ2mDYBgrYjGPq0O9Ib9Pp9pLanN9qa1K5i5yCAxyu6SNXEoBW9brXRIdJgP8F1dGmiQpfwFqMdOxpWSN-06bKXOCG9Hb_igCfkoAfj8XRXj8nr3e3L4j57fF4-LK4fMyWqMmQ9QIuqlhJVeqcooBJYKokSAcSczcs276qKYd2nmYRKtoWY846prsWad704JufbeydnPzboQzNor9AYGNFufMOlKEuZJ0UJFVtUOeu9w75ReqshONCm4az58dv8-G1-_aZU9ic1OT2Ai__yVzt-hYNW6e9WaQxxDROMzdpuXFqA_yf8DW_mlWw
CitedBy_id crossref_primary_10_1016_j_ymben_2017_02_003
crossref_primary_10_1021_jacs_8b03109
crossref_primary_10_3389_fbioe_2020_500867
crossref_primary_10_1371_journal_pone_0185734
crossref_primary_10_1002_chem_202100416
crossref_primary_10_1021_acs_jpcb_9b04071
crossref_primary_10_1246_bcsj_20160083
Cites_doi 10.1021/ja00821a077
10.1093/oxfordjournals.jbchem.a003059
10.1007/BF01900153
10.1021/bi00604a031
10.1021/jp9536514
10.1021/ja00756a050
10.1021/ja045572o
10.1016/0009-2614(89)85118-8
10.1021/bi300488u
10.1021/jp9001737
10.1021/ic102352b
10.1002/jcc.540130714
10.1021/cr020428b
10.1063/1.464913
10.1111/j.1742-4658.2012.08470.x
10.1021/ja001454z
10.1016/0166-1280(93)87147-6
10.1007/BF01898652
10.1246/bcsj.75.1469
10.1093/oxfordjournals.jbchem.a022498
10.1021/bi101696h
10.1039/C39830001342
10.1021/bi00625a009
10.1016/j.abb.2013.11.002
10.1021/ja00734a036
10.1103/PhysRevB.37.785
10.1111/j.1749-6632.1964.tb45046.x
10.1016/0006-291X(76)90546-5
10.1002/anie.199003551
10.1021/ar900260c
10.1021/jp100573b
10.1021/ar400194k
10.1063/1.463096
10.1021/j100785a001
10.1021/ja990209g
10.1063/1.467146
10.1021/ja405051f
10.1002/jcc.540040211
10.1038/nature11117
10.1103/PhysRevA.38.3098
10.1002/1521-3773(20010917)40:18<3310::AID-ANIE3310>3.0.CO;2-P
10.1016/0006-291X(67)90301-4
10.1021/cr030720z
10.1007/s000180050502
10.1016/S0263-7855(96)00043-4
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright_xml – notice: The Chemical Society of Japan
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1246/bcsj.20140115
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1348-0634
EndPage 959
ExternalDocumentID 10_1246_bcsj_20140115
FullText_t_NoSnippeting true
GroupedDBID 02
23N
5GY
ABEFU
ABFLS
ABZEH
ACCUC
ACIWK
ACNCT
AENEX
AETEA
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F20
F5P
GX1
JSI
JSP
P0W
P2P
RAD
RJT
RZJ
SC5
TN5
TWZ
UPT
WH7
X
XPZ
ZE2
-~X
0R~
6J9
6TJ
AAUAY
AAYXX
ABDFA
ABEJV
ABGNP
ABJNI
ABVGC
ABXVV
ACGFO
ADIPN
ADNBA
ADVOB
AGMDO
AGORE
AJNCP
BCRHZ
CITATION
KOP
NU-
OJZSN
OWPYF
ROX
~02
7SR
8BQ
8FD
H13
JG9
ID FETCH-LOGICAL-c365t-faabec988ec54934a63e5c8e8eaa37075b2d660e9f8e88a68b4371d0cdbe91df3
ISSN 0009-2673
IngestDate Fri Sep 05 00:05:07 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Tue Jul 01 00:34:38 EDT 2025
Tue Jan 05 20:26:20 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-faabec988ec54934a63e5c8e8eaa37075b2d660e9f8e88a68b4371d0cdbe91df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835582348
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1835582348
crossref_citationtrail_10_1246_bcsj_20140115
crossref_primary_10_1246_bcsj_20140115
chemicalsocietyjapan_journals_10_1246_bcsj_20140115
ProviderPackageCode RAD
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-15
PublicationDateYYYYMMDD 2014-09-15
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationTitleAlternate Bulletin of the Chemical Society of Japan
PublicationYear 2014
Publisher The Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
References 38) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel,Chem. Phys. Lett. 1989, 162, 165.
6) M. Eda, T. Kamachi, K. Yoshizawa, T. Toraya,Bull. Chem. Soc. Jpn. 2002, 75, 1469.
39) W. Smith, T. R. Forester,J. Mol. Graphics 1996, 14, 136.
5) T. Toraya, M. Eda, T. Kamachi, K. Yoshizawa,J. Biochem. 2001, 130, 865.
32) T. H. Finlay, J. Valinsky, A. S. Mildvan, R. H. Abeles,J. Biol. Chem. 1973, 248, 1285.
40) D. Bakowies, W. Thiel,J. Phys. Chem. 1996, 100, 10580.
49) B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus,J. Comput. Chem. 1983, 4, 187.
3) M. T. Reetz,J. Am. Chem. Soc. 2013, 135, 12480.
11) K. Doitomi, T. Kamachi, T. Toraya, K. Yoshizawa,Biochemistry 2012, 51, 9202.
45) A. Schäfer, H. Horn, R. Ahlrichs,J. Chem. Phys. 1992, 97, 2571.
41) I. Antes, W. Thiel,Hybrid Quantum Mechanical and Molecular Mechanical Methods, ed. by J. Gao, American Chemical Society, Washington, DC. 1998, pp. 50–65.
13) Chemistry and Biochemistry of B12, ed. by R. Banerjee, John Wiley & Sons, New York, 1999.
23) P. A. Frey, R. H. Abeles,J. Biol. Chem. 1966, 241, 2732.
21) B. Zagalak, P. A. Frey, G. L. Karabatsos, R. H. Abeles,J. Biol. Chem. 1966, 241, 3028.
14) T. Toraya,Chem. Rev. 2003, 103, 2095.
50) D. M. Smith, B. T. Golding, L. Radom,J. Am. Chem. Soc. 1999, 121, 5700.
8) T. Kamachi, T. Toraya, K. Yoshizawa,Chem.—Eur. J. 2007, 13, 7864.
54) N. Shibata, Y. Higuchi, T. Toraya,Biochemistry 2011, 50, 591.
42) A. D. Becke,Phys. Rev. A 1988, 38, 3098.
53) A. Bondi,J. Phys. Chem. 1964, 68, 441.
34) K. L. Brown,Chem. Rev. 2005, 105, 2075.
2) U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins,Nature 2012, 485, 185.
48) F. A. Momany, R. Rone, H. Kunz, R. F. Frey, S. Q. Newton, L. Schäfer,THEOCHEM 1993, 286, 1.
12) B12, ed. by D. Dolphin, John Wiley & Sons, New York, 1982, Vol. 2.
15) T. Toraya,Cell. Mol. Life Sci. 2000, 57, 106.
31) S. A. Cockle, H. A. O. Hill, R. J. P. Williams, S. P. Davies, M. A. Foster,J. Am. Chem. Soc. 1972, 94, 275.
10) T. Kamachi, K. Doitomi, M. Takahata, T. Toraya, K. Yoshizawa,Inorg. Chem. 2011, 50, 2944.
52) G. M. Sandala, D. M. Smith, L. Radom,Acc. Chem. Res. 2010, 43, 642.
16) T. Toraya,Arch. Biochem. Biophys. 2014, 544, 40.
46) A. Schäfer, C. Huber, R. Ahlrichs,J. Chem. Phys. 1994, 100, 5829.
36) P. M. Kozlowski, T. Kamachi, M. Kumar, T. Nakayama, K. Yoshizawa,J. Phys. Chem. B 2010, 114, 5928.
24) P. A. Frey, S. S. Kerwar, R. H. Abeles,Biochem. Biophys. Res. Commun. 1967, 29, 873.
29) P. Müller, J. Rétey,J. Chem. Soc., Chem. Commun. 1983, 1342.
22) P. A. Frey, M. K. Essenberg, R. H. Abeles,J. Biol. Chem. 1967, 242, 5369.
20) W. W. Bachovchin, K. W. Moore, J. H. Richards,Biochemistry 1978, 17, 2218.
25) M. K. Essenberg, P. A. Frey, R. H. Abeles,J. Am. Chem. Soc. 1971, 93, 1242.
7) T. Kamachi, T. Toraya, K. Yoshizawa,J. Am. Chem. Soc. 2004, 126, 16207.
33) J. E. Valinsky, R. H. Abeles, J. A. Fee,J. Am. Chem. Soc. 1974, 96, 4709.
18) T. Toraya, T. Shirakashi, T. Kosuga, S. Fukui,Biochem. Biophys. Res. Commun. 1976, 69, 475.
43) A. D. Becke,J. Chem. Phys. 1993, 98, 5648.
26) R. H. Abeles, H. A. Lee, Jr.,Ann. N.Y. Acad. Sci. 1964, 112, 695.
35) M. Yamanishi, K. Kinoshita, M. Fukuoka, T. Saito, A. Tanokuchi, Y. Ikeda, H. Obayashi, K. Mori, N. Shibata, T. Tobimatsu, T. Toraya,FEBS J. 2012, 279, 793.
51) D. M. Smith, B. T. Golding, L. Radom,J. Am. Chem. Soc. 2001, 123, 1664.
37) ChemShell, a Computational Chemistry Shell, see http://www.chemshell.org.
44) C. Lee, W. Yang, R. G. Parr,Phys. Rev. B 1988, 37, 785.
47) F. A. Momany, R. Rone,J. Comput. Chem. 1992, 13, 888.
9) T. Kamachi, M. Takahata, T. Toraya, K. Yoshizawa,J. Phys. Chem. B 2009, 113, 8435.
1) S. V. Taylor, P. Kast, D. Hilvert,Angew. Chem., Int. Ed. 2001, 40, 3310.
19) W. W. Bachovchin, R. G. Eagar, Jr., K. W. Moore, J. H. Richards,Biochemistry 1977, 16, 1082.
27) J. Rétey, A. Umani-Ronchi, J. Seibl, D. Arigoni,Experientia 1966, 22, 502.
17) P. A. Frey,Acc. Chem. Res. 2014, 47, 540.
4) T. Toraya, R. Yoshizawa, M. Eda, T. Yamabe,J. Biochem. 1999, 126, 650.
28) J. Rétey, A. Umani-Ronchi, D. Arigoni,Experientia 1966, 22, 72.
30) J. Rétey,Angew. Chem., Int. Ed. Engl. 1990, 29, 355.
2024012021445384800_r30
2024012021445384800_r31
2024012021445384800_r32
2024012021445384800_r33
2024012021445384800_r34
2024012021445384800_r35
2024012021445384800_r36
2024012021445384800_r37
2024012021445384800_r38
2024012021445384800_r39
2024012021445384800_r5
2024012021445384800_r6
2024012021445384800_r3
2024012021445384800_r4
2024012021445384800_r9
2024012021445384800_r7
2024012021445384800_r8
2024012021445384800_r20
2024012021445384800_r21
2024012021445384800_r22
2024012021445384800_r23
2024012021445384800_r24
2024012021445384800_r25
2024012021445384800_r26
2024012021445384800_r27
2024012021445384800_r28
2024012021445384800_r29
2024012021445384800_r52
2024012021445384800_r53
2024012021445384800_r10
2024012021445384800_r54
2024012021445384800_r11
2024012021445384800_r12
2024012021445384800_r13
2024012021445384800_r14
2024012021445384800_r15
2024012021445384800_r16
2024012021445384800_r17
2024012021445384800_r18
2024012021445384800_r19
2024012021445384800_r50
2024012021445384800_r51
2024012021445384800_r41
2024012021445384800_r42
2024012021445384800_r43
2024012021445384800_r44
2024012021445384800_r1
2024012021445384800_r45
2024012021445384800_r2
2024012021445384800_r46
2024012021445384800_r47
2024012021445384800_r48
2024012021445384800_r49
2024012021445384800_r40
References_xml – reference: 11) K. Doitomi, T. Kamachi, T. Toraya, K. Yoshizawa,Biochemistry 2012, 51, 9202.
– reference: 52) G. M. Sandala, D. M. Smith, L. Radom,Acc. Chem. Res. 2010, 43, 642.
– reference: 46) A. Schäfer, C. Huber, R. Ahlrichs,J. Chem. Phys. 1994, 100, 5829.
– reference: 9) T. Kamachi, M. Takahata, T. Toraya, K. Yoshizawa,J. Phys. Chem. B 2009, 113, 8435.
– reference: 27) J. Rétey, A. Umani-Ronchi, J. Seibl, D. Arigoni,Experientia 1966, 22, 502.
– reference: 38) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel,Chem. Phys. Lett. 1989, 162, 165.
– reference: 45) A. Schäfer, H. Horn, R. Ahlrichs,J. Chem. Phys. 1992, 97, 2571.
– reference: 12) B12, ed. by D. Dolphin, John Wiley & Sons, New York, 1982, Vol. 2.
– reference: 19) W. W. Bachovchin, R. G. Eagar, Jr., K. W. Moore, J. H. Richards,Biochemistry 1977, 16, 1082.
– reference: 22) P. A. Frey, M. K. Essenberg, R. H. Abeles,J. Biol. Chem. 1967, 242, 5369.
– reference: 41) I. Antes, W. Thiel,Hybrid Quantum Mechanical and Molecular Mechanical Methods, ed. by J. Gao, American Chemical Society, Washington, DC. 1998, pp. 50–65.
– reference: 53) A. Bondi,J. Phys. Chem. 1964, 68, 441.
– reference: 48) F. A. Momany, R. Rone, H. Kunz, R. F. Frey, S. Q. Newton, L. Schäfer,THEOCHEM 1993, 286, 1.
– reference: 26) R. H. Abeles, H. A. Lee, Jr.,Ann. N.Y. Acad. Sci. 1964, 112, 695.
– reference: 33) J. E. Valinsky, R. H. Abeles, J. A. Fee,J. Am. Chem. Soc. 1974, 96, 4709.
– reference: 6) M. Eda, T. Kamachi, K. Yoshizawa, T. Toraya,Bull. Chem. Soc. Jpn. 2002, 75, 1469.
– reference: 28) J. Rétey, A. Umani-Ronchi, D. Arigoni,Experientia 1966, 22, 72.
– reference: 10) T. Kamachi, K. Doitomi, M. Takahata, T. Toraya, K. Yoshizawa,Inorg. Chem. 2011, 50, 2944.
– reference: 1) S. V. Taylor, P. Kast, D. Hilvert,Angew. Chem., Int. Ed. 2001, 40, 3310.
– reference: 47) F. A. Momany, R. Rone,J. Comput. Chem. 1992, 13, 888.
– reference: 20) W. W. Bachovchin, K. W. Moore, J. H. Richards,Biochemistry 1978, 17, 2218.
– reference: 16) T. Toraya,Arch. Biochem. Biophys. 2014, 544, 40.
– reference: 13) Chemistry and Biochemistry of B12, ed. by R. Banerjee, John Wiley & Sons, New York, 1999.
– reference: 44) C. Lee, W. Yang, R. G. Parr,Phys. Rev. B 1988, 37, 785.
– reference: 35) M. Yamanishi, K. Kinoshita, M. Fukuoka, T. Saito, A. Tanokuchi, Y. Ikeda, H. Obayashi, K. Mori, N. Shibata, T. Tobimatsu, T. Toraya,FEBS J. 2012, 279, 793.
– reference: 40) D. Bakowies, W. Thiel,J. Phys. Chem. 1996, 100, 10580.
– reference: 37) ChemShell, a Computational Chemistry Shell, see http://www.chemshell.org.
– reference: 23) P. A. Frey, R. H. Abeles,J. Biol. Chem. 1966, 241, 2732.
– reference: 31) S. A. Cockle, H. A. O. Hill, R. J. P. Williams, S. P. Davies, M. A. Foster,J. Am. Chem. Soc. 1972, 94, 275.
– reference: 21) B. Zagalak, P. A. Frey, G. L. Karabatsos, R. H. Abeles,J. Biol. Chem. 1966, 241, 3028.
– reference: 43) A. D. Becke,J. Chem. Phys. 1993, 98, 5648.
– reference: 54) N. Shibata, Y. Higuchi, T. Toraya,Biochemistry 2011, 50, 591.
– reference: 2) U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins,Nature 2012, 485, 185.
– reference: 14) T. Toraya,Chem. Rev. 2003, 103, 2095.
– reference: 15) T. Toraya,Cell. Mol. Life Sci. 2000, 57, 106.
– reference: 50) D. M. Smith, B. T. Golding, L. Radom,J. Am. Chem. Soc. 1999, 121, 5700.
– reference: 29) P. Müller, J. Rétey,J. Chem. Soc., Chem. Commun. 1983, 1342.
– reference: 42) A. D. Becke,Phys. Rev. A 1988, 38, 3098.
– reference: 4) T. Toraya, R. Yoshizawa, M. Eda, T. Yamabe,J. Biochem. 1999, 126, 650.
– reference: 8) T. Kamachi, T. Toraya, K. Yoshizawa,Chem.—Eur. J. 2007, 13, 7864.
– reference: 24) P. A. Frey, S. S. Kerwar, R. H. Abeles,Biochem. Biophys. Res. Commun. 1967, 29, 873.
– reference: 36) P. M. Kozlowski, T. Kamachi, M. Kumar, T. Nakayama, K. Yoshizawa,J. Phys. Chem. B 2010, 114, 5928.
– reference: 25) M. K. Essenberg, P. A. Frey, R. H. Abeles,J. Am. Chem. Soc. 1971, 93, 1242.
– reference: 30) J. Rétey,Angew. Chem., Int. Ed. Engl. 1990, 29, 355.
– reference: 3) M. T. Reetz,J. Am. Chem. Soc. 2013, 135, 12480.
– reference: 5) T. Toraya, M. Eda, T. Kamachi, K. Yoshizawa,J. Biochem. 2001, 130, 865.
– reference: 7) T. Kamachi, T. Toraya, K. Yoshizawa,J. Am. Chem. Soc. 2004, 126, 16207.
– reference: 17) P. A. Frey,Acc. Chem. Res. 2014, 47, 540.
– reference: 49) B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus,J. Comput. Chem. 1983, 4, 187.
– reference: 18) T. Toraya, T. Shirakashi, T. Kosuga, S. Fukui,Biochem. Biophys. Res. Commun. 1976, 69, 475.
– reference: 32) T. H. Finlay, J. Valinsky, A. S. Mildvan, R. H. Abeles,J. Biol. Chem. 1973, 248, 1285.
– reference: 34) K. L. Brown,Chem. Rev. 2005, 105, 2075.
– reference: 39) W. Smith, T. R. Forester,J. Mol. Graphics 1996, 14, 136.
– reference: 51) D. M. Smith, B. T. Golding, L. Radom,J. Am. Chem. Soc. 2001, 123, 1664.
– ident: 2024012021445384800_r12
– ident: 2024012021445384800_r33
  doi: 10.1021/ja00821a077
– ident: 2024012021445384800_r5
  doi: 10.1093/oxfordjournals.jbchem.a003059
– ident: 2024012021445384800_r28
  doi: 10.1007/BF01900153
– ident: 2024012021445384800_r41
– ident: 2024012021445384800_r20
  doi: 10.1021/bi00604a031
– ident: 2024012021445384800_r40
  doi: 10.1021/jp9536514
– ident: 2024012021445384800_r31
  doi: 10.1021/ja00756a050
– ident: 2024012021445384800_r7
  doi: 10.1021/ja045572o
– ident: 2024012021445384800_r22
– ident: 2024012021445384800_r38
  doi: 10.1016/0009-2614(89)85118-8
– ident: 2024012021445384800_r11
  doi: 10.1021/bi300488u
– ident: 2024012021445384800_r9
  doi: 10.1021/jp9001737
– ident: 2024012021445384800_r10
  doi: 10.1021/ic102352b
– ident: 2024012021445384800_r47
  doi: 10.1002/jcc.540130714
– ident: 2024012021445384800_r14
  doi: 10.1021/cr020428b
– ident: 2024012021445384800_r43
  doi: 10.1063/1.464913
– ident: 2024012021445384800_r32
– ident: 2024012021445384800_r35
  doi: 10.1111/j.1742-4658.2012.08470.x
– ident: 2024012021445384800_r51
  doi: 10.1021/ja001454z
– ident: 2024012021445384800_r21
– ident: 2024012021445384800_r48
  doi: 10.1016/0166-1280(93)87147-6
– ident: 2024012021445384800_r27
  doi: 10.1007/BF01898652
– ident: 2024012021445384800_r6
  doi: 10.1246/bcsj.75.1469
– ident: 2024012021445384800_r4
  doi: 10.1093/oxfordjournals.jbchem.a022498
– ident: 2024012021445384800_r54
  doi: 10.1021/bi101696h
– ident: 2024012021445384800_r29
  doi: 10.1039/C39830001342
– ident: 2024012021445384800_r19
  doi: 10.1021/bi00625a009
– ident: 2024012021445384800_r16
  doi: 10.1016/j.abb.2013.11.002
– ident: 2024012021445384800_r25
  doi: 10.1021/ja00734a036
– ident: 2024012021445384800_r44
  doi: 10.1103/PhysRevB.37.785
– ident: 2024012021445384800_r26
  doi: 10.1111/j.1749-6632.1964.tb45046.x
– ident: 2024012021445384800_r18
  doi: 10.1016/0006-291X(76)90546-5
– ident: 2024012021445384800_r30
  doi: 10.1002/anie.199003551
– ident: 2024012021445384800_r52
  doi: 10.1021/ar900260c
– ident: 2024012021445384800_r8
– ident: 2024012021445384800_r36
  doi: 10.1021/jp100573b
– ident: 2024012021445384800_r17
  doi: 10.1021/ar400194k
– ident: 2024012021445384800_r45
  doi: 10.1063/1.463096
– ident: 2024012021445384800_r53
  doi: 10.1021/j100785a001
– ident: 2024012021445384800_r50
  doi: 10.1021/ja990209g
– ident: 2024012021445384800_r46
  doi: 10.1063/1.467146
– ident: 2024012021445384800_r3
  doi: 10.1021/ja405051f
– ident: 2024012021445384800_r13
– ident: 2024012021445384800_r49
  doi: 10.1002/jcc.540040211
– ident: 2024012021445384800_r2
  doi: 10.1038/nature11117
– ident: 2024012021445384800_r42
  doi: 10.1103/PhysRevA.38.3098
– ident: 2024012021445384800_r1
  doi: 10.1002/1521-3773(20010917)40:18<3310::AID-ANIE3310>3.0.CO;2-P
– ident: 2024012021445384800_r24
  doi: 10.1016/0006-291X(67)90301-4
– ident: 2024012021445384800_r23
– ident: 2024012021445384800_r34
  doi: 10.1021/cr030720z
– ident: 2024012021445384800_r15
  doi: 10.1007/s000180050502
– ident: 2024012021445384800_r37
– ident: 2024012021445384800_r39
  doi: 10.1016/S0263-7855(96)00043-4
SSID ssj0008549
Score 2.1095493
Snippet A computational mutation analysis based on quantum mechanical/molecular mechanical (QM/MM) calculations is performed for the elucidation of catalytic functions...
SourceID proquest
crossref
chemicalsocietyjapan
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 950
SubjectTerms Computation
Dehydration
Design analysis
Diols
Enzymes
Glycerols
Inactivation
Mutations
Title Computational Mutation Design of Diol Dehydratase: Catalytic Ability toward Glycerol beyond the Wild-Type Enzyme
URI http://dx.doi.org/10.1246/bcsj.20140115
https://www.proquest.com/docview/1835582348
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcgAOCCiI8pKREJeSsnk73KrttqvSlktW2lvkOI66fSRVkxyyP4NfzEwc5yFaqXCJIsuJopkvM5_tz2NCvjAXaGdqBYYlhDQc300N7kphQDLxzNThgqU4oX965i2WzvHKXU0mvweqpaqM98Tmzn0l_-NVaAO_4i7Zf_Bs91JogHvwL1zBw3B9kI_VkQx6Ou-0vYUYgqoMpIEH6xyimjyvE3A0V_vQZzhhU2Od1v1GGIv0E6Wzu0dXtZAoW4_VrhakpBA0EgPHqrvzbFOPCxvoyt1aZtDVHtBKUGg_hlzcwe8gh_BxreQDfFNdrvtpg4xfNix2sb5FwVKXK37ya1R7NqiCLsV5_wxgt26eCWVZVPlw-sJ0UGuhNnB2IRmA4qnzTPakisK2wwzgTs4wTLd5WcExGMTcQFWubdN3oAqM_5UZrKYkciyKC9TzOciE-xSol_3PfkWHy5OTKJyvwkfkseX7zdL_0aqXDTFXD6nUZ7d1W-H130cvf0a2RWv2Qln9Ai0-pj_j7N9QmvAFed6ORei-AtZLMpHZK_Jkpo8A3CY3I4BRDTCqAEbzlCLA6ABgP2gHL9rCiyp4UQ0vquBFATK0gxdV8HpNlofzcLYw2iM6DGF7bmmknEMQCBiTAuxiO9yzpSuYZJJz2wc6GluJ501lkEIb4x6LHds3k6lIYhmYSWq_IVtZnsm3hEpXWjFjYhqbuBTu89jkkjsJUHJvGvh8h9h3GTRq_8ciwuEsuCFCN0TaDTvkm7Z3JNqq93j4ytV93b923W9UuZf7On7WzovAKbjKxjOZV_AZDE8ssADC7x7Q5z152v8VH8hWeVvJj0Bzy_hTg7s_xpWvmg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Mutation+Design+of+Diol+Dehydratase%3A+Catalytic+Ability+toward+Glycerol+beyond+the+Wild-Type+Enzyme&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Doitomi%2C+Kazuki&rft.au=Tanaka%2C+Hiromasa&rft.au=Kamachi%2C+Takashi&rft.au=Toraya%2C+Tetsuo&rft.date=2014-09-15&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=87&rft.issue=9&rft.spage=950&rft.epage=959&rft_id=info:doi/10.1246%2Fbcsj.20140115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon