A coupled electrochemical process for schwertmannite recovery from acid mine drainage: Important roles of anodic reactive oxygen species and cathodic alkaline

The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in si...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 451; p. 131075
Main Authors Huang, Ziyuan, Ma, Huanxin, Liu, Chengshuai, Meng, Fangyuan, Lee, Jyh-Fu, Lin, Yu-Jung, Yi, Xiaoyun, Dang, Zhi, Feng, Chunhua
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g−1 and containing small amounts of –OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g−1) and amounts of –OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH−, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase. [Display omitted] •Schwertmannite is synthesized from AMD using a coupled electrochemical system.•The system involves anodic Fe(II) oxidation and cathodic alkaline production.•High currents result in schwertmannite high in SSA and amounts of –OH groups.••OH plays a dominant role in accelerating Fe(II) oxidation at high currents.•Schwertmannite recovered from real AMD is a powerful sorbent for arsenic species.
AbstractList The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g-1 and containing small amounts of -OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g-1) and amounts of -OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH-, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase.The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g-1 and containing small amounts of -OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g-1) and amounts of -OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH-, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase.
The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m g and containing small amounts of -OH groups (formula Fe O (OH) (SO ) ), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m g ) and amounts of -OH groups (formula Fe O (OH) (SO ) ). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH , were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase.
The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g−1 and containing small amounts of –OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g−1) and amounts of –OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH−, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase. [Display omitted] •Schwertmannite is synthesized from AMD using a coupled electrochemical system.•The system involves anodic Fe(II) oxidation and cathodic alkaline production.•High currents result in schwertmannite high in SSA and amounts of –OH groups.••OH plays a dominant role in accelerating Fe(II) oxidation at high currents.•Schwertmannite recovered from real AMD is a powerful sorbent for arsenic species.
ArticleNumber 131075
Author Huang, Ziyuan
Lin, Yu-Jung
Ma, Huanxin
Liu, Chengshuai
Meng, Fangyuan
Yi, Xiaoyun
Lee, Jyh-Fu
Feng, Chunhua
Dang, Zhi
Author_xml – sequence: 1
  givenname: Ziyuan
  surname: Huang
  fullname: Huang, Ziyuan
  organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
– sequence: 2
  givenname: Huanxin
  surname: Ma
  fullname: Ma, Huanxin
  organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
– sequence: 3
  givenname: Chengshuai
  surname: Liu
  fullname: Liu, Chengshuai
  organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
– sequence: 4
  givenname: Fangyuan
  surname: Meng
  fullname: Meng, Fangyuan
  organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
– sequence: 5
  givenname: Jyh-Fu
  surname: Lee
  fullname: Lee, Jyh-Fu
  organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
– sequence: 6
  givenname: Yu-Jung
  surname: Lin
  fullname: Lin, Yu-Jung
  organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
– sequence: 7
  givenname: Xiaoyun
  surname: Yi
  fullname: Yi, Xiaoyun
  organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
– sequence: 8
  givenname: Zhi
  surname: Dang
  fullname: Dang, Zhi
  organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
– sequence: 9
  givenname: Chunhua
  orcidid: 0000-0001-7928-7865
  surname: Feng
  fullname: Feng, Chunhua
  email: chfeng@scut.edu.cn
  organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36870128$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCI4C8ZDPBHo9nJrBAVcVPpUpsYG3d3LluHGbswXYC4WF4VlwSWLDpynfxfUfyORfszAdPjD2XYimFbF9tl9sN_JwgL2tRq6VUUnT6EVvIvlOVUqo9YwuhRFOpftWcs4uUtkII2enmCTtXbd8JWfcL9uuKY9jNIw2cRsIcA25ocggjn8tNKXEbIk-4-U4xT-C9y8QjYdhTPHAbw8QB3cAn54kPEZyHO3rNb6Y5xAw-8xhGSjxYDj4MDosLmN2eePhxuCPP00zoCgF-4Ah58weC8SuMJfEpe2xhTPTs9F6yL-_ffb7-WN1--nBzfXVboWp1rqyCFusObId1TXpNBGurm650oRuystFa235VN6u2qXtLUqFsG9s1rVaINahL9vKYWz79bUcpm8klpHEET2GXTN31qsitUAV9cUJ364kGM0c3QTyYv50WQB8BjCGlSPYfIoW5385szWk7c7-dOW5XvDf_eegyZBd8LrWOD9pvjzaVmvaOokmlVo80uLJWNkNwDyT8BvRcu78
CitedBy_id crossref_primary_10_1016_j_watres_2025_123193
crossref_primary_10_1021_acs_est_4c06699
crossref_primary_10_1021_acsestengg_4c00706
crossref_primary_10_1016_j_cej_2024_150614
crossref_primary_10_1016_j_psep_2024_06_125
crossref_primary_10_1007_s13762_024_05897_x
crossref_primary_10_1016_j_jwpe_2023_104213
crossref_primary_10_1016_j_watres_2024_122195
crossref_primary_10_1016_j_cclet_2024_110332
Cites_doi 10.1021/acs.est.7b03909
10.1016/0016-7037(90)90009-A
10.1016/j.apgeochem.2004.12.002
10.1021/la0013188
10.1016/0013-4686(84)85004-5
10.1021/acs.est.5b02660
10.1016/j.watres.2022.118454
10.1007/BF01504715
10.1016/j.jelechem.2006.11.008
10.1016/j.jhazmat.2022.129552
10.1021/acs.est.0c07980
10.1021/es801646j
10.1007/s11157-008-9142-y
10.1016/j.gca.2016.01.021
10.3989/revmetalm.2003.v39.i4.337
10.1016/j.chemosphere.2021.130646
10.1021/ja00020a021
10.1021/es503251z
10.1021/es505374g
10.1016/j.gca.2013.06.014
10.1016/j.msec.2008.06.011
10.1021/es0109242
10.1016/j.marchem.2018.05.002
10.1021/acsearthspacechem.1c00009
10.1016/j.watres.2022.118240
10.3390/min7010009
10.1016/j.msec.2012.02.012
10.1021/acsearthspacechem.9b00001
10.1016/j.watres.2021.117678
10.1021/es902803u
10.1039/C5RA17316G
10.1039/D0EN00252F
10.1016/j.gca.2014.09.020
10.1021/es303867t
10.1016/j.chemgeo.2022.120828
10.1038/s41467-018-07792-9
10.1021/es301268g
10.1016/j.watres.2022.118676
10.1007/s12517-020-06116-w
10.1021/acs.chemmater.5b00376
10.1016/j.jhazmat.2019.05.064
10.1016/j.gca.2017.10.003
10.1016/j.watres.2022.118748
10.1021/es500154z
10.1016/j.gca.2003.07.015
10.1021/jacs.7b06337
10.1021/acs.chemmater.0c02829
10.1016/j.colsurfa.2021.126366
10.1016/j.gca.2017.08.026
10.1107/S0909049505012719
10.1021/acsearthspacechem.8b00202
10.1346/CCMN.2009.0570506
10.1126/science.167.3921.1121
10.1021/acs.est.9b05389
10.1080/09593330.2021.1933200
10.1016/j.jenvman.2022.115425
10.1021/es020017c
10.1016/j.chemgeo.2010.08.011
10.1021/es902461x
10.2138/am.2012.4032
10.1016/j.jcis.2012.07.008
10.1021/acsomega.0c05606
10.1016/j.watres.2018.12.052
10.1179/135100001101536373
10.1021/acs.est.0c08018
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jhazmat.2023.131075
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 36870128
10_1016_j_jhazmat_2023_131075
S0304389423003576
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SSH
T9H
TAE
VH1
WUQ
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c365t-f3a6c27af7c22e5beeabf54787354ef14555f892496428fe13c164f74653cc2a3
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Tue Aug 05 10:53:57 EDT 2025
Wed Feb 19 02:24:45 EST 2025
Tue Jul 01 01:05:57 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Fri Feb 23 02:38:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reactive oxygen species
Schwertmannite synthesis
Fe(II)-activated oxygen reduction
Acid mine drainage
Adsorption of arsenic species
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-f3a6c27af7c22e5beeabf54787354ef14555f892496428fe13c164f74653cc2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7928-7865
PMID 36870128
PQID 2783496603
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2783496603
pubmed_primary_36870128
crossref_primary_10_1016_j_jhazmat_2023_131075
crossref_citationtrail_10_1016_j_jhazmat_2023_131075
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2023_131075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-05
PublicationDateYYYYMMDD 2023-06-05
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-05
  day: 05
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Burton, Bush, Johnston, Watling, Hocking, Sullivan (bib4) 2009; 43
Collins, Rosso, Rose, Glover, David Waite (bib11) 2016; 177
Wang, Ying, Zhao, Feng, Tan, Beyer (bib58) 2021; 55
Chen, Yu, Chen, Liu, Li, Zhu (bib8) 2017; 139
Wang, Jiang, Fang, Liang, Zhou (bib57) 2019; 151
Paikaray, Essilfie-Dughan, Hendry (bib38) 2018; 220
Wang, Pei, Zhang, Huang, You (bib55) 2022; 218
Burton, Johnston, Kraal, Bush, Claff (bib5) 2013; 47
Rose, Waite (bib47) 2002; 36
Liu, Feng, Luan, Chu, Zhao, Zhao (bib33) 2021; 55
Xiong, Liao, Zhou (bib59) 2008; 42
Neil, Lee, Jun (bib37) 2014; 48
Zhang, Wu, Wei, Zhou (bib63) 2022; 10
Feng, Wang, Zhou, Xu, Liang, Zhou (bib16) 2021; 6
Luo, Tang, Khan, Yu, Cheng, Zou (bib35) 2019; 10
Muñoz, Gonzalo, Valiente (bib36) 2002; 36
Zhou, Zhou, Zhang, Dong, Liu, Wu (bib66) 2022; 43
Boily, Gassman, Peretyazhko, Szanyi, Zachara (bib3) 2010; 44
French, Caraballo, Kim, Rimstidt, Murayama, Hochella (bib17) 2012; 97
Koppenol (bib25) 2001; 6
Eick, Luxton, Welsh (bib14) 2009; 57
Li, Liu, Wu, Liu (bib28) 2019; 3
Blgham, Schwertmann, Carlson, Murad (bib2) 1990; 54
Haber, Weiss (bib20) 1932; 20
Liu, Yan, Chen, Yu, Chen, Zheng (bib34) 2019; 377
Yan, Dai, Zheng, Lei, Qiu, Kuang (bib61) 2021; 205
Huang, Zhou (bib21) 2012; 32
Singer, Stumm (bib52) 1970; 167
Wang, Gu, Feng, Zhu (bib56) 2015; 49
Jones, Griffin, Collins, Waite (bib23) 2014; 145
Zhu, Legg, Zhang, Gilbert, Ren, Banfield (bib67) 2012; 46
Ravel, Newville (bib44) 2005; 12
Yamazaki, Piette (bib60) 1991; 113
Regenspurg, Brand, Peiffer (bib45) 2004; 68
Pierre Louis, Yu, Shumlas, Van Aken, Schoonen, Strongin (bib41) 2015; 49
Cifuentes, Glasner (bib10) 2003
Ling, Wu, Han, Dong, Zhu, Li (bib30) 2022; 220
Paikaray, Göttlicher, Peiffer (bib39) 2011; 283
Liao, Zhou, Liang, Xiong (bib29) 2009; 29
Cho, Hoffmann (bib9) 2015; 27
Shu, Liu, Qiu, Yang, Zhang, Tan (bib51) 2019; 3
Chen, Li, Chen, Hua, Huang, Liu (bib7) 2014; 48
Qiao, Liu, Shi, Zhou, Guo, Ge (bib43) 2017; 7
Rossmeisl, Qu, Zhu, Kroes, Nørskov (bib48) 2007; 607
Qi, Li, Wang, Chen, Xu, An (bib42) 2022; 215
Zhang, Ji, Lan, Zhang, Liu, Qu (bib64) 2019; 53
Antelo, Fiol, Gondar, López, Arce (bib1) 2012; 386
Kanzaki, Murakami (bib24) 2013; 123
Giesbrecht, Freund (bib19) 2020; 32
Jin, Guo, Li, Liao, Yao, Lu (bib22) 2021; 5
Paikaray, Schröder, Peiffer (bib40) 2017; 217
Regenspurg, Peiffer (bib46) 2005; 20
Dold (bib13) 2008; 7
Liu, Zhou, Zhang, Liu, Zhou, Fan (bib31) 2015; 10
Lei, Song, van der Weijden, Saakes, Buisman (bib26) 2017; 51
Feng, Wang, Ding, Xu, Liang, Zhou (bib15) 2022; 598
Song, Guo, Wang, Yang, Cao, Wang (bib53) 2022; 221
Zhang, Li, Fan, Wu, Hu, Feng (bib65) 2021; 280
Sabarathinam, Bhandary, Al-Khalid (bib49) 2020; 13
Ying, Feng, Zhu, Lanson, Liu, Wang (bib62) 2020; 7
Gan, Zheng, Sun, Zhu, Liu (bib18) 2015; 5
Liu, Guo, Qiu, Liu, Ning (bib32) 2022; 317
Trasatti (bib54) 1984; 29
Lei, Huang, Lin, Liu, Yan, Zheng (bib27) 2022; 438
Doelsch, Stone, Petit, Masion, Rose, Bottero (bib12) 2001; 17
Chen, Wu, Sun, Li, Mai, Lu (bib6) 2021; 617
Santana-González, Santana-Casiano, González-Dávila, Santana-del Pino, Gladyshev, Sokov (bib50) 2018; 203
Wang (10.1016/j.jhazmat.2023.131075_bib58) 2021; 55
Antelo (10.1016/j.jhazmat.2023.131075_bib1) 2012; 386
Paikaray (10.1016/j.jhazmat.2023.131075_bib40) 2017; 217
Lei (10.1016/j.jhazmat.2023.131075_bib26) 2017; 51
Singer (10.1016/j.jhazmat.2023.131075_bib52) 1970; 167
Wang (10.1016/j.jhazmat.2023.131075_bib56) 2015; 49
Paikaray (10.1016/j.jhazmat.2023.131075_bib38) 2018; 220
Pierre Louis (10.1016/j.jhazmat.2023.131075_bib41) 2015; 49
Liu (10.1016/j.jhazmat.2023.131075_bib32) 2022; 317
Paikaray (10.1016/j.jhazmat.2023.131075_bib39) 2011; 283
Zhu (10.1016/j.jhazmat.2023.131075_bib67) 2012; 46
French (10.1016/j.jhazmat.2023.131075_bib17) 2012; 97
Xiong (10.1016/j.jhazmat.2023.131075_bib59) 2008; 42
Li (10.1016/j.jhazmat.2023.131075_bib28) 2019; 3
Ying (10.1016/j.jhazmat.2023.131075_bib62) 2020; 7
Huang (10.1016/j.jhazmat.2023.131075_bib21) 2012; 32
Koppenol (10.1016/j.jhazmat.2023.131075_bib25) 2001; 6
Santana-González (10.1016/j.jhazmat.2023.131075_bib50) 2018; 203
Burton (10.1016/j.jhazmat.2023.131075_bib5) 2013; 47
Muñoz (10.1016/j.jhazmat.2023.131075_bib36) 2002; 36
Liu (10.1016/j.jhazmat.2023.131075_bib33) 2021; 55
Wang (10.1016/j.jhazmat.2023.131075_bib57) 2019; 151
Jin (10.1016/j.jhazmat.2023.131075_bib22) 2021; 5
Luo (10.1016/j.jhazmat.2023.131075_bib35) 2019; 10
Regenspurg (10.1016/j.jhazmat.2023.131075_bib45) 2004; 68
Rose (10.1016/j.jhazmat.2023.131075_bib47) 2002; 36
Cho (10.1016/j.jhazmat.2023.131075_bib9) 2015; 27
Sabarathinam (10.1016/j.jhazmat.2023.131075_bib49) 2020; 13
Trasatti (10.1016/j.jhazmat.2023.131075_bib54) 1984; 29
Boily (10.1016/j.jhazmat.2023.131075_bib3) 2010; 44
Qi (10.1016/j.jhazmat.2023.131075_bib42) 2022; 215
Gan (10.1016/j.jhazmat.2023.131075_bib18) 2015; 5
Chen (10.1016/j.jhazmat.2023.131075_bib8) 2017; 139
Feng (10.1016/j.jhazmat.2023.131075_bib16) 2021; 6
Burton (10.1016/j.jhazmat.2023.131075_bib4) 2009; 43
Wang (10.1016/j.jhazmat.2023.131075_bib55) 2022; 218
Zhou (10.1016/j.jhazmat.2023.131075_bib66) 2022; 43
Cifuentes (10.1016/j.jhazmat.2023.131075_bib10) 2003
Collins (10.1016/j.jhazmat.2023.131075_bib11) 2016; 177
Song (10.1016/j.jhazmat.2023.131075_bib53) 2022; 221
Yamazaki (10.1016/j.jhazmat.2023.131075_bib60) 1991; 113
Chen (10.1016/j.jhazmat.2023.131075_bib6) 2021; 617
Liao (10.1016/j.jhazmat.2023.131075_bib29) 2009; 29
Zhang (10.1016/j.jhazmat.2023.131075_bib63) 2022; 10
Liu (10.1016/j.jhazmat.2023.131075_bib34) 2019; 377
Blgham (10.1016/j.jhazmat.2023.131075_bib2) 1990; 54
Qiao (10.1016/j.jhazmat.2023.131075_bib43) 2017; 7
Kanzaki (10.1016/j.jhazmat.2023.131075_bib24) 2013; 123
Zhang (10.1016/j.jhazmat.2023.131075_bib64) 2019; 53
Neil (10.1016/j.jhazmat.2023.131075_bib37) 2014; 48
Ling (10.1016/j.jhazmat.2023.131075_bib30) 2022; 220
Liu (10.1016/j.jhazmat.2023.131075_bib31) 2015; 10
Regenspurg (10.1016/j.jhazmat.2023.131075_bib46) 2005; 20
Chen (10.1016/j.jhazmat.2023.131075_bib7) 2014; 48
Dold (10.1016/j.jhazmat.2023.131075_bib13) 2008; 7
Doelsch (10.1016/j.jhazmat.2023.131075_bib12) 2001; 17
Shu (10.1016/j.jhazmat.2023.131075_bib51) 2019; 3
Yan (10.1016/j.jhazmat.2023.131075_bib61) 2021; 205
Lei (10.1016/j.jhazmat.2023.131075_bib27) 2022; 438
Haber (10.1016/j.jhazmat.2023.131075_bib20) 1932; 20
Rossmeisl (10.1016/j.jhazmat.2023.131075_bib48) 2007; 607
Giesbrecht (10.1016/j.jhazmat.2023.131075_bib19) 2020; 32
Feng (10.1016/j.jhazmat.2023.131075_bib15) 2022; 598
Ravel (10.1016/j.jhazmat.2023.131075_bib44) 2005; 12
Jones (10.1016/j.jhazmat.2023.131075_bib23) 2014; 145
Eick (10.1016/j.jhazmat.2023.131075_bib14) 2009; 57
Zhang (10.1016/j.jhazmat.2023.131075_bib65) 2021; 280
References_xml – volume: 44
  start-page: 1185
  year: 2010
  end-page: 1190
  ident: bib3
  article-title: FTIR spectral components of schwertmannite
  publication-title: Environ Sci Technol
– volume: 167
  start-page: 1121
  year: 1970
  end-page: 1123
  ident: bib52
  article-title: Acidic mine drainage: the rate-determining step
  publication-title: Science
– volume: 5
  start-page: 1058
  year: 2021
  end-page: 1070
  ident: bib22
  article-title: Arsenic partitioning during schwertmannite dissolution and recrystallization in the presence of Fe(II) and oxalic acid
  publication-title: ACS Earth Space Chem
– volume: 3
  start-page: 718
  year: 2019
  end-page: 727
  ident: bib51
  article-title: Photochemical formation process of schwertmannite on montmorillonite and corresponding Cr(VI) adsorption capacity
  publication-title: ACS Earth Space Chem
– volume: 36
  start-page: 3405
  year: 2002
  end-page: 3411
  ident: bib36
  article-title: Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects
  publication-title: Environ Sci Technol
– volume: 7
  start-page: 9
  year: 2017
  ident: bib43
  article-title: Heating changes bio-Schwertmannite microstructure and arsenic(III) removal efficiency
  publication-title: Minerals
– volume: 317
  year: 2022
  ident: bib32
  article-title: Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions
  publication-title: J Environ Manag
– volume: 68
  start-page: 1185
  year: 2004
  end-page: 1197
  ident: bib45
  article-title: Formation and stability of schwertmannite in acidic mining lakes. M. Eggleston
  publication-title: Geochim Cosmochim Acta
– volume: 10
  year: 2022
  ident: bib63
  article-title: Schwertmannite modified with ethanol: a simple and feasible method for improving As(III) adsorption capacity
  publication-title: J Environ Chem Eng
– start-page: 260
  year: 2003
  end-page: 267
  ident: bib10
  article-title: Kinetics of the electrolytic Fe
  publication-title: Rev Metal
– volume: 220
  start-page: 217
  year: 2018
  end-page: 234
  ident: bib38
  article-title: Ionic substitution of Mg
  publication-title: Geochim Cosmochim Acta
– volume: 280
  year: 2021
  ident: bib65
  article-title: A stepwise processing strategy for treating highly acidic wastewater and comprehensive utilization of the products derived from different treating steps
  publication-title: Chemosphere
– volume: 139
  start-page: 12370
  year: 2017
  end-page: 12373
  ident: bib8
  article-title: Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction
  publication-title: J Am Chem Soc
– volume: 283
  start-page: 134
  year: 2011
  end-page: 142
  ident: bib39
  article-title: Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway
  publication-title: Chem Geol
– volume: 55
  start-page: 5857
  year: 2021
  end-page: 5867
  ident: bib58
  article-title: Molecular-scale understanding of sulfate exchange from schwertmannite by chromate versus arsenate
  publication-title: Environ Sci Technol
– volume: 221
  year: 2022
  ident: bib53
  article-title: A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization
  publication-title: Water Res
– volume: 20
  start-page: 948
  year: 1932
  end-page: 950
  ident: bib20
  article-title: Über die katalyse des hydroperoxydes
  publication-title: Sci Nat -Heide
– volume: 215
  year: 2022
  ident: bib42
  article-title: Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water
  publication-title: Water Res
– volume: 20
  start-page: 1226
  year: 2005
  end-page: 1239
  ident: bib46
  article-title: Arsenate and chromate incorporation in schwertmannite
  publication-title: Appl Geochem
– volume: 36
  start-page: 433
  year: 2002
  end-page: 444
  ident: bib47
  article-title: Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter
  publication-title: Environ Sci Technol
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  ident: bib44
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J Synchrotron Radiat
– volume: 55
  start-page: 6042
  year: 2021
  end-page: 6051
  ident: bib33
  article-title: Accelerated Fe
  publication-title: Environ Sci Technol
– volume: 7
  start-page: 2385
  year: 2020
  end-page: 2398
  ident: bib62
  article-title: Formation and transformation of schwertmannite through direct Fe
  publication-title: Environ Sci-Nano
– volume: 205
  year: 2021
  ident: bib61
  article-title: Facile ammonium oxidation to nitrogen gas in acid wastewater by in situ photogenerated chlorine radicals
  publication-title: Water Res
– volume: 438
  year: 2022
  ident: bib27
  article-title: ) Boosting the oxidative capacity of the Fe(0)/O
  publication-title: J Hazard Mater
– volume: 10
  start-page: 9
  year: 2015
  ident: bib31
  article-title: Schwertmannite synthesis through ferrous ion chemical oxidation under different H
  publication-title: PLoS One
– volume: 386
  start-page: 338
  year: 2012
  end-page: 343
  ident: bib1
  article-title: Comparison of arsenate, chromate and molybdate binding on schwertmannite: surface adsorption vs anion-exchange
  publication-title: J Colloid Interface Sci
– volume: 49
  start-page: 10440
  year: 2015
  end-page: 10448
  ident: bib56
  article-title: Sulfate local coordination environment in schwertmannite
  publication-title: Environ Sci Technol
– volume: 151
  start-page: 515
  year: 2019
  end-page: 522
  ident: bib57
  article-title: A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization
  publication-title: Water Res
– volume: 46
  start-page: 8140
  year: 2012
  end-page: 8147
  ident: bib67
  article-title: Early stage formation of iron oxyhydroxides during neutralization of simulated acid mine drainage solutions
  publication-title: Environ Sci Technol
– volume: 57
  start-page: 578
  year: 2009
  end-page: 585
  ident: bib14
  article-title: Effect of silica polymerization on the oxalate-promoted dissolution of goethite
  publication-title: Clays Clay Min
– volume: 47
  start-page: 2221
  year: 2013
  end-page: 2229
  ident: bib5
  article-title: Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite
  publication-title: Environ Sci Technol
– volume: 43
  start-page: 9202
  year: 2009
  end-page: 9207
  ident: bib4
  article-title: Sorption of arsenic(V) and arsenic(III) to schwertmannite
  publication-title: Environ Sci Technol
– volume: 48
  start-page: 5537
  year: 2014
  end-page: 5545
  ident: bib7
  article-title: Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage
  publication-title: Environ Sci Technol
– volume: 5
  start-page: 94500
  year: 2015
  end-page: 94512
  ident: bib18
  article-title: The influence of aluminum chloride on biosynthetic schwertmannite and Cu(II)/Cr(VI) adsorption
  publication-title: RSC Adv
– volume: 97
  start-page: 1469
  year: 2012
  end-page: 1482
  ident: bib17
  article-title: The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: morphology, structure, and composition
  publication-title: Am Mineral
– volume: 53
  start-page: 14586
  year: 2019
  end-page: 14594
  ident: bib64
  article-title: Synchronous reduction–oxidation process for efficient removal of trichloroacetic acid: H* initiates dechlorination and ·OH is responsible for removal efficiency
  publication-title: Environ Sci Technol
– volume: 217
  start-page: 292
  year: 2017
  end-page: 305
  ident: bib40
  article-title: Schwertmannite stability in anoxic Fe(II)-rich aqueous solution
  publication-title: Geochim Cosmochim Acta
– volume: 29
  start-page: 211
  year: 2009
  end-page: 215
  ident: bib29
  article-title: Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition
  publication-title: Mater Sci Eng C
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: bib48
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J Electroanal Chem
– volume: 3
  start-page: 711
  year: 2019
  end-page: 717
  ident: bib28
  article-title: Determination of the redox potentials of solution and solid surface of Fe(II) associated with iron oxyhydroxides
  publication-title: ACS Earth Space Chem
– volume: 377
  start-page: 259
  year: 2019
  end-page: 266
  ident: bib34
  article-title: 2,4-Dichlorophenol removal from water using an electrochemical method improved by a composite molecularly imprinted membrane/bipolar membrane
  publication-title: J Hazard Mater
– volume: 32
  start-page: 8060
  year: 2020
  end-page: 8090
  ident: bib19
  article-title: Recent advances in bipolar membrane design and applications
  publication-title: Chem Mater
– volume: 177
  start-page: 150
  year: 2016
  end-page: 169
  ident: bib11
  article-title: An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate
  publication-title: Geochim Cosmochim Acta
– volume: 51
  start-page: 11156
  year: 2017
  end-page: 11164
  ident: bib26
  article-title: Electrochemical induced calcium phosphate precipitation: importance of local pH
  publication-title: Environ Sci Technol
– volume: 6
  start-page: 229
  year: 2001
  end-page: 234
  ident: bib25
  article-title: The Haber-Weiss cycle – 70 years later
  publication-title: Redox Rep
– volume: 7
  start-page: 275
  year: 2008
  end-page: 285
  ident: bib13
  article-title: Sustainability in metal mining: from exploration, over processing to mine waste management
  publication-title: Rev Environ Sci Bio/Technol
– volume: 48
  start-page: 11883
  year: 2014
  end-page: 11891
  ident: bib37
  article-title: Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz
  publication-title: Environ Sci Technol
– volume: 54
  start-page: 2743
  year: 1990
  end-page: 2758
  ident: bib2
  article-title: A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters
  publication-title: Geochim Cosmochim Acta
– volume: 123
  start-page: 338
  year: 2013
  end-page: 350
  ident: bib24
  article-title: Rate law of Fe(II) oxidation under low O
  publication-title: Geochim Cosmochim Acta
– volume: 10
  start-page: 269
  year: 2019
  ident: bib35
  article-title: Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density
  publication-title: Nat Commun
– volume: 203
  start-page: 64
  year: 2018
  end-page: 77
  ident: bib50
  article-title: Fe(II) oxidation kinetics in the North Atlantic along the 59.5° N during 2016
  publication-title: Mar Chem
– volume: 13
  start-page: 1146
  year: 2020
  ident: bib49
  article-title: Tracing the evolution of acidic hypersaline coastal groundwater in Kuwait
  publication-title: Arab J Geosci
– volume: 27
  start-page: 2224
  year: 2015
  end-page: 2233
  ident: bib9
  article-title: Bi
  publication-title: Chem Mater
– volume: 29
  start-page: 1503
  year: 1984
  end-page: 1512
  ident: bib54
  article-title: Electrocatalysis in the anodic evolution of oxygen and chlorine
  publication-title: Electrochim Acta
– volume: 43
  start-page: 3706
  year: 2022
  end-page: 3718
  ident: bib66
  article-title: Effect of pH regulation on the formation of biogenic schwertmannite driven by Acidithiobacillus ferrooxidans and its arsenic removal ability
  publication-title: Environ Technol
– volume: 598
  year: 2022
  ident: bib15
  article-title: Acidithiobacillus ferrooxidans mediates morphology evolution of schwertmannite in the presence of Fe
  publication-title: Chem Geol
– volume: 220
  year: 2022
  ident: bib30
  article-title: Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: performance and dominant routine of reactive species production
  publication-title: Water Res
– volume: 218
  year: 2022
  ident: bib55
  article-title: Flow-through electrochemical removal of benzotriazole by electroactive ceramic membrane
  publication-title: Water Res
– volume: 17
  start-page: 1399
  year: 2001
  end-page: 1405
  ident: bib12
  article-title: Speciation and crystal chemistry of Fe(III) chloride hydrolyzed in the presence of SiO
  publication-title: Langmuir
– volume: 49
  start-page: 7701
  year: 2015
  end-page: 7708
  ident: bib41
  article-title: Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions
  publication-title: Environ Sci Technol
– volume: 145
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib23
  article-title: Ferrous iron oxidation under acidic conditions – the effect of ferric oxide surfaces
  publication-title: Geochim Cosmochim Acta
– volume: 617
  year: 2021
  ident: bib6
  article-title: Mechanism and formation process of schwertmannite under electrochemical deposition
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 6
  start-page: 3194
  year: 2021
  end-page: 3201
  ident: bib16
  article-title: Hydroxyl, Fe
  publication-title: ACS Omega
– volume: 42
  start-page: 8681
  year: 2008
  end-page: 8686
  ident: bib59
  article-title: Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by acidithiobacillus ferrooxidans cells
  publication-title: Environ Sci Technol
– volume: 113
  start-page: 7588
  year: 1991
  end-page: 7593
  ident: bib60
  article-title: EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide
  publication-title: J Am Chem Soc
– volume: 32
  start-page: 916
  year: 2012
  end-page: 921
  ident: bib21
  article-title: Fe
  publication-title: Mater Sci Eng C
– volume: 51
  start-page: 11156
  issue: 19
  year: 2017
  ident: 10.1016/j.jhazmat.2023.131075_bib26
  article-title: Electrochemical induced calcium phosphate precipitation: importance of local pH
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b03909
– volume: 54
  start-page: 2743
  issue: 10
  year: 1990
  ident: 10.1016/j.jhazmat.2023.131075_bib2
  article-title: A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/0016-7037(90)90009-A
– volume: 20
  start-page: 1226
  issue: 6
  year: 2005
  ident: 10.1016/j.jhazmat.2023.131075_bib46
  article-title: Arsenate and chromate incorporation in schwertmannite
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2004.12.002
– volume: 17
  start-page: 1399
  issue: 5
  year: 2001
  ident: 10.1016/j.jhazmat.2023.131075_bib12
  article-title: Speciation and crystal chemistry of Fe(III) chloride hydrolyzed in the presence of SiO4 Ligands. 2. Characterization of Si−Fe aggregates by FTIR and 29Si solid-state NMR
  publication-title: Langmuir
  doi: 10.1021/la0013188
– volume: 29
  start-page: 1503
  issue: 11
  year: 1984
  ident: 10.1016/j.jhazmat.2023.131075_bib54
  article-title: Electrocatalysis in the anodic evolution of oxygen and chlorine
  publication-title: Electrochim Acta
  doi: 10.1016/0013-4686(84)85004-5
– volume: 49
  start-page: 10440
  issue: 17
  year: 2015
  ident: 10.1016/j.jhazmat.2023.131075_bib56
  article-title: Sulfate local coordination environment in schwertmannite
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b02660
– volume: 218
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131075_bib55
  article-title: Flow-through electrochemical removal of benzotriazole by electroactive ceramic membrane
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.118454
– volume: 20
  start-page: 948
  issue: 51
  year: 1932
  ident: 10.1016/j.jhazmat.2023.131075_bib20
  article-title: Über die katalyse des hydroperoxydes
  publication-title: Sci Nat -Heide
  doi: 10.1007/BF01504715
– volume: 607
  start-page: 83
  issue: 1
  year: 2007
  ident: 10.1016/j.jhazmat.2023.131075_bib48
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 438
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131075_bib27
  article-title: ) Boosting the oxidative capacity of the Fe(0)/O2 system via an air-breathing cathode
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2022.129552
– volume: 55
  start-page: 5857
  issue: 9
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131075_bib58
  article-title: Molecular-scale understanding of sulfate exchange from schwertmannite by chromate versus arsenate
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c07980
– volume: 42
  start-page: 8681
  issue: 23
  year: 2008
  ident: 10.1016/j.jhazmat.2023.131075_bib59
  article-title: Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by acidithiobacillus ferrooxidans cells
  publication-title: Environ Sci Technol
  doi: 10.1021/es801646j
– volume: 7
  start-page: 275
  issue: 4
  year: 2008
  ident: 10.1016/j.jhazmat.2023.131075_bib13
  article-title: Sustainability in metal mining: from exploration, over processing to mine waste management
  publication-title: Rev Environ Sci Bio/Technol
  doi: 10.1007/s11157-008-9142-y
– volume: 177
  start-page: 150
  year: 2016
  ident: 10.1016/j.jhazmat.2023.131075_bib11
  article-title: An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2016.01.021
– start-page: 260
  year: 2003
  ident: 10.1016/j.jhazmat.2023.131075_bib10
  article-title: Kinetics of the electrolytic Fe2+/Fe3+ oxidation on various anode materials
  publication-title: Rev Metal
  doi: 10.3989/revmetalm.2003.v39.i4.337
– volume: 280
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131075_bib65
  article-title: A stepwise processing strategy for treating highly acidic wastewater and comprehensive utilization of the products derived from different treating steps
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130646
– volume: 113
  start-page: 7588
  issue: 20
  year: 1991
  ident: 10.1016/j.jhazmat.2023.131075_bib60
  article-title: EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00020a021
– volume: 48
  start-page: 11883
  issue: 20
  year: 2014
  ident: 10.1016/j.jhazmat.2023.131075_bib37
  article-title: Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz
  publication-title: Environ Sci Technol
  doi: 10.1021/es503251z
– volume: 49
  start-page: 7701
  issue: 13
  year: 2015
  ident: 10.1016/j.jhazmat.2023.131075_bib41
  article-title: Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions
  publication-title: Environ Sci Technol
  doi: 10.1021/es505374g
– volume: 123
  start-page: 338
  year: 2013
  ident: 10.1016/j.jhazmat.2023.131075_bib24
  article-title: Rate law of Fe(II) oxidation under low O2 conditions
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2013.06.014
– volume: 29
  start-page: 211
  issue: 1
  year: 2009
  ident: 10.1016/j.jhazmat.2023.131075_bib29
  article-title: Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2008.06.011
– volume: 36
  start-page: 433
  issue: 3
  year: 2002
  ident: 10.1016/j.jhazmat.2023.131075_bib47
  article-title: Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter
  publication-title: Environ Sci Technol
  doi: 10.1021/es0109242
– volume: 203
  start-page: 64
  year: 2018
  ident: 10.1016/j.jhazmat.2023.131075_bib50
  article-title: Fe(II) oxidation kinetics in the North Atlantic along the 59.5° N during 2016
  publication-title: Mar Chem
  doi: 10.1016/j.marchem.2018.05.002
– volume: 5
  start-page: 1058
  issue: 5
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131075_bib22
  article-title: Arsenic partitioning during schwertmannite dissolution and recrystallization in the presence of Fe(II) and oxalic acid
  publication-title: ACS Earth Space Chem
  doi: 10.1021/acsearthspacechem.1c00009
– volume: 215
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131075_bib42
  article-title: Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.118240
– volume: 7
  start-page: 9
  issue: 1
  year: 2017
  ident: 10.1016/j.jhazmat.2023.131075_bib43
  article-title: Heating changes bio-Schwertmannite microstructure and arsenic(III) removal efficiency
  publication-title: Minerals
  doi: 10.3390/min7010009
– volume: 32
  start-page: 916
  issue: 4
  year: 2012
  ident: 10.1016/j.jhazmat.2023.131075_bib21
  article-title: Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2012.02.012
– volume: 3
  start-page: 711
  issue: 5
  year: 2019
  ident: 10.1016/j.jhazmat.2023.131075_bib28
  article-title: Determination of the redox potentials of solution and solid surface of Fe(II) associated with iron oxyhydroxides
  publication-title: ACS Earth Space Chem
  doi: 10.1021/acsearthspacechem.9b00001
– volume: 205
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131075_bib61
  article-title: Facile ammonium oxidation to nitrogen gas in acid wastewater by in situ photogenerated chlorine radicals
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.117678
– volume: 44
  start-page: 1185
  issue: 4
  year: 2010
  ident: 10.1016/j.jhazmat.2023.131075_bib3
  article-title: FTIR spectral components of schwertmannite
  publication-title: Environ Sci Technol
  doi: 10.1021/es902803u
– volume: 5
  start-page: 94500
  issue: 114
  year: 2015
  ident: 10.1016/j.jhazmat.2023.131075_bib18
  article-title: The influence of aluminum chloride on biosynthetic schwertmannite and Cu(II)/Cr(VI) adsorption
  publication-title: RSC Adv
  doi: 10.1039/C5RA17316G
– volume: 7
  start-page: 2385
  issue: 8
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131075_bib62
  article-title: Formation and transformation of schwertmannite through direct Fe3+ hydrolysis under various geochemical conditions
  publication-title: Environ Sci-Nano
  doi: 10.1039/D0EN00252F
– volume: 145
  start-page: 1
  year: 2014
  ident: 10.1016/j.jhazmat.2023.131075_bib23
  article-title: Ferrous iron oxidation under acidic conditions – the effect of ferric oxide surfaces
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2014.09.020
– volume: 47
  start-page: 2221
  issue: 5
  year: 2013
  ident: 10.1016/j.jhazmat.2023.131075_bib5
  article-title: Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite
  publication-title: Environ Sci Technol
  doi: 10.1021/es303867t
– volume: 598
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131075_bib15
  article-title: Acidithiobacillus ferrooxidans mediates morphology evolution of schwertmannite in the presence of Fe2+
  publication-title: Chem Geol
  doi: 10.1016/j.chemgeo.2022.120828
– volume: 10
  start-page: 269
  issue: 1
  year: 2019
  ident: 10.1016/j.jhazmat.2023.131075_bib35
  article-title: Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07792-9
– volume: 46
  start-page: 8140
  issue: 15
  year: 2012
  ident: 10.1016/j.jhazmat.2023.131075_bib67
  article-title: Early stage formation of iron oxyhydroxides during neutralization of simulated acid mine drainage solutions
  publication-title: Environ Sci Technol
  doi: 10.1021/es301268g
– volume: 220
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131075_bib30
  article-title: Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: performance and dominant routine of reactive species production
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.118676
– volume: 13
  start-page: 1146
  issue: 21
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131075_bib49
  article-title: Tracing the evolution of acidic hypersaline coastal groundwater in Kuwait
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-06116-w
– volume: 27
  start-page: 2224
  issue: 6
  year: 2015
  ident: 10.1016/j.jhazmat.2023.131075_bib9
  article-title: BixTi1–xOz functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b00376
– volume: 377
  start-page: 259
  year: 2019
  ident: 10.1016/j.jhazmat.2023.131075_bib34
  article-title: 2,4-Dichlorophenol removal from water using an electrochemical method improved by a composite molecularly imprinted membrane/bipolar membrane
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.05.064
– volume: 220
  start-page: 217
  year: 2018
  ident: 10.1016/j.jhazmat.2023.131075_bib38
  article-title: Ionic substitution of Mg2+ for Al3+ and Fe3+ with octahedral coordination in hydroxides facilitate precipitation of layered double hydroxides
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2017.10.003
– volume: 221
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131075_bib53
  article-title: A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.118748
– volume: 48
  start-page: 5537
  issue: 10
  year: 2014
  ident: 10.1016/j.jhazmat.2023.131075_bib7
  article-title: Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage
  publication-title: Environ Sci Technol
  doi: 10.1021/es500154z
– volume: 68
  start-page: 1185
  issue: 6
  year: 2004
  ident: 10.1016/j.jhazmat.2023.131075_bib45
  article-title: Formation and stability of schwertmannite in acidic mining lakes. M. Eggleston
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2003.07.015
– volume: 139
  start-page: 12370
  issue: 36
  year: 2017
  ident: 10.1016/j.jhazmat.2023.131075_bib8
  article-title: Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b06337
– volume: 32
  start-page: 8060
  issue: 19
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131075_bib19
  article-title: Recent advances in bipolar membrane design and applications
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.0c02829
– volume: 617
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131075_bib6
  article-title: Mechanism and formation process of schwertmannite under electrochemical deposition
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2021.126366
– volume: 217
  start-page: 292
  year: 2017
  ident: 10.1016/j.jhazmat.2023.131075_bib40
  article-title: Schwertmannite stability in anoxic Fe(II)-rich aqueous solution
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2017.08.026
– volume: 12
  start-page: 537
  issue: 4
  year: 2005
  ident: 10.1016/j.jhazmat.2023.131075_bib44
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J Synchrotron Radiat
  doi: 10.1107/S0909049505012719
– volume: 3
  start-page: 718
  issue: 5
  year: 2019
  ident: 10.1016/j.jhazmat.2023.131075_bib51
  article-title: Photochemical formation process of schwertmannite on montmorillonite and corresponding Cr(VI) adsorption capacity
  publication-title: ACS Earth Space Chem
  doi: 10.1021/acsearthspacechem.8b00202
– volume: 10
  issue: 3
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131075_bib63
  article-title: Schwertmannite modified with ethanol: a simple and feasible method for improving As(III) adsorption capacity
  publication-title: J Environ Chem Eng
– volume: 57
  start-page: 578
  issue: 5
  year: 2009
  ident: 10.1016/j.jhazmat.2023.131075_bib14
  article-title: Effect of silica polymerization on the oxalate-promoted dissolution of goethite
  publication-title: Clays Clay Min
  doi: 10.1346/CCMN.2009.0570506
– volume: 10
  start-page: 9
  year: 2015
  ident: 10.1016/j.jhazmat.2023.131075_bib31
  article-title: Schwertmannite synthesis through ferrous ion chemical oxidation under different H2O2 supply rates and its removal efficiency for arsenic from contaminated groundwater
  publication-title: PLoS One
– volume: 167
  start-page: 1121
  issue: 3921
  year: 1970
  ident: 10.1016/j.jhazmat.2023.131075_bib52
  article-title: Acidic mine drainage: the rate-determining step
  publication-title: Science
  doi: 10.1126/science.167.3921.1121
– volume: 53
  start-page: 14586
  issue: 24
  year: 2019
  ident: 10.1016/j.jhazmat.2023.131075_bib64
  article-title: Synchronous reduction–oxidation process for efficient removal of trichloroacetic acid: H* initiates dechlorination and ·OH is responsible for removal efficiency
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b05389
– volume: 43
  start-page: 3706
  issue: 24
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131075_bib66
  article-title: Effect of pH regulation on the formation of biogenic schwertmannite driven by Acidithiobacillus ferrooxidans and its arsenic removal ability
  publication-title: Environ Technol
  doi: 10.1080/09593330.2021.1933200
– volume: 317
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131075_bib32
  article-title: Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2022.115425
– volume: 36
  start-page: 3405
  issue: 15
  year: 2002
  ident: 10.1016/j.jhazmat.2023.131075_bib36
  article-title: Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects
  publication-title: Environ Sci Technol
  doi: 10.1021/es020017c
– volume: 283
  start-page: 134
  issue: 3
  year: 2011
  ident: 10.1016/j.jhazmat.2023.131075_bib39
  article-title: Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway
  publication-title: Chem Geol
  doi: 10.1016/j.chemgeo.2010.08.011
– volume: 43
  start-page: 9202
  issue: 24
  year: 2009
  ident: 10.1016/j.jhazmat.2023.131075_bib4
  article-title: Sorption of arsenic(V) and arsenic(III) to schwertmannite
  publication-title: Environ Sci Technol
  doi: 10.1021/es902461x
– volume: 97
  start-page: 1469
  issue: 8–9
  year: 2012
  ident: 10.1016/j.jhazmat.2023.131075_bib17
  article-title: The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: morphology, structure, and composition
  publication-title: Am Mineral
  doi: 10.2138/am.2012.4032
– volume: 386
  start-page: 338
  issue: 1
  year: 2012
  ident: 10.1016/j.jhazmat.2023.131075_bib1
  article-title: Comparison of arsenate, chromate and molybdate binding on schwertmannite: surface adsorption vs anion-exchange
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2012.07.008
– volume: 6
  start-page: 3194
  issue: 4
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131075_bib16
  article-title: Hydroxyl, Fe2+, and Acidithiobacillus ferrooxidans jointly determined the crystal growth and morphology of schwertmannite in a sulfate-rich acidic environment
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c05606
– volume: 151
  start-page: 515
  year: 2019
  ident: 10.1016/j.jhazmat.2023.131075_bib57
  article-title: A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.12.052
– volume: 6
  start-page: 229
  issue: 4
  year: 2001
  ident: 10.1016/j.jhazmat.2023.131075_bib25
  article-title: The Haber-Weiss cycle – 70 years later
  publication-title: Redox Rep
  doi: 10.1179/135100001101536373
– volume: 55
  start-page: 6042
  issue: 9
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131075_bib33
  article-title: Accelerated Fe2+ regeneration in an effective electro-fenton process by boosting internal electron transfer to a nitrogen-conjugated Fe(III) complex
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c08018
SSID ssj0001754
Score 2.4750624
Snippet The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 131075
SubjectTerms Acid mine drainage
Adsorption of arsenic species
Fe(II)-activated oxygen reduction
Reactive oxygen species
Schwertmannite synthesis
Title A coupled electrochemical process for schwertmannite recovery from acid mine drainage: Important roles of anodic reactive oxygen species and cathodic alkaline
URI https://dx.doi.org/10.1016/j.jhazmat.2023.131075
https://www.ncbi.nlm.nih.gov/pubmed/36870128
https://www.proquest.com/docview/2783496603
Volume 451
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9xADB1RemkPiAJtF1rkSr0my2bytb2tUNECLZeCxG00mXjU3e4mK8iK0kN_Cr8VezKBVgIhcUwyk0SxYz_L9rMQnzEfZLkpTbBnhyaIh6kOCorBgghxmLDPyRzFxveTdHwWH50n5ytiv-uF4bJKb_tbm-6stT_T91-zv5hM-j84qUfulvAAp8Mypt2O44y1PPx7X-ZB7rGlkOIMAK2-7-LpT8PpT_2HgGHIM8TDASEdLjd82D89hj-dHzpYF2seQMKofcc3YgWrDfH6H1rBDfHim77aFDcjMPVyMcMS_Kwb48kBYNF2BwABVqDo9govmjnPLmoQOEAm7b4G7jsBbSYlzOnOUPIoCbI9X-Bw7iB71QBXJl5CbUFXdTkxtFc76wn172vSS-AuTgrE6XIJTA_rFunZL83QdkucHXw93R8HfhpDYGSaNIGVOjVRpm1mogiTAlEXltnAMpnEaJnwPLE5h3Mc0lgcSEOhmM2YwM2YSMu3YrWqK3wvQCItImQqi0TGZST1XjnImdl0SPYGddwTcScDZTxVOU_MmKmuJm2qvOgUi061ouuJ8G7bouXqeGpD3glY_ad0ivzJU1s_dQqh6IfkLIuusF5eKje6hDlPZU-8azXl7m1kSuaREMH28x-8I17xkatWSz6I1eZiiR8JFzXFrlP8XfFydHg8PrkFj-sOEQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPZQeUEtfS19Tqddk2Tiv7Q2hoqUsXAoSN8txbLHb3WQFWfE49Kf0t3bGcYBKrZC4xnZiZcYz38gz3wB8Mfkgy3Wpg2071EE8TFVQUAwWRMYME_Y5maPYODxKRyfx99PkdAV2u1oYTqv0tr-16c5a-yd9_zf7i8mk_4Mv9cjdEh7g67AsXYUnMR1fbmMQ_rrL8yD_2HJI8RUATb8r4-lPw-mZuiFkGHIT8XBAUIfzDf_toP4HQJ0j2nsOGx5B4k67yRewYqpNeHaPV3ATVsfq8iX83kFdLxczU6JvdqM9OwAu2vIAJMSKFN5emvNmzs2LGoMcIZN6XyMXnqDSkxLn9GYsuZcEGZ-vuD93mL1qkFMTL7C2qKq6nGhaq5z5xPrqmhQTuYyTInEaLpH5Yd0kNfupGNu-gpO9b8e7o8C3Ywi0SJMmsEKlOsqUzXQUmaQwRhWW6cAykcTGMuN5YnOO5zimsWYgNMViNmMGN60jJV7DWlVX5i2gMDSJoKkoEhGXkVDb5SBnatMhGRyj4h7EnQyk9lzl3DJjJruktKn0opMsOtmKrgfh7bJFS9bx0IK8E7D8S-skOZSHln7uFELSieRrFlWZenkhXe8SJj0VPXjTasrtbkRK9pEgwdbjP_wJno6OD8dyvH908A7WecSlriXvYa05X5oPBJKa4qM7BH8AmYgPnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+coupled+electrochemical+process+for+schwertmannite+recovery+from+acid+mine+drainage%3A+Important+roles+of+anodic+reactive+oxygen+species+and+cathodic+alkaline&rft.jtitle=Journal+of+hazardous+materials&rft.au=Huang%2C+Ziyuan&rft.au=Ma%2C+Huanxin&rft.au=Liu%2C+Chengshuai&rft.au=Meng%2C+Fangyuan&rft.date=2023-06-05&rft.eissn=1873-3336&rft.volume=451&rft.spage=131075&rft_id=info:doi/10.1016%2Fj.jhazmat.2023.131075&rft_id=info%3Apmid%2F36870128&rft.externalDocID=36870128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon