A coupled electrochemical process for schwertmannite recovery from acid mine drainage: Important roles of anodic reactive oxygen species and cathodic alkaline
The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in si...
Saved in:
Published in | Journal of hazardous materials Vol. 451; p. 131075 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g−1 and containing small amounts of –OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g−1) and amounts of –OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH−, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase.
[Display omitted]
•Schwertmannite is synthesized from AMD using a coupled electrochemical system.•The system involves anodic Fe(II) oxidation and cathodic alkaline production.•High currents result in schwertmannite high in SSA and amounts of –OH groups.••OH plays a dominant role in accelerating Fe(II) oxidation at high currents.•Schwertmannite recovered from real AMD is a powerful sorbent for arsenic species. |
---|---|
AbstractList | The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g-1 and containing small amounts of -OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g-1) and amounts of -OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH-, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase.The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g-1 and containing small amounts of -OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g-1) and amounts of -OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH-, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase. The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m g and containing small amounts of -OH groups (formula Fe O (OH) (SO ) ), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m g ) and amounts of -OH groups (formula Fe O (OH) (SO ) ). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH , were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase. The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this line, we envisage that a coupled electrochemical system involving anodic Fe(II) oxidation and cathodic alkaline production will facilitate in situ synthesis of schwertmannite from AMD. Multiple physicochemical studies showed the successful formation of electrochemistry-induced schwertmannite, with its surface structure and chemical composition closely related to the applied current. A low current (e.g., 50 mA) led to the formation of schwertmannite having a small specific surface area (SSA) of 122.8 m2 g−1 and containing small amounts of –OH groups (formula Fe8O8(OH)4.49(SO4)1.76), whereas a large current (e.g., 200 mA) led to schwertmannite high in SSA (169.5 m2 g−1) and amounts of –OH groups (formula Fe8O8(OH)5.16(SO4)1.42). Mechanistic studies revealed that the reactive oxygen species (ROS)-mediated pathway, rather than the direct oxidation pathway, plays a dominant role in accelerating Fe(II) oxidation, especially at high currents. The abundance of •OH in the bulk solution, along with the cathodic production of OH−, were the key to obtaining schwertmannite with desirable properties. It was also found to function as a powerful sorbent in removal of arsenic species from the aqueous phase. [Display omitted] •Schwertmannite is synthesized from AMD using a coupled electrochemical system.•The system involves anodic Fe(II) oxidation and cathodic alkaline production.•High currents result in schwertmannite high in SSA and amounts of –OH groups.••OH plays a dominant role in accelerating Fe(II) oxidation at high currents.•Schwertmannite recovered from real AMD is a powerful sorbent for arsenic species. |
ArticleNumber | 131075 |
Author | Huang, Ziyuan Lin, Yu-Jung Ma, Huanxin Liu, Chengshuai Meng, Fangyuan Yi, Xiaoyun Lee, Jyh-Fu Feng, Chunhua Dang, Zhi |
Author_xml | – sequence: 1 givenname: Ziyuan surname: Huang fullname: Huang, Ziyuan organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China – sequence: 2 givenname: Huanxin surname: Ma fullname: Ma, Huanxin organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China – sequence: 3 givenname: Chengshuai surname: Liu fullname: Liu, Chengshuai organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China – sequence: 4 givenname: Fangyuan surname: Meng fullname: Meng, Fangyuan organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China – sequence: 5 givenname: Jyh-Fu surname: Lee fullname: Lee, Jyh-Fu organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC – sequence: 6 givenname: Yu-Jung surname: Lin fullname: Lin, Yu-Jung organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC – sequence: 7 givenname: Xiaoyun surname: Yi fullname: Yi, Xiaoyun organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China – sequence: 8 givenname: Zhi surname: Dang fullname: Dang, Zhi organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China – sequence: 9 givenname: Chunhua orcidid: 0000-0001-7928-7865 surname: Feng fullname: Feng, Chunhua email: chfeng@scut.edu.cn organization: The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36870128$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCI4C8ZDPBHo9nJrBAVcVPpUpsYG3d3LluHGbswXYC4WF4VlwSWLDpynfxfUfyORfszAdPjD2XYimFbF9tl9sN_JwgL2tRq6VUUnT6EVvIvlOVUqo9YwuhRFOpftWcs4uUtkII2enmCTtXbd8JWfcL9uuKY9jNIw2cRsIcA25ocggjn8tNKXEbIk-4-U4xT-C9y8QjYdhTPHAbw8QB3cAn54kPEZyHO3rNb6Y5xAw-8xhGSjxYDj4MDosLmN2eePhxuCPP00zoCgF-4Ah58weC8SuMJfEpe2xhTPTs9F6yL-_ffb7-WN1--nBzfXVboWp1rqyCFusObId1TXpNBGurm650oRuystFa235VN6u2qXtLUqFsG9s1rVaINahL9vKYWz79bUcpm8klpHEET2GXTN31qsitUAV9cUJ364kGM0c3QTyYv50WQB8BjCGlSPYfIoW5385szWk7c7-dOW5XvDf_eegyZBd8LrWOD9pvjzaVmvaOokmlVo80uLJWNkNwDyT8BvRcu78 |
CitedBy_id | crossref_primary_10_1016_j_watres_2025_123193 crossref_primary_10_1021_acs_est_4c06699 crossref_primary_10_1021_acsestengg_4c00706 crossref_primary_10_1016_j_cej_2024_150614 crossref_primary_10_1016_j_psep_2024_06_125 crossref_primary_10_1007_s13762_024_05897_x crossref_primary_10_1016_j_jwpe_2023_104213 crossref_primary_10_1016_j_watres_2024_122195 crossref_primary_10_1016_j_cclet_2024_110332 |
Cites_doi | 10.1021/acs.est.7b03909 10.1016/0016-7037(90)90009-A 10.1016/j.apgeochem.2004.12.002 10.1021/la0013188 10.1016/0013-4686(84)85004-5 10.1021/acs.est.5b02660 10.1016/j.watres.2022.118454 10.1007/BF01504715 10.1016/j.jelechem.2006.11.008 10.1016/j.jhazmat.2022.129552 10.1021/acs.est.0c07980 10.1021/es801646j 10.1007/s11157-008-9142-y 10.1016/j.gca.2016.01.021 10.3989/revmetalm.2003.v39.i4.337 10.1016/j.chemosphere.2021.130646 10.1021/ja00020a021 10.1021/es503251z 10.1021/es505374g 10.1016/j.gca.2013.06.014 10.1016/j.msec.2008.06.011 10.1021/es0109242 10.1016/j.marchem.2018.05.002 10.1021/acsearthspacechem.1c00009 10.1016/j.watres.2022.118240 10.3390/min7010009 10.1016/j.msec.2012.02.012 10.1021/acsearthspacechem.9b00001 10.1016/j.watres.2021.117678 10.1021/es902803u 10.1039/C5RA17316G 10.1039/D0EN00252F 10.1016/j.gca.2014.09.020 10.1021/es303867t 10.1016/j.chemgeo.2022.120828 10.1038/s41467-018-07792-9 10.1021/es301268g 10.1016/j.watres.2022.118676 10.1007/s12517-020-06116-w 10.1021/acs.chemmater.5b00376 10.1016/j.jhazmat.2019.05.064 10.1016/j.gca.2017.10.003 10.1016/j.watres.2022.118748 10.1021/es500154z 10.1016/j.gca.2003.07.015 10.1021/jacs.7b06337 10.1021/acs.chemmater.0c02829 10.1016/j.colsurfa.2021.126366 10.1016/j.gca.2017.08.026 10.1107/S0909049505012719 10.1021/acsearthspacechem.8b00202 10.1346/CCMN.2009.0570506 10.1126/science.167.3921.1121 10.1021/acs.est.9b05389 10.1080/09593330.2021.1933200 10.1016/j.jenvman.2022.115425 10.1021/es020017c 10.1016/j.chemgeo.2010.08.011 10.1021/es902461x 10.2138/am.2012.4032 10.1016/j.jcis.2012.07.008 10.1021/acsomega.0c05606 10.1016/j.watres.2018.12.052 10.1179/135100001101536373 10.1021/acs.est.0c08018 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jhazmat.2023.131075 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 36870128 10_1016_j_jhazmat_2023_131075 S0304389423003576 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SSH T9H TAE VH1 WUQ NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c365t-f3a6c27af7c22e5beeabf54787354ef14555f892496428fe13c164f74653cc2a3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Tue Aug 05 10:53:57 EDT 2025 Wed Feb 19 02:24:45 EST 2025 Tue Jul 01 01:05:57 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Fri Feb 23 02:38:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reactive oxygen species Schwertmannite synthesis Fe(II)-activated oxygen reduction Acid mine drainage Adsorption of arsenic species |
Language | English |
License | Copyright © 2023 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-f3a6c27af7c22e5beeabf54787354ef14555f892496428fe13c164f74653cc2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7928-7865 |
PMID | 36870128 |
PQID | 2783496603 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2783496603 pubmed_primary_36870128 crossref_primary_10_1016_j_jhazmat_2023_131075 crossref_citationtrail_10_1016_j_jhazmat_2023_131075 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2023_131075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-05 |
PublicationDateYYYYMMDD | 2023-06-05 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Burton, Bush, Johnston, Watling, Hocking, Sullivan (bib4) 2009; 43 Collins, Rosso, Rose, Glover, David Waite (bib11) 2016; 177 Wang, Ying, Zhao, Feng, Tan, Beyer (bib58) 2021; 55 Chen, Yu, Chen, Liu, Li, Zhu (bib8) 2017; 139 Wang, Jiang, Fang, Liang, Zhou (bib57) 2019; 151 Paikaray, Essilfie-Dughan, Hendry (bib38) 2018; 220 Wang, Pei, Zhang, Huang, You (bib55) 2022; 218 Burton, Johnston, Kraal, Bush, Claff (bib5) 2013; 47 Rose, Waite (bib47) 2002; 36 Liu, Feng, Luan, Chu, Zhao, Zhao (bib33) 2021; 55 Xiong, Liao, Zhou (bib59) 2008; 42 Neil, Lee, Jun (bib37) 2014; 48 Zhang, Wu, Wei, Zhou (bib63) 2022; 10 Feng, Wang, Zhou, Xu, Liang, Zhou (bib16) 2021; 6 Luo, Tang, Khan, Yu, Cheng, Zou (bib35) 2019; 10 Muñoz, Gonzalo, Valiente (bib36) 2002; 36 Zhou, Zhou, Zhang, Dong, Liu, Wu (bib66) 2022; 43 Boily, Gassman, Peretyazhko, Szanyi, Zachara (bib3) 2010; 44 French, Caraballo, Kim, Rimstidt, Murayama, Hochella (bib17) 2012; 97 Koppenol (bib25) 2001; 6 Eick, Luxton, Welsh (bib14) 2009; 57 Li, Liu, Wu, Liu (bib28) 2019; 3 Blgham, Schwertmann, Carlson, Murad (bib2) 1990; 54 Haber, Weiss (bib20) 1932; 20 Liu, Yan, Chen, Yu, Chen, Zheng (bib34) 2019; 377 Yan, Dai, Zheng, Lei, Qiu, Kuang (bib61) 2021; 205 Huang, Zhou (bib21) 2012; 32 Singer, Stumm (bib52) 1970; 167 Wang, Gu, Feng, Zhu (bib56) 2015; 49 Jones, Griffin, Collins, Waite (bib23) 2014; 145 Zhu, Legg, Zhang, Gilbert, Ren, Banfield (bib67) 2012; 46 Ravel, Newville (bib44) 2005; 12 Yamazaki, Piette (bib60) 1991; 113 Regenspurg, Brand, Peiffer (bib45) 2004; 68 Pierre Louis, Yu, Shumlas, Van Aken, Schoonen, Strongin (bib41) 2015; 49 Cifuentes, Glasner (bib10) 2003 Ling, Wu, Han, Dong, Zhu, Li (bib30) 2022; 220 Paikaray, Göttlicher, Peiffer (bib39) 2011; 283 Liao, Zhou, Liang, Xiong (bib29) 2009; 29 Cho, Hoffmann (bib9) 2015; 27 Shu, Liu, Qiu, Yang, Zhang, Tan (bib51) 2019; 3 Chen, Li, Chen, Hua, Huang, Liu (bib7) 2014; 48 Qiao, Liu, Shi, Zhou, Guo, Ge (bib43) 2017; 7 Rossmeisl, Qu, Zhu, Kroes, Nørskov (bib48) 2007; 607 Qi, Li, Wang, Chen, Xu, An (bib42) 2022; 215 Zhang, Ji, Lan, Zhang, Liu, Qu (bib64) 2019; 53 Antelo, Fiol, Gondar, López, Arce (bib1) 2012; 386 Kanzaki, Murakami (bib24) 2013; 123 Giesbrecht, Freund (bib19) 2020; 32 Jin, Guo, Li, Liao, Yao, Lu (bib22) 2021; 5 Paikaray, Schröder, Peiffer (bib40) 2017; 217 Regenspurg, Peiffer (bib46) 2005; 20 Dold (bib13) 2008; 7 Liu, Zhou, Zhang, Liu, Zhou, Fan (bib31) 2015; 10 Lei, Song, van der Weijden, Saakes, Buisman (bib26) 2017; 51 Feng, Wang, Ding, Xu, Liang, Zhou (bib15) 2022; 598 Song, Guo, Wang, Yang, Cao, Wang (bib53) 2022; 221 Zhang, Li, Fan, Wu, Hu, Feng (bib65) 2021; 280 Sabarathinam, Bhandary, Al-Khalid (bib49) 2020; 13 Ying, Feng, Zhu, Lanson, Liu, Wang (bib62) 2020; 7 Gan, Zheng, Sun, Zhu, Liu (bib18) 2015; 5 Liu, Guo, Qiu, Liu, Ning (bib32) 2022; 317 Trasatti (bib54) 1984; 29 Lei, Huang, Lin, Liu, Yan, Zheng (bib27) 2022; 438 Doelsch, Stone, Petit, Masion, Rose, Bottero (bib12) 2001; 17 Chen, Wu, Sun, Li, Mai, Lu (bib6) 2021; 617 Santana-González, Santana-Casiano, González-Dávila, Santana-del Pino, Gladyshev, Sokov (bib50) 2018; 203 Wang (10.1016/j.jhazmat.2023.131075_bib58) 2021; 55 Antelo (10.1016/j.jhazmat.2023.131075_bib1) 2012; 386 Paikaray (10.1016/j.jhazmat.2023.131075_bib40) 2017; 217 Lei (10.1016/j.jhazmat.2023.131075_bib26) 2017; 51 Singer (10.1016/j.jhazmat.2023.131075_bib52) 1970; 167 Wang (10.1016/j.jhazmat.2023.131075_bib56) 2015; 49 Paikaray (10.1016/j.jhazmat.2023.131075_bib38) 2018; 220 Pierre Louis (10.1016/j.jhazmat.2023.131075_bib41) 2015; 49 Liu (10.1016/j.jhazmat.2023.131075_bib32) 2022; 317 Paikaray (10.1016/j.jhazmat.2023.131075_bib39) 2011; 283 Zhu (10.1016/j.jhazmat.2023.131075_bib67) 2012; 46 French (10.1016/j.jhazmat.2023.131075_bib17) 2012; 97 Xiong (10.1016/j.jhazmat.2023.131075_bib59) 2008; 42 Li (10.1016/j.jhazmat.2023.131075_bib28) 2019; 3 Ying (10.1016/j.jhazmat.2023.131075_bib62) 2020; 7 Huang (10.1016/j.jhazmat.2023.131075_bib21) 2012; 32 Koppenol (10.1016/j.jhazmat.2023.131075_bib25) 2001; 6 Santana-González (10.1016/j.jhazmat.2023.131075_bib50) 2018; 203 Burton (10.1016/j.jhazmat.2023.131075_bib5) 2013; 47 Muñoz (10.1016/j.jhazmat.2023.131075_bib36) 2002; 36 Liu (10.1016/j.jhazmat.2023.131075_bib33) 2021; 55 Wang (10.1016/j.jhazmat.2023.131075_bib57) 2019; 151 Jin (10.1016/j.jhazmat.2023.131075_bib22) 2021; 5 Luo (10.1016/j.jhazmat.2023.131075_bib35) 2019; 10 Regenspurg (10.1016/j.jhazmat.2023.131075_bib45) 2004; 68 Rose (10.1016/j.jhazmat.2023.131075_bib47) 2002; 36 Cho (10.1016/j.jhazmat.2023.131075_bib9) 2015; 27 Sabarathinam (10.1016/j.jhazmat.2023.131075_bib49) 2020; 13 Trasatti (10.1016/j.jhazmat.2023.131075_bib54) 1984; 29 Boily (10.1016/j.jhazmat.2023.131075_bib3) 2010; 44 Qi (10.1016/j.jhazmat.2023.131075_bib42) 2022; 215 Gan (10.1016/j.jhazmat.2023.131075_bib18) 2015; 5 Chen (10.1016/j.jhazmat.2023.131075_bib8) 2017; 139 Feng (10.1016/j.jhazmat.2023.131075_bib16) 2021; 6 Burton (10.1016/j.jhazmat.2023.131075_bib4) 2009; 43 Wang (10.1016/j.jhazmat.2023.131075_bib55) 2022; 218 Zhou (10.1016/j.jhazmat.2023.131075_bib66) 2022; 43 Cifuentes (10.1016/j.jhazmat.2023.131075_bib10) 2003 Collins (10.1016/j.jhazmat.2023.131075_bib11) 2016; 177 Song (10.1016/j.jhazmat.2023.131075_bib53) 2022; 221 Yamazaki (10.1016/j.jhazmat.2023.131075_bib60) 1991; 113 Chen (10.1016/j.jhazmat.2023.131075_bib6) 2021; 617 Liao (10.1016/j.jhazmat.2023.131075_bib29) 2009; 29 Zhang (10.1016/j.jhazmat.2023.131075_bib63) 2022; 10 Liu (10.1016/j.jhazmat.2023.131075_bib34) 2019; 377 Blgham (10.1016/j.jhazmat.2023.131075_bib2) 1990; 54 Qiao (10.1016/j.jhazmat.2023.131075_bib43) 2017; 7 Kanzaki (10.1016/j.jhazmat.2023.131075_bib24) 2013; 123 Zhang (10.1016/j.jhazmat.2023.131075_bib64) 2019; 53 Neil (10.1016/j.jhazmat.2023.131075_bib37) 2014; 48 Ling (10.1016/j.jhazmat.2023.131075_bib30) 2022; 220 Liu (10.1016/j.jhazmat.2023.131075_bib31) 2015; 10 Regenspurg (10.1016/j.jhazmat.2023.131075_bib46) 2005; 20 Chen (10.1016/j.jhazmat.2023.131075_bib7) 2014; 48 Dold (10.1016/j.jhazmat.2023.131075_bib13) 2008; 7 Doelsch (10.1016/j.jhazmat.2023.131075_bib12) 2001; 17 Shu (10.1016/j.jhazmat.2023.131075_bib51) 2019; 3 Yan (10.1016/j.jhazmat.2023.131075_bib61) 2021; 205 Lei (10.1016/j.jhazmat.2023.131075_bib27) 2022; 438 Haber (10.1016/j.jhazmat.2023.131075_bib20) 1932; 20 Rossmeisl (10.1016/j.jhazmat.2023.131075_bib48) 2007; 607 Giesbrecht (10.1016/j.jhazmat.2023.131075_bib19) 2020; 32 Feng (10.1016/j.jhazmat.2023.131075_bib15) 2022; 598 Ravel (10.1016/j.jhazmat.2023.131075_bib44) 2005; 12 Jones (10.1016/j.jhazmat.2023.131075_bib23) 2014; 145 Eick (10.1016/j.jhazmat.2023.131075_bib14) 2009; 57 Zhang (10.1016/j.jhazmat.2023.131075_bib65) 2021; 280 |
References_xml | – volume: 44 start-page: 1185 year: 2010 end-page: 1190 ident: bib3 article-title: FTIR spectral components of schwertmannite publication-title: Environ Sci Technol – volume: 167 start-page: 1121 year: 1970 end-page: 1123 ident: bib52 article-title: Acidic mine drainage: the rate-determining step publication-title: Science – volume: 5 start-page: 1058 year: 2021 end-page: 1070 ident: bib22 article-title: Arsenic partitioning during schwertmannite dissolution and recrystallization in the presence of Fe(II) and oxalic acid publication-title: ACS Earth Space Chem – volume: 3 start-page: 718 year: 2019 end-page: 727 ident: bib51 article-title: Photochemical formation process of schwertmannite on montmorillonite and corresponding Cr(VI) adsorption capacity publication-title: ACS Earth Space Chem – volume: 36 start-page: 3405 year: 2002 end-page: 3411 ident: bib36 article-title: Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects publication-title: Environ Sci Technol – volume: 7 start-page: 9 year: 2017 ident: bib43 article-title: Heating changes bio-Schwertmannite microstructure and arsenic(III) removal efficiency publication-title: Minerals – volume: 317 year: 2022 ident: bib32 article-title: Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions publication-title: J Environ Manag – volume: 68 start-page: 1185 year: 2004 end-page: 1197 ident: bib45 article-title: Formation and stability of schwertmannite in acidic mining lakes. M. Eggleston publication-title: Geochim Cosmochim Acta – volume: 10 year: 2022 ident: bib63 article-title: Schwertmannite modified with ethanol: a simple and feasible method for improving As(III) adsorption capacity publication-title: J Environ Chem Eng – start-page: 260 year: 2003 end-page: 267 ident: bib10 article-title: Kinetics of the electrolytic Fe publication-title: Rev Metal – volume: 220 start-page: 217 year: 2018 end-page: 234 ident: bib38 article-title: Ionic substitution of Mg publication-title: Geochim Cosmochim Acta – volume: 280 year: 2021 ident: bib65 article-title: A stepwise processing strategy for treating highly acidic wastewater and comprehensive utilization of the products derived from different treating steps publication-title: Chemosphere – volume: 139 start-page: 12370 year: 2017 end-page: 12373 ident: bib8 article-title: Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction publication-title: J Am Chem Soc – volume: 283 start-page: 134 year: 2011 end-page: 142 ident: bib39 article-title: Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway publication-title: Chem Geol – volume: 55 start-page: 5857 year: 2021 end-page: 5867 ident: bib58 article-title: Molecular-scale understanding of sulfate exchange from schwertmannite by chromate versus arsenate publication-title: Environ Sci Technol – volume: 221 year: 2022 ident: bib53 article-title: A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization publication-title: Water Res – volume: 20 start-page: 948 year: 1932 end-page: 950 ident: bib20 article-title: Über die katalyse des hydroperoxydes publication-title: Sci Nat -Heide – volume: 215 year: 2022 ident: bib42 article-title: Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water publication-title: Water Res – volume: 20 start-page: 1226 year: 2005 end-page: 1239 ident: bib46 article-title: Arsenate and chromate incorporation in schwertmannite publication-title: Appl Geochem – volume: 36 start-page: 433 year: 2002 end-page: 444 ident: bib47 article-title: Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter publication-title: Environ Sci Technol – volume: 12 start-page: 537 year: 2005 end-page: 541 ident: bib44 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J Synchrotron Radiat – volume: 55 start-page: 6042 year: 2021 end-page: 6051 ident: bib33 article-title: Accelerated Fe publication-title: Environ Sci Technol – volume: 7 start-page: 2385 year: 2020 end-page: 2398 ident: bib62 article-title: Formation and transformation of schwertmannite through direct Fe publication-title: Environ Sci-Nano – volume: 205 year: 2021 ident: bib61 article-title: Facile ammonium oxidation to nitrogen gas in acid wastewater by in situ photogenerated chlorine radicals publication-title: Water Res – volume: 438 year: 2022 ident: bib27 article-title: ) Boosting the oxidative capacity of the Fe(0)/O publication-title: J Hazard Mater – volume: 10 start-page: 9 year: 2015 ident: bib31 article-title: Schwertmannite synthesis through ferrous ion chemical oxidation under different H publication-title: PLoS One – volume: 386 start-page: 338 year: 2012 end-page: 343 ident: bib1 article-title: Comparison of arsenate, chromate and molybdate binding on schwertmannite: surface adsorption vs anion-exchange publication-title: J Colloid Interface Sci – volume: 49 start-page: 10440 year: 2015 end-page: 10448 ident: bib56 article-title: Sulfate local coordination environment in schwertmannite publication-title: Environ Sci Technol – volume: 151 start-page: 515 year: 2019 end-page: 522 ident: bib57 article-title: A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization publication-title: Water Res – volume: 46 start-page: 8140 year: 2012 end-page: 8147 ident: bib67 article-title: Early stage formation of iron oxyhydroxides during neutralization of simulated acid mine drainage solutions publication-title: Environ Sci Technol – volume: 57 start-page: 578 year: 2009 end-page: 585 ident: bib14 article-title: Effect of silica polymerization on the oxalate-promoted dissolution of goethite publication-title: Clays Clay Min – volume: 47 start-page: 2221 year: 2013 end-page: 2229 ident: bib5 article-title: Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite publication-title: Environ Sci Technol – volume: 43 start-page: 9202 year: 2009 end-page: 9207 ident: bib4 article-title: Sorption of arsenic(V) and arsenic(III) to schwertmannite publication-title: Environ Sci Technol – volume: 48 start-page: 5537 year: 2014 end-page: 5545 ident: bib7 article-title: Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage publication-title: Environ Sci Technol – volume: 5 start-page: 94500 year: 2015 end-page: 94512 ident: bib18 article-title: The influence of aluminum chloride on biosynthetic schwertmannite and Cu(II)/Cr(VI) adsorption publication-title: RSC Adv – volume: 97 start-page: 1469 year: 2012 end-page: 1482 ident: bib17 article-title: The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: morphology, structure, and composition publication-title: Am Mineral – volume: 53 start-page: 14586 year: 2019 end-page: 14594 ident: bib64 article-title: Synchronous reduction–oxidation process for efficient removal of trichloroacetic acid: H* initiates dechlorination and ·OH is responsible for removal efficiency publication-title: Environ Sci Technol – volume: 217 start-page: 292 year: 2017 end-page: 305 ident: bib40 article-title: Schwertmannite stability in anoxic Fe(II)-rich aqueous solution publication-title: Geochim Cosmochim Acta – volume: 29 start-page: 211 year: 2009 end-page: 215 ident: bib29 article-title: Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition publication-title: Mater Sci Eng C – volume: 607 start-page: 83 year: 2007 end-page: 89 ident: bib48 article-title: Electrolysis of water on oxide surfaces publication-title: J Electroanal Chem – volume: 3 start-page: 711 year: 2019 end-page: 717 ident: bib28 article-title: Determination of the redox potentials of solution and solid surface of Fe(II) associated with iron oxyhydroxides publication-title: ACS Earth Space Chem – volume: 377 start-page: 259 year: 2019 end-page: 266 ident: bib34 article-title: 2,4-Dichlorophenol removal from water using an electrochemical method improved by a composite molecularly imprinted membrane/bipolar membrane publication-title: J Hazard Mater – volume: 32 start-page: 8060 year: 2020 end-page: 8090 ident: bib19 article-title: Recent advances in bipolar membrane design and applications publication-title: Chem Mater – volume: 177 start-page: 150 year: 2016 end-page: 169 ident: bib11 article-title: An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate publication-title: Geochim Cosmochim Acta – volume: 51 start-page: 11156 year: 2017 end-page: 11164 ident: bib26 article-title: Electrochemical induced calcium phosphate precipitation: importance of local pH publication-title: Environ Sci Technol – volume: 6 start-page: 229 year: 2001 end-page: 234 ident: bib25 article-title: The Haber-Weiss cycle – 70 years later publication-title: Redox Rep – volume: 7 start-page: 275 year: 2008 end-page: 285 ident: bib13 article-title: Sustainability in metal mining: from exploration, over processing to mine waste management publication-title: Rev Environ Sci Bio/Technol – volume: 48 start-page: 11883 year: 2014 end-page: 11891 ident: bib37 article-title: Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz publication-title: Environ Sci Technol – volume: 54 start-page: 2743 year: 1990 end-page: 2758 ident: bib2 article-title: A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters publication-title: Geochim Cosmochim Acta – volume: 123 start-page: 338 year: 2013 end-page: 350 ident: bib24 article-title: Rate law of Fe(II) oxidation under low O publication-title: Geochim Cosmochim Acta – volume: 10 start-page: 269 year: 2019 ident: bib35 article-title: Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density publication-title: Nat Commun – volume: 203 start-page: 64 year: 2018 end-page: 77 ident: bib50 article-title: Fe(II) oxidation kinetics in the North Atlantic along the 59.5° N during 2016 publication-title: Mar Chem – volume: 13 start-page: 1146 year: 2020 ident: bib49 article-title: Tracing the evolution of acidic hypersaline coastal groundwater in Kuwait publication-title: Arab J Geosci – volume: 27 start-page: 2224 year: 2015 end-page: 2233 ident: bib9 article-title: Bi publication-title: Chem Mater – volume: 29 start-page: 1503 year: 1984 end-page: 1512 ident: bib54 article-title: Electrocatalysis in the anodic evolution of oxygen and chlorine publication-title: Electrochim Acta – volume: 43 start-page: 3706 year: 2022 end-page: 3718 ident: bib66 article-title: Effect of pH regulation on the formation of biogenic schwertmannite driven by Acidithiobacillus ferrooxidans and its arsenic removal ability publication-title: Environ Technol – volume: 598 year: 2022 ident: bib15 article-title: Acidithiobacillus ferrooxidans mediates morphology evolution of schwertmannite in the presence of Fe publication-title: Chem Geol – volume: 220 year: 2022 ident: bib30 article-title: Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: performance and dominant routine of reactive species production publication-title: Water Res – volume: 218 year: 2022 ident: bib55 article-title: Flow-through electrochemical removal of benzotriazole by electroactive ceramic membrane publication-title: Water Res – volume: 17 start-page: 1399 year: 2001 end-page: 1405 ident: bib12 article-title: Speciation and crystal chemistry of Fe(III) chloride hydrolyzed in the presence of SiO publication-title: Langmuir – volume: 49 start-page: 7701 year: 2015 end-page: 7708 ident: bib41 article-title: Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions publication-title: Environ Sci Technol – volume: 145 start-page: 1 year: 2014 end-page: 12 ident: bib23 article-title: Ferrous iron oxidation under acidic conditions – the effect of ferric oxide surfaces publication-title: Geochim Cosmochim Acta – volume: 617 year: 2021 ident: bib6 article-title: Mechanism and formation process of schwertmannite under electrochemical deposition publication-title: Colloids Surf A Physicochem Eng Asp – volume: 6 start-page: 3194 year: 2021 end-page: 3201 ident: bib16 article-title: Hydroxyl, Fe publication-title: ACS Omega – volume: 42 start-page: 8681 year: 2008 end-page: 8686 ident: bib59 article-title: Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by acidithiobacillus ferrooxidans cells publication-title: Environ Sci Technol – volume: 113 start-page: 7588 year: 1991 end-page: 7593 ident: bib60 article-title: EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide publication-title: J Am Chem Soc – volume: 32 start-page: 916 year: 2012 end-page: 921 ident: bib21 article-title: Fe publication-title: Mater Sci Eng C – volume: 51 start-page: 11156 issue: 19 year: 2017 ident: 10.1016/j.jhazmat.2023.131075_bib26 article-title: Electrochemical induced calcium phosphate precipitation: importance of local pH publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b03909 – volume: 54 start-page: 2743 issue: 10 year: 1990 ident: 10.1016/j.jhazmat.2023.131075_bib2 article-title: A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters publication-title: Geochim Cosmochim Acta doi: 10.1016/0016-7037(90)90009-A – volume: 20 start-page: 1226 issue: 6 year: 2005 ident: 10.1016/j.jhazmat.2023.131075_bib46 article-title: Arsenate and chromate incorporation in schwertmannite publication-title: Appl Geochem doi: 10.1016/j.apgeochem.2004.12.002 – volume: 17 start-page: 1399 issue: 5 year: 2001 ident: 10.1016/j.jhazmat.2023.131075_bib12 article-title: Speciation and crystal chemistry of Fe(III) chloride hydrolyzed in the presence of SiO4 Ligands. 2. Characterization of Si−Fe aggregates by FTIR and 29Si solid-state NMR publication-title: Langmuir doi: 10.1021/la0013188 – volume: 29 start-page: 1503 issue: 11 year: 1984 ident: 10.1016/j.jhazmat.2023.131075_bib54 article-title: Electrocatalysis in the anodic evolution of oxygen and chlorine publication-title: Electrochim Acta doi: 10.1016/0013-4686(84)85004-5 – volume: 49 start-page: 10440 issue: 17 year: 2015 ident: 10.1016/j.jhazmat.2023.131075_bib56 article-title: Sulfate local coordination environment in schwertmannite publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b02660 – volume: 218 year: 2022 ident: 10.1016/j.jhazmat.2023.131075_bib55 article-title: Flow-through electrochemical removal of benzotriazole by electroactive ceramic membrane publication-title: Water Res doi: 10.1016/j.watres.2022.118454 – volume: 20 start-page: 948 issue: 51 year: 1932 ident: 10.1016/j.jhazmat.2023.131075_bib20 article-title: Über die katalyse des hydroperoxydes publication-title: Sci Nat -Heide doi: 10.1007/BF01504715 – volume: 607 start-page: 83 issue: 1 year: 2007 ident: 10.1016/j.jhazmat.2023.131075_bib48 article-title: Electrolysis of water on oxide surfaces publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2006.11.008 – volume: 438 year: 2022 ident: 10.1016/j.jhazmat.2023.131075_bib27 article-title: ) Boosting the oxidative capacity of the Fe(0)/O2 system via an air-breathing cathode publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.129552 – volume: 55 start-page: 5857 issue: 9 year: 2021 ident: 10.1016/j.jhazmat.2023.131075_bib58 article-title: Molecular-scale understanding of sulfate exchange from schwertmannite by chromate versus arsenate publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c07980 – volume: 42 start-page: 8681 issue: 23 year: 2008 ident: 10.1016/j.jhazmat.2023.131075_bib59 article-title: Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by acidithiobacillus ferrooxidans cells publication-title: Environ Sci Technol doi: 10.1021/es801646j – volume: 7 start-page: 275 issue: 4 year: 2008 ident: 10.1016/j.jhazmat.2023.131075_bib13 article-title: Sustainability in metal mining: from exploration, over processing to mine waste management publication-title: Rev Environ Sci Bio/Technol doi: 10.1007/s11157-008-9142-y – volume: 177 start-page: 150 year: 2016 ident: 10.1016/j.jhazmat.2023.131075_bib11 article-title: An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2016.01.021 – start-page: 260 year: 2003 ident: 10.1016/j.jhazmat.2023.131075_bib10 article-title: Kinetics of the electrolytic Fe2+/Fe3+ oxidation on various anode materials publication-title: Rev Metal doi: 10.3989/revmetalm.2003.v39.i4.337 – volume: 280 year: 2021 ident: 10.1016/j.jhazmat.2023.131075_bib65 article-title: A stepwise processing strategy for treating highly acidic wastewater and comprehensive utilization of the products derived from different treating steps publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130646 – volume: 113 start-page: 7588 issue: 20 year: 1991 ident: 10.1016/j.jhazmat.2023.131075_bib60 article-title: EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide publication-title: J Am Chem Soc doi: 10.1021/ja00020a021 – volume: 48 start-page: 11883 issue: 20 year: 2014 ident: 10.1016/j.jhazmat.2023.131075_bib37 article-title: Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz publication-title: Environ Sci Technol doi: 10.1021/es503251z – volume: 49 start-page: 7701 issue: 13 year: 2015 ident: 10.1016/j.jhazmat.2023.131075_bib41 article-title: Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions publication-title: Environ Sci Technol doi: 10.1021/es505374g – volume: 123 start-page: 338 year: 2013 ident: 10.1016/j.jhazmat.2023.131075_bib24 article-title: Rate law of Fe(II) oxidation under low O2 conditions publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2013.06.014 – volume: 29 start-page: 211 issue: 1 year: 2009 ident: 10.1016/j.jhazmat.2023.131075_bib29 article-title: Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2008.06.011 – volume: 36 start-page: 433 issue: 3 year: 2002 ident: 10.1016/j.jhazmat.2023.131075_bib47 article-title: Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter publication-title: Environ Sci Technol doi: 10.1021/es0109242 – volume: 203 start-page: 64 year: 2018 ident: 10.1016/j.jhazmat.2023.131075_bib50 article-title: Fe(II) oxidation kinetics in the North Atlantic along the 59.5° N during 2016 publication-title: Mar Chem doi: 10.1016/j.marchem.2018.05.002 – volume: 5 start-page: 1058 issue: 5 year: 2021 ident: 10.1016/j.jhazmat.2023.131075_bib22 article-title: Arsenic partitioning during schwertmannite dissolution and recrystallization in the presence of Fe(II) and oxalic acid publication-title: ACS Earth Space Chem doi: 10.1021/acsearthspacechem.1c00009 – volume: 215 year: 2022 ident: 10.1016/j.jhazmat.2023.131075_bib42 article-title: Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water publication-title: Water Res doi: 10.1016/j.watres.2022.118240 – volume: 7 start-page: 9 issue: 1 year: 2017 ident: 10.1016/j.jhazmat.2023.131075_bib43 article-title: Heating changes bio-Schwertmannite microstructure and arsenic(III) removal efficiency publication-title: Minerals doi: 10.3390/min7010009 – volume: 32 start-page: 916 issue: 4 year: 2012 ident: 10.1016/j.jhazmat.2023.131075_bib21 article-title: Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2012.02.012 – volume: 3 start-page: 711 issue: 5 year: 2019 ident: 10.1016/j.jhazmat.2023.131075_bib28 article-title: Determination of the redox potentials of solution and solid surface of Fe(II) associated with iron oxyhydroxides publication-title: ACS Earth Space Chem doi: 10.1021/acsearthspacechem.9b00001 – volume: 205 year: 2021 ident: 10.1016/j.jhazmat.2023.131075_bib61 article-title: Facile ammonium oxidation to nitrogen gas in acid wastewater by in situ photogenerated chlorine radicals publication-title: Water Res doi: 10.1016/j.watres.2021.117678 – volume: 44 start-page: 1185 issue: 4 year: 2010 ident: 10.1016/j.jhazmat.2023.131075_bib3 article-title: FTIR spectral components of schwertmannite publication-title: Environ Sci Technol doi: 10.1021/es902803u – volume: 5 start-page: 94500 issue: 114 year: 2015 ident: 10.1016/j.jhazmat.2023.131075_bib18 article-title: The influence of aluminum chloride on biosynthetic schwertmannite and Cu(II)/Cr(VI) adsorption publication-title: RSC Adv doi: 10.1039/C5RA17316G – volume: 7 start-page: 2385 issue: 8 year: 2020 ident: 10.1016/j.jhazmat.2023.131075_bib62 article-title: Formation and transformation of schwertmannite through direct Fe3+ hydrolysis under various geochemical conditions publication-title: Environ Sci-Nano doi: 10.1039/D0EN00252F – volume: 145 start-page: 1 year: 2014 ident: 10.1016/j.jhazmat.2023.131075_bib23 article-title: Ferrous iron oxidation under acidic conditions – the effect of ferric oxide surfaces publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2014.09.020 – volume: 47 start-page: 2221 issue: 5 year: 2013 ident: 10.1016/j.jhazmat.2023.131075_bib5 article-title: Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite publication-title: Environ Sci Technol doi: 10.1021/es303867t – volume: 598 year: 2022 ident: 10.1016/j.jhazmat.2023.131075_bib15 article-title: Acidithiobacillus ferrooxidans mediates morphology evolution of schwertmannite in the presence of Fe2+ publication-title: Chem Geol doi: 10.1016/j.chemgeo.2022.120828 – volume: 10 start-page: 269 issue: 1 year: 2019 ident: 10.1016/j.jhazmat.2023.131075_bib35 article-title: Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density publication-title: Nat Commun doi: 10.1038/s41467-018-07792-9 – volume: 46 start-page: 8140 issue: 15 year: 2012 ident: 10.1016/j.jhazmat.2023.131075_bib67 article-title: Early stage formation of iron oxyhydroxides during neutralization of simulated acid mine drainage solutions publication-title: Environ Sci Technol doi: 10.1021/es301268g – volume: 220 year: 2022 ident: 10.1016/j.jhazmat.2023.131075_bib30 article-title: Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: performance and dominant routine of reactive species production publication-title: Water Res doi: 10.1016/j.watres.2022.118676 – volume: 13 start-page: 1146 issue: 21 year: 2020 ident: 10.1016/j.jhazmat.2023.131075_bib49 article-title: Tracing the evolution of acidic hypersaline coastal groundwater in Kuwait publication-title: Arab J Geosci doi: 10.1007/s12517-020-06116-w – volume: 27 start-page: 2224 issue: 6 year: 2015 ident: 10.1016/j.jhazmat.2023.131075_bib9 article-title: BixTi1–xOz functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b00376 – volume: 377 start-page: 259 year: 2019 ident: 10.1016/j.jhazmat.2023.131075_bib34 article-title: 2,4-Dichlorophenol removal from water using an electrochemical method improved by a composite molecularly imprinted membrane/bipolar membrane publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.05.064 – volume: 220 start-page: 217 year: 2018 ident: 10.1016/j.jhazmat.2023.131075_bib38 article-title: Ionic substitution of Mg2+ for Al3+ and Fe3+ with octahedral coordination in hydroxides facilitate precipitation of layered double hydroxides publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2017.10.003 – volume: 221 year: 2022 ident: 10.1016/j.jhazmat.2023.131075_bib53 article-title: A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization publication-title: Water Res doi: 10.1016/j.watres.2022.118748 – volume: 48 start-page: 5537 issue: 10 year: 2014 ident: 10.1016/j.jhazmat.2023.131075_bib7 article-title: Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage publication-title: Environ Sci Technol doi: 10.1021/es500154z – volume: 68 start-page: 1185 issue: 6 year: 2004 ident: 10.1016/j.jhazmat.2023.131075_bib45 article-title: Formation and stability of schwertmannite in acidic mining lakes. M. Eggleston publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2003.07.015 – volume: 139 start-page: 12370 issue: 36 year: 2017 ident: 10.1016/j.jhazmat.2023.131075_bib8 article-title: Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction publication-title: J Am Chem Soc doi: 10.1021/jacs.7b06337 – volume: 32 start-page: 8060 issue: 19 year: 2020 ident: 10.1016/j.jhazmat.2023.131075_bib19 article-title: Recent advances in bipolar membrane design and applications publication-title: Chem Mater doi: 10.1021/acs.chemmater.0c02829 – volume: 617 year: 2021 ident: 10.1016/j.jhazmat.2023.131075_bib6 article-title: Mechanism and formation process of schwertmannite under electrochemical deposition publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2021.126366 – volume: 217 start-page: 292 year: 2017 ident: 10.1016/j.jhazmat.2023.131075_bib40 article-title: Schwertmannite stability in anoxic Fe(II)-rich aqueous solution publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2017.08.026 – volume: 12 start-page: 537 issue: 4 year: 2005 ident: 10.1016/j.jhazmat.2023.131075_bib44 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J Synchrotron Radiat doi: 10.1107/S0909049505012719 – volume: 3 start-page: 718 issue: 5 year: 2019 ident: 10.1016/j.jhazmat.2023.131075_bib51 article-title: Photochemical formation process of schwertmannite on montmorillonite and corresponding Cr(VI) adsorption capacity publication-title: ACS Earth Space Chem doi: 10.1021/acsearthspacechem.8b00202 – volume: 10 issue: 3 year: 2022 ident: 10.1016/j.jhazmat.2023.131075_bib63 article-title: Schwertmannite modified with ethanol: a simple and feasible method for improving As(III) adsorption capacity publication-title: J Environ Chem Eng – volume: 57 start-page: 578 issue: 5 year: 2009 ident: 10.1016/j.jhazmat.2023.131075_bib14 article-title: Effect of silica polymerization on the oxalate-promoted dissolution of goethite publication-title: Clays Clay Min doi: 10.1346/CCMN.2009.0570506 – volume: 10 start-page: 9 year: 2015 ident: 10.1016/j.jhazmat.2023.131075_bib31 article-title: Schwertmannite synthesis through ferrous ion chemical oxidation under different H2O2 supply rates and its removal efficiency for arsenic from contaminated groundwater publication-title: PLoS One – volume: 167 start-page: 1121 issue: 3921 year: 1970 ident: 10.1016/j.jhazmat.2023.131075_bib52 article-title: Acidic mine drainage: the rate-determining step publication-title: Science doi: 10.1126/science.167.3921.1121 – volume: 53 start-page: 14586 issue: 24 year: 2019 ident: 10.1016/j.jhazmat.2023.131075_bib64 article-title: Synchronous reduction–oxidation process for efficient removal of trichloroacetic acid: H* initiates dechlorination and ·OH is responsible for removal efficiency publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b05389 – volume: 43 start-page: 3706 issue: 24 year: 2022 ident: 10.1016/j.jhazmat.2023.131075_bib66 article-title: Effect of pH regulation on the formation of biogenic schwertmannite driven by Acidithiobacillus ferrooxidans and its arsenic removal ability publication-title: Environ Technol doi: 10.1080/09593330.2021.1933200 – volume: 317 year: 2022 ident: 10.1016/j.jhazmat.2023.131075_bib32 article-title: Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions publication-title: J Environ Manag doi: 10.1016/j.jenvman.2022.115425 – volume: 36 start-page: 3405 issue: 15 year: 2002 ident: 10.1016/j.jhazmat.2023.131075_bib36 article-title: Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects publication-title: Environ Sci Technol doi: 10.1021/es020017c – volume: 283 start-page: 134 issue: 3 year: 2011 ident: 10.1016/j.jhazmat.2023.131075_bib39 article-title: Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway publication-title: Chem Geol doi: 10.1016/j.chemgeo.2010.08.011 – volume: 43 start-page: 9202 issue: 24 year: 2009 ident: 10.1016/j.jhazmat.2023.131075_bib4 article-title: Sorption of arsenic(V) and arsenic(III) to schwertmannite publication-title: Environ Sci Technol doi: 10.1021/es902461x – volume: 97 start-page: 1469 issue: 8–9 year: 2012 ident: 10.1016/j.jhazmat.2023.131075_bib17 article-title: The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: morphology, structure, and composition publication-title: Am Mineral doi: 10.2138/am.2012.4032 – volume: 386 start-page: 338 issue: 1 year: 2012 ident: 10.1016/j.jhazmat.2023.131075_bib1 article-title: Comparison of arsenate, chromate and molybdate binding on schwertmannite: surface adsorption vs anion-exchange publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2012.07.008 – volume: 6 start-page: 3194 issue: 4 year: 2021 ident: 10.1016/j.jhazmat.2023.131075_bib16 article-title: Hydroxyl, Fe2+, and Acidithiobacillus ferrooxidans jointly determined the crystal growth and morphology of schwertmannite in a sulfate-rich acidic environment publication-title: ACS Omega doi: 10.1021/acsomega.0c05606 – volume: 151 start-page: 515 year: 2019 ident: 10.1016/j.jhazmat.2023.131075_bib57 article-title: A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization publication-title: Water Res doi: 10.1016/j.watres.2018.12.052 – volume: 6 start-page: 229 issue: 4 year: 2001 ident: 10.1016/j.jhazmat.2023.131075_bib25 article-title: The Haber-Weiss cycle – 70 years later publication-title: Redox Rep doi: 10.1179/135100001101536373 – volume: 55 start-page: 6042 issue: 9 year: 2021 ident: 10.1016/j.jhazmat.2023.131075_bib33 article-title: Accelerated Fe2+ regeneration in an effective electro-fenton process by boosting internal electron transfer to a nitrogen-conjugated Fe(III) complex publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c08018 |
SSID | ssj0001754 |
Score | 2.4750624 |
Snippet | The increasing need for sustainable acid mine drainage (AMD) treatment has spurred much attention to strategic development of resource recovery. Along this... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 131075 |
SubjectTerms | Acid mine drainage Adsorption of arsenic species Fe(II)-activated oxygen reduction Reactive oxygen species Schwertmannite synthesis |
Title | A coupled electrochemical process for schwertmannite recovery from acid mine drainage: Important roles of anodic reactive oxygen species and cathodic alkaline |
URI | https://dx.doi.org/10.1016/j.jhazmat.2023.131075 https://www.ncbi.nlm.nih.gov/pubmed/36870128 https://www.proquest.com/docview/2783496603 |
Volume | 451 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9xADB1RemkPiAJtF1rkSr0my2bytb2tUNECLZeCxG00mXjU3e4mK8iK0kN_Cr8VezKBVgIhcUwyk0SxYz_L9rMQnzEfZLkpTbBnhyaIh6kOCorBgghxmLDPyRzFxveTdHwWH50n5ytiv-uF4bJKb_tbm-6stT_T91-zv5hM-j84qUfulvAAp8Mypt2O44y1PPx7X-ZB7rGlkOIMAK2-7-LpT8PpT_2HgGHIM8TDASEdLjd82D89hj-dHzpYF2seQMKofcc3YgWrDfH6H1rBDfHim77aFDcjMPVyMcMS_Kwb48kBYNF2BwABVqDo9govmjnPLmoQOEAm7b4G7jsBbSYlzOnOUPIoCbI9X-Bw7iB71QBXJl5CbUFXdTkxtFc76wn172vSS-AuTgrE6XIJTA_rFunZL83QdkucHXw93R8HfhpDYGSaNIGVOjVRpm1mogiTAlEXltnAMpnEaJnwPLE5h3Mc0lgcSEOhmM2YwM2YSMu3YrWqK3wvQCItImQqi0TGZST1XjnImdl0SPYGddwTcScDZTxVOU_MmKmuJm2qvOgUi061ouuJ8G7bouXqeGpD3glY_ad0ivzJU1s_dQqh6IfkLIuusF5eKje6hDlPZU-8azXl7m1kSuaREMH28x-8I17xkatWSz6I1eZiiR8JFzXFrlP8XfFydHg8PrkFj-sOEQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPZQeUEtfS19Tqddk2Tiv7Q2hoqUsXAoSN8txbLHb3WQFWfE49Kf0t3bGcYBKrZC4xnZiZcYz38gz3wB8Mfkgy3Wpg2071EE8TFVQUAwWRMYME_Y5maPYODxKRyfx99PkdAV2u1oYTqv0tr-16c5a-yd9_zf7i8mk_4Mv9cjdEh7g67AsXYUnMR1fbmMQ_rrL8yD_2HJI8RUATb8r4-lPw-mZuiFkGHIT8XBAUIfzDf_toP4HQJ0j2nsOGx5B4k67yRewYqpNeHaPV3ATVsfq8iX83kFdLxczU6JvdqM9OwAu2vIAJMSKFN5emvNmzs2LGoMcIZN6XyMXnqDSkxLn9GYsuZcEGZ-vuD93mL1qkFMTL7C2qKq6nGhaq5z5xPrqmhQTuYyTInEaLpH5Yd0kNfupGNu-gpO9b8e7o8C3Ywi0SJMmsEKlOsqUzXQUmaQwRhWW6cAykcTGMuN5YnOO5zimsWYgNMViNmMGN60jJV7DWlVX5i2gMDSJoKkoEhGXkVDb5SBnatMhGRyj4h7EnQyk9lzl3DJjJruktKn0opMsOtmKrgfh7bJFS9bx0IK8E7D8S-skOZSHln7uFELSieRrFlWZenkhXe8SJj0VPXjTasrtbkRK9pEgwdbjP_wJno6OD8dyvH908A7WecSlriXvYa05X5oPBJKa4qM7BH8AmYgPnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+coupled+electrochemical+process+for+schwertmannite+recovery+from+acid+mine+drainage%3A+Important+roles+of+anodic+reactive+oxygen+species+and+cathodic+alkaline&rft.jtitle=Journal+of+hazardous+materials&rft.au=Huang%2C+Ziyuan&rft.au=Ma%2C+Huanxin&rft.au=Liu%2C+Chengshuai&rft.au=Meng%2C+Fangyuan&rft.date=2023-06-05&rft.eissn=1873-3336&rft.volume=451&rft.spage=131075&rft_id=info:doi/10.1016%2Fj.jhazmat.2023.131075&rft_id=info%3Apmid%2F36870128&rft.externalDocID=36870128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |