Polyurethane foam-supported three-dimensional interconnected graphene nanosheets network encapsulated in polydimethylsiloxane to achieve significant thermal conductivity enhancement

Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of materials science Vol. 17; no. 3; p. 230653
Main Authors Li, Wenjing, Wu, Ni, Che, Sai, Sun, Li, Liu, Hongchen, Ma, Guang, Wang, Ye, Xu, Chong, Li, Yongfeng
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-025X
2095-0268
DOI10.1007/s11706-023-0653-9

Cover

Loading…
Abstract Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT) foams using the soft template microstructure and a facile layer-by-layer (L-B-L) assembly method. The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional (3D) highly interconnected thermal networks. These networks are further infiltrated with polydimethylsiloxane (PDMS). The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m −1·K −1 at a low filler loading of 7.9 wt. %, which is 1115 % higher than that of the polymer matrix. Moreover, the mechanical property of the composite is ~2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network. This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance, which implies a promising future in thermal management systems of electronic devices.
AbstractList Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT) foams using the soft template microstructure and a facile layer-by-layer (L-B-L) assembly method. The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional (3D) highly interconnected thermal networks. These networks are further infiltrated with polydimethylsiloxane (PDMS). The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m−1·K−1 at a low filler loading of 7.9 wt.%, which is 1115% higher than that of the polymer matrix. Moreover, the mechanical property of the composite is ∼2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network. This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance, which implies a promising future in thermal management systems of electronic devices.
Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT) foams using the soft template microstructure and a facile layer-by-layer (L-B-L) assembly method. The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional (3D) highly interconnected thermal networks. These networks are further infiltrated with polydimethylsiloxane (PDMS). The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m −1 ·K −1 at a low filler loading of 7.9 wt.%, which is 1115% higher than that of the polymer matrix. Moreover, the mechanical property of the composite is ∼2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network. This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance, which implies a promising future in thermal management systems of electronic devices.
Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT) foams using the soft template microstructure and a facile layer-by-layer (L-B-L) assembly method. The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional (3D) highly interconnected thermal networks. These networks are further infiltrated with polydimethylsiloxane (PDMS). The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m −1·K −1 at a low filler loading of 7.9 wt. %, which is 1115 % higher than that of the polymer matrix. Moreover, the mechanical property of the composite is ~2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network. This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance, which implies a promising future in thermal management systems of electronic devices.
ArticleNumber 230653
Author Li, Wenjing
Sun, Li
Wang, Ye
Wu, Ni
Liu, Hongchen
Ma, Guang
Che, Sai
Xu, Chong
Li, Yongfeng
Author_xml – sequence: 1
  givenname: Wenjing
  surname: Li
  fullname: Li, Wenjing
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 2
  givenname: Ni
  surname: Wu
  fullname: Wu, Ni
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 3
  givenname: Sai
  surname: Che
  fullname: Che, Sai
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 4
  givenname: Li
  surname: Sun
  fullname: Sun, Li
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 5
  givenname: Hongchen
  surname: Liu
  fullname: Liu, Hongchen
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 6
  givenname: Guang
  surname: Ma
  fullname: Ma, Guang
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 7
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 8
  givenname: Chong
  surname: Xu
  fullname: Xu, Chong
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
– sequence: 9
  givenname: Yongfeng
  surname: Li
  fullname: Li, Yongfeng
  email: yfli@cup.edu.cn
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
BookMark eNp9kc2KFDEUhYOM4DjOA7grcF2an05VaimDfzCgCwV3IZ3cdGWsTsqb1Dj9YL6fKUoUZtHZJITz3XO45zm5iCkCIS8Zfc0o7d9kxnratZSLlnZStMMTcsnpIOtPpy7-veX3Z-Q65ztaj2Ry2LFL8vtLmk4LQhlNhMYnc2zzMs8JC7imjAjQunCEmEOKZmpCLIA2xQh2FRzQzCNUMJqY8ghQchOh_Er4o4FozZyXyazCEJu5Gq2jyniacpjSw2pYUmPsGOAemhwOMfhgTSzVGPBY7aqTW2wJ96Gc6sCa0UINU16Qp95MGa7_3lfk2_t3X28-trefP3y6eXvbWtHJ0kLvldnzveLWDW4nvAMj_OCslwxkR_kAqt8rLxjzTEkPjgrhrd8xxpUVUlyRV9vcGdPPBXLRd2nBuoisuRK9GHquVlW_qSymnBG8tqGYUjdW0IRJM6rXmvRWk6416bUmPVSSPSJnDEeDp7MM35hctfEA-D_TOUht0BgOdbfgZoSctceaMQCeQ_8AXkzA8Q
CitedBy_id crossref_primary_10_3390_s23239561
crossref_primary_10_1016_j_polymertesting_2024_108469
Cites_doi 10.1016/j.compositesa.2019.105670
10.1016/j.compscitech.2020.108010
10.1016/j.molstruc.2019.127416
10.1039/C8TC05955A
10.1016/S1872-5805(21)60089-6
10.1002/app.29862
10.1016/j.cattod.2022.01.021
10.1016/j.ensm.2019.10.007
10.1002/adfm.201903841
10.1016/j.eurpolymj.2021.110837
10.1016/j.mser.2020.100577
10.1002/smll.201704044
10.5010/JPB.2018.45.1.036
10.1007/s11664-021-09311-x
10.1016/j.cej.2019.02.023
10.1007/s00339-016-0048-1
10.1016/j.mser.2020.100580
10.1016/j.nantod.2017.04.008
10.1016/j.carbon.2018.07.059
10.1039/C9NR03968F
10.1021/jp051565q
10.1016/j.carbon.2016.01.063
10.1021/acsami.7b07650
10.1002/advs.202003734
10.1016/j.cej.2018.04.196
10.1016/j.compositesa.2022.107266
10.1016/j.coco.2020.100448
10.1002/adfm.201805053
10.1016/j.progpolymsci.2018.11.002
10.1016/j.molstruc.2020.128484
10.1016/j.porgcoat.2022.107286
10.1016/j.compscitech.2016.09.013
10.1016/j.matdes.2021.109936
10.1021/acs.iecr.0c05509
10.1021/acsbiomaterials.9b01473
10.1002/adfm.201805365
10.1002/adma.201900199
10.1002/admi.201900147
ContentType Journal Article
Copyright Copyright reserved, 2023, Higher Education Press
Higher Education Press 2023
Higher Education Press 2023.
Copyright_xml – notice: Copyright reserved, 2023, Higher Education Press
– notice: Higher Education Press 2023
– notice: Higher Education Press 2023.
DBID AAYXX
CITATION
DOI 10.1007/s11706-023-0653-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2095-0268
ExternalDocumentID 10_1007_s11706_023_0653_9
10.1007/s11706-023-0653-9
GroupedDBID -58
-5G
-BR
-EM
-~C
.VR
06C
06D
0R~
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40E
5VS
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVTX
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9N
PF0
PT4
QOR
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SNE
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z85
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABJNI
ABTKH
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AEVLU
AFBBN
AGQEE
AGRTI
AIGIU
DPUIP
SJYHP
SNPRN
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
Q--
U1G
U5L
ABRTQ
ID FETCH-LOGICAL-c365t-e7f8ab2b82cd9d43fdea3f9dcf51e56029e87b8f311f185fed033fcf41128c353
IEDL.DBID U2A
ISSN 2095-025X
IngestDate Fri Jul 25 11:09:42 EDT 2025
Tue Jul 01 02:09:54 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Fri Feb 21 02:42:02 EST 2025
Fri Aug 04 09:55:49 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords polyurethane foam
polymer composite
graphene nanosheet
thermal and mechanical property
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-e7f8ab2b82cd9d43fdea3f9dcf51e56029e87b8f311f185fed033fcf41128c353
Notes polyurethane foam
polymer composite
Document received on :2023-04-02
graphene nanosheet
Document accepted on :2023-06-07
thermal and mechanical property
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2837397285
PQPubID 2044428
ParticipantIDs proquest_journals_2837397285
crossref_citationtrail_10_1007_s11706_023_0653_9
crossref_primary_10_1007_s11706_023_0653_9
springer_journals_10_1007_s11706_023_0653_9
higheredpress_frontiers_10_1007_s11706_023_0653_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of materials science
PublicationTitleAbbrev Front. Mater. Sci
PublicationYear 2023
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References He, Wang, Qu (CR38) 2020; 22
Zhang, Kong, Tao (CR15) 2019; 6
Wu, Yang, Che (CR21) 2023; 164
Fang, Zhao, Zhang (CR35) 2017; 9
Yang, Fan, Li (CR32) 2020; 128
Wu, Xu, Ma (CR12) 2019; 31
Lee, Yen, Hsu (CR25) 2020; 6
Yang, Qi, Liu (CR31) 2016; 100
Huang, Zhu, Li (CR30) 2016; 122
Guo, Cheng, Cai (CR1) 2021; 209
Zhu, Li, Wang (CR4) 2021; 161
Dai, Lv, Ma (CR18) 2021; 8
Lu, Gan, Wu (CR24) 2005; 109
Wu, Che, Li (CR6) 2021; 36
Zhang, Feng, Feng (CR10) 2020; 142
Lustriane, Dwivany, Suendo (CR22) 2018; 45
Liu, Zhang, Ma (CR27) 2020; 1218
Qin, Xu, Cao (CR36) 2018; 28
Norouzi, Mazhkoo, Haddadi (CR26) 2022; 404
Liang, Qiu, Han (CR34) 2019; 7
Kim, Oh, Kotal (CR9) 2017; 14
Peng, Wang, Kim (CR28) 2020; 25
Han, Chen, Hu (CR19) 2020; 1203
Zhang, Yang, Yu (CR29) 2022; 51
Huang, Zhi, Lin (CR5) 2020; 142
Zhan, Nie, Chen (CR8) 2020; 30
Xue, Lu, Qi (CR33) 2019; 365
Feng, Wang, Song (CR2) 2023; 174
Liao, Chen, Liu (CR37) 2020; 189
Liu, Chen, Li (CR17) 2019; 11
Liu, Zhang, Zuo (CR23) 2009; 112
Min, Liu, Li (CR13) 2018; 28
Zhou, Wang, Du (CR11) 2018; 139
de Luna, Wang, Zhai (CR7) 2019; 89
He, Wang (CR3) 2021; 60
Wang, Wu (CR20) 2018; 348
Yao, Sun, Zeng (CR14) 2018; 14
Shao, Shi, Li (CR16) 2016; 135
J Yang (653_CR31) 2016; 100
C B Liang (653_CR34) 2019; 7
M M Qin (653_CR36) 2018; 28
H L Peng (653_CR28) 2020; 25
Y Zhang (653_CR29) 2022; 51
C Lustriane (653_CR22) 2018; 45
N Wu (653_CR6) 2021; 36
O Norouzi (653_CR26) 2022; 404
L Huang (653_CR30) 2016; 122
H Fang (653_CR35) 2017; 9
Z Liu (653_CR17) 2019; 11
L B Shao (653_CR16) 2016; 135
J E Kim (653_CR9) 2017; 14
T H Lee (653_CR25) 2020; 6
W Zhang (653_CR15) 2019; 6
B Han (653_CR19) 2020; 1203
H F Zhan (653_CR8) 2020; 30
R Lu (653_CR24) 2005; 109
F Zhang (653_CR10) 2020; 142
X X Guo (653_CR1) 2021; 209
H Z Zhou (653_CR11) 2018; 139
Z Wu (653_CR12) 2019; 31
W Dai (653_CR18) 2021; 8
X W Wang (653_CR20) 2018; 348
X L Zhu (653_CR4) 2021; 161
P Min (653_CR13) 2018; 28
N Wu (653_CR21) 2023; 164
J He (653_CR38) 2020; 22
X Y Huang (653_CR5) 2020; 142
X T Yang (653_CR32) 2020; 128
F Xue (653_CR33) 2019; 365
L Feng (653_CR2) 2023; 174
Y Yao (653_CR14) 2018; 14
X H He (653_CR3) 2021; 60
H H Liu (653_CR23) 2009; 112
J Liu (653_CR27) 2020; 1218
M S de Luna (653_CR7) 2019; 89
H H Liao (653_CR37) 2020; 189
References_xml – volume: 128
  start-page: 105670
  year: 2020
  ident: CR32
  article-title: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2019.105670
– volume: 189
  start-page: 108010
  year: 2020
  ident: CR37
  article-title: A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2020.108010
– volume: 1203
  start-page: 127416
  year: 2020
  ident: CR19
  article-title: High electrical conductivity in polydimethylsiloxane composite with tailored graphene foam architecture
  publication-title: Journal of Molecular Structure
  doi: 10.1016/j.molstruc.2019.127416
– volume: 7
  start-page: 2725
  issue: 9
  year: 2019
  end-page: 2733
  ident: CR34
  article-title: Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C8TC05955A
– volume: 36
  start-page: 911
  issue: 5
  year: 2021
  end-page: 926
  ident: CR6
  article-title: A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications
  publication-title: New Carbon Materials
  doi: 10.1016/S1872-5805(21)60089-6
– volume: 112
  start-page: 2968
  issue: 5
  year: 2009
  end-page: 2975
  ident: CR23
  article-title: Preparation and characterization of aliphatic polyurethane and hydroxyapatite composite scaffold
  publication-title: Journal of Applied Polymer Science
  doi: 10.1002/app.29862
– volume: 404
  start-page: 93
  year: 2022
  end-page: 104
  ident: CR26
  article-title: Hydrothermal liquefaction of green macroalgae : effect of functional groups on the catalytic performance of graphene oxide/polyurethane composite
  publication-title: Catalysis Today
  doi: 10.1016/j.cattod.2022.01.021
– volume: 25
  start-page: 313
  year: 2020
  end-page: 323
  ident: CR28
  article-title: Highly reversible electrochemical reaction of insoluble 3D nanoporous polyquinoneimines with stable cycle and rate performance
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2019.10.007
– volume: 30
  start-page: 1903841
  issue: 8
  year: 2020
  ident: CR8
  article-title: Thermal transport in 3D nanostructures
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201903841
– volume: 161
  start-page: 110837
  year: 2021
  ident: CR4
  article-title: Current advances of polyurethane/graphene composites and its prospects in synthetic leather: a review
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2021.110837
– volume: 142
  start-page: 100577
  year: 2020
  ident: CR5
  article-title: Thermal conductivity of graphene-based polymer nanocomposites
  publication-title: Materials Science and Engineering R: Reports
  doi: 10.1016/j.mser.2020.100577
– volume: 14
  start-page: 1704044
  issue: 13
  year: 2018
  ident: CR14
  article-title: Construction of 3D skeleton for polymer composites achieving a high thermal conductivity
  publication-title: Small
  doi: 10.1002/smll.201704044
– volume: 45
  start-page: 36
  issue: 1
  year: 2018
  end-page: 44
  ident: CR22
  article-title: Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits
  publication-title: Journal of Plant Biotechnology
  doi: 10.5010/JPB.2018.45.1.036
– volume: 51
  start-page: 420
  issue: 1
  year: 2022
  end-page: 425
  ident: CR29
  article-title: Improved thermal properties of three-dimensional graphene network filled polymer composites
  publication-title: Journal of Electronic Materials
  doi: 10.1007/s11664-021-09311-x
– volume: 365
  start-page: 20
  year: 2019
  end-page: 29
  ident: CR33
  article-title: Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.02.023
– volume: 122
  start-page: 515
  issue: 5
  year: 2016
  ident: CR30
  article-title: Improved wetting behavior and thermal conductivity of the three-dimensional nickel foam/epoxy composites with graphene oxide as interfacial modifier
  publication-title: Applied Physics A: Materials Science & Processing
  doi: 10.1007/s00339-016-0048-1
– volume: 142
  start-page: 100580
  year: 2020
  ident: CR10
  article-title: Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms
  publication-title: Materials Science and Engineering R: Reports
  doi: 10.1016/j.mser.2020.100580
– volume: 14
  start-page: 100
  year: 2017
  end-page: 123
  ident: CR9
  article-title: Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.04.008
– volume: 139
  start-page: 1168
  year: 2018
  end-page: 1177
  ident: CR11
  article-title: Facile fabrication of large 3D graphene filler modified epoxy composites with improved thermal conduction and tribological performance
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.07.059
– volume: 11
  start-page: 17600
  issue: 38
  year: 2019
  end-page: 17606
  ident: CR17
  article-title: Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement
  publication-title: Nanoscale
  doi: 10.1039/C9NR03968F
– volume: 109
  start-page: 14118
  issue: 29
  year: 2005
  end-page: 14129
  ident: CR24
  article-title: C–H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol ( = 1–8) interfaces
  publication-title: The Journal of Physical Chemistry B
  doi: 10.1021/jp051565q
– volume: 100
  start-page: 693
  year: 2016
  end-page: 702
  ident: CR31
  article-title: Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.01.063
– volume: 9
  start-page: 26447
  issue: 31
  year: 2017
  end-page: 26459
  ident: CR35
  article-title: Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.7b07650
– volume: 8
  start-page: 2003734
  issue: 7
  year: 2021
  ident: CR18
  article-title: Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management
  publication-title: Advanced Science
  doi: 10.1002/advs.202003734
– volume: 348
  start-page: 723
  year: 2018
  end-page: 731
  ident: CR20
  article-title: Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2018.04.196
– volume: 164
  start-page: 107266
  year: 2023
  ident: CR21
  article-title: Green preparation of high-yield and large-size hydrophilic boron nitride nanosheets by tannic acid-assisted aqueous ball milling for thermal management
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2022.107266
– volume: 22
  start-page: 100448
  year: 2020
  ident: CR38
  article-title: Self-assembled three-dimensional structure with optimal ratio of GO and SiC particles effectively improving the thermal conductivity and reliability of epoxy composites
  publication-title: Composites Communications
  doi: 10.1016/j.coco.2020.100448
– volume: 28
  start-page: 1805053
  issue: 45
  year: 2018
  ident: CR36
  article-title: Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201805053
– volume: 89
  start-page: 213
  year: 2019
  end-page: 249
  ident: CR7
  article-title: Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications
  publication-title: Progress in Polymer Science
  doi: 10.1016/j.progpolymsci.2018.11.002
– volume: 1218
  start-page: 128484
  year: 2020
  ident: CR27
  article-title: Three-step identification of infrared spectra of similar tree species to covered with beeswax
  publication-title: Journal of Molecular Structure
  doi: 10.1016/j.molstruc.2020.128484
– volume: 174
  start-page: 107286
  year: 2023
  ident: CR2
  article-title: Synthesis of P, N and Si-containing waterborne polyurethane with excellent flame retardant, alkali resistance and flexibility via one-step synthetic approach
  publication-title: Progress in Organic Coatings
  doi: 10.1016/j.porgcoat.2022.107286
– volume: 135
  start-page: 83
  year: 2016
  end-page: 91
  ident: CR16
  article-title: Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2016.09.013
– volume: 209
  start-page: 109936
  year: 2021
  ident: CR1
  article-title: A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2021.109936
– volume: 60
  start-page: 1137
  issue: 3
  year: 2021
  end-page: 1154
  ident: CR3
  article-title: Recent advances in the rational design of thermal conductive polymer composites
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.0c05509
– volume: 6
  start-page: 597
  issue: 1
  year: 2020
  end-page: 609
  ident: CR25
  article-title: Preparation of polyurethane-graphene nanocomposite and evaluation of neurovascular regeneration
  publication-title: ACS Biomaterials Science & Engineering
  doi: 10.1021/acsbiomaterials.9b01473
– volume: 28
  start-page: 1805365
  issue: 51
  year: 2018
  ident: CR13
  article-title: Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201805365
– volume: 31
  start-page: 1900199
  issue: 19
  year: 2019
  ident: CR12
  article-title: Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites
  publication-title: Advanced Materials
  doi: 10.1002/adma.201900199
– volume: 6
  start-page: 1900147
  issue: 12
  year: 2019
  ident: CR15
  article-title: 3D thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material
  publication-title: Advanced Materials Interfaces
  doi: 10.1002/admi.201900147
– volume: 128
  start-page: 105670
  year: 2020
  ident: 653_CR32
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2019.105670
– volume: 14
  start-page: 100
  year: 2017
  ident: 653_CR9
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.04.008
– volume: 8
  start-page: 2003734
  issue: 7
  year: 2021
  ident: 653_CR18
  publication-title: Advanced Science
  doi: 10.1002/advs.202003734
– volume: 31
  start-page: 1900199
  issue: 19
  year: 2019
  ident: 653_CR12
  publication-title: Advanced Materials
  doi: 10.1002/adma.201900199
– volume: 45
  start-page: 36
  issue: 1
  year: 2018
  ident: 653_CR22
  publication-title: Journal of Plant Biotechnology
  doi: 10.5010/JPB.2018.45.1.036
– volume: 209
  start-page: 109936
  year: 2021
  ident: 653_CR1
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2021.109936
– volume: 164
  start-page: 107266
  year: 2023
  ident: 653_CR21
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2022.107266
– volume: 112
  start-page: 2968
  issue: 5
  year: 2009
  ident: 653_CR23
  publication-title: Journal of Applied Polymer Science
  doi: 10.1002/app.29862
– volume: 1203
  start-page: 127416
  year: 2020
  ident: 653_CR19
  publication-title: Journal of Molecular Structure
  doi: 10.1016/j.molstruc.2019.127416
– volume: 51
  start-page: 420
  issue: 1
  year: 2022
  ident: 653_CR29
  publication-title: Journal of Electronic Materials
  doi: 10.1007/s11664-021-09311-x
– volume: 404
  start-page: 93
  year: 2022
  ident: 653_CR26
  publication-title: Catalysis Today
  doi: 10.1016/j.cattod.2022.01.021
– volume: 161
  start-page: 110837
  year: 2021
  ident: 653_CR4
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2021.110837
– volume: 100
  start-page: 693
  year: 2016
  ident: 653_CR31
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.01.063
– volume: 7
  start-page: 2725
  issue: 9
  year: 2019
  ident: 653_CR34
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C8TC05955A
– volume: 135
  start-page: 83
  year: 2016
  ident: 653_CR16
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2016.09.013
– volume: 174
  start-page: 107286
  year: 2023
  ident: 653_CR2
  publication-title: Progress in Organic Coatings
  doi: 10.1016/j.porgcoat.2022.107286
– volume: 189
  start-page: 108010
  year: 2020
  ident: 653_CR37
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2020.108010
– volume: 89
  start-page: 213
  year: 2019
  ident: 653_CR7
  publication-title: Progress in Polymer Science
  doi: 10.1016/j.progpolymsci.2018.11.002
– volume: 109
  start-page: 14118
  issue: 29
  year: 2005
  ident: 653_CR24
  publication-title: The Journal of Physical Chemistry B
  doi: 10.1021/jp051565q
– volume: 36
  start-page: 911
  issue: 5
  year: 2021
  ident: 653_CR6
  publication-title: New Carbon Materials
  doi: 10.1016/S1872-5805(21)60089-6
– volume: 1218
  start-page: 128484
  year: 2020
  ident: 653_CR27
  publication-title: Journal of Molecular Structure
  doi: 10.1016/j.molstruc.2020.128484
– volume: 28
  start-page: 1805365
  issue: 51
  year: 2018
  ident: 653_CR13
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201805365
– volume: 25
  start-page: 313
  year: 2020
  ident: 653_CR28
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2019.10.007
– volume: 365
  start-page: 20
  year: 2019
  ident: 653_CR33
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.02.023
– volume: 142
  start-page: 100580
  year: 2020
  ident: 653_CR10
  publication-title: Materials Science and Engineering R: Reports
  doi: 10.1016/j.mser.2020.100580
– volume: 6
  start-page: 597
  issue: 1
  year: 2020
  ident: 653_CR25
  publication-title: ACS Biomaterials Science & Engineering
  doi: 10.1021/acsbiomaterials.9b01473
– volume: 14
  start-page: 1704044
  issue: 13
  year: 2018
  ident: 653_CR14
  publication-title: Small
  doi: 10.1002/smll.201704044
– volume: 142
  start-page: 100577
  year: 2020
  ident: 653_CR5
  publication-title: Materials Science and Engineering R: Reports
  doi: 10.1016/j.mser.2020.100577
– volume: 60
  start-page: 1137
  issue: 3
  year: 2021
  ident: 653_CR3
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.0c05509
– volume: 122
  start-page: 515
  issue: 5
  year: 2016
  ident: 653_CR30
  publication-title: Applied Physics A: Materials Science & Processing
  doi: 10.1007/s00339-016-0048-1
– volume: 11
  start-page: 17600
  issue: 38
  year: 2019
  ident: 653_CR17
  publication-title: Nanoscale
  doi: 10.1039/C9NR03968F
– volume: 28
  start-page: 1805053
  issue: 45
  year: 2018
  ident: 653_CR36
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201805053
– volume: 9
  start-page: 26447
  issue: 31
  year: 2017
  ident: 653_CR35
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.7b07650
– volume: 139
  start-page: 1168
  year: 2018
  ident: 653_CR11
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.07.059
– volume: 22
  start-page: 100448
  year: 2020
  ident: 653_CR38
  publication-title: Composites Communications
  doi: 10.1016/j.coco.2020.100448
– volume: 6
  start-page: 1900147
  issue: 12
  year: 2019
  ident: 653_CR15
  publication-title: Advanced Materials Interfaces
  doi: 10.1002/admi.201900147
– volume: 30
  start-page: 1903841
  issue: 8
  year: 2020
  ident: 653_CR8
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201903841
– volume: 348
  start-page: 723
  year: 2018
  ident: 653_CR20
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2018.04.196
SSID ssj0000515941
Score 2.2867537
Snippet Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the...
SourceID proquest
crossref
springer
higheredpress
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 230653
SubjectTerms Chemistry and Materials Science
Encapsulation
Flexibility
Graphene
graphene nanosheet
Heat conductivity
Heat transfer
Management systems
Materials Science
Mechanical properties
Nanosheets
Plastic foam
Polydimethylsiloxane
polymer composite
Polymer matrix composites
Polymers
Polyurethane foam
Research Article
Tannic acid
thermal and mechanical property
Thermal conductivity
Thermal management
Title Polyurethane foam-supported three-dimensional interconnected graphene nanosheets network encapsulated in polydimethylsiloxane to achieve significant thermal conductivity enhancement
URI https://journal.hep.com.cn/foms/EN/10.1007/s11706-023-0653-9
https://link.springer.com/article/10.1007/s11706-023-0653-9
https://www.proquest.com/docview/2837397285
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgvYBQxadYaCsfOIEsJXGyGx9XqB8CteLASttT5Ngz2kppstpkEfww_h8z3qTLVqUS5zj24Y09z_bzGyE-GFrwkmiCapzbSKUGrDKUhhSmlO7QUsIMqsqLy_H5LP0yz-b9O-52ULsPV5Jhpd4-dmOnF0U5RrGfqjKPxX7GW3cK4lkyvT1Y4aIlJlSsTKLw-jibD7eZ9_Wyk4-eLYK4AnwQoe6Qzjv3pCH9nD4XBz1vlNMN0C_EI6hfiqd_uQm-Er-_NdWv9Qr4MBwkNvZGtetlMC73siPMQHn28t_4cEg2ilg51rk4bhCcq2nhk7Wtm3YB0LWy3mjEJUWypd10ZbnhdS2XNBB3RSBX7XXV_OQBu0ayMBN-gGRRCEuQCDXJBPOGhqOR2Fo21KqgDhccbXwy-VrMTk--fz5XfVUG5fQ46xRMMLdlUuaJ88anGj1YjcY7zGIg_pQYyCdljjqOkcgAgo-0RocpMbvc6Uy_EXt1U8NbIX2MgJGP-eFXGoGzcQ5Gl6WNSySiByMRDdgUrrcs58oZVbE1W2Y4C4KzYDgLMxIfb39Zbvw6Hmoc7wBeIJtGcAnyh_45HIKi6Kd7W7CFEBG7JM9G4tMQKNvP_-zs3X-1fi-eJCFwWeF2KPa61RqOiBJ15bHYn55dfT05DlPhD3mACiY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgHAAhxFfF0gI-cAJZSuJk1z5WqNUW2opDV9qb5dhjbaU0WW2yCH4Y_48Zb9JlUanEOf44vLHnxX5-w9gHjRtelkyCGCubiFyDFRrTkAg5prtgMWFGVeX5xXg6y7_Mi3n_jrsd1O7DlWTcqbeP3cjpRWCOEeSnKvR99gC5gCId1yw7ujlYoaIlOlaszJL4-riYD7eZt42yk4-eLKK4AnwUoe6Qzr_uSWP6OXnGnva8kR9tgH7O7kH9gj3-w03wJfv1ral-rldAh-HAQ2OvRbteRuNyzzvEDIQnL_-NDwcno4iVI52LowbRuRo3Pl7bumkXAF3L641GnGMkW_ybriw1vKr5EieioRDkqr2qmh80YddwEmbCd-AkCiEJEqLGiWBe43Q4E1nLxloVOOCCoo1OJl-x2cnx5eep6KsyCCfHRSdgEpQts1Jlzmufy-DByqC9C0UKyJ8yDWpSqiDTNCAZCOATKYMLOTI75WQh99le3dTwmnGfBgiJT-nhV56As6kCLcvSpmVAogcjlgzYGNdbllPljMpszZYJToNwGoLT6BH7eNNlufHruKtxugO4CWQaQSXI7-pzOASF6Zd7a8hCCIldpooR-zQEyvbzPwd781-t37OH08vzM3N2evH1gD3KYhCT2u2Q7XWrNbxFetSV7-Jy-A3RxwuF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELVgkRAIIT5FYQEfOIGsjeOkjY8roFq-VnugUm-WY4_VlbJJ1aQIfhj_jxkn2VIEK3GOPw5v7Hmxn98w9krjhpcmsyCmhU1EpsEKjWlIhAzTXbCYMKOq8svp9GSRfVzmy6HOaTuq3ccryf5NA7k01d3R2oej3cM3cn0RmG8EeasKfZ3dwN1YUlgv0uPLQxYqYKJj9co0iS-R8-V4s_m3UfZy051VFFqAj4LUPQL6x51pTEXze-zuwCH5cQ_6fXYN6gfs9m_Ogg_Zz7Om-rHdAB2MAw-NvRDtdh1NzD3vED8Qnnz9e08OTqYRG0eaF0cNoos1boK8tnXTrgC6lte9XpxjVFv8s64sNTyv-RonoqEQ8Ko9r5rvNGHXcBJpwjfgJBAhORIiyIlsXuB0OBPZzMa6FTjgiiKPTikfscX8_de3J2Ko0CCcmuadgFkobJmWReq89pkKHqwK2ruQS0AulWooZmURlJQBiUEAnygVXMiQ5RVO5eoxO6ibGp4w7mWAkHhJj8CyBJyVBWhVllaWAUkfTFgyYmPcYF9OVTQqszNeJjgNwmkITqMn7PVll3Xv3XFVY7kHuAlkIEHlyK_qczgGhRmWfmvITghJXlrkE_ZmDJTd538O9vS_Wr9kN8_ezc3nD6efnrFbaYxhEr4dsoNus4XnyJS68kVcDb8AoQcPwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyurethane+foam-supported+three-dimensional+interconnected+graphene+nanosheets+network+encapsulated+in+polydimethylsiloxane+to+achieve+significant+thermal+conductivity+enhancement&rft.jtitle=Frontiers+of+materials+science&rft.au=Li%2C+Wenjing&rft.au=Wu%2C+Ni&rft.au=Che%2C+Sai&rft.au=Sun%2C+Li&rft.date=2023-09-01&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=17&rft.issue=3&rft_id=info:doi/10.1007%2Fs11706-023-0653-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11706_023_0653_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon