Polyurethane foam-supported three-dimensional interconnected graphene nanosheets network encapsulated in polydimethylsiloxane to achieve significant thermal conductivity enhancement
Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT...
Saved in:
Published in | Frontiers of materials science Vol. 17; no. 3; p. 230653 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-025X 2095-0268 |
DOI | 10.1007/s11706-023-0653-9 |
Cover
Loading…
Abstract | Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT) foams using the soft template microstructure and a facile layer-by-layer (L-B-L) assembly method. The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional (3D) highly interconnected thermal networks. These networks are further infiltrated with polydimethylsiloxane (PDMS). The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m −1·K −1 at a low filler loading of 7.9 wt. %, which is 1115 % higher than that of the polymer matrix. Moreover, the mechanical property of the composite is ~2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network. This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance, which implies a promising future in thermal management systems of electronic devices. |
---|---|
AbstractList | Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT) foams using the soft template microstructure and a facile layer-by-layer (L-B-L) assembly method. The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional (3D) highly interconnected thermal networks. These networks are further infiltrated with polydimethylsiloxane (PDMS). The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m−1·K−1 at a low filler loading of 7.9 wt.%, which is 1115% higher than that of the polymer matrix. Moreover, the mechanical property of the composite is ∼2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network. This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance, which implies a promising future in thermal management systems of electronic devices. Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT) foams using the soft template microstructure and a facile layer-by-layer (L-B-L) assembly method. The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional (3D) highly interconnected thermal networks. These networks are further infiltrated with polydimethylsiloxane (PDMS). The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m −1 ·K −1 at a low filler loading of 7.9 wt.%, which is 1115% higher than that of the polymer matrix. Moreover, the mechanical property of the composite is ∼2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network. This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance, which implies a promising future in thermal management systems of electronic devices. Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the efficiency. To address this issue, we developed a new method to produce tannic acid (TA)-modified graphene nanosheets (GTs)-encapsulated PU (PU@GT) foams using the soft template microstructure and a facile layer-by-layer (L-B-L) assembly method. The resulting PU@GT scaffolds have ordered and tightly stacked GTs layers that act as three-dimensional (3D) highly interconnected thermal networks. These networks are further infiltrated with polydimethylsiloxane (PDMS). The through-plane thermal conductivity of the polymer composite reaches 1.58 W·m −1·K −1 at a low filler loading of 7.9 wt. %, which is 1115 % higher than that of the polymer matrix. Moreover, the mechanical property of the composite is ~2 times higher than that of the polymer matrix while preserving good flexibility of the polymer matrix owing to the retention of the PU foam template and the construction of a stable 3D graphene network. This work presents a facile and scalable production approach to fabricate lightweight PU@GT/PDMS polymer composites with excellent thermal and mechanical performance, which implies a promising future in thermal management systems of electronic devices. |
ArticleNumber | 230653 |
Author | Li, Wenjing Sun, Li Wang, Ye Wu, Ni Liu, Hongchen Ma, Guang Che, Sai Xu, Chong Li, Yongfeng |
Author_xml | – sequence: 1 givenname: Wenjing surname: Li fullname: Li, Wenjing organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 2 givenname: Ni surname: Wu fullname: Wu, Ni organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 3 givenname: Sai surname: Che fullname: Che, Sai organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 4 givenname: Li surname: Sun fullname: Sun, Li organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 5 givenname: Hongchen surname: Liu fullname: Liu, Hongchen organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 6 givenname: Guang surname: Ma fullname: Ma, Guang organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 7 givenname: Ye surname: Wang fullname: Wang, Ye organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 8 givenname: Chong surname: Xu fullname: Xu, Chong organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China – sequence: 9 givenname: Yongfeng surname: Li fullname: Li, Yongfeng email: yfli@cup.edu.cn organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China |
BookMark | eNp9kc2KFDEUhYOM4DjOA7grcF2an05VaimDfzCgCwV3IZ3cdGWsTsqb1Dj9YL6fKUoUZtHZJITz3XO45zm5iCkCIS8Zfc0o7d9kxnratZSLlnZStMMTcsnpIOtPpy7-veX3Z-Q65ztaj2Ry2LFL8vtLmk4LQhlNhMYnc2zzMs8JC7imjAjQunCEmEOKZmpCLIA2xQh2FRzQzCNUMJqY8ghQchOh_Er4o4FozZyXyazCEJu5Gq2jyniacpjSw2pYUmPsGOAemhwOMfhgTSzVGPBY7aqTW2wJ96Gc6sCa0UINU16Qp95MGa7_3lfk2_t3X28-trefP3y6eXvbWtHJ0kLvldnzveLWDW4nvAMj_OCslwxkR_kAqt8rLxjzTEkPjgrhrd8xxpUVUlyRV9vcGdPPBXLRd2nBuoisuRK9GHquVlW_qSymnBG8tqGYUjdW0IRJM6rXmvRWk6416bUmPVSSPSJnDEeDp7MM35hctfEA-D_TOUht0BgOdbfgZoSctceaMQCeQ_8AXkzA8Q |
CitedBy_id | crossref_primary_10_3390_s23239561 crossref_primary_10_1016_j_polymertesting_2024_108469 |
Cites_doi | 10.1016/j.compositesa.2019.105670 10.1016/j.compscitech.2020.108010 10.1016/j.molstruc.2019.127416 10.1039/C8TC05955A 10.1016/S1872-5805(21)60089-6 10.1002/app.29862 10.1016/j.cattod.2022.01.021 10.1016/j.ensm.2019.10.007 10.1002/adfm.201903841 10.1016/j.eurpolymj.2021.110837 10.1016/j.mser.2020.100577 10.1002/smll.201704044 10.5010/JPB.2018.45.1.036 10.1007/s11664-021-09311-x 10.1016/j.cej.2019.02.023 10.1007/s00339-016-0048-1 10.1016/j.mser.2020.100580 10.1016/j.nantod.2017.04.008 10.1016/j.carbon.2018.07.059 10.1039/C9NR03968F 10.1021/jp051565q 10.1016/j.carbon.2016.01.063 10.1021/acsami.7b07650 10.1002/advs.202003734 10.1016/j.cej.2018.04.196 10.1016/j.compositesa.2022.107266 10.1016/j.coco.2020.100448 10.1002/adfm.201805053 10.1016/j.progpolymsci.2018.11.002 10.1016/j.molstruc.2020.128484 10.1016/j.porgcoat.2022.107286 10.1016/j.compscitech.2016.09.013 10.1016/j.matdes.2021.109936 10.1021/acs.iecr.0c05509 10.1021/acsbiomaterials.9b01473 10.1002/adfm.201805365 10.1002/adma.201900199 10.1002/admi.201900147 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2023, Higher Education Press Higher Education Press 2023 Higher Education Press 2023. |
Copyright_xml | – notice: Copyright reserved, 2023, Higher Education Press – notice: Higher Education Press 2023 – notice: Higher Education Press 2023. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11706-023-0653-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2095-0268 |
ExternalDocumentID | 10_1007_s11706_023_0653_9 10.1007/s11706-023-0653-9 |
GroupedDBID | -58 -5G -BR -EM -~C .VR 06C 06D 0R~ 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABWNU ABXPI ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVTX AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DDRTE DNIVK EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P4S P9N PF0 PT4 QOR R89 R9I ROL RSV S16 S3B SAP SCL SCM SHX SISQX SNE SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z85 ZMTXR ~A9 AACDK AAJBT AASML AAYZH ABAKF ABJNI ABTKH ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AEVLU AFBBN AGQEE AGRTI AIGIU DPUIP SJYHP SNPRN -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION Q-- U1G U5L ABRTQ |
ID | FETCH-LOGICAL-c365t-e7f8ab2b82cd9d43fdea3f9dcf51e56029e87b8f311f185fed033fcf41128c353 |
IEDL.DBID | U2A |
ISSN | 2095-025X |
IngestDate | Fri Jul 25 11:09:42 EDT 2025 Tue Jul 01 02:09:54 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Fri Feb 21 02:42:02 EST 2025 Fri Aug 04 09:55:49 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | polyurethane foam polymer composite graphene nanosheet thermal and mechanical property |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-e7f8ab2b82cd9d43fdea3f9dcf51e56029e87b8f311f185fed033fcf41128c353 |
Notes | polyurethane foam polymer composite Document received on :2023-04-02 graphene nanosheet Document accepted on :2023-06-07 thermal and mechanical property ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2837397285 |
PQPubID | 2044428 |
ParticipantIDs | proquest_journals_2837397285 crossref_citationtrail_10_1007_s11706_023_0653_9 crossref_primary_10_1007_s11706_023_0653_9 springer_journals_10_1007_s11706_023_0653_9 higheredpress_frontiers_10_1007_s11706_023_0653_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of materials science |
PublicationTitleAbbrev | Front. Mater. Sci |
PublicationYear | 2023 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | He, Wang, Qu (CR38) 2020; 22 Zhang, Kong, Tao (CR15) 2019; 6 Wu, Yang, Che (CR21) 2023; 164 Fang, Zhao, Zhang (CR35) 2017; 9 Yang, Fan, Li (CR32) 2020; 128 Wu, Xu, Ma (CR12) 2019; 31 Lee, Yen, Hsu (CR25) 2020; 6 Yang, Qi, Liu (CR31) 2016; 100 Huang, Zhu, Li (CR30) 2016; 122 Guo, Cheng, Cai (CR1) 2021; 209 Zhu, Li, Wang (CR4) 2021; 161 Dai, Lv, Ma (CR18) 2021; 8 Lu, Gan, Wu (CR24) 2005; 109 Wu, Che, Li (CR6) 2021; 36 Zhang, Feng, Feng (CR10) 2020; 142 Lustriane, Dwivany, Suendo (CR22) 2018; 45 Liu, Zhang, Ma (CR27) 2020; 1218 Qin, Xu, Cao (CR36) 2018; 28 Norouzi, Mazhkoo, Haddadi (CR26) 2022; 404 Liang, Qiu, Han (CR34) 2019; 7 Kim, Oh, Kotal (CR9) 2017; 14 Peng, Wang, Kim (CR28) 2020; 25 Han, Chen, Hu (CR19) 2020; 1203 Zhang, Yang, Yu (CR29) 2022; 51 Huang, Zhi, Lin (CR5) 2020; 142 Zhan, Nie, Chen (CR8) 2020; 30 Xue, Lu, Qi (CR33) 2019; 365 Feng, Wang, Song (CR2) 2023; 174 Liao, Chen, Liu (CR37) 2020; 189 Liu, Chen, Li (CR17) 2019; 11 Liu, Zhang, Zuo (CR23) 2009; 112 Min, Liu, Li (CR13) 2018; 28 Zhou, Wang, Du (CR11) 2018; 139 de Luna, Wang, Zhai (CR7) 2019; 89 He, Wang (CR3) 2021; 60 Wang, Wu (CR20) 2018; 348 Yao, Sun, Zeng (CR14) 2018; 14 Shao, Shi, Li (CR16) 2016; 135 J Yang (653_CR31) 2016; 100 C B Liang (653_CR34) 2019; 7 M M Qin (653_CR36) 2018; 28 H L Peng (653_CR28) 2020; 25 Y Zhang (653_CR29) 2022; 51 C Lustriane (653_CR22) 2018; 45 N Wu (653_CR6) 2021; 36 O Norouzi (653_CR26) 2022; 404 L Huang (653_CR30) 2016; 122 H Fang (653_CR35) 2017; 9 Z Liu (653_CR17) 2019; 11 L B Shao (653_CR16) 2016; 135 J E Kim (653_CR9) 2017; 14 T H Lee (653_CR25) 2020; 6 W Zhang (653_CR15) 2019; 6 B Han (653_CR19) 2020; 1203 H F Zhan (653_CR8) 2020; 30 R Lu (653_CR24) 2005; 109 F Zhang (653_CR10) 2020; 142 X X Guo (653_CR1) 2021; 209 H Z Zhou (653_CR11) 2018; 139 Z Wu (653_CR12) 2019; 31 W Dai (653_CR18) 2021; 8 X W Wang (653_CR20) 2018; 348 X L Zhu (653_CR4) 2021; 161 P Min (653_CR13) 2018; 28 N Wu (653_CR21) 2023; 164 J He (653_CR38) 2020; 22 X Y Huang (653_CR5) 2020; 142 X T Yang (653_CR32) 2020; 128 F Xue (653_CR33) 2019; 365 L Feng (653_CR2) 2023; 174 Y Yao (653_CR14) 2018; 14 X H He (653_CR3) 2021; 60 H H Liu (653_CR23) 2009; 112 J Liu (653_CR27) 2020; 1218 M S de Luna (653_CR7) 2019; 89 H H Liao (653_CR37) 2020; 189 |
References_xml | – volume: 128 start-page: 105670 year: 2020 ident: CR32 article-title: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2019.105670 – volume: 189 start-page: 108010 year: 2020 ident: CR37 article-title: A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2020.108010 – volume: 1203 start-page: 127416 year: 2020 ident: CR19 article-title: High electrical conductivity in polydimethylsiloxane composite with tailored graphene foam architecture publication-title: Journal of Molecular Structure doi: 10.1016/j.molstruc.2019.127416 – volume: 7 start-page: 2725 issue: 9 year: 2019 end-page: 2733 ident: CR34 article-title: Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C8TC05955A – volume: 36 start-page: 911 issue: 5 year: 2021 end-page: 926 ident: CR6 article-title: A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications publication-title: New Carbon Materials doi: 10.1016/S1872-5805(21)60089-6 – volume: 112 start-page: 2968 issue: 5 year: 2009 end-page: 2975 ident: CR23 article-title: Preparation and characterization of aliphatic polyurethane and hydroxyapatite composite scaffold publication-title: Journal of Applied Polymer Science doi: 10.1002/app.29862 – volume: 404 start-page: 93 year: 2022 end-page: 104 ident: CR26 article-title: Hydrothermal liquefaction of green macroalgae : effect of functional groups on the catalytic performance of graphene oxide/polyurethane composite publication-title: Catalysis Today doi: 10.1016/j.cattod.2022.01.021 – volume: 25 start-page: 313 year: 2020 end-page: 323 ident: CR28 article-title: Highly reversible electrochemical reaction of insoluble 3D nanoporous polyquinoneimines with stable cycle and rate performance publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2019.10.007 – volume: 30 start-page: 1903841 issue: 8 year: 2020 ident: CR8 article-title: Thermal transport in 3D nanostructures publication-title: Advanced Functional Materials doi: 10.1002/adfm.201903841 – volume: 161 start-page: 110837 year: 2021 ident: CR4 article-title: Current advances of polyurethane/graphene composites and its prospects in synthetic leather: a review publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2021.110837 – volume: 142 start-page: 100577 year: 2020 ident: CR5 article-title: Thermal conductivity of graphene-based polymer nanocomposites publication-title: Materials Science and Engineering R: Reports doi: 10.1016/j.mser.2020.100577 – volume: 14 start-page: 1704044 issue: 13 year: 2018 ident: CR14 article-title: Construction of 3D skeleton for polymer composites achieving a high thermal conductivity publication-title: Small doi: 10.1002/smll.201704044 – volume: 45 start-page: 36 issue: 1 year: 2018 end-page: 44 ident: CR22 article-title: Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits publication-title: Journal of Plant Biotechnology doi: 10.5010/JPB.2018.45.1.036 – volume: 51 start-page: 420 issue: 1 year: 2022 end-page: 425 ident: CR29 article-title: Improved thermal properties of three-dimensional graphene network filled polymer composites publication-title: Journal of Electronic Materials doi: 10.1007/s11664-021-09311-x – volume: 365 start-page: 20 year: 2019 end-page: 29 ident: CR33 article-title: Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.02.023 – volume: 122 start-page: 515 issue: 5 year: 2016 ident: CR30 article-title: Improved wetting behavior and thermal conductivity of the three-dimensional nickel foam/epoxy composites with graphene oxide as interfacial modifier publication-title: Applied Physics A: Materials Science & Processing doi: 10.1007/s00339-016-0048-1 – volume: 142 start-page: 100580 year: 2020 ident: CR10 article-title: Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms publication-title: Materials Science and Engineering R: Reports doi: 10.1016/j.mser.2020.100580 – volume: 14 start-page: 100 year: 2017 end-page: 123 ident: CR9 article-title: Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials publication-title: Nano Today doi: 10.1016/j.nantod.2017.04.008 – volume: 139 start-page: 1168 year: 2018 end-page: 1177 ident: CR11 article-title: Facile fabrication of large 3D graphene filler modified epoxy composites with improved thermal conduction and tribological performance publication-title: Carbon doi: 10.1016/j.carbon.2018.07.059 – volume: 11 start-page: 17600 issue: 38 year: 2019 end-page: 17606 ident: CR17 article-title: Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement publication-title: Nanoscale doi: 10.1039/C9NR03968F – volume: 109 start-page: 14118 issue: 29 year: 2005 end-page: 14129 ident: CR24 article-title: C–H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol ( = 1–8) interfaces publication-title: The Journal of Physical Chemistry B doi: 10.1021/jp051565q – volume: 100 start-page: 693 year: 2016 end-page: 702 ident: CR31 article-title: Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage publication-title: Carbon doi: 10.1016/j.carbon.2016.01.063 – volume: 9 start-page: 26447 issue: 31 year: 2017 end-page: 26459 ident: CR35 article-title: Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.7b07650 – volume: 8 start-page: 2003734 issue: 7 year: 2021 ident: CR18 article-title: Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management publication-title: Advanced Science doi: 10.1002/advs.202003734 – volume: 348 start-page: 723 year: 2018 end-page: 731 ident: CR20 article-title: Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2018.04.196 – volume: 164 start-page: 107266 year: 2023 ident: CR21 article-title: Green preparation of high-yield and large-size hydrophilic boron nitride nanosheets by tannic acid-assisted aqueous ball milling for thermal management publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2022.107266 – volume: 22 start-page: 100448 year: 2020 ident: CR38 article-title: Self-assembled three-dimensional structure with optimal ratio of GO and SiC particles effectively improving the thermal conductivity and reliability of epoxy composites publication-title: Composites Communications doi: 10.1016/j.coco.2020.100448 – volume: 28 start-page: 1805053 issue: 45 year: 2018 ident: CR36 article-title: Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge publication-title: Advanced Functional Materials doi: 10.1002/adfm.201805053 – volume: 89 start-page: 213 year: 2019 end-page: 249 ident: CR7 article-title: Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications publication-title: Progress in Polymer Science doi: 10.1016/j.progpolymsci.2018.11.002 – volume: 1218 start-page: 128484 year: 2020 ident: CR27 article-title: Three-step identification of infrared spectra of similar tree species to covered with beeswax publication-title: Journal of Molecular Structure doi: 10.1016/j.molstruc.2020.128484 – volume: 174 start-page: 107286 year: 2023 ident: CR2 article-title: Synthesis of P, N and Si-containing waterborne polyurethane with excellent flame retardant, alkali resistance and flexibility via one-step synthetic approach publication-title: Progress in Organic Coatings doi: 10.1016/j.porgcoat.2022.107286 – volume: 135 start-page: 83 year: 2016 end-page: 91 ident: CR16 article-title: Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2016.09.013 – volume: 209 start-page: 109936 year: 2021 ident: CR1 article-title: A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties publication-title: Materials & Design doi: 10.1016/j.matdes.2021.109936 – volume: 60 start-page: 1137 issue: 3 year: 2021 end-page: 1154 ident: CR3 article-title: Recent advances in the rational design of thermal conductive polymer composites publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.0c05509 – volume: 6 start-page: 597 issue: 1 year: 2020 end-page: 609 ident: CR25 article-title: Preparation of polyurethane-graphene nanocomposite and evaluation of neurovascular regeneration publication-title: ACS Biomaterials Science & Engineering doi: 10.1021/acsbiomaterials.9b01473 – volume: 28 start-page: 1805365 issue: 51 year: 2018 ident: CR13 article-title: Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion publication-title: Advanced Functional Materials doi: 10.1002/adfm.201805365 – volume: 31 start-page: 1900199 issue: 19 year: 2019 ident: CR12 article-title: Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites publication-title: Advanced Materials doi: 10.1002/adma.201900199 – volume: 6 start-page: 1900147 issue: 12 year: 2019 ident: CR15 article-title: 3D thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material publication-title: Advanced Materials Interfaces doi: 10.1002/admi.201900147 – volume: 128 start-page: 105670 year: 2020 ident: 653_CR32 publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2019.105670 – volume: 14 start-page: 100 year: 2017 ident: 653_CR9 publication-title: Nano Today doi: 10.1016/j.nantod.2017.04.008 – volume: 8 start-page: 2003734 issue: 7 year: 2021 ident: 653_CR18 publication-title: Advanced Science doi: 10.1002/advs.202003734 – volume: 31 start-page: 1900199 issue: 19 year: 2019 ident: 653_CR12 publication-title: Advanced Materials doi: 10.1002/adma.201900199 – volume: 45 start-page: 36 issue: 1 year: 2018 ident: 653_CR22 publication-title: Journal of Plant Biotechnology doi: 10.5010/JPB.2018.45.1.036 – volume: 209 start-page: 109936 year: 2021 ident: 653_CR1 publication-title: Materials & Design doi: 10.1016/j.matdes.2021.109936 – volume: 164 start-page: 107266 year: 2023 ident: 653_CR21 publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2022.107266 – volume: 112 start-page: 2968 issue: 5 year: 2009 ident: 653_CR23 publication-title: Journal of Applied Polymer Science doi: 10.1002/app.29862 – volume: 1203 start-page: 127416 year: 2020 ident: 653_CR19 publication-title: Journal of Molecular Structure doi: 10.1016/j.molstruc.2019.127416 – volume: 51 start-page: 420 issue: 1 year: 2022 ident: 653_CR29 publication-title: Journal of Electronic Materials doi: 10.1007/s11664-021-09311-x – volume: 404 start-page: 93 year: 2022 ident: 653_CR26 publication-title: Catalysis Today doi: 10.1016/j.cattod.2022.01.021 – volume: 161 start-page: 110837 year: 2021 ident: 653_CR4 publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2021.110837 – volume: 100 start-page: 693 year: 2016 ident: 653_CR31 publication-title: Carbon doi: 10.1016/j.carbon.2016.01.063 – volume: 7 start-page: 2725 issue: 9 year: 2019 ident: 653_CR34 publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C8TC05955A – volume: 135 start-page: 83 year: 2016 ident: 653_CR16 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2016.09.013 – volume: 174 start-page: 107286 year: 2023 ident: 653_CR2 publication-title: Progress in Organic Coatings doi: 10.1016/j.porgcoat.2022.107286 – volume: 189 start-page: 108010 year: 2020 ident: 653_CR37 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2020.108010 – volume: 89 start-page: 213 year: 2019 ident: 653_CR7 publication-title: Progress in Polymer Science doi: 10.1016/j.progpolymsci.2018.11.002 – volume: 109 start-page: 14118 issue: 29 year: 2005 ident: 653_CR24 publication-title: The Journal of Physical Chemistry B doi: 10.1021/jp051565q – volume: 36 start-page: 911 issue: 5 year: 2021 ident: 653_CR6 publication-title: New Carbon Materials doi: 10.1016/S1872-5805(21)60089-6 – volume: 1218 start-page: 128484 year: 2020 ident: 653_CR27 publication-title: Journal of Molecular Structure doi: 10.1016/j.molstruc.2020.128484 – volume: 28 start-page: 1805365 issue: 51 year: 2018 ident: 653_CR13 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201805365 – volume: 25 start-page: 313 year: 2020 ident: 653_CR28 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2019.10.007 – volume: 365 start-page: 20 year: 2019 ident: 653_CR33 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.02.023 – volume: 142 start-page: 100580 year: 2020 ident: 653_CR10 publication-title: Materials Science and Engineering R: Reports doi: 10.1016/j.mser.2020.100580 – volume: 6 start-page: 597 issue: 1 year: 2020 ident: 653_CR25 publication-title: ACS Biomaterials Science & Engineering doi: 10.1021/acsbiomaterials.9b01473 – volume: 14 start-page: 1704044 issue: 13 year: 2018 ident: 653_CR14 publication-title: Small doi: 10.1002/smll.201704044 – volume: 142 start-page: 100577 year: 2020 ident: 653_CR5 publication-title: Materials Science and Engineering R: Reports doi: 10.1016/j.mser.2020.100577 – volume: 60 start-page: 1137 issue: 3 year: 2021 ident: 653_CR3 publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.0c05509 – volume: 122 start-page: 515 issue: 5 year: 2016 ident: 653_CR30 publication-title: Applied Physics A: Materials Science & Processing doi: 10.1007/s00339-016-0048-1 – volume: 11 start-page: 17600 issue: 38 year: 2019 ident: 653_CR17 publication-title: Nanoscale doi: 10.1039/C9NR03968F – volume: 28 start-page: 1805053 issue: 45 year: 2018 ident: 653_CR36 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201805053 – volume: 9 start-page: 26447 issue: 31 year: 2017 ident: 653_CR35 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.7b07650 – volume: 139 start-page: 1168 year: 2018 ident: 653_CR11 publication-title: Carbon doi: 10.1016/j.carbon.2018.07.059 – volume: 22 start-page: 100448 year: 2020 ident: 653_CR38 publication-title: Composites Communications doi: 10.1016/j.coco.2020.100448 – volume: 6 start-page: 1900147 issue: 12 year: 2019 ident: 653_CR15 publication-title: Advanced Materials Interfaces doi: 10.1002/admi.201900147 – volume: 30 start-page: 1903841 issue: 8 year: 2020 ident: 653_CR8 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201903841 – volume: 348 start-page: 723 year: 2018 ident: 653_CR20 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2018.04.196 |
SSID | ssj0000515941 |
Score | 2.2867537 |
Snippet | Polyurethane (PU) foams are widely used in thermal management materials due to their good flexibility. However, their low thermal conductivity limits the... |
SourceID | proquest crossref springer higheredpress |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 230653 |
SubjectTerms | Chemistry and Materials Science Encapsulation Flexibility Graphene graphene nanosheet Heat conductivity Heat transfer Management systems Materials Science Mechanical properties Nanosheets Plastic foam Polydimethylsiloxane polymer composite Polymer matrix composites Polymers Polyurethane foam Research Article Tannic acid thermal and mechanical property Thermal conductivity Thermal management |
Title | Polyurethane foam-supported three-dimensional interconnected graphene nanosheets network encapsulated in polydimethylsiloxane to achieve significant thermal conductivity enhancement |
URI | https://journal.hep.com.cn/foms/EN/10.1007/s11706-023-0653-9 https://link.springer.com/article/10.1007/s11706-023-0653-9 https://www.proquest.com/docview/2837397285 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgvYBQxadYaCsfOIEsJXGyGx9XqB8CteLASttT5Ngz2kppstpkEfww_h8z3qTLVqUS5zj24Y09z_bzGyE-GFrwkmiCapzbSKUGrDKUhhSmlO7QUsIMqsqLy_H5LP0yz-b9O-52ULsPV5Jhpd4-dmOnF0U5RrGfqjKPxX7GW3cK4lkyvT1Y4aIlJlSsTKLw-jibD7eZ9_Wyk4-eLYK4AnwQoe6Qzjv3pCH9nD4XBz1vlNMN0C_EI6hfiqd_uQm-Er-_NdWv9Qr4MBwkNvZGtetlMC73siPMQHn28t_4cEg2ilg51rk4bhCcq2nhk7Wtm3YB0LWy3mjEJUWypd10ZbnhdS2XNBB3RSBX7XXV_OQBu0ayMBN-gGRRCEuQCDXJBPOGhqOR2Fo21KqgDhccbXwy-VrMTk--fz5XfVUG5fQ46xRMMLdlUuaJ88anGj1YjcY7zGIg_pQYyCdljjqOkcgAgo-0RocpMbvc6Uy_EXt1U8NbIX2MgJGP-eFXGoGzcQ5Gl6WNSySiByMRDdgUrrcs58oZVbE1W2Y4C4KzYDgLMxIfb39Zbvw6Hmoc7wBeIJtGcAnyh_45HIKi6Kd7W7CFEBG7JM9G4tMQKNvP_-zs3X-1fi-eJCFwWeF2KPa61RqOiBJ15bHYn55dfT05DlPhD3mACiY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgHAAhxFfF0gI-cAJZSuJk1z5WqNUW2opDV9qb5dhjbaU0WW2yCH4Y_48Zb9JlUanEOf44vLHnxX5-w9gHjRtelkyCGCubiFyDFRrTkAg5prtgMWFGVeX5xXg6y7_Mi3n_jrsd1O7DlWTcqbeP3cjpRWCOEeSnKvR99gC5gCId1yw7ujlYoaIlOlaszJL4-riYD7eZt42yk4-eLKK4AnwUoe6Qzr_uSWP6OXnGnva8kR9tgH7O7kH9gj3-w03wJfv1ral-rldAh-HAQ2OvRbteRuNyzzvEDIQnL_-NDwcno4iVI52LowbRuRo3Pl7bumkXAF3L641GnGMkW_ybriw1vKr5EieioRDkqr2qmh80YddwEmbCd-AkCiEJEqLGiWBe43Q4E1nLxloVOOCCoo1OJl-x2cnx5eep6KsyCCfHRSdgEpQts1Jlzmufy-DByqC9C0UKyJ8yDWpSqiDTNCAZCOATKYMLOTI75WQh99le3dTwmnGfBgiJT-nhV56As6kCLcvSpmVAogcjlgzYGNdbllPljMpszZYJToNwGoLT6BH7eNNlufHruKtxugO4CWQaQSXI7-pzOASF6Zd7a8hCCIldpooR-zQEyvbzPwd781-t37OH08vzM3N2evH1gD3KYhCT2u2Q7XWrNbxFetSV7-Jy-A3RxwuF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELVgkRAIIT5FYQEfOIGsjeOkjY8roFq-VnugUm-WY4_VlbJJ1aQIfhj_jxkn2VIEK3GOPw5v7Hmxn98w9krjhpcmsyCmhU1EpsEKjWlIhAzTXbCYMKOq8svp9GSRfVzmy6HOaTuq3ccryf5NA7k01d3R2oej3cM3cn0RmG8EeasKfZ3dwN1YUlgv0uPLQxYqYKJj9co0iS-R8-V4s_m3UfZy051VFFqAj4LUPQL6x51pTEXze-zuwCH5cQ_6fXYN6gfs9m_Ogg_Zz7Om-rHdAB2MAw-NvRDtdh1NzD3vED8Qnnz9e08OTqYRG0eaF0cNoos1boK8tnXTrgC6lte9XpxjVFv8s64sNTyv-RonoqEQ8Ko9r5rvNGHXcBJpwjfgJBAhORIiyIlsXuB0OBPZzMa6FTjgiiKPTikfscX8_de3J2Ko0CCcmuadgFkobJmWReq89pkKHqwK2ruQS0AulWooZmURlJQBiUEAnygVXMiQ5RVO5eoxO6ibGp4w7mWAkHhJj8CyBJyVBWhVllaWAUkfTFgyYmPcYF9OVTQqszNeJjgNwmkITqMn7PVll3Xv3XFVY7kHuAlkIEHlyK_qczgGhRmWfmvITghJXlrkE_ZmDJTd538O9vS_Wr9kN8_ezc3nD6efnrFbaYxhEr4dsoNus4XnyJS68kVcDb8AoQcPwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyurethane+foam-supported+three-dimensional+interconnected+graphene+nanosheets+network+encapsulated+in+polydimethylsiloxane+to+achieve+significant+thermal+conductivity+enhancement&rft.jtitle=Frontiers+of+materials+science&rft.au=Li%2C+Wenjing&rft.au=Wu%2C+Ni&rft.au=Che%2C+Sai&rft.au=Sun%2C+Li&rft.date=2023-09-01&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=17&rft.issue=3&rft_id=info:doi/10.1007%2Fs11706-023-0653-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11706_023_0653_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon |