Machine Learning for Stellar Magnetic Field Determination

In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis of spectropolarimetric observations. In order to determine this important parameter, we first developed a synthetic database encompassing a se...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 11; no. 1; pp. 608 - 615
Main Authors Córdova Barbosa, J. P., Navarro Jiménez, S. G., Ramírez Vélez, J. C.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 2018
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis of spectropolarimetric observations. In order to determine this important parameter, we first developed a synthetic database encompassing a set of different stellar spectra, each one defined by a set of free parameters. Then, we used supervised learning for artificial neural networks, a machine learning approach, to achieve our goal.
AbstractList Abstract In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis of spectropolarimetric observations. In order to determine this important parameter, we first developed a synthetic database encompassing a set of different stellar spectra, each one defined by a set of free parameters. Then, we used supervised learning for artificial neural networks, a machine learning approach, to achieve our goal.
In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis of spectropolarimetric observations. In order to determine this important parameter, we first developed a synthetic database encompassing a set of different stellar spectra, each one defined by a set of free parameters. Then, we used supervised learning for artificial neural networks, a machine learning approach, to achieve our goal.
Author Córdova Barbosa, J. P.
Navarro Jiménez, S. G.
Ramírez Vélez, J. C.
Author_xml – sequence: 1
  givenname: J. P.
  surname: Córdova Barbosa
  fullname: Córdova Barbosa, J. P.
  email: jcordoba@astro.unam.mx
  organization: CUCEA, Universidad de Guadalajara, Periférico Norte 799, Núcleo Universitario Los Belenes
– sequence: 2
  givenname: S. G.
  surname: Navarro Jiménez
  fullname: Navarro Jiménez, S. G.
  organization: Instituto de Astronomía y Metereología, Universidad de Guadalajara
– sequence: 3
  givenname: J. C.
  surname: Ramírez Vélez
  fullname: Ramírez Vélez, J. C.
  organization: Instituto de Astronomía Ensenada, Universidad Nacional Autónoma de México
BookMark eNp1kDFPwzAQhS1UJErpyJ4_kGDHjhOPqFCo1IoBmK2Lcw6uUhs5YeDfY1rUjeme7t59unvXZOaDR0JuGS1Kpdid2xs3FowVrBDygsxZU1e5bBo-O2vFrshyHPeU0pIJSoWYE7UD8-E8ZluE6J3vMxti9jrhMEDMdtB7nJzJ1g6HLnvACePBeZhc8Dfk0sIw4vKvLsj7-vFt9ZxvX542q_ttbrisphylFU3JVdvWlULDUpOD4byxsrUgawDghkpsBNalSgPbdJRVoq4qRUEaviCbE7cLsNef0R0gfusATh8bIfYaYrpxQC0o0EoY23aqTLprW5HopS1bAKpYl1j5iWViGMeI9sxjVP_GqI8xasY000Imf3Hyj8nne4x6H76iT-_-s_AD0893bw
ContentType Journal Article
Copyright the Authors. Published by Atlantis Press 2018
Copyright_xml – notice: the Authors. Published by Atlantis Press 2018
DBID AAYXX
CITATION
DOA
DOI 10.2991/ijcis.11.1.46
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-6883
EndPage 615
ExternalDocumentID oai_doaj_org_article_40a054cfbd9240adbb4aa32f2baa091d
10_2991_ijcis_11_1_46
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABFIM
ACACY
ACGFS
ADBBV
ADCVX
ADMSI
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AHBXF
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
DU5
EBS
EJD
GROUPED_DOAJ
GTTXZ
HCIFZ
HZ~
IL9
IPNFZ
J~4
K7-
M4Z
O9-
OK1
PIMPY
RIG
RSV
SOJ
TFL
TFW
TR2
AAYXX
ABEEZ
ACULB
CITATION
EBLON
H13
TDBHL
ID FETCH-LOGICAL-c365t-e6f48239bb759ec13653ac338f6bfa67aaa3c06e84e729c33f8d015475590a6c3
IEDL.DBID DOA
ISSN 1875-6891
1875-6883
IngestDate Tue Oct 22 15:15:30 EDT 2024
Fri Aug 23 00:37:55 EDT 2024
Fri Feb 02 01:15:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Artificial Neural Networks
Machine Learning
Stellar: Magnetic Fields
Parameter Determination
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-e6f48239bb759ec13653ac338f6bfa67aaa3c06e84e729c33f8d015475590a6c3
OpenAccessLink https://doaj.org/article/40a054cfbd9240adbb4aa32f2baa091d
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_40a054cfbd9240adbb4aa32f2baa091d
crossref_primary_10_2991_ijcis_11_1_46
springer_journals_10_2991_ijcis_11_1_46
PublicationCentury 2000
PublicationDate 1-2018
2018-00-00
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 1-2018
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2018
Publisher Springer Netherlands
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer
References L. Sbordone et al., MyGIsFOS: an automated code for parameter determination and detailed abundance analysis in cool stars, A&A564 (2014).
U. Heiter et al., VALD an atomic and molecular database for astrophysics, J Phys Conf Ser130 (2008).
J. Rodriguez et al., Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation, IEEE Trans. Pattern Anal. Mach. Intell. 32 (2010), pp. 569– 575.
B.P. Carlin and T.A. Louis, Bayesian methods for data analysis, 3rd edn. (Chapman & Hall/CRC, 2009).
H. Posbic et al., SPADES: a stellar parameters determination software, A&A544 (2012).
M.J. Stift, A Non-Axisymmetric Rigid Rotator Model for Magnetic Stars, MNRAS172 (1975), pp. 133–139.
S. Pyatykh et al., Image Noise Level Estimation by Principal Component Analysis, IEEE Trans Image Process22 (2013), pp. 687–699.
L. Rosén et al., First Zeeman Doppler Imaging of a cool star using all four stokes parameters, ApJ805 (2015).
J. Deng et al., Advanced principal component analysis method for phase reconstruction, Optics Express23 (2015).
O. Kochukhov et al., Least-squares deconvolution of the stellar intensity and polarization spectra, A&A524 (2010).
J.C. Ramírez Vélez et al., Stellar longitudinal magnetic field determination through multi-Zeeman signatures, A&A596 (2016).
G.A. Wade et al., LTE spectrum synthesis in magnetic stellar atmospheres, A&A374 (2001), pp. 265–279.
P. Zeeman, On the Influence of Magnetism on the Nature of the Light Emitted by a Substance, ApJ5 (1897).
M. Semel et al., Multi-Line Spectro-Polarimetry of Stellar Magnetic Fields Using Principal Components Analysis, ASP Conf. Ser. 358 (2006), pp. 355–361.
M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. (Dover, New York, 1972).
X. Haubois et al., A global database for optical inter-ferometry, in Proceedings SPIE9146 (2014).
J. Robinson et al., Magnetic field measurements on stellar sources - A new method, Apj239 (1980).
E. Alecian et al., A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements, MNRAS429 (2013), pp. 1001–1026.
L. Rosén et al., Magnetic fields of young solar twins, A&A593 (2016).
A. Dotter et al., The Dartmouth Stellar Evolution Database, ApJS178 (2008), pp. 89–101.
M. Semel and J. Li, Zeeman-Doppler Imaging of Solar-Type Stars: Multi Line Technique, SoPh164 (1996), pp. 417–428.
J. Vargas et al., Generalization of the Principal Component Analysis algorithm for interferometry, Optics Communications286 (2013), pp. 130–134.
G.G. Stokes, On the Change of Refrangibility of Light, in Philosophical Transactions of the Royal Society of London142 (1852), pp. 463–562.
A. Mucciarelli et al., GALA: An automatic tool for the abundance analysis of stellar spectra, ApJ766 (2013).
E. Collett, Field guide to polarization, (SPIE Press, 2005).
A. Asensio Ramos and P. Petit, Bayesian least squares deconvolution, A&A583 (2015).
P. Petit et al., PolarBase: A Database of High-Resolution Spectropolarimetric Stellar Observations, PASP126 (2014), pp. 469–475.
H.W. Drawin, Validity conditions for local thermodynamic equilibrium, Physik228 (1969), pp. 99–119.
M. Stift, COSSAM: Codice per la Sintesi Spettrale nelle Atmosfere Magnetiche, A Peculiar Newsletter33 (2000).
K.M. Bischof, Two platform independent versions of ATLAS12, Memorie della Societá Astronomica Italiana Supplement8 (2005).
S.C. Marsden et al., A BCool magnetic snapshot survey of solar-type stars, MNRAS 444 (2014), pp. 3517–3536.
L. Beitia-Antero and A.I. Gómez de Castro, A database of synthetic photometry in the GALEX ultraviolet bands for the stellar sources observed with the International Ultraviolet Explorer, A&A596 (2016).
S. Reissl et al., Radiative transfer with POLARIS, A&A593 (2016).
R. Soummer et al., Detection and characterization of exoplanets and disks using projections on Karhunen-Loeve eigenimages, ApJ755 (2012).
J.F. Donati and J. Landstreet, Magnetic Fields of Non-degenerate Stars, ARA&A47 (2009), pp. 333–370.
N. Piskunov, INVERS10: A New Code for Magnetic Doppler Imaging, ASP Conf. Ser. 154 (1998).
A. Reiners, Observations of Cool-Star Magnetic Fields, in Living Reviews in Solar Physics9 (2012).
J.F. Donati et al., Spectropolarimetric observations of active stars, MNRAS291 (1997), pp. 658–682.
V. See et al., Studying stellar spin-down with ZeemanDoppler magnetograms, MNRAS466 (2017), pp. 1542–1554.
J.C. Ramírez Vélez et al., Spectropolarimetric multiline analysis of stellar magnetic fields, A&A512 (2010).
F. Castelli and R.L. Kurucz, New Grids of ATLAS9 Model Atmospheres, eprint arXiv:astro-ph/0405087 (2014).
References_xml
SSID ssj0002140044
ssib050732782
Score 2.1300857
Snippet In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis...
Abstract In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the...
SourceID doaj
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 608
SubjectTerms Artificial Neural Networks
Machine Learning
Parameter Determination
Research Article
Stellar: Magnetic Fields
Title Machine Learning for Stellar Magnetic Field Determination
URI https://link.springer.com/article/10.2991/ijcis.11.1.46
https://doaj.org/article/40a054cfbd9240adbb4aa32f2baa091d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBwRT2jh27HjkVVVIZYFK3SzbsasyBNSW_89dHqgSSCysSSRbn3133xef7wi58in3njmZsAIkikjBpGwZY4INrhRSXO7xRHfyLMdT8TTLZxutvjAnrCkP3AA3FKkFVuGjK0EppLZ0TljLs5g5ayHWlbX3TfWGmEIfnDHcm6Ipqgkelw0Xb36xAgcxYAMkuxtBqK7V_-MgtI4voz2y0xJDettMaJ9sheqA7HZNF2hrg4dET-r0x0DbyqhzCrSTvuBlELukEzuv8FoiHWFmGn3okl0Q_iMyHT2-3o-Ttv9B4rnM10mQURQZ186pXAePCWncetCUUbpopbIAhE9lKEQAigwvYlEiJVKgElIrPT8mveq9CieEstKBaUalGMZzPPzTWviglQ1ch9z1yXUHiPloylwYkAeInKmRA6VgmBGyT-4Qru-PsDp1_QDWzLRrZv5asz656cA2rcmsfh_u9D-GOyPbQHOK5sfJOemtl5_hAqjE2l3Wu-YLzuvHfA
link.rule.ids 315,783,787,867,2109,4031,27935,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Stellar+Magnetic+Field+Determination&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Barbosa%2C+J.P.+C%C3%B3rdova&rft.au=Jim%C3%A9nez%2C+S.G.+Navarro&rft.au=V%C3%A9lez%2C+J.C.+Ram%C3%ADrez&rft.date=2018&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=11&rft.issue=1&rft.spage=608&rft_id=info:doi/10.2991%2Fijcis.11.1.46&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_11_1_46
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon