Machine Learning for Stellar Magnetic Field Determination
In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis of spectropolarimetric observations. In order to determine this important parameter, we first developed a synthetic database encompassing a se...
Saved in:
Published in | International journal of computational intelligence systems Vol. 11; no. 1; pp. 608 - 615 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
2018
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis of spectropolarimetric observations. In order to determine this important parameter, we first developed a synthetic database encompassing a set of different stellar spectra, each one defined by a set of free parameters. Then, we used supervised learning for artificial neural networks, a machine learning approach, to achieve our goal. |
---|---|
AbstractList | Abstract In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis of spectropolarimetric observations. In order to determine this important parameter, we first developed a synthetic database encompassing a set of different stellar spectra, each one defined by a set of free parameters. Then, we used supervised learning for artificial neural networks, a machine learning approach, to achieve our goal. In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis of spectropolarimetric observations. In order to determine this important parameter, we first developed a synthetic database encompassing a set of different stellar spectra, each one defined by a set of free parameters. Then, we used supervised learning for artificial neural networks, a machine learning approach, to achieve our goal. |
Author | Córdova Barbosa, J. P. Navarro Jiménez, S. G. Ramírez Vélez, J. C. |
Author_xml | – sequence: 1 givenname: J. P. surname: Córdova Barbosa fullname: Córdova Barbosa, J. P. email: jcordoba@astro.unam.mx organization: CUCEA, Universidad de Guadalajara, Periférico Norte 799, Núcleo Universitario Los Belenes – sequence: 2 givenname: S. G. surname: Navarro Jiménez fullname: Navarro Jiménez, S. G. organization: Instituto de Astronomía y Metereología, Universidad de Guadalajara – sequence: 3 givenname: J. C. surname: Ramírez Vélez fullname: Ramírez Vélez, J. C. organization: Instituto de Astronomía Ensenada, Universidad Nacional Autónoma de México |
BookMark | eNp1kDFPwzAQhS1UJErpyJ4_kGDHjhOPqFCo1IoBmK2Lcw6uUhs5YeDfY1rUjeme7t59unvXZOaDR0JuGS1Kpdid2xs3FowVrBDygsxZU1e5bBo-O2vFrshyHPeU0pIJSoWYE7UD8-E8ZluE6J3vMxti9jrhMEDMdtB7nJzJ1g6HLnvACePBeZhc8Dfk0sIw4vKvLsj7-vFt9ZxvX542q_ttbrisphylFU3JVdvWlULDUpOD4byxsrUgawDghkpsBNalSgPbdJRVoq4qRUEaviCbE7cLsNef0R0gfusATh8bIfYaYrpxQC0o0EoY23aqTLprW5HopS1bAKpYl1j5iWViGMeI9sxjVP_GqI8xasY000Imf3Hyj8nne4x6H76iT-_-s_AD0893bw |
ContentType | Journal Article |
Copyright | the Authors. Published by Atlantis Press 2018 |
Copyright_xml | – notice: the Authors. Published by Atlantis Press 2018 |
DBID | AAYXX CITATION DOA |
DOI | 10.2991/ijcis.11.1.46 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1875-6883 |
EndPage | 615 |
ExternalDocumentID | oai_doaj_org_article_40a054cfbd9240adbb4aa32f2baa091d 10_2991_ijcis_11_1_46 |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AAYZJ ABFIM ACACY ACGFS ADBBV ADCVX ADMSI AENEX AFGXO AFKRA AFNRJ AFPKN AHBXF AHDSZ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AVBZW BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 DU5 EBS EJD GROUPED_DOAJ GTTXZ HCIFZ HZ~ IL9 IPNFZ J~4 K7- M4Z O9- OK1 PIMPY RIG RSV SOJ TFL TFW TR2 AAYXX ABEEZ ACULB CITATION EBLON H13 TDBHL |
ID | FETCH-LOGICAL-c365t-e6f48239bb759ec13653ac338f6bfa67aaa3c06e84e729c33f8d015475590a6c3 |
IEDL.DBID | DOA |
ISSN | 1875-6891 1875-6883 |
IngestDate | Tue Oct 22 15:15:30 EDT 2024 Fri Aug 23 00:37:55 EDT 2024 Fri Feb 02 01:15:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Artificial Neural Networks Machine Learning Stellar: Magnetic Fields Parameter Determination |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-e6f48239bb759ec13653ac338f6bfa67aaa3c06e84e729c33f8d015475590a6c3 |
OpenAccessLink | https://doaj.org/article/40a054cfbd9240adbb4aa32f2baa091d |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_40a054cfbd9240adbb4aa32f2baa091d crossref_primary_10_2991_ijcis_11_1_46 springer_journals_10_2991_ijcis_11_1_46 |
PublicationCentury | 2000 |
PublicationDate | 1-2018 2018-00-00 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 1-2018 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | International journal of computational intelligence systems |
PublicationTitleAbbrev | Int J Comput Intell Syst |
PublicationYear | 2018 |
Publisher | Springer Netherlands Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer |
References | L. Sbordone et al., MyGIsFOS: an automated code for parameter determination and detailed abundance analysis in cool stars, A&A564 (2014). U. Heiter et al., VALD an atomic and molecular database for astrophysics, J Phys Conf Ser130 (2008). J. Rodriguez et al., Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation, IEEE Trans. Pattern Anal. Mach. Intell. 32 (2010), pp. 569– 575. B.P. Carlin and T.A. Louis, Bayesian methods for data analysis, 3rd edn. (Chapman & Hall/CRC, 2009). H. Posbic et al., SPADES: a stellar parameters determination software, A&A544 (2012). M.J. Stift, A Non-Axisymmetric Rigid Rotator Model for Magnetic Stars, MNRAS172 (1975), pp. 133–139. S. Pyatykh et al., Image Noise Level Estimation by Principal Component Analysis, IEEE Trans Image Process22 (2013), pp. 687–699. L. Rosén et al., First Zeeman Doppler Imaging of a cool star using all four stokes parameters, ApJ805 (2015). J. Deng et al., Advanced principal component analysis method for phase reconstruction, Optics Express23 (2015). O. Kochukhov et al., Least-squares deconvolution of the stellar intensity and polarization spectra, A&A524 (2010). J.C. Ramírez Vélez et al., Stellar longitudinal magnetic field determination through multi-Zeeman signatures, A&A596 (2016). G.A. Wade et al., LTE spectrum synthesis in magnetic stellar atmospheres, A&A374 (2001), pp. 265–279. P. Zeeman, On the Influence of Magnetism on the Nature of the Light Emitted by a Substance, ApJ5 (1897). M. Semel et al., Multi-Line Spectro-Polarimetry of Stellar Magnetic Fields Using Principal Components Analysis, ASP Conf. Ser. 358 (2006), pp. 355–361. M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. (Dover, New York, 1972). X. Haubois et al., A global database for optical inter-ferometry, in Proceedings SPIE9146 (2014). J. Robinson et al., Magnetic field measurements on stellar sources - A new method, Apj239 (1980). E. Alecian et al., A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements, MNRAS429 (2013), pp. 1001–1026. L. Rosén et al., Magnetic fields of young solar twins, A&A593 (2016). A. Dotter et al., The Dartmouth Stellar Evolution Database, ApJS178 (2008), pp. 89–101. M. Semel and J. Li, Zeeman-Doppler Imaging of Solar-Type Stars: Multi Line Technique, SoPh164 (1996), pp. 417–428. J. Vargas et al., Generalization of the Principal Component Analysis algorithm for interferometry, Optics Communications286 (2013), pp. 130–134. G.G. Stokes, On the Change of Refrangibility of Light, in Philosophical Transactions of the Royal Society of London142 (1852), pp. 463–562. A. Mucciarelli et al., GALA: An automatic tool for the abundance analysis of stellar spectra, ApJ766 (2013). E. Collett, Field guide to polarization, (SPIE Press, 2005). A. Asensio Ramos and P. Petit, Bayesian least squares deconvolution, A&A583 (2015). P. Petit et al., PolarBase: A Database of High-Resolution Spectropolarimetric Stellar Observations, PASP126 (2014), pp. 469–475. H.W. Drawin, Validity conditions for local thermodynamic equilibrium, Physik228 (1969), pp. 99–119. M. Stift, COSSAM: Codice per la Sintesi Spettrale nelle Atmosfere Magnetiche, A Peculiar Newsletter33 (2000). K.M. Bischof, Two platform independent versions of ATLAS12, Memorie della Societá Astronomica Italiana Supplement8 (2005). S.C. Marsden et al., A BCool magnetic snapshot survey of solar-type stars, MNRAS 444 (2014), pp. 3517–3536. L. Beitia-Antero and A.I. Gómez de Castro, A database of synthetic photometry in the GALEX ultraviolet bands for the stellar sources observed with the International Ultraviolet Explorer, A&A596 (2016). S. Reissl et al., Radiative transfer with POLARIS, A&A593 (2016). R. Soummer et al., Detection and characterization of exoplanets and disks using projections on Karhunen-Loeve eigenimages, ApJ755 (2012). J.F. Donati and J. Landstreet, Magnetic Fields of Non-degenerate Stars, ARA&A47 (2009), pp. 333–370. N. Piskunov, INVERS10: A New Code for Magnetic Doppler Imaging, ASP Conf. Ser. 154 (1998). A. Reiners, Observations of Cool-Star Magnetic Fields, in Living Reviews in Solar Physics9 (2012). J.F. Donati et al., Spectropolarimetric observations of active stars, MNRAS291 (1997), pp. 658–682. V. See et al., Studying stellar spin-down with ZeemanDoppler magnetograms, MNRAS466 (2017), pp. 1542–1554. J.C. Ramírez Vélez et al., Spectropolarimetric multiline analysis of stellar magnetic fields, A&A512 (2010). F. Castelli and R.L. Kurucz, New Grids of ATLAS9 Model Atmospheres, eprint arXiv:astro-ph/0405087 (2014). |
References_xml | |
SSID | ssj0002140044 ssib050732782 |
Score | 2.1300857 |
Snippet | In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the analysis... Abstract In this work we present the results for the automatic determination of the mean longitudinal magnetic field in polarized stellar spectra through the... |
SourceID | doaj crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 608 |
SubjectTerms | Artificial Neural Networks Machine Learning Parameter Determination Research Article Stellar: Magnetic Fields |
Title | Machine Learning for Stellar Magnetic Field Determination |
URI | https://link.springer.com/article/10.2991/ijcis.11.1.46 https://doaj.org/article/40a054cfbd9240adbb4aa32f2baa091d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBwRT2jh27HjkVVVIZYFK3SzbsasyBNSW_89dHqgSSCysSSRbn3133xef7wi58in3njmZsAIkikjBpGwZY4INrhRSXO7xRHfyLMdT8TTLZxutvjAnrCkP3AA3FKkFVuGjK0EppLZ0TljLs5g5ayHWlbX3TfWGmEIfnDHcm6Ipqgkelw0Xb36xAgcxYAMkuxtBqK7V_-MgtI4voz2y0xJDettMaJ9sheqA7HZNF2hrg4dET-r0x0DbyqhzCrSTvuBlELukEzuv8FoiHWFmGn3okl0Q_iMyHT2-3o-Ttv9B4rnM10mQURQZ186pXAePCWncetCUUbpopbIAhE9lKEQAigwvYlEiJVKgElIrPT8mveq9CieEstKBaUalGMZzPPzTWviglQ1ch9z1yXUHiPloylwYkAeInKmRA6VgmBGyT-4Qru-PsDp1_QDWzLRrZv5asz656cA2rcmsfh_u9D-GOyPbQHOK5sfJOemtl5_hAqjE2l3Wu-YLzuvHfA |
link.rule.ids | 315,783,787,867,2109,4031,27935,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+Stellar+Magnetic+Field+Determination&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Barbosa%2C+J.P.+C%C3%B3rdova&rft.au=Jim%C3%A9nez%2C+S.G.+Navarro&rft.au=V%C3%A9lez%2C+J.C.+Ram%C3%ADrez&rft.date=2018&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=11&rft.issue=1&rft.spage=608&rft_id=info:doi/10.2991%2Fijcis.11.1.46&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_11_1_46 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon |