Subject-Independent Odor Pleasantness Classification Using Brain and Peripheral Signals

Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory information. Although the affective information from video and audio has been extensively studied, the olfactory sense has received less attenti...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 7; no. 4; pp. 422 - 434
Main Authors Kroupi, Eleni, Vesin, Jean-Marc, Ebrahimi, Touradj
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory information. Although the affective information from video and audio has been extensively studied, the olfactory sense has received less attention. A way to assess human experience from audio, video or odors, is by investigating physiological signals. In this study, 23 subjects experienced pleasant, unpleasant, and neutral odors while their electroencephalogram (EEG), and electrocardiogram (ECG) were recorded. Two independent three-class classifiers were trained and tested, using EEG or ECG features. The results reveal a significant increase in the classification performance when EEG features were used (Cohen's kappa k = 0.44 ± 0.14; p <; 0.001). The results also indicate that it is possible to automatically classify the perception of unpleasant odors using EEG signals, but the classification performance decreases significantly when classifying between pleasant and neutral odors. Among the EEG features, the Wasserstein distance metric estimated between trial and baseline power achieved the highest classification performance. Features from ECG signals did not result in a significantly non-random performance.
AbstractList Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory information. Although the affective information from video and audio has been extensively studied, the olfactory sense has received less attention. A way to assess human experience from audio, video or odors, is by investigating physiological signals. In this study, 23 subjects experienced pleasant, unpleasant, and neutral odors while their electroencephalogram (EEG), and electrocardiogram (ECG) were recorded. Two independent three-class classifiers were trained and tested, using EEG or ECG features. The results reveal a significant increase in the classification performance when EEG features were used (Cohen's kappa [Formula Omitted]). The results also indicate that it is possible to automatically classify the perception of unpleasant odors using EEG signals, but the classification performance decreases significantly when classifying between pleasant and neutral odors. Among the EEG features, the Wasserstein distance metric estimated between trial and baseline power achieved the highest classification performance. Features from ECG signals did not result in a significantly non-random performance.
Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory information. Although the affective information from video and audio has been extensively studied, the olfactory sense has received less attention. A way to assess human experience from audio, video or odors, is by investigating physiological signals. In this study, 23 subjects experienced pleasant, unpleasant, and neutral odors while their electroencephalogram (EEG), and electrocardiogram (ECG) were recorded. Two independent three-class classifiers were trained and tested, using EEG or ECG features. The results reveal a significant increase in the classification performance when EEG features were used (Cohen's kappa k = 0.44 ± 0.14; p <; 0.001). The results also indicate that it is possible to automatically classify the perception of unpleasant odors using EEG signals, but the classification performance decreases significantly when classifying between pleasant and neutral odors. Among the EEG features, the Wasserstein distance metric estimated between trial and baseline power achieved the highest classification performance. Features from ECG signals did not result in a significantly non-random performance.
Author Vesin, Jean-Marc
Ebrahimi, Touradj
Kroupi, Eleni
Author_xml – sequence: 1
  givenname: Eleni
  surname: Kroupi
  fullname: Kroupi, Eleni
  email: eleni.kroupi@epfl.ch
  organization: Multimedia Signal Process. Group, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 2
  givenname: Jean-Marc
  surname: Vesin
  fullname: Vesin, Jean-Marc
  email: jean-marc.vesin@epfl.ch
  organization: Appl. Signal Process. Group, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
– sequence: 3
  givenname: Touradj
  surname: Ebrahimi
  fullname: Ebrahimi, Touradj
  email: touradj.ebrahimi@epfl.ch
  organization: Multimedia Signal Process. Group, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
BookMark eNp9kE1LAzEQhoNUsNb-Ab0seN6ar83uHmuxWhBaaIvHkGZna8qaXZP04L83_UDEg3OYD5hneOe9Rj3bWkDoluARIbh8WI2n08mIYpKNKC8FI_gC9UnJy5RhnvV-9Vdo6P0Ox2CMCZr30dtyv9mBDunMVtBBTDYk86p1yaIB5ZUNFrxPJo3y3tRGq2Bam6y9sdvk0SljE2WrZAHOdO_gVJMszdaqxt-gyzoWGJ7rAK2nT6vJS_o6f55Nxq-pZiILKfBNrnBZC6YV56rIBFSiEkUOnNQ4ys5rBirLiw2rGRYUdFEx0EQBIXHQbIDuT3c7137uwQe5a_fuoECSgnOCaYazuFWctrRrvXdQS23C8ZUQf2gkwfLgpDw6KQ9OyrOTEaV_0M6ZD-W-_ofuTpABgB8gZ4SWFLNvhf-BWw
CODEN ITACBQ
CitedBy_id crossref_primary_10_1007_s10489_024_05374_5
crossref_primary_10_1016_j_foodchem_2024_139816
crossref_primary_10_1109_JSEN_2022_3144317
crossref_primary_10_1016_j_jneumeth_2020_108780
crossref_primary_10_1016_j_neucom_2021_03_105
crossref_primary_10_1109_ACCESS_2019_2914872
crossref_primary_10_1109_JPROC_2023_3277471
crossref_primary_10_3389_fnins_2022_950282
crossref_primary_10_1088_1741_2552_ac7b4a
crossref_primary_10_1002_brx2_29
crossref_primary_10_1016_j_eswa_2023_120348
crossref_primary_10_1007_s11042_018_5885_9
crossref_primary_10_1007_s11571_021_09735_5
crossref_primary_10_1109_TIM_2022_3149116
crossref_primary_10_3390_electronics10050613
crossref_primary_10_1109_TAFFC_2017_2714671
crossref_primary_10_1109_TBCAS_2021_3089132
crossref_primary_10_1142_S0129065720500112
crossref_primary_10_1142_S0129065724500588
crossref_primary_10_1016_j_ijhcs_2024_103357
crossref_primary_10_3390_bioengineering9060231
crossref_primary_10_1016_j_jneumeth_2020_108599
crossref_primary_10_1016_j_bspc_2022_103593
crossref_primary_10_1016_j_compbiomed_2019_103469
crossref_primary_10_1109_TIM_2021_3090177
crossref_primary_10_1109_TNSRE_2023_3253866
crossref_primary_10_1109_TNSRE_2024_3457580
crossref_primary_10_1016_j_ijpsycho_2020_08_014
crossref_primary_10_1016_j_asoc_2022_108471
crossref_primary_10_3390_app7121239
crossref_primary_10_1007_s11042_018_6907_3
crossref_primary_10_1016_j_bspc_2021_103349
crossref_primary_10_1016_j_jneumeth_2021_109355
crossref_primary_10_1007_s10462_023_10690_2
crossref_primary_10_1109_TAFFC_2022_3173403
crossref_primary_10_3390_app10051619
crossref_primary_10_3390_s22228808
Cites_doi 10.1109/TBME.1985.325532
10.1093/chemse/27.8.703
10.1037/0278-7393.3.1.52
10.1152/jn.01122.2006
10.1007/s10055-006-0040-8
10.1109/EMBC.2012.6347403
10.1109/TIP.2012.2187672
10.1109/TNSRE.2003.814484
10.1109/34.667881
10.3389/fnbeh.2014.00218
10.1016/j.neuroimage.2004.09.035
10.1126/science.3992243
10.1016/0031-9384(90)90266-7
10.1109/T-AFFC.2011.37
10.1016/j.ijhcs.2009.03.005
10.1093/chemse/22.3.237
10.3389/fpsyg.2014.00110
10.1037/a0015369
10.7551/mitpress/1140.001.0001
10.1093/chemse/bji029
10.1080/2326263X.2014.912882
10.1016/j.neuroimage.2010.06.048
10.1016/S1388-2457(02)00029-9
10.1109/QoMEX.2012.6263860
10.1109/TBME.2012.2190930
10.1007/BF02249272
10.1186/1753-4631-3-8
10.1371/journal.pone.0061376
10.1145/2071396.2071398
10.2190/V87X-BPB3-HM1G-FE4R
10.1145/2637287
10.1093/chemse/22.1.39
10.1016/j.biopsycho.2004.03.008
10.1080/10789669.2011.599765
10.1016/S0167-8760(99)00104-X
10.1254/jjp.90.247
10.1177/001316446002000104
10.1109/MCG.2008.3
10.1109/TPAMI.2008.26
10.1109/34.954607
10.1007/s11062-009-9078-z
10.1016/j.neuroimage.2008.03.046
10.1111/j.1469-8986.1993.tb03352.x
10.1093/chemse/20.5.505
10.1016/S0301-0511(99)00046-0
10.1109/T-AFFC.2011.15
10.1016/0013-4694(50)90075-7
10.1111/j.1540-8167.2006.00501.x
10.1007/s11042-010-0581-4
10.1016/S1053-8119(03)00388-4
10.1007/s12078-011-9110-8
10.1093/chemse/17.3.347
10.1038/nn.2324
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2015.2496310
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 434
ExternalDocumentID 10_1109_TAFFC_2015_2496310
7312920
Genre orig-research
GrantInformation_xml – fundername: Swiss National Foundation
  grantid: 200020-149259
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c365t-e4b7a09f63ca44a856ed6d687e41f09497f3ea578b3f3062ec8d3ec1ae112ecc3
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Mon Jun 30 08:56:13 EDT 2025
Tue Jul 01 02:57:51 EDT 2025
Thu Apr 24 22:55:48 EDT 2025
Wed Aug 27 03:05:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-e4b7a09f63ca44a856ed6d687e41f09497f3ea578b3f3062ec8d3ec1ae112ecc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1844102505
PQPubID 2040414
PageCount 13
ParticipantIDs ieee_primary_7312920
proquest_journals_1844102505
crossref_citationtrail_10_1109_TAFFC_2015_2496310
crossref_primary_10_1109_TAFFC_2015_2496310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev T-AFFC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref58
ref53
ref52
ref55
ref11
ref54
ref10
picard (ref39) 2000
ref17
ref16
ref19
ref18
chernyavskiy (ref32) 0
ref51
ref50
ref46
ref45
ref48
ref47
ekman (ref57) 1994
ref42
amano (ref41) 2012; 18
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
kim (ref6) 2008; 30
ref5
ref40
ref35
hongratanaworakit (ref34) 2003
ref37
ref36
ref31
ref30
ref33
ref2
ref38
nakamoto (ref1) 2011
stevenson (ref14) 2006
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref45
  doi: 10.1109/TBME.1985.325532
– start-page: 75
  year: 2003
  ident: ref34
  article-title: Human behavioral and physiological reactions to inhalation of sweet orange oil
  publication-title: Proc III WOCMAP Congr Medicinal Aromatic Plants-Vol 5 Quality Efficacy Safety Process Trade Medicinal 679
– ident: ref36
  doi: 10.1093/chemse/27.8.703
– ident: ref13
  doi: 10.1037/0278-7393.3.1.52
– ident: ref24
  doi: 10.1152/jn.01122.2006
– ident: ref3
  doi: 10.1007/s10055-006-0040-8
– ident: ref28
  doi: 10.1109/EMBC.2012.6347403
– ident: ref51
  doi: 10.1109/TIP.2012.2187672
– ident: ref50
  doi: 10.1109/TNSRE.2003.814484
– ident: ref53
  doi: 10.1109/34.667881
– ident: ref56
  doi: 10.3389/fnbeh.2014.00218
– ident: ref42
  doi: 10.1016/j.neuroimage.2004.09.035
– start-page: 56
  year: 1994
  ident: ref57
  article-title: Moods, emotions, and traits
  publication-title: The Nature of Emotion Fundamental Questions
– ident: ref54
  doi: 10.1126/science.3992243
– ident: ref40
  doi: 10.1016/0031-9384(90)90266-7
– ident: ref9
  doi: 10.1109/T-AFFC.2011.37
– ident: ref8
  doi: 10.1016/j.ijhcs.2009.03.005
– ident: ref35
  doi: 10.1093/chemse/22.3.237
– ident: ref38
  doi: 10.3389/fpsyg.2014.00110
– ident: ref37
  doi: 10.1037/a0015369
– year: 2000
  ident: ref39
  publication-title: Affective Computing
  doi: 10.7551/mitpress/1140.001.0001
– ident: ref19
  doi: 10.1093/chemse/bji029
– ident: ref11
  doi: 10.1080/2326263X.2014.912882
– start-page: 140
  year: 2011
  ident: ref1
  article-title: Olfactory display using solenoid valves and fluid dynamics simulation
  publication-title: Multiple Sensorial Media Advances and Applications New Developments in MulSeMedia
– ident: ref31
  doi: 10.1016/j.neuroimage.2010.06.048
– ident: ref17
  doi: 10.1016/S1388-2457(02)00029-9
– ident: ref29
  doi: 10.1109/QoMEX.2012.6263860
– ident: ref46
  doi: 10.1109/TBME.2012.2190930
– ident: ref12
  doi: 10.1007/BF02249272
– ident: ref49
  doi: 10.1186/1753-4631-3-8
– ident: ref27
  doi: 10.1371/journal.pone.0061376
– ident: ref4
  doi: 10.1145/2071396.2071398
– ident: ref20
  doi: 10.2190/V87X-BPB3-HM1G-FE4R
– ident: ref30
  doi: 10.1145/2637287
– ident: ref58
  doi: 10.1093/chemse/22.1.39
– ident: ref55
  doi: 10.1016/j.biopsycho.2004.03.008
– volume: 18
  start-page: 217
  year: 2012
  ident: ref41
  article-title: Indoor odor exposure effects on psycho-physiological states during intellectual tasks and rest
  publication-title: HVAC Res
  doi: 10.1080/10789669.2011.599765
– year: 0
  ident: ref32
  article-title: Using the spatio-temporal variogram for the classification of electroencephalographic (EEG) assessment
  publication-title: Proc METMA VII and GRASPA14 Conf
– year: 2006
  ident: ref14
  publication-title: Learning to Smell
– ident: ref16
  doi: 10.1016/S0167-8760(99)00104-X
– ident: ref33
  doi: 10.1254/jjp.90.247
– ident: ref52
  doi: 10.1177/001316446002000104
– ident: ref2
  doi: 10.1109/MCG.2008.3
– volume: 30
  start-page: 2067
  year: 2008
  ident: ref6
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.26
– ident: ref47
  doi: 10.1109/34.954607
– ident: ref22
  doi: 10.1007/s11062-009-9078-z
– ident: ref18
  doi: 10.1016/j.neuroimage.2008.03.046
– ident: ref7
  doi: 10.1111/j.1469-8986.1993.tb03352.x
– ident: ref25
  doi: 10.1093/chemse/20.5.505
– ident: ref26
  doi: 10.1016/S0301-0511(99)00046-0
– ident: ref10
  doi: 10.1109/T-AFFC.2011.15
– ident: ref15
  doi: 10.1016/0013-4694(50)90075-7
– ident: ref48
  doi: 10.1111/j.1540-8167.2006.00501.x
– ident: ref5
  doi: 10.1007/s11042-010-0581-4
– ident: ref44
  doi: 10.1016/S1053-8119(03)00388-4
– ident: ref23
  doi: 10.1007/s12078-011-9110-8
– ident: ref21
  doi: 10.1093/chemse/17.3.347
– ident: ref43
  doi: 10.1038/nn.2324
SSID ssj0000333627
Score 2.348924
Snippet Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 422
SubjectTerms Audio data
Brain models
Classification
EEG
Electrocardiography
Electrodes
Electroencephalography
fusion
Heart rate variability
Multimedia
Multimedia communication
odor pleasantness
Odors
Olfactory
Wasserstein distance
Title Subject-Independent Odor Pleasantness Classification Using Brain and Peripheral Signals
URI https://ieeexplore.ieee.org/document/7312920
https://www.proquest.com/docview/1844102505
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLaAiYU34ngpAxv0aC9t04yAOAESDwkQbFWauAhxukPQW_j12OlDCBBi65BEUb7YsV3bH8Beogo5KF0SFEZztEqrwNCrHNhBmFltMptorka-vErP7uOLx-RxBg66WhhE9Mln2OdP_y_fTeyUQ2WHSkZMrjQLs-S41bVaXTwllJJ0sWrrYkJ9eHc0HJ5w8lbSJx8jlVwk--Xt8WQqPzSwf1aGi3DZbqjOJnnpT6uibz--9Wr8746XYKGxL8VRfSGWYQbHK7DYcjeIRpRX4YE0BodggvOOB7cS127yJm5GaN7pvFkHCs-ZydlEHkDhEwzEMdNKCDN24obur-9LMBK3z0_cinkN7oendydnQUOyEFiZJlWAcaFMqMtUWhPHJktSdKlLM4VxVJLvp1Up0ZBcF7Ik92KANnMSbWSQLDXCX67D3Hgyxg0QxkqlCWGHjhvXoyHZJwODfGyrGPseRO3x57bpQM5EGKPceyKhzj1kOUOWN5D1YL-b81r33_hz9Cpj0I1sjr8H2y3KeSOi7zm5tnHkLcDN32dtwTytndaZe9swV71NcYcskKrY9VfvE8CU2JA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPcAFWh5igbY-cGuzJOskjo-AuloKC0hdVG6RY08QYrWLIHvh1zPjPIRKVfWWg6NY_ubpzMwHcJioQg5KlwSF0XxbpVVgyCsHdhBmVpvMJpq7kceX6egm_nmb3C7B964XBhF98Rn2-dH_y3dzu-CrsiMlIyZXWoYP5PeTqO7W6m5UQinJGqu2MybUR5Pj4fCUy7eSPmUZqeQ22Tfex9OpvLPB3rEMN2DcbqmuJ3noL6qib1_-mNb4v3v-COtNhCmOa5H4BEs424SNlr1BNMq8Bb_JZvAlTHDWMeFW4srNn8T1FM0znThbQeFZM7meyEMofImBOGFiCWFmTlyTBPvJBFPx6_6OhzFvw83wx-R0FDQ0C4GVaVIFGBfKhLpMpTVxbLIkRZe6NFMYRyVlf1qVEg1pdiFLSjAGaDMn0UYGKVYjCZA7sDKbz3AXhLFSacLYoePR9WhI-ynEoCzbKka_B1F7_LltZpAzFcY097lIqHMPWc6Q5Q1kPfjWvfNYT-D45-otxqBb2Rx_Dw5alPNGSZ9zSm7jyMeAe39_6yusjibji_zi7PJ8H9boO2ldx3cAK9XTAj9TPFIVX7wYvgI04dvZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Independent+Odor+Pleasantness+Classification+Using+Brain+and+Peripheral+Signals&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Kroupi%2C+Eleni&rft.au=Vesin%2C+Jean-Marc&rft.au=Ebrahimi%2C+Touradj&rft.date=2016-10-01&rft.issn=1949-3045&rft.volume=7&rft.issue=4&rft.spage=422&rft.epage=434&rft_id=info:doi/10.1109%2FTAFFC.2015.2496310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2015_2496310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon