Subject-Independent Odor Pleasantness Classification Using Brain and Peripheral Signals
Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory information. Although the affective information from video and audio has been extensively studied, the olfactory sense has received less attenti...
Saved in:
Published in | IEEE transactions on affective computing Vol. 7; no. 4; pp. 422 - 434 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory information. Although the affective information from video and audio has been extensively studied, the olfactory sense has received less attention. A way to assess human experience from audio, video or odors, is by investigating physiological signals. In this study, 23 subjects experienced pleasant, unpleasant, and neutral odors while their electroencephalogram (EEG), and electrocardiogram (ECG) were recorded. Two independent three-class classifiers were trained and tested, using EEG or ECG features. The results reveal a significant increase in the classification performance when EEG features were used (Cohen's kappa k = 0.44 ± 0.14; p <; 0.001). The results also indicate that it is possible to automatically classify the perception of unpleasant odors using EEG signals, but the classification performance decreases significantly when classifying between pleasant and neutral odors. Among the EEG features, the Wasserstein distance metric estimated between trial and baseline power achieved the highest classification performance. Features from ECG signals did not result in a significantly non-random performance. |
---|---|
AbstractList | Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory information. Although the affective information from video and audio has been extensively studied, the olfactory sense has received less attention. A way to assess human experience from audio, video or odors, is by investigating physiological signals. In this study, 23 subjects experienced pleasant, unpleasant, and neutral odors while their electroencephalogram (EEG), and electrocardiogram (ECG) were recorded. Two independent three-class classifiers were trained and tested, using EEG or ECG features. The results reveal a significant increase in the classification performance when EEG features were used (Cohen's kappa [Formula Omitted]). The results also indicate that it is possible to automatically classify the perception of unpleasant odors using EEG signals, but the classification performance decreases significantly when classifying between pleasant and neutral odors. Among the EEG features, the Wasserstein distance metric estimated between trial and baseline power achieved the highest classification performance. Features from ECG signals did not result in a significantly non-random performance. Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory information. Although the affective information from video and audio has been extensively studied, the olfactory sense has received less attention. A way to assess human experience from audio, video or odors, is by investigating physiological signals. In this study, 23 subjects experienced pleasant, unpleasant, and neutral odors while their electroencephalogram (EEG), and electrocardiogram (ECG) were recorded. Two independent three-class classifiers were trained and tested, using EEG or ECG features. The results reveal a significant increase in the classification performance when EEG features were used (Cohen's kappa k = 0.44 ± 0.14; p <; 0.001). The results also indicate that it is possible to automatically classify the perception of unpleasant odors using EEG signals, but the classification performance decreases significantly when classifying between pleasant and neutral odors. Among the EEG features, the Wasserstein distance metric estimated between trial and baseline power achieved the highest classification performance. Features from ECG signals did not result in a significantly non-random performance. |
Author | Vesin, Jean-Marc Ebrahimi, Touradj Kroupi, Eleni |
Author_xml | – sequence: 1 givenname: Eleni surname: Kroupi fullname: Kroupi, Eleni email: eleni.kroupi@epfl.ch organization: Multimedia Signal Process. Group, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland – sequence: 2 givenname: Jean-Marc surname: Vesin fullname: Vesin, Jean-Marc email: jean-marc.vesin@epfl.ch organization: Appl. Signal Process. Group, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland – sequence: 3 givenname: Touradj surname: Ebrahimi fullname: Ebrahimi, Touradj email: touradj.ebrahimi@epfl.ch organization: Multimedia Signal Process. Group, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland |
BookMark | eNp9kE1LAzEQhoNUsNb-Ab0seN6ar83uHmuxWhBaaIvHkGZna8qaXZP04L83_UDEg3OYD5hneOe9Rj3bWkDoluARIbh8WI2n08mIYpKNKC8FI_gC9UnJy5RhnvV-9Vdo6P0Ox2CMCZr30dtyv9mBDunMVtBBTDYk86p1yaIB5ZUNFrxPJo3y3tRGq2Bam6y9sdvk0SljE2WrZAHOdO_gVJMszdaqxt-gyzoWGJ7rAK2nT6vJS_o6f55Nxq-pZiILKfBNrnBZC6YV56rIBFSiEkUOnNQ4ys5rBirLiw2rGRYUdFEx0EQBIXHQbIDuT3c7137uwQe5a_fuoECSgnOCaYazuFWctrRrvXdQS23C8ZUQf2gkwfLgpDw6KQ9OyrOTEaV_0M6ZD-W-_ofuTpABgB8gZ4SWFLNvhf-BWw |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_1007_s10489_024_05374_5 crossref_primary_10_1016_j_foodchem_2024_139816 crossref_primary_10_1109_JSEN_2022_3144317 crossref_primary_10_1016_j_jneumeth_2020_108780 crossref_primary_10_1016_j_neucom_2021_03_105 crossref_primary_10_1109_ACCESS_2019_2914872 crossref_primary_10_1109_JPROC_2023_3277471 crossref_primary_10_3389_fnins_2022_950282 crossref_primary_10_1088_1741_2552_ac7b4a crossref_primary_10_1002_brx2_29 crossref_primary_10_1016_j_eswa_2023_120348 crossref_primary_10_1007_s11042_018_5885_9 crossref_primary_10_1007_s11571_021_09735_5 crossref_primary_10_1109_TIM_2022_3149116 crossref_primary_10_3390_electronics10050613 crossref_primary_10_1109_TAFFC_2017_2714671 crossref_primary_10_1109_TBCAS_2021_3089132 crossref_primary_10_1142_S0129065720500112 crossref_primary_10_1142_S0129065724500588 crossref_primary_10_1016_j_ijhcs_2024_103357 crossref_primary_10_3390_bioengineering9060231 crossref_primary_10_1016_j_jneumeth_2020_108599 crossref_primary_10_1016_j_bspc_2022_103593 crossref_primary_10_1016_j_compbiomed_2019_103469 crossref_primary_10_1109_TIM_2021_3090177 crossref_primary_10_1109_TNSRE_2023_3253866 crossref_primary_10_1109_TNSRE_2024_3457580 crossref_primary_10_1016_j_ijpsycho_2020_08_014 crossref_primary_10_1016_j_asoc_2022_108471 crossref_primary_10_3390_app7121239 crossref_primary_10_1007_s11042_018_6907_3 crossref_primary_10_1016_j_bspc_2021_103349 crossref_primary_10_1016_j_jneumeth_2021_109355 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1109_TAFFC_2022_3173403 crossref_primary_10_3390_app10051619 crossref_primary_10_3390_s22228808 |
Cites_doi | 10.1109/TBME.1985.325532 10.1093/chemse/27.8.703 10.1037/0278-7393.3.1.52 10.1152/jn.01122.2006 10.1007/s10055-006-0040-8 10.1109/EMBC.2012.6347403 10.1109/TIP.2012.2187672 10.1109/TNSRE.2003.814484 10.1109/34.667881 10.3389/fnbeh.2014.00218 10.1016/j.neuroimage.2004.09.035 10.1126/science.3992243 10.1016/0031-9384(90)90266-7 10.1109/T-AFFC.2011.37 10.1016/j.ijhcs.2009.03.005 10.1093/chemse/22.3.237 10.3389/fpsyg.2014.00110 10.1037/a0015369 10.7551/mitpress/1140.001.0001 10.1093/chemse/bji029 10.1080/2326263X.2014.912882 10.1016/j.neuroimage.2010.06.048 10.1016/S1388-2457(02)00029-9 10.1109/QoMEX.2012.6263860 10.1109/TBME.2012.2190930 10.1007/BF02249272 10.1186/1753-4631-3-8 10.1371/journal.pone.0061376 10.1145/2071396.2071398 10.2190/V87X-BPB3-HM1G-FE4R 10.1145/2637287 10.1093/chemse/22.1.39 10.1016/j.biopsycho.2004.03.008 10.1080/10789669.2011.599765 10.1016/S0167-8760(99)00104-X 10.1254/jjp.90.247 10.1177/001316446002000104 10.1109/MCG.2008.3 10.1109/TPAMI.2008.26 10.1109/34.954607 10.1007/s11062-009-9078-z 10.1016/j.neuroimage.2008.03.046 10.1111/j.1469-8986.1993.tb03352.x 10.1093/chemse/20.5.505 10.1016/S0301-0511(99)00046-0 10.1109/T-AFFC.2011.15 10.1016/0013-4694(50)90075-7 10.1111/j.1540-8167.2006.00501.x 10.1007/s11042-010-0581-4 10.1016/S1053-8119(03)00388-4 10.1007/s12078-011-9110-8 10.1093/chemse/17.3.347 10.1038/nn.2324 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2015.2496310 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 434 |
ExternalDocumentID | 10_1109_TAFFC_2015_2496310 7312920 |
Genre | orig-research |
GrantInformation_xml | – fundername: Swiss National Foundation grantid: 200020-149259 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c365t-e4b7a09f63ca44a856ed6d687e41f09497f3ea578b3f3062ec8d3ec1ae112ecc3 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Mon Jun 30 08:56:13 EDT 2025 Tue Jul 01 02:57:51 EDT 2025 Thu Apr 24 22:55:48 EDT 2025 Wed Aug 27 03:05:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-e4b7a09f63ca44a856ed6d687e41f09497f3ea578b3f3062ec8d3ec1ae112ecc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1844102505 |
PQPubID | 2040414 |
PageCount | 13 |
ParticipantIDs | ieee_primary_7312920 proquest_journals_1844102505 crossref_citationtrail_10_1109_TAFFC_2015_2496310 crossref_primary_10_1109_TAFFC_2015_2496310 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | T-AFFC |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref15 ref58 ref53 ref52 ref55 ref11 ref54 ref10 picard (ref39) 2000 ref17 ref16 ref19 ref18 chernyavskiy (ref32) 0 ref51 ref50 ref46 ref45 ref48 ref47 ekman (ref57) 1994 ref42 amano (ref41) 2012; 18 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 kim (ref6) 2008; 30 ref5 ref40 ref35 hongratanaworakit (ref34) 2003 ref37 ref36 ref31 ref30 ref33 ref2 ref38 nakamoto (ref1) 2011 stevenson (ref14) 2006 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref45 doi: 10.1109/TBME.1985.325532 – start-page: 75 year: 2003 ident: ref34 article-title: Human behavioral and physiological reactions to inhalation of sweet orange oil publication-title: Proc III WOCMAP Congr Medicinal Aromatic Plants-Vol 5 Quality Efficacy Safety Process Trade Medicinal 679 – ident: ref36 doi: 10.1093/chemse/27.8.703 – ident: ref13 doi: 10.1037/0278-7393.3.1.52 – ident: ref24 doi: 10.1152/jn.01122.2006 – ident: ref3 doi: 10.1007/s10055-006-0040-8 – ident: ref28 doi: 10.1109/EMBC.2012.6347403 – ident: ref51 doi: 10.1109/TIP.2012.2187672 – ident: ref50 doi: 10.1109/TNSRE.2003.814484 – ident: ref53 doi: 10.1109/34.667881 – ident: ref56 doi: 10.3389/fnbeh.2014.00218 – ident: ref42 doi: 10.1016/j.neuroimage.2004.09.035 – start-page: 56 year: 1994 ident: ref57 article-title: Moods, emotions, and traits publication-title: The Nature of Emotion Fundamental Questions – ident: ref54 doi: 10.1126/science.3992243 – ident: ref40 doi: 10.1016/0031-9384(90)90266-7 – ident: ref9 doi: 10.1109/T-AFFC.2011.37 – ident: ref8 doi: 10.1016/j.ijhcs.2009.03.005 – ident: ref35 doi: 10.1093/chemse/22.3.237 – ident: ref38 doi: 10.3389/fpsyg.2014.00110 – ident: ref37 doi: 10.1037/a0015369 – year: 2000 ident: ref39 publication-title: Affective Computing doi: 10.7551/mitpress/1140.001.0001 – ident: ref19 doi: 10.1093/chemse/bji029 – ident: ref11 doi: 10.1080/2326263X.2014.912882 – start-page: 140 year: 2011 ident: ref1 article-title: Olfactory display using solenoid valves and fluid dynamics simulation publication-title: Multiple Sensorial Media Advances and Applications New Developments in MulSeMedia – ident: ref31 doi: 10.1016/j.neuroimage.2010.06.048 – ident: ref17 doi: 10.1016/S1388-2457(02)00029-9 – ident: ref29 doi: 10.1109/QoMEX.2012.6263860 – ident: ref46 doi: 10.1109/TBME.2012.2190930 – ident: ref12 doi: 10.1007/BF02249272 – ident: ref49 doi: 10.1186/1753-4631-3-8 – ident: ref27 doi: 10.1371/journal.pone.0061376 – ident: ref4 doi: 10.1145/2071396.2071398 – ident: ref20 doi: 10.2190/V87X-BPB3-HM1G-FE4R – ident: ref30 doi: 10.1145/2637287 – ident: ref58 doi: 10.1093/chemse/22.1.39 – ident: ref55 doi: 10.1016/j.biopsycho.2004.03.008 – volume: 18 start-page: 217 year: 2012 ident: ref41 article-title: Indoor odor exposure effects on psycho-physiological states during intellectual tasks and rest publication-title: HVAC Res doi: 10.1080/10789669.2011.599765 – year: 0 ident: ref32 article-title: Using the spatio-temporal variogram for the classification of electroencephalographic (EEG) assessment publication-title: Proc METMA VII and GRASPA14 Conf – year: 2006 ident: ref14 publication-title: Learning to Smell – ident: ref16 doi: 10.1016/S0167-8760(99)00104-X – ident: ref33 doi: 10.1254/jjp.90.247 – ident: ref52 doi: 10.1177/001316446002000104 – ident: ref2 doi: 10.1109/MCG.2008.3 – volume: 30 start-page: 2067 year: 2008 ident: ref6 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.26 – ident: ref47 doi: 10.1109/34.954607 – ident: ref22 doi: 10.1007/s11062-009-9078-z – ident: ref18 doi: 10.1016/j.neuroimage.2008.03.046 – ident: ref7 doi: 10.1111/j.1469-8986.1993.tb03352.x – ident: ref25 doi: 10.1093/chemse/20.5.505 – ident: ref26 doi: 10.1016/S0301-0511(99)00046-0 – ident: ref10 doi: 10.1109/T-AFFC.2011.15 – ident: ref15 doi: 10.1016/0013-4694(50)90075-7 – ident: ref48 doi: 10.1111/j.1540-8167.2006.00501.x – ident: ref5 doi: 10.1007/s11042-010-0581-4 – ident: ref44 doi: 10.1016/S1053-8119(03)00388-4 – ident: ref23 doi: 10.1007/s12078-011-9110-8 – ident: ref21 doi: 10.1093/chemse/17.3.347 – ident: ref43 doi: 10.1038/nn.2324 |
SSID | ssj0000333627 |
Score | 2.348924 |
Snippet | Enhanced sensation of reality from multimedia contents can be achieved by creating realistic multimedia environments, using visual, auditory, and olfactory... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 422 |
SubjectTerms | Audio data Brain models Classification EEG Electrocardiography Electrodes Electroencephalography fusion Heart rate variability Multimedia Multimedia communication odor pleasantness Odors Olfactory Wasserstein distance |
Title | Subject-Independent Odor Pleasantness Classification Using Brain and Peripheral Signals |
URI | https://ieeexplore.ieee.org/document/7312920 https://www.proquest.com/docview/1844102505 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLaAiYU34ngpAxv0aC9t04yAOAESDwkQbFWauAhxukPQW_j12OlDCBBi65BEUb7YsV3bH8Beogo5KF0SFEZztEqrwNCrHNhBmFltMptorka-vErP7uOLx-RxBg66WhhE9Mln2OdP_y_fTeyUQ2WHSkZMrjQLs-S41bVaXTwllJJ0sWrrYkJ9eHc0HJ5w8lbSJx8jlVwk--Xt8WQqPzSwf1aGi3DZbqjOJnnpT6uibz--9Wr8746XYKGxL8VRfSGWYQbHK7DYcjeIRpRX4YE0BodggvOOB7cS127yJm5GaN7pvFkHCs-ZydlEHkDhEwzEMdNKCDN24obur-9LMBK3z0_cinkN7oendydnQUOyEFiZJlWAcaFMqMtUWhPHJktSdKlLM4VxVJLvp1Up0ZBcF7Ik92KANnMSbWSQLDXCX67D3Hgyxg0QxkqlCWGHjhvXoyHZJwODfGyrGPseRO3x57bpQM5EGKPceyKhzj1kOUOWN5D1YL-b81r33_hz9Cpj0I1sjr8H2y3KeSOi7zm5tnHkLcDN32dtwTytndaZe9swV71NcYcskKrY9VfvE8CU2JA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPcAFWh5igbY-cGuzJOskjo-AuloKC0hdVG6RY08QYrWLIHvh1zPjPIRKVfWWg6NY_ubpzMwHcJioQg5KlwSF0XxbpVVgyCsHdhBmVpvMJpq7kceX6egm_nmb3C7B964XBhF98Rn2-dH_y3dzu-CrsiMlIyZXWoYP5PeTqO7W6m5UQinJGqu2MybUR5Pj4fCUy7eSPmUZqeQ22Tfex9OpvLPB3rEMN2DcbqmuJ3noL6qib1_-mNb4v3v-COtNhCmOa5H4BEs424SNlr1BNMq8Bb_JZvAlTHDWMeFW4srNn8T1FM0znThbQeFZM7meyEMofImBOGFiCWFmTlyTBPvJBFPx6_6OhzFvw83wx-R0FDQ0C4GVaVIFGBfKhLpMpTVxbLIkRZe6NFMYRyVlf1qVEg1pdiFLSjAGaDMn0UYGKVYjCZA7sDKbz3AXhLFSacLYoePR9WhI-ynEoCzbKka_B1F7_LltZpAzFcY097lIqHMPWc6Q5Q1kPfjWvfNYT-D45-otxqBb2Rx_Dw5alPNGSZ9zSm7jyMeAe39_6yusjibji_zi7PJ8H9boO2ldx3cAK9XTAj9TPFIVX7wYvgI04dvZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Independent+Odor+Pleasantness+Classification+Using+Brain+and+Peripheral+Signals&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Kroupi%2C+Eleni&rft.au=Vesin%2C+Jean-Marc&rft.au=Ebrahimi%2C+Touradj&rft.date=2016-10-01&rft.issn=1949-3045&rft.volume=7&rft.issue=4&rft.spage=422&rft.epage=434&rft_id=info:doi/10.1109%2FTAFFC.2015.2496310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2015_2496310 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |