Hidden big data analytics issues in the healthcare industry
The goal of the study was to identify big data analysis issues that can impact empirical research in the healthcare industry. To accomplish that the author analyzed big data related keywords from a literature review of peer reviewed journal articles published since 2011. Topics, methods and techniqu...
Saved in:
Published in | Health informatics journal Vol. 26; no. 2; pp. 981 - 998 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.06.2020
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
ISSN | 1460-4582 1741-2811 1741-2811 |
DOI | 10.1177/1460458219854603 |
Cover
Loading…
Abstract | The goal of the study was to identify big data analysis issues that can impact empirical research in the healthcare industry. To accomplish that the author analyzed big data related keywords from a literature review of peer reviewed journal articles published since 2011. Topics, methods and techniques were summarized along with strengths and weaknesses. A panel of subject matter experts was interviewed to validate the intermediate results and synthesize the key problems that would likely impact researchers conducting quantitative big data analysis in healthcare studies. The systems thinking action research method was applied to identify and describe the hidden issues. The findings were similar to the extant literature but three hidden fatal issues were detected. Methodical and statistical control solutions were proposed to overcome the three fatal healthcare big data analysis issues. |
---|---|
AbstractList | The goal of the study was to identify big data analysis issues that can impact empirical research in the healthcare industry. To accomplish that the author analyzed big data related keywords from a literature review of peer reviewed journal articles published since 2011. Topics, methods and techniques were summarized along with strengths and weaknesses. A panel of subject matter experts was interviewed to validate the intermediate results and synthesize the key problems that would likely impact researchers conducting quantitative big data analysis in healthcare studies. The systems thinking action research method was applied to identify and describe the hidden issues. The findings were similar to the extant literature but three hidden fatal issues were detected. Methodical and statistical control solutions were proposed to overcome the three fatal healthcare big data analysis issues. The goal of the study was to identify big data analysis issues that can impact empirical research in the healthcare industry. To accomplish that the author analyzed big data related keywords from a literature review of peer reviewed journal articles published since 2011. Topics, methods and techniques were summarized along with strengths and weaknesses. A panel of subject matter experts was interviewed to validate the intermediate results and synthesize the key problems that would likely impact researchers conducting quantitative big data analysis in healthcare studies. The systems thinking action research method was applied to identify and describe the hidden issues. The findings were similar to the extant literature but three hidden fatal issues were detected. Methodical and statistical control solutions were proposed to overcome the three fatal healthcare big data analysis issues.The goal of the study was to identify big data analysis issues that can impact empirical research in the healthcare industry. To accomplish that the author analyzed big data related keywords from a literature review of peer reviewed journal articles published since 2011. Topics, methods and techniques were summarized along with strengths and weaknesses. A panel of subject matter experts was interviewed to validate the intermediate results and synthesize the key problems that would likely impact researchers conducting quantitative big data analysis in healthcare studies. The systems thinking action research method was applied to identify and describe the hidden issues. The findings were similar to the extant literature but three hidden fatal issues were detected. Methodical and statistical control solutions were proposed to overcome the three fatal healthcare big data analysis issues. |
Author | Strang, Kenneth David Sun, Zhaohao |
Author_xml | – sequence: 1 givenname: Kenneth David orcidid: 0000-0002-4333-4399 surname: Strang fullname: Strang, Kenneth David email: Kenneth.Strang@plattsburgh.edu organization: State University of New York at Plattsburgh, USA – sequence: 2 givenname: Zhaohao surname: Sun fullname: Sun, Zhaohao organization: PNG University of Technology, Papua New Guinea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31264509$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtLAzEQxoNU7EPvnmTBi5fVvJPiSYovKHjR85LNzrYp292aZA_9701pVSjoaYaZ3zd8843RoO1aQOiS4FtClLojXGIuNCVTLVLLTtCIKE5yqgkZpD7N8t1-iMYhrDDGDAt2hoaMUMkFno7Q_YurKmiz0i2yykSTmdY02-hsyFwIPaTSZnEJ2RJME5fWeEiTqg_Rb8_RaW2aABeHOkEfT4_vs5d8_vb8OnuY55ZJEfPKagnKECupLYESoLYuOa6xYYpjoYArmHKCrTIYoCqFoVIrKpnQ6Stasgm62d_d-O4zWYrF2gULTWNa6PpQUCoIwUxqndDrI3TV9T69lChOp7ssKE_U1YHqyzVUxca7tfHb4juWBOA9YH0Xgof6ByG42CVfHCefJPJIYl000XVt9MY1_wnzvTCYBfza_ZP_AjB4kDk |
CitedBy_id | crossref_primary_10_1007_s11042_020_09596_w crossref_primary_10_1186_s40537_023_00808_2 crossref_primary_10_1016_j_ijinfomgt_2022_102495 crossref_primary_10_7200_esicm_54_316 crossref_primary_10_1007_s42454_022_00046_6 crossref_primary_10_1007_s42979_022_01507_0 crossref_primary_10_3389_fmed_2024_1336588 crossref_primary_10_1007_s11135_020_00999_3 crossref_primary_10_11603_mie_1996_1960_2019_3_10429 crossref_primary_10_1177_14604582211024698 crossref_primary_10_3390_ijms23094645 crossref_primary_10_3390_diagnostics12051179 crossref_primary_10_1016_j_jksuci_2021_06_002 crossref_primary_10_1080_20502877_2021_1993055 crossref_primary_10_1109_ACCESS_2023_3264903 crossref_primary_10_1177_02666669241247781 crossref_primary_10_1007_s13132_024_02468_w crossref_primary_10_3390_a18030173 crossref_primary_10_1080_03091902_2022_2096133 |
Cites_doi | 10.1002/asi.23294 10.1177/003335491513000211 10.1016/j.ijinfomgt.2014.10.007 10.1177/0263775815595814 10.1016/j.procs.2016.09.119 10.1007/s10916-010-9449-4 10.1111/jlme.12214 10.1016/j.telpol.2014.10.002 10.1057/rm.2015.8 10.1016/j.giq.2016.04.002 10.1093/nsr/nwt032 10.1016/j.drudis.2013.12.004 10.1126/science.aaf1578 10.1504/IJBIDM.2015.072211 10.1257/jep.28.2.3 10.4018/ijrcm.2013070101 10.1007/978-3-319-06245-7_7 10.1016/j.ins.2014.01.015 10.1200/JOP.2014.001308 10.4018/jal.2012100101 10.1109/MS.2014.47 10.1126/science.1248506 10.4018/978-1-5225-0988-2.ch026 10.1016/j.ijpe.2015.02.014 10.1111/jlme.12040 10.1007/s40745-016-0096-6 10.1080/0361526X.2014.879805 10.1145/2814340 10.1111/jlme.12258 10.1177/1460458217704256 10.1057/9781137484956 10.1016/j.ins.2014.05.037 10.4018/ijrcm.2015010101 10.24908/ss.v12i2.4600 10.1016/j.ins.2015.05.040 10.1016/j.chb.2015.12.050 10.1016/j.eij.2016.11.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 |
Copyright_xml | – notice: The Author(s) 2019 |
DBID | AAYXX CITATION NPM E3H F2A K9. NAPCQ 7X8 |
DOI | 10.1177/1460458219854603 |
DatabaseName | CrossRef PubMed Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Library and Information Science Abstracts (LISA) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Nursing |
EISSN | 1741-2811 |
EndPage | 998 |
ExternalDocumentID | 31264509 10_1177_1460458219854603 10.1177_1460458219854603 |
Genre | Journal Article |
GroupedDBID | --- -TM .2G .DC 01A 0R~ 29I 31S 31Y 4.4 53G 54M 5GY 5VS 77K AABMB AABOD AACKU AADUE AAGGD AAJIQ AAJOX AAJPV AAKTJ AAMFR AANSI AAPEO AAQDB AAQXH AARDL AARIX AASGM AAWLO AAWTL AAYTG ABAWP ABCCA ABDWY ABEIX ABFWQ ABHKI ABKRH ABPGX ABQKF ABQXT ABRHV ABVFX ABYTW ACAEP ACARO ACDSZ ACDXX ACFMA ACGBL ACGFS ACLHI ACOFE ACROE ACRPL ACUFS ADBBV ADEBD ADEIA ADMLS ADNMO ADOGD ADPEE ADSTG ADTBJ ADUKL ADYCS AECVZ AENEX AEOBU AEQLS AERKM AESMA AEUHG AEWDL AEXNY AFCOW AFEET AFKBI AFKRG AFRWT AFUIA AFWMB AGNHF AGQPQ AHBZF AHHFK AJEFB AJMMQ AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV AUTPY AUVAJ AYAKG AZFZN B8O B93 BDDNI BDZRT BMVBW BSEHC BYIEH CAG CBRKF CCGJY CEADM CFDXU COF CORYS CQQTX CS3 DC- DC. DD- DD0 DD~ DE- DF. DG. DOPDO D~Y EBS EIHBH EJD F5P FEDTE GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ IAO IEA IER IHR INH INR IVC J8X K.F K.J N9A O9- OK1 P.B Q1R Q7K Q7X Q82 RIG ROL S01 SAUOL SBI SCDPB SCNPE SFB SFC SGA SGP SGX SQCSI SSDHQ UCV XH6 ZONMY ZPLXX ZPPRI ZRKOI ~32 AAYXX ACHEB CITATION -MK 31X AADTT AAMGE AATBZ ABHQH ACGZU ACSBE ACSIQ ACTQU ACUIR AEUIJ AEWHI AIOMO B8Z DV7 M4V NPM Q7P SFK SFT SGV SPJ SPP UCJ E3H F2A K9. NAPCQ 7X8 |
ID | FETCH-LOGICAL-c365t-dc86e7a1c62cbe21e2cfb40f0a374057e47e9410c7a0eedb5a2687263588542b3 |
IEDL.DBID | AFRWT |
ISSN | 1460-4582 1741-2811 |
IngestDate | Fri Jul 11 09:01:44 EDT 2025 Mon Jun 30 07:50:31 EDT 2025 Wed Feb 19 02:30:41 EST 2025 Tue Jul 01 05:22:53 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jun 17 22:31:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | big data body of knowledge big data privacy exponential Weibull trend big data security kappa interrater agreement big data paradigm literature review |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-dc86e7a1c62cbe21e2cfb40f0a374057e47e9410c7a0eedb5a2687263588542b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4333-4399 |
PMID | 31264509 |
PQID | 2429458224 |
PQPubID | 2035302 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2251103688 proquest_journals_2429458224 pubmed_primary_31264509 crossref_primary_10_1177_1460458219854603 crossref_citationtrail_10_1177_1460458219854603 sage_journals_10_1177_1460458219854603 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: England – name: London |
PublicationTitle | Health informatics journal |
PublicationTitleAlternate | Health Informatics J |
PublicationYear | 2020 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | Vajjhala, Strang 2017; 13 Ohm 2010; 57 Angiuli, Blitzstein, Waldo 2015; 58 Strang 2013; 2 Al-Janabi, Al-Shourbaji, Shojafar 2016; 18 Terry 2015; 43 Jovanovi, Stimec, Vladusi 2015; 10 Rothstein 2015; 43 Varian 2014; 28 Thorpe, Gray 2015; 130 Strang, Sun 2017; 4 Eastin, Brinson, Doorey 2016; 58 Hogarth, Soyer 2015; 56 Chen, Zhang 2014; 275 Brown 2008; 10 Filkins, Kim, Roberts 2016; 8 Strang 2015; 17 Shull 2014; 31 Wang, Jiang, Kambourakis 2015; 318 Lazer, Kennedy, King 2014; 343 Vaidhyanathan, Bulock 2014; 66 Shen, Zhang 2014; 281 De Zwart, Humphreys, Van Dissel 2014; 37 2015; 9 Strang, Sun 2016; 56 Salleh, Janczewski 2016; 100 Al-Ameen, Liu, Kwak 2012; 36 Burrows, Savage 2014; 12 Ekbia, Mattioli, Kouper 2015; 66 Jungwirth, Haluza 2017; 25 Zhong, Huang, Lan 2015; 165 Strang 2012; 2 Gandomi, Haider 2015; 35 Lusher, McGuire, van Schaik 2014; 19 Hoffman, Podgurski 2013; 41 Ward 2014; 10 Kshetri 2014; 38 Van Loenen, Kulk, Ploeger 2016; 33 Lichtblau, Weilandaug 2016 Van Otterlo 2014; 12 Strang, Alamieyeseigha 2015; 4 Leszczynski 2015; 33 Fan, Han, Liu 2014; 1 Couper 2013; 7 De Montjoye, Pentland 2016 1274; 351 bibr22-1460458219854603 Brown B (bibr16-1460458219854603) 2008; 10 bibr31-1460458219854603 De Zwart M (bibr27-1460458219854603) 2014; 37 ADA (bibr32-1460458219854603) 2015; 9 bibr15-1460458219854603 Hogarth RM (bibr36-1460458219854603) 2015; 56 bibr40-1460458219854603 bibr1-1460458219854603 Ohm P (bibr45-1460458219854603) 2010; 57 IBM (bibr47-1460458219854603) 2013 bibr23-1460458219854603 Checkland P (bibr24-1460458219854603) 1999 bibr49-1460458219854603 Couper MP (bibr48-1460458219854603) 2013; 7 bibr11-1460458219854603 bibr29-1460458219854603 Zikopoulos P (bibr37-1460458219854603) 2011 bibr50-1460458219854603 Burrows R (bibr18-1460458219854603) 2014; 12 bibr21-1460458219854603 bibr39-1460458219854603 bibr26-1460458219854603 bibr42-1460458219854603 bibr13-1460458219854603 bibr55-1460458219854603 Duhigg C (bibr46-1460458219854603) 2014 bibr34-1460458219854603 bibr52-1460458219854603 Hair JF (bibr56-1460458219854603) 2006 bibr44-1460458219854603 Vajjhala NR (bibr10-1460458219854603) 2017; 13 bibr35-1460458219854603 bibr53-1460458219854603 Lichtblau E (bibr30-1460458219854603) 2016 bibr6-1460458219854603 bibr28-1460458219854603 bibr19-1460458219854603 Vajjhala NR (bibr9-1460458219854603) bibr54-1460458219854603 bibr41-1460458219854603 bibr2-1460458219854603 Filkins BL (bibr14-1460458219854603) 2016; 8 bibr20-1460458219854603 bibr33-1460458219854603 bibr4-1460458219854603 Strang KD (bibr8-1460458219854603) 2016; 56 Sun Z (bibr3-1460458219854603); 1 bibr7-1460458219854603 bibr12-1460458219854603 Kessel PV (bibr5-1460458219854603) 2014 bibr43-1460458219854603 bibr25-1460458219854603 bibr17-1460458219854603 bibr51-1460458219854603 bibr38-1460458219854603 |
References_xml | – volume: 100 start-page: 19 issue: 1 year: 2016 end-page: 28 article-title: Technical, organizational and environmental security and privacy issues of big data: a literature review publication-title: Procedia Comput Sci J – volume: 343 start-page: 1203 issue: 1 year: 2014 end-page: 1205 article-title: The parable of Google Flu: traps in big data analysis publication-title: Sci J – volume: 35 start-page: 137 issue: 2 year: 2015 end-page: 144 article-title: Beyond the hype: big data concepts, methods, and analytics publication-title: Int J Inform Manage – volume: 57 start-page: 1701 issue: 1 year: 2010 end-page: 1818 article-title: Broken promises of privacy: responding to the surprising failure of anonymization publication-title: UCLA Law Rev J – volume: 56 start-page: 49 issue: 2 year: 2015 end-page: 54 article-title: Using simulated experience to make sense of big data publication-title: MIT Sloan Manage Rev – volume: 43 start-page: 44 issue: 1 year: 2015 end-page: 47 article-title: Navigating the incoherence of big data reform proposals publication-title: J Law Med Ethics – volume: 10 start-page: 83 issue: 2 year: 2014 end-page: 86 article-title: Oncology reimbursement in the era of personalized medicine and big data publication-title: J Oncol Pract – volume: 13 start-page: 1 issue: 2 year: 2017 end-page: 17 article-title: Measuring organizational-fit through socio-cultural big data publication-title: J New Math Nat Comput – volume: 4 start-page: 1 issue: 1 year: 2017 end-page: 17 article-title: Scholarly big data body of knowledge: what is the status of privacy and security? publication-title: Ann Data Sci – volume: 2 start-page: 1 issue: 3 year: 2013 end-page: 28 article-title: Homeowner behavioral intent to evacuate after flood warnings publication-title: Int J Risk Conting Manage – volume: 37 start-page: 713 issue: 2 year: 2014 end-page: 747 article-title: Surveillance, big data and democracy: Lessons for Australia from the US and UK publication-title: Univ N S W Law J – volume: 19 start-page: 859 issue: 7 year: 2014 end-page: 868 article-title: Data-driven medicinal chemistry in the era of big data publication-title: Drug Discov Today – volume: 31 start-page: 5 year: 2014 end-page: 9 article-title: The true cost of mobility? publication-title: IEEE Software – volume: 8 start-page: 1560 issue: 3 year: 2016 end-page: 1580 article-title: Privacy and security in the era of digital health: what should translational researchers know and do about it? publication-title: Am J Transl Res – volume: 25 start-page: 161 year: 2017 end-page: 173 article-title: Information and communication technology and the future of healthcare: results of a multi-scenario Delphi survey publication-title: Health Inform J – volume: 36 start-page: 93 issue: 1 year: 2012 end-page: 101 article-title: Security and privacy issues in wireless sensor networks for healthcare applications publication-title: J Med Syst – volume: 318 start-page: 48 issue: 1 year: 2015 end-page: 50 article-title: Special issue on security, privacy and trust in network-based big data publication-title: Inform Sci – volume: 10 start-page: 1 issue: 41 year: 2008 end-page: 21 article-title: HIPAA beyond HIPAA: ONCHIT, ONC, AHIC, HITSP, and CCHIT publication-title: J Health Care Compliance – volume: 10 start-page: 337 issue: 4 year: 2015 end-page: 355 article-title: Big-data analytics: a critical review and some future directions publication-title: Int J Bus Intell Data Min – volume: 130 start-page: 171 issue: 2 year: 2015 end-page: 175 article-title: Law and the public’s health: big data and public health—navigating privacy laws to maximize potential publication-title: Public Health Rep – volume: 38 start-page: 1134 issue: 11 year: 2014 end-page: 1145 article-title: Big datas impact on privacy, security and consumer welfare publication-title: Telecommun Policy – volume: 66 start-page: 49 issue: 1–4 year: 2014 end-page: 64 article-title: Knowledge and dignity in the era of big data publication-title: Serials Libr – volume: 7 start-page: 145 issue: 1 year: 2013 end-page: 156 article-title: Is the sky falling? New technology, changing media, and the future of surveys publication-title: Surv Res Methods J – volume: 18 start-page: 113 year: 2016 end-page: 122 article-title: Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications publication-title: Egypt Inform J – volume: 12 start-page: 255 issue: 2 year: 2014 end-page: 272 article-title: Automated experimentation in Walden 3.0: the next step in profiling, predicting, control and surveillance publication-title: Surveill Soc – start-page: A12 year: 2016 end-page: A141 article-title: Hacker releases more democratic party files, renewing fears of Russian meddling publication-title: New York Times – volume: 66 start-page: 1523 issue: 8 year: 2015 end-page: 1545 article-title: Big data, bigger dilemmas: a critical review publication-title: J Assoc Inform Sci Technol – volume: 58 start-page: 48 issue: 12 year: 2015 end-page: 55 article-title: How to de-identify your data publication-title: Commun ACM – volume: 1 start-page: 293 issue: 1 year: 2014 end-page: 314 article-title: Challenges of big data analysis publication-title: Natl Sci Rev J – volume: 56 start-page: 55 issue: 5 year: 2016 end-page: 65 article-title: Analyzing relationships in terrorism big data using Hadoop and statistics publication-title: J Comput Inform Syst – volume: 351 issue: 6279 year: 2016 1274 article-title: Response to comment on “unique in the shopping mall: on the reidentifiability of credit card metadata.” publication-title: Sci J – volume: 9 start-page: 1 issue: 1 year: 2015 end-page: 4 article-title: Harnessing big data to help stop diabetes publication-title: Am J Manag Care – volume: 33 start-page: 965 issue: 6 year: 2015 end-page: 984 article-title: Spatial big data and anxieties of control publication-title: Environ Plann D – volume: 281 start-page: 201 issue: 1 year: 2014 end-page: 210 article-title: Transmission protocol for secure big data in two-hop wireless networks with cooperative jamming publication-title: Inform Sci – volume: 43 start-page: 425 issue: 2 year: 2015 end-page: 429 article-title: Ethical issues in big data health research: currents in contemporary bioethics publication-title: J Law Med Ethics – volume: 28 start-page: 3 issue: 2 year: 2014 end-page: 27 article-title: Big data: new tricks for econometrics publication-title: J Econ Perspect – volume: 275 start-page: 314 issue: 1 year: 2014 end-page: 317 article-title: Data-intensive applications, challenges, techniques and technologies: a survey on big data publication-title: Inform Sci J – volume: 12 start-page: 1 issue: 2 year: 2014 end-page: 6 article-title: After the crisis? Big data and the methodological challenges of empirical sociology publication-title: Big Data Soc J – volume: 2 start-page: 1 issue: 4 year: 2012 end-page: 14 article-title: Logistic planning with nonlinear goal programming models in spreadsheets publication-title: Int J Appl Logist – volume: 17 start-page: 65 issue: 2 year: 2015 end-page: 90 article-title: Exploring the relationship between global terrorist ideology and attack methodology publication-title: Risk Manage J – volume: 165 start-page: 260 issue: 1 year: 2015 end-page: 272 article-title: A big data approach for logistics trajectory discovery from RFID-enabled production data publication-title: Int J Prod Econ – volume: 33 start-page: 338 issue: 2 year: 2016 end-page: 345 article-title: Data protection legislation: a very hungry caterpillar: the case of mapping data in the European Union publication-title: Gov Inform Q – volume: 4 start-page: 1 issue: 1 year: 2015 end-page: 18 article-title: What and where are the risks of international terrorist attacks: a descriptive study of the evidence publication-title: Int J Risk Conting Manage – volume: 41 start-page: 56 issue: 1 year: 2013 end-page: 60 article-title: Big bad data: law, public health, and biomedical databases publication-title: J Law Med Ethics – volume: 58 start-page: 214 issue: 1 year: 2016 end-page: 220 article-title: Living in a big data world: Predicting mobile commerce activity through privacy concerns publication-title: Comput Hum Behav – volume-title: Understanding big data: analytics for enterprise class Hadoop and streaming data year: 2011 ident: bibr37-1460458219854603 – ident: bibr6-1460458219854603 doi: 10.1002/asi.23294 – ident: bibr11-1460458219854603 doi: 10.1177/003335491513000211 – volume-title: IBM SPSS statistics for windows, version 21 ed year: 2013 ident: bibr47-1460458219854603 – ident: bibr7-1460458219854603 doi: 10.1016/j.ijinfomgt.2014.10.007 – ident: bibr35-1460458219854603 doi: 10.1177/0263775815595814 – start-page: 489 volume-title: In: Proceedings of 3rd international conference on future internet of things and cloud ident: bibr9-1460458219854603 – ident: bibr17-1460458219854603 doi: 10.1016/j.procs.2016.09.119 – ident: bibr41-1460458219854603 doi: 10.1007/s10916-010-9449-4 – volume-title: Multivariate data analysis year: 2006 ident: bibr56-1460458219854603 – ident: bibr2-1460458219854603 doi: 10.1111/jlme.12214 – ident: bibr13-1460458219854603 doi: 10.1016/j.telpol.2014.10.002 – volume: 12 start-page: 1 issue: 2 year: 2014 ident: bibr18-1460458219854603 publication-title: Big Data Soc J – ident: bibr28-1460458219854603 doi: 10.1057/rm.2015.8 – volume: 56 start-page: 49 issue: 2 year: 2015 ident: bibr36-1460458219854603 publication-title: MIT Sloan Manage Rev – ident: bibr20-1460458219854603 doi: 10.1016/j.giq.2016.04.002 – volume: 57 start-page: 1701 issue: 1 year: 2010 ident: bibr45-1460458219854603 publication-title: UCLA Law Rev J – volume-title: Systems thinking, systems practice year: 1999 ident: bibr24-1460458219854603 – volume: 10 start-page: 1 issue: 41 year: 2008 ident: bibr16-1460458219854603 publication-title: J Health Care Compliance – start-page: A12 year: 2016 ident: bibr30-1460458219854603 publication-title: New York Times – ident: bibr55-1460458219854603 doi: 10.1093/nsr/nwt032 – ident: bibr31-1460458219854603 doi: 10.1016/j.drudis.2013.12.004 – ident: bibr22-1460458219854603 doi: 10.1126/science.aaf1578 – ident: bibr1-1460458219854603 doi: 10.1504/IJBIDM.2015.072211 – ident: bibr49-1460458219854603 doi: 10.1257/jep.28.2.3 – ident: bibr51-1460458219854603 doi: 10.4018/ijrcm.2013070101 – ident: bibr53-1460458219854603 doi: 10.1007/978-3-319-06245-7_7 – volume: 7 start-page: 145 issue: 1 year: 2013 ident: bibr48-1460458219854603 publication-title: Surv Res Methods J – ident: bibr4-1460458219854603 doi: 10.1016/j.ins.2014.01.015 – volume: 56 start-page: 55 issue: 5 year: 2016 ident: bibr8-1460458219854603 publication-title: J Comput Inform Syst – ident: bibr38-1460458219854603 doi: 10.1200/JOP.2014.001308 – volume-title: The power of habit: why we do what we do in life and business year: 2014 ident: bibr46-1460458219854603 – volume: 1 start-page: 550 volume-title: Proceedings of 10th ACM international conference on research and practical issues of enterprise information systems CONFENIS 2016:102016(CONFENIS 2016) ident: bibr3-1460458219854603 – volume: 9 start-page: 1 issue: 1 year: 2015 ident: bibr32-1460458219854603 publication-title: Am J Manag Care – volume-title: Insights on governance, risk and compliance: big data, changing the way businesses compete and operate year: 2014 ident: bibr5-1460458219854603 – ident: bibr52-1460458219854603 doi: 10.4018/jal.2012100101 – ident: bibr44-1460458219854603 doi: 10.1109/MS.2014.47 – ident: bibr54-1460458219854603 doi: 10.1126/science.1248506 – volume: 8 start-page: 1560 issue: 3 year: 2016 ident: bibr14-1460458219854603 publication-title: Am J Transl Res – ident: bibr29-1460458219854603 doi: 10.4018/978-1-5225-0988-2.ch026 – ident: bibr33-1460458219854603 doi: 10.1016/j.ijpe.2015.02.014 – ident: bibr12-1460458219854603 doi: 10.1111/jlme.12040 – ident: bibr19-1460458219854603 doi: 10.1007/s40745-016-0096-6 – ident: bibr34-1460458219854603 doi: 10.1080/0361526X.2014.879805 – ident: bibr42-1460458219854603 doi: 10.1145/2814340 – volume: 37 start-page: 713 issue: 2 year: 2014 ident: bibr27-1460458219854603 publication-title: Univ N S W Law J – ident: bibr15-1460458219854603 doi: 10.1111/jlme.12258 – ident: bibr23-1460458219854603 doi: 10.1177/1460458217704256 – ident: bibr25-1460458219854603 doi: 10.1057/9781137484956 – ident: bibr39-1460458219854603 doi: 10.1016/j.ins.2014.05.037 – volume: 13 start-page: 1 issue: 2 year: 2017 ident: bibr10-1460458219854603 publication-title: J New Math Nat Comput – ident: bibr26-1460458219854603 doi: 10.4018/ijrcm.2015010101 – ident: bibr40-1460458219854603 doi: 10.24908/ss.v12i2.4600 – ident: bibr43-1460458219854603 doi: 10.1016/j.ins.2015.05.040 – ident: bibr21-1460458219854603 doi: 10.1016/j.chb.2015.12.050 – ident: bibr50-1460458219854603 doi: 10.1016/j.eij.2016.11.001 |
SSID | ssj0003053 |
Score | 2.3202221 |
Snippet | The goal of the study was to identify big data analysis issues that can impact empirical research in the healthcare industry. To accomplish that the author... |
SourceID | proquest pubmed crossref sage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 981 |
SubjectTerms | Big Data Data analysis Health care industry Research methodology |
Title | Hidden big data analytics issues in the healthcare industry |
URI | https://journals.sagepub.com/doi/full/10.1177/1460458219854603 https://www.ncbi.nlm.nih.gov/pubmed/31264509 https://www.proquest.com/docview/2429458224 https://www.proquest.com/docview/2251103688 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58oHgR39YXFUTwEDdt0zbFg4i4LIIeRNFbSdJUBbeK7h789860aUVF8dSSTpt0ksl8mZlMAPZQYxSCF5zpUgsmysgwzUXApNVJVpQZToG0OfniMhnciPO7-G4CqnYvjOPg2yGFVWGL6smapJus0T3nZOyheJODD6VNxngbHY9Hw7yxdreHalAJuafHQ_JsG4qHfGft7rZJmA7TJEZBnj7pX91ed3M3jv6o2Y_EGVXw6dj8UedXRfYDnX6JDKuVVX8B5h3K9E-aYbEIE7ZagtkL50dfghlnJFiGowHlEKl8_XjvU7SoryhLCeVu9usuwUvlI0j0H7pAMSypj_t4X4Gb_tn16YC5AxWYiZJ4xAojE5uqwCSh0TYMbGiwh3jJVZQScLMitZkIuEkVR92pYxUmMqV0NRL_OdTRKkxVz5VdB1-KjCsRFSql_DJpITP8jhDGKlUShvGg13InNy7bOB168ZQHLsH4d356cNC98dJk2viDdqtleN6OmBzBRkZEofBgt3uM0kIuEFXZ5zHS0IoKlbaUHqw1HdVVFgUIDhE_ebBPPff54d9asfFfwk2YC2mZXhtvtmBq9Dq224hlRnrHDcCd2hbwAXme6S0 |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ7oGh8X41t0VUyMiQe0QIEST8a4Qd3dg1mjN9KWoiYGja4H_70zwLI-ovEEgWkpM6XzlZl-BdhDj5FxljFH5Yo7PPe1oxh3HWFUGGd5jEMgLU7u9cPkml_cBreftvqqNfh6SGlV2KJysG6-blonzkOK7eGHJgI89SdhipPTasHUSefqZtAMw9iR_WppEXOowDhG-aOOrz7pB9D8kuRV-p3OAszXgNE-qSy8CBOmWIKZXh0SX4Lper6_DMcJ0YEUtnq4synx05ZEOEI0zHapXTwUNuI9-77J-cIr5c4d7ytw3TkbnCZOvTeCo_0wGDqZFqGJpKtDTyvjucbTqGyWM-lHhMEMj0zMXaYjydANqkB6oYiIeUbgO3vKX4VW8VSYdbAFj5nkfiYjooqJMhFjPZxrI2VOcMSCo5F2Ul0Th9P-FY-pW3OFf9enBQdNieeKNOMP2fZI4enI-CnihpiEPG7BbnMbOz5FM2Rhnt5QhiZH6H-FsGCtMlTzMN9FnIdQyIJ9sty44t9asfFfwR2YTQa9bto9719uwpxHs-_yn0wbWsOXN7OFEGWotuvO-AE1P9Wh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90ovgifludWkEEH-rSNmtTfBrqmB8bIoq-lSRNVZBOdD7433vXZZU5FJ9a2muaXi65X3qXXwD20WNknGXMU7niHs9D7SnGfU8YFSVZnuAQSIuTu72oc8cvHpoPNjeH1sJYDb4fUVoV1qgcrKl3v2Z5w8YYG9i7Kb6HnU008TSchhnO0TXWYKbVvrm_rYZiNOZwuLyIefTAd5xyooxxvzQBNscSvUrf016EBQsa3dawlZdgyhTLMNe1YfFlmLVz_hU47hAlSOGq50eXkj9dSaQjRMXslhrGQ-Ei5nOfqrwvvFLu3vG5Cnfts9uTjmf3R_B0GDUHXqZFZGLp6yjQygS-CTQqnOVMhjHhMMNjk3Cf6VgydIWqKYNIxMQ-I_CbAxWuQa3oF2YDXMETJnmYyZjoYuJMJFgO59pImRMkcaAx0k6qLXk47WHxkvqWL_ynPh04rJ54HRJn_CFbHyk8HRlAitghIaGAO7BX3Ubjp4iGLEz_A2VogoQ-WAgH1ocNVb0s9BHrIRxy4IBa7rvg32qx-V_BXZi7Pm2nV-e9yy2YD2gCXv6WqUNt8PZhthGlDNSOtcUvm6LWsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+big+data+analytics+issues+in+the+healthcare+industry&rft.jtitle=Health+informatics+journal&rft.au=Strang%2C+Kenneth+David&rft.au=Sun+Zhaohao&rft.date=2020-06-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=1460-4582&rft.eissn=1741-2811&rft.volume=26&rft.issue=2&rft.spage=981&rft.epage=998&rft_id=info:doi/10.1177%2F1460458219854603&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-4582&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-4582&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-4582&client=summon |