Event detection and evolution in multi-lingual social streams
Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but lack of interpretability and multi-lingual considerations. To this end, we propose a multi-lingual event mining model, namely MLEM, to automa...
Saved in:
Published in | Frontiers of Computer Science Vol. 14; no. 5; p. 145612 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but lack of interpretability and multi-lingual considerations. To this end, we propose a multi-lingual event mining model, namely MLEM, to automatically detect events and generate evolution graph in multilingual hybrid-length text streams including English, Chinese, French, German, Russian and Japanese. Specially, we merge the same entities and similar phrases and present multiple similarity measures by incremental word2vec model. We propose an 8-tuple to describe event for correlation analysis and evolution graph generation. We evaluate the MLEM model using a massive humangenerated dataset containing real world events. Experimental results show that our new model MLEM outperforms the baseline method both in efficiency and effectiveness. |
---|---|
AbstractList | Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but lack of interpretability and multi-lingual considerations. To this end, we propose a multi-lingual event mining model, namely MLEM, to automatically detect events and generate evolution graph in multilingual hybrid-length text streams including English, Chinese, French, German, Russian and Japanese. Specially, we merge the same entities and similar phrases and present multiple similarity measures by incremental word2vec model. We propose an 8-tuple to describe event for correlation analysis and evolution graph generation. We evaluate the MLEM model using a massive human-generated dataset containing real world events. Experimental results show that our new model MLEM outperforms the baseline method both in efficiency and effectiveness. Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but lack of interpretability and multi-lingual considerations. To this end, we propose a multi-lingual event mining model, namely MLEM, to automatically detect events and generate evolution graph in multilingual hybrid-length text streams including English, Chinese, French, German, Russian and Japanese. Specially, we merge the same entities and similar phrases and present multiple similarity measures by incremental word2vec model. We propose an 8-tuple to describe event for correlation analysis and evolution graph generation. We evaluate the MLEM model using a massive humangenerated dataset containing real world events. Experimental results show that our new model MLEM outperforms the baseline method both in efficiency and effectiveness. |
ArticleNumber | 145612 |
Author | LIU, Yaopeng PENG, Hao SONG, Yangqiu LI, Jianxin LI, Xiong |
Author_xml | – sequence: 1 givenname: Yaopeng surname: LIU fullname: LIU, Yaopeng organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100083, China – sequence: 2 givenname: Hao surname: PENG fullname: PENG, Hao organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100083, China – sequence: 3 givenname: Jianxin surname: LI fullname: LI, Jianxin email: lijx@act.buaa.edu.cn organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100083, China – sequence: 4 givenname: Yangqiu surname: SONG fullname: SONG, Yangqiu organization: Department of Computer Science and Engineering, HKUST, Hong Kong 99907, China – sequence: 5 givenname: Xiong surname: LI fullname: LI, Xiong organization: National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China |
BookMark | eNp9kE9PwzAMxSM0JMbYB-BWiXMgdpsmPXBA0_gjTeIC5yhr0y1Tl44kncS3p6UIJA47PVvyz89-l2TiWmcIuQZ2C4yJuwAgWEYZFFQiA5qfkSmyglPENJ_81igvyDyEHWMMGXKOOCX3y6NxMalMNGW0rUu0qxJzbJvuu7Mu2XdNtLSxbtPpJgltaQeJ3uh9uCLntW6Cmf_ojLw_Lt8Wz3T1-vSyeFjRMs15pBVkgMC0QMPXnOUIBWohdZVKrKu817ou0hJFJvkaClOsgWWVLLFIsxw4pjNyM-49-PajMyGqXdt511sqLEAKBJFCPwXjVOnbELyp1cHbvfafCpgaglJjUKoPSg1BqbxnxD-mtFEPv0evbXOSxJEMvYvbGP930ylIjtDWbrbGm-rgTQiq9r2fNf4U-gWs_460 |
CitedBy_id | crossref_primary_10_1016_j_cie_2023_109852 crossref_primary_10_1016_j_future_2020_07_041 crossref_primary_10_1155_2020_8859407 crossref_primary_10_1155_2021_8859225 crossref_primary_10_1145_3447585 crossref_primary_10_1109_TKDE_2021_3139086 crossref_primary_10_1007_s11277_021_08331_4 crossref_primary_10_1145_3695869 crossref_primary_10_1145_3577031 crossref_primary_10_3390_app11020577 crossref_primary_10_1177_01655515211047422 crossref_primary_10_1016_j_procs_2022_11_015 crossref_primary_10_1109_TKDE_2021_3119686 crossref_primary_10_3390_ijgi13100360 crossref_primary_10_1007_s10618_024_01060_9 crossref_primary_10_1109_ACCESS_2023_3262462 crossref_primary_10_1109_TKDE_2023_3324510 crossref_primary_10_1016_j_inffus_2021_10_013 crossref_primary_10_1109_ACCESS_2020_3024194 crossref_primary_10_32628_IJSRSET2310611 crossref_primary_10_1007_s13042_022_01741_1 crossref_primary_10_1016_j_eswa_2023_120890 crossref_primary_10_1145_3689948 crossref_primary_10_1109_TBDATA_2024_3381017 |
Cites_doi | 10.1109/TSMCA.2009.2015885 10.1016/j.future.2017.05.020 10.1109/TBDATA.2017.2672672 10.1145/1807167.1807306 10.1016/j.neucom.2014.08.045 10.14778/2336664.2336671 10.1109/WI.2016.0032 10.1109/ASAP.2013.6567598 10.1109/IPDPS.2013.101 10.1145/1978942.1978975 10.1109/ICDM.2015.112 10.1145/3178876.3186005 10.1145/2339530.2339772 10.1109/ICDM.2013.32 10.1007/s13278-015-0258-0 10.1109/ICDM.2010.80 10.1109/BDCloud-SocialCom-SustainCom.2016.76 10.1145/2484702.2484703 10.1109/PADSW.2014.7097806 10.3115/v1/P15-1056 10.1109/TKDE.2014.2313872 10.1145/2396761.2396787 10.1038/nature03607 10.1002/cpe.3657 10.1145/2488388.2488514 10.1145/2723772.2723780 10.1007/s00778-013-0340-z 10.1109/ASONAM.2012.54 10.1109/TKDE.2016.2556661 10.1609/aaai.v31i1.10994 10.1016/j.artmed.2015.06.005 10.1145/2623330.2623728 10.1109/HPCC-CSS-ICESS.2015.81 10.1016/j.future.2016.04.012 10.1145/1557019.1557077 10.1145/1031171.1031258 10.1109/ICDE.2016.7498413 10.1109/DSC.2017.53 10.3115/v1/P14-5010 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2019, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Copyright reserved, 2019, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature – notice: Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s11704-019-8201-6 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2095-2236 |
ExternalDocumentID | 10_1007_s11704_019_8201_6 10.1007/s11704-019-8201-6 |
GroupedDBID | 06D 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 5VS 95- 95. 96X AABHQ AAEIZ AAFGU AAIAL AAJKR AANZL AAPBV AARHV AARTL AATLR AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJOX ABKAS ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABXPI ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIPQ ACKNC ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGQMX AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP ARMRJ AXYYD B-. BDATZ BGNMA C CSCUP DNIVK EBLON EBS EIOEI EJD EM ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF HG6 HMJXF HRMNR HZ IXD I~Z J-C JBSCW JZLTJ KOV M4Y MA- NQJWS NU0 O9J P4S PF0 PT4 R89 RIG ROL RSV S16 S3B SAP SCL SCO SHX SISQX SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC UG4 UNUBA UOJIU UTJUX UZXMN VFIZW VR W48 YLTOR Z7R Z7X Z81 Z83 Z88 ZMTXR -EM .VR 0R~ AACDK AAJBT AASML AATNV AAYZH ABAKF ABJNI ABTKH ABWNU ACAOD ACDTI ACMDZ ACPIV ACZOJ ADTPH AEFQL AEMSY AESKC AEVLU AFBBN AFKRA AGMZJ AGQEE AGRTI AIGIU AMXSW AMYLF AOCGG ARAPS BENPR BGLVJ BSONS CCPQU DDRTE DPUIP HCIFZ HF~ HZ~ IKXTQ IWAJR K7- LLZTM NPVJJ SJYHP SNPRN SOHCF -SI -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEI CITATION PHGZM PHGZT Q-- U1G U5S 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c365t-d141210a72e5b5062192a78ad382fd6ad3ff93c27485b19e9b104d8c293461523 |
IEDL.DBID | BENPR |
ISSN | 2095-2228 |
IngestDate | Fri Jul 25 23:30:18 EDT 2025 Tue Jul 01 02:22:07 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Fri Feb 21 02:48:01 EST 2025 Thu Aug 18 16:19:20 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | multi-lingual anomaly detection stream processing event detection event evolution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-d141210a72e5b5062192a78ad382fd6ad3ff93c27485b19e9b104d8c293461523 |
Notes | Document accepted on :2019-02-18 multi-lingual anomaly detection stream processing event detection Document received on :2018-06-05 event evolution ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918721731 |
PQPubID | 2044369 |
ParticipantIDs | proquest_journals_2918721731 crossref_primary_10_1007_s11704_019_8201_6 crossref_citationtrail_10_1007_s11704_019_8201_6 springer_journals_10_1007_s11704_019_8201_6 higheredpress_frontiers_10_1007_s11704_019_8201_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of Computer Science |
PublicationTitleAbbrev | Front. Comput. Sci |
PublicationYear | 2020 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Li D, Chen X, Becchi M, Zong Z. Evaluating the energy efficiency of deep convolutional neural networks on CPUs and GPUs. In: Proceedings of IEEE International Conferences on Big Data and Cloud Computing, Social Computing and Networking, Sustainable Computing and Communications. 2016, 477–484 XieWZhuFJiangJLimE PWangKTopicsketch: real-time bursty topic detection from twitterIEEE Transactions on Knowledge & Data Engineering20162882216222910.1109/TKDE.2016.2556661 Cordeiro M. Twitter event detection: combining wavelet analysis and topic inference summarization. In: Proceedings of the Doctoral Symposium on Informatics Engineering. 2012, 11–16 ZhangXChenXChenYWangSLiZXiaJEvent detection and popularity prediction in microbloggingNeurocomputing20151491469148010.1016/j.neucom.2014.08.045 YangC CShiXWeiC PDiscovering event evolution graphs from news corporaEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans200939485086310.1109/TSMCA.2009.2015885 LiJWenJTaiZZhangRYuWBursty event detection from microblog: a distributed and incremental approachConcurrency & Computation Practice & Experience201628113115313010.1002/cpe.3657 Yu W, Li J, Bhuiyan M Z A, Zhang R, Huai J. Ring: real-time emerging anomaly monitoring system over text streams. IEEE Transactions on Big Data, 2017, DOI:https://doi.org/10.1109/TBDATA.2017.2672672 Lee P, Lakshmanan L V S, Milios E E. Event evolution tracking from streaming social posts. Computer Science, 2013 Zhou P, Wu B, Cao Z. Emmbtt: a novel event evolution model based on TFxIEF and TDC in tracking news streams. In: Proceedings of the 2nd IEEE International Conference on Data Science in Cyberspace. 2017, 102–107 Li D, Becchi M. Deploying graph algorithms on GPUs: an adaptive solution. In: Proceedings of the 27th IEEE International Symposium on Parallel and Distributed Processing. 2013, 1013–1024 ChengXYanXLanYGuoJBTM: topic modeling over short textsIEEE Transactions on Knowledge & Data Engineering201426122928294110.1109/TKDE.2014.2313872 Peng H, Li J, He Y, Liu Y, Bao M, Wang L, Song Y, Yang Q. Large-scale hierarchical text classification with recursively regularized deep graph-CNN. In: Proceedings of the 2018 World Wide Web Conference. 2018, 1063–1072 Ioffe S. Improved consistent sampling, weighted minhash, l1 sketching. In: Proceedings of IEEE International Conference on Data Mining. 2010, 246–255 Li D, Sajjapongse K, Truong H, Conant G, Becchi M. A distributed CPU-GPU framework for pairwise alignments on large-scale sequence datasets. In: Proceedings of the 24th IEEE International Conference on Application-Specific Systems, Architectures and Processors. 2013, 329–338 PengHBaoMLiJBhuiyanM ZLiuYHeYYangEIncremental term representation learning for social network analysisFuture Generation Computer Systems2018861503151210.1016/j.future.2017.05.020 Devlin J, Chang M, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding. 2018, arXiv preprint arXiv:1810.04805 LejeuneGBrixtelRDoucetALucasNMultilingual event extraction for epidemic detectionArtificial Intelligence in Medicine201565213114310.1016/j.artmed.2015.06.005 Yu W, Aggarwal C C, Ma S, Wang H. On anomalous hotspot discovery in graph streams. In: Proceedings of the 13th IEEE International Conference on Data Mining. 2014, 1271–1276 Pei L, Lakshmanan L V S, Milios E E. Incremental cluster evolution tracking from highly dynamic network data. In: Proceedings of the 30th IEEE International Conference on Data Engineering. 2014, 3–14 Marcus A, Bernstein M S, Badar O, Karger D R, Madden S, Miller R C. Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2011, 227–236 Agerri R, Aldabe I, Laparra E, Rigau G, Fokkens A, Huijgen P, Erp M V, Bevia R I, Vossen P, Minard A L. Multilingual event detection using the newsreader pipelines. In: Proceedings of International Conference on Language Resources and Evaluation. 2016 Manning C D, Surdeanu M, Bauer J, Finkel J, Bethard S J, Mcclosky D. The stanford corenlp natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. 2014 Li D, Wu H, Becchi M. Exploiting dynamic parallelism to efficiently support irregular nested loops on GPUs. In: Proceedings of International Workshop on Code Optimisation for Multi and Many Cores. 2015 Lin C, Lin C, Li J, Wang D, Chen Y, Li T. Generating event storylines from microblogs. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management. 2012, 175–184 Lu Z, Yu W, Zhang R, Li J, Wei H. Discovering event evolution chain in microblog. In: Proceedings of the 17th IEEE International Conference on High Performance Computing and Communications. 2015, 635–640 Ge T, Pei W, Ji H, Li S, Chang B, Sui Z. Bring you to the past: automatic generation of topically relevant event chronicles. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2015, 575–585 Reid F, Mcdaid A, Hurley N. Percolation computation in complex networks. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2012, 274–281 Cai H, Huang Z, Srivastava D, Zhang Q. Indexing evolving events from tweet streams. In: Proceedings of the 32nd IEEE International Conference on Data Engineering. 2016, 1538–1539 Wang S, Hu X, Yu P S, Li Z. Mmrate: inferring multi-aspect diffusion networks with multi-pattern cascades. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014, 1246–1255 Liu Y, Peng H, Guo J, He T, Li X, Song Y, Li J. Event detection and evolution based on knowledge base. In: Proceedings of the 1st Workshop on Knowledge Base Construction, Reasoning and Mining. 2018, 38–39 Leskovec J, Backstrom L, Kleinberg J. Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009, 497–506 AgarwalM KBhideMBhideMReal time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environmentsProceedings of the VLDB Endowment201251098099110.14778/2336664.2336671 Weiler A, Grossniklaus M, Scholl M H. Event identification and tracking in social media streaming data. In: Proceedings of the Workshop on Multimodal Social Data Management. 2014, 798–807 Yan X, Guo J, Lan Y, Cheng X. A biterm topic model for short texts. In: Proceedings of the 22nd International Conference on World Wide Web. 2013, 1445–1456 Mathioudakis M, Koudas N. Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. 2010, 1155–1158 Nallapati R, Feng A, Peng F, Allan J. Event threading within news topics. In: Proceedings of the 13th ACM International Conference on Information and Knowledge Management. 2004, 446–453 Mihalcea R, Tarau P. Textrank: bringing order into texts. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. 2004, 404–411 Peng H, Li J, Song Y, Liu Y. Incrementally learning the hierarchical softmax function for neural language models. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017 NguyenD TJungJ EReal-time event detection for online behavioral analysis of big social dataFuture Generation Computer Systems20176613714510.1016/j.future.2016.04.012 AngelAKoudasNSarkasNSrivastavaDSvendsenMTirthapuraSDense subgraph maintenance under streaming edge weight updates for real-time story identificationThe VLDB Journal201423217519910.1007/s00778-013-0340-z Benson E, Haghighi A, Barzilay R. Event discovery in social media feeds. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011, 389–398 Wang J, Tong W, Yu H, Li M, Ma X, Cai H, Hanratty T, Han J. Mining multi-aspect reflection of news events in twitter: discovery, linking and presentation. In: Proceedings of the 15th IEEE International Conference on Data Mining. 2016, 429–438 Li D, Chakradhar S, Becchi M. Grapid: a compilation and runtime framework for rapid prototyping of graph applications on many-core processors. In: Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems. 2015, 174–182 Zhao J, Dong L, Wu J, Xu K. Moodlens: an emoticon-based sentiment analysis system for Chinese tweets. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012, 1528–1531 GuilleAFavreCEvent detection, tracking, and visualization in twitter: a mention-anomaly-based approachSocial Network Analysis & Mining2015511810.1007/s13278-015-0258-0 PallaGDerényiIFarkasIVicsekTUncovering the overlapping community structure of complex networks in nature and societyNature2005435704381410.1038/nature03607 Bonchi F, Bordino I, Gullo F, Stilo G. Identifying buzzing stories via anomalous temporal subgraph discovery. In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence. 2017, 161–168 8201_CR36 8201_CR15 8201_CR37 8201_CR12 8201_CR35 G Palla (8201_CR45) 2005; 435 W Xie (8201_CR3) 2016; 28 8201_CR11 8201_CR33 8201_CR30 M K Agarwal (8201_CR14) 2012; 5 C C Yang (8201_CR25) 2009; 39 8201_CR18 8201_CR19 8201_CR16 8201_CR38 8201_CR17 8201_CR39 D T Nguyen (8201_CR32) 2017; 66 X Zhang (8201_CR5) 2015; 149 J Li (8201_CR4) 2016; 28 8201_CR1 8201_CR47 8201_CR26 8201_CR23 8201_CR6 8201_CR24 8201_CR46 8201_CR7 8201_CR21 8201_CR43 8201_CR8 8201_CR22 8201_CR44 8201_CR9 8201_CR41 8201_CR20 8201_CR42 8201_CR29 8201_CR27 8201_CR28 A Guille (8201_CR2) 2015; 5 A Angel (8201_CR13) 2014; 23 H Peng (8201_CR31) 2018; 86 8201_CR40 G Lejeune (8201_CR34) 2015; 65 X Cheng (8201_CR10) 2014; 26 |
References_xml | – reference: Bonchi F, Bordino I, Gullo F, Stilo G. Identifying buzzing stories via anomalous temporal subgraph discovery. In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence. 2017, 161–168 – reference: Devlin J, Chang M, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding. 2018, arXiv preprint arXiv:1810.04805 – reference: Reid F, Mcdaid A, Hurley N. Percolation computation in complex networks. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2012, 274–281 – reference: AgarwalM KBhideMBhideMReal time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environmentsProceedings of the VLDB Endowment201251098099110.14778/2336664.2336671 – reference: XieWZhuFJiangJLimE PWangKTopicsketch: real-time bursty topic detection from twitterIEEE Transactions on Knowledge & Data Engineering20162882216222910.1109/TKDE.2016.2556661 – reference: Marcus A, Bernstein M S, Badar O, Karger D R, Madden S, Miller R C. Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2011, 227–236 – reference: Wang J, Tong W, Yu H, Li M, Ma X, Cai H, Hanratty T, Han J. Mining multi-aspect reflection of news events in twitter: discovery, linking and presentation. In: Proceedings of the 15th IEEE International Conference on Data Mining. 2016, 429–438 – reference: Lin C, Lin C, Li J, Wang D, Chen Y, Li T. Generating event storylines from microblogs. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management. 2012, 175–184 – reference: Weiler A, Grossniklaus M, Scholl M H. Event identification and tracking in social media streaming data. In: Proceedings of the Workshop on Multimodal Social Data Management. 2014, 798–807 – reference: Li D, Chakradhar S, Becchi M. Grapid: a compilation and runtime framework for rapid prototyping of graph applications on many-core processors. In: Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems. 2015, 174–182 – reference: Li D, Chen X, Becchi M, Zong Z. Evaluating the energy efficiency of deep convolutional neural networks on CPUs and GPUs. In: Proceedings of IEEE International Conferences on Big Data and Cloud Computing, Social Computing and Networking, Sustainable Computing and Communications. 2016, 477–484 – reference: Lu Z, Yu W, Zhang R, Li J, Wei H. Discovering event evolution chain in microblog. In: Proceedings of the 17th IEEE International Conference on High Performance Computing and Communications. 2015, 635–640 – reference: LejeuneGBrixtelRDoucetALucasNMultilingual event extraction for epidemic detectionArtificial Intelligence in Medicine201565213114310.1016/j.artmed.2015.06.005 – reference: Zhou P, Wu B, Cao Z. Emmbtt: a novel event evolution model based on TFxIEF and TDC in tracking news streams. In: Proceedings of the 2nd IEEE International Conference on Data Science in Cyberspace. 2017, 102–107 – reference: Yu W, Li J, Bhuiyan M Z A, Zhang R, Huai J. Ring: real-time emerging anomaly monitoring system over text streams. IEEE Transactions on Big Data, 2017, DOI:https://doi.org/10.1109/TBDATA.2017.2672672 – reference: Yu W, Aggarwal C C, Ma S, Wang H. On anomalous hotspot discovery in graph streams. In: Proceedings of the 13th IEEE International Conference on Data Mining. 2014, 1271–1276 – reference: PengHBaoMLiJBhuiyanM ZLiuYHeYYangEIncremental term representation learning for social network analysisFuture Generation Computer Systems2018861503151210.1016/j.future.2017.05.020 – reference: Agerri R, Aldabe I, Laparra E, Rigau G, Fokkens A, Huijgen P, Erp M V, Bevia R I, Vossen P, Minard A L. Multilingual event detection using the newsreader pipelines. In: Proceedings of International Conference on Language Resources and Evaluation. 2016 – reference: LiJWenJTaiZZhangRYuWBursty event detection from microblog: a distributed and incremental approachConcurrency & Computation Practice & Experience201628113115313010.1002/cpe.3657 – reference: Yan X, Guo J, Lan Y, Cheng X. A biterm topic model for short texts. In: Proceedings of the 22nd International Conference on World Wide Web. 2013, 1445–1456 – reference: Peng H, Li J, Song Y, Liu Y. Incrementally learning the hierarchical softmax function for neural language models. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017 – reference: Liu Y, Peng H, Guo J, He T, Li X, Song Y, Li J. Event detection and evolution based on knowledge base. In: Proceedings of the 1st Workshop on Knowledge Base Construction, Reasoning and Mining. 2018, 38–39 – reference: Wang S, Hu X, Yu P S, Li Z. Mmrate: inferring multi-aspect diffusion networks with multi-pattern cascades. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014, 1246–1255 – reference: Manning C D, Surdeanu M, Bauer J, Finkel J, Bethard S J, Mcclosky D. The stanford corenlp natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. 2014 – reference: Benson E, Haghighi A, Barzilay R. Event discovery in social media feeds. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011, 389–398 – reference: Pei L, Lakshmanan L V S, Milios E E. Incremental cluster evolution tracking from highly dynamic network data. In: Proceedings of the 30th IEEE International Conference on Data Engineering. 2014, 3–14 – reference: ChengXYanXLanYGuoJBTM: topic modeling over short textsIEEE Transactions on Knowledge & Data Engineering201426122928294110.1109/TKDE.2014.2313872 – reference: Cai H, Huang Z, Srivastava D, Zhang Q. Indexing evolving events from tweet streams. In: Proceedings of the 32nd IEEE International Conference on Data Engineering. 2016, 1538–1539 – reference: Li D, Becchi M. Deploying graph algorithms on GPUs: an adaptive solution. In: Proceedings of the 27th IEEE International Symposium on Parallel and Distributed Processing. 2013, 1013–1024 – reference: ZhangXChenXChenYWangSLiZXiaJEvent detection and popularity prediction in microbloggingNeurocomputing20151491469148010.1016/j.neucom.2014.08.045 – reference: Mathioudakis M, Koudas N. Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. 2010, 1155–1158 – reference: Li D, Wu H, Becchi M. Exploiting dynamic parallelism to efficiently support irregular nested loops on GPUs. In: Proceedings of International Workshop on Code Optimisation for Multi and Many Cores. 2015 – reference: NguyenD TJungJ EReal-time event detection for online behavioral analysis of big social dataFuture Generation Computer Systems20176613714510.1016/j.future.2016.04.012 – reference: Zhao J, Dong L, Wu J, Xu K. Moodlens: an emoticon-based sentiment analysis system for Chinese tweets. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012, 1528–1531 – reference: Peng H, Li J, He Y, Liu Y, Bao M, Wang L, Song Y, Yang Q. Large-scale hierarchical text classification with recursively regularized deep graph-CNN. In: Proceedings of the 2018 World Wide Web Conference. 2018, 1063–1072 – reference: Li D, Sajjapongse K, Truong H, Conant G, Becchi M. A distributed CPU-GPU framework for pairwise alignments on large-scale sequence datasets. In: Proceedings of the 24th IEEE International Conference on Application-Specific Systems, Architectures and Processors. 2013, 329–338 – reference: Nallapati R, Feng A, Peng F, Allan J. Event threading within news topics. In: Proceedings of the 13th ACM International Conference on Information and Knowledge Management. 2004, 446–453 – reference: GuilleAFavreCEvent detection, tracking, and visualization in twitter: a mention-anomaly-based approachSocial Network Analysis & Mining2015511810.1007/s13278-015-0258-0 – reference: Leskovec J, Backstrom L, Kleinberg J. Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009, 497–506 – reference: Ge T, Pei W, Ji H, Li S, Chang B, Sui Z. Bring you to the past: automatic generation of topically relevant event chronicles. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2015, 575–585 – reference: Mihalcea R, Tarau P. Textrank: bringing order into texts. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. 2004, 404–411 – reference: Lee P, Lakshmanan L V S, Milios E E. Event evolution tracking from streaming social posts. Computer Science, 2013 – reference: Cordeiro M. Twitter event detection: combining wavelet analysis and topic inference summarization. In: Proceedings of the Doctoral Symposium on Informatics Engineering. 2012, 11–16 – reference: Ioffe S. Improved consistent sampling, weighted minhash, l1 sketching. In: Proceedings of IEEE International Conference on Data Mining. 2010, 246–255 – reference: AngelAKoudasNSarkasNSrivastavaDSvendsenMTirthapuraSDense subgraph maintenance under streaming edge weight updates for real-time story identificationThe VLDB Journal201423217519910.1007/s00778-013-0340-z – reference: PallaGDerényiIFarkasIVicsekTUncovering the overlapping community structure of complex networks in nature and societyNature2005435704381410.1038/nature03607 – reference: YangC CShiXWeiC PDiscovering event evolution graphs from news corporaEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans200939485086310.1109/TSMCA.2009.2015885 – volume: 39 start-page: 850 issue: 4 year: 2009 ident: 8201_CR25 publication-title: EEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans doi: 10.1109/TSMCA.2009.2015885 – volume: 86 start-page: 1503 year: 2018 ident: 8201_CR31 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.05.020 – ident: 8201_CR6 doi: 10.1109/TBDATA.2017.2672672 – ident: 8201_CR1 doi: 10.1145/1807167.1807306 – volume: 149 start-page: 1469 year: 2015 ident: 8201_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.045 – volume: 5 start-page: 980 issue: 10 year: 2012 ident: 8201_CR14 publication-title: Proceedings of the VLDB Endowment doi: 10.14778/2336664.2336671 – ident: 8201_CR33 – ident: 8201_CR17 doi: 10.1109/WI.2016.0032 – ident: 8201_CR21 doi: 10.1109/ASAP.2013.6567598 – ident: 8201_CR22 doi: 10.1109/IPDPS.2013.101 – ident: 8201_CR28 doi: 10.1145/1978942.1978975 – ident: 8201_CR35 – ident: 8201_CR16 doi: 10.1109/ICDM.2015.112 – ident: 8201_CR12 – ident: 8201_CR11 doi: 10.1145/3178876.3186005 – ident: 8201_CR43 doi: 10.1145/2339530.2339772 – ident: 8201_CR40 doi: 10.1109/ICDM.2013.32 – volume: 5 start-page: 18 issue: 1 year: 2015 ident: 8201_CR2 publication-title: Social Network Analysis & Mining doi: 10.1007/s13278-015-0258-0 – ident: 8201_CR26 – ident: 8201_CR44 doi: 10.1109/ICDM.2010.80 – ident: 8201_CR19 doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.76 – ident: 8201_CR47 – ident: 8201_CR8 doi: 10.1145/2484702.2484703 – ident: 8201_CR18 doi: 10.1109/PADSW.2014.7097806 – ident: 8201_CR37 doi: 10.3115/v1/P15-1056 – volume: 26 start-page: 2928 issue: 12 year: 2014 ident: 8201_CR10 publication-title: IEEE Transactions on Knowledge & Data Engineering doi: 10.1109/TKDE.2014.2313872 – ident: 8201_CR36 doi: 10.1145/2396761.2396787 – volume: 435 start-page: 814 issue: 7043 year: 2005 ident: 8201_CR45 publication-title: Nature doi: 10.1038/nature03607 – volume: 28 start-page: 3115 issue: 11 year: 2016 ident: 8201_CR4 publication-title: Concurrency & Computation Practice & Experience doi: 10.1002/cpe.3657 – ident: 8201_CR9 doi: 10.1145/2488388.2488514 – ident: 8201_CR20 doi: 10.1145/2723772.2723780 – volume: 23 start-page: 175 issue: 2 year: 2014 ident: 8201_CR13 publication-title: The VLDB Journal doi: 10.1007/s00778-013-0340-z – ident: 8201_CR41 doi: 10.1109/ASONAM.2012.54 – volume: 28 start-page: 2216 issue: 8 year: 2016 ident: 8201_CR3 publication-title: IEEE Transactions on Knowledge & Data Engineering doi: 10.1109/TKDE.2016.2556661 – ident: 8201_CR7 – ident: 8201_CR30 doi: 10.1609/aaai.v31i1.10994 – volume: 65 start-page: 131 issue: 2 year: 2015 ident: 8201_CR34 publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2015.06.005 – ident: 8201_CR23 doi: 10.1145/2623330.2623728 – ident: 8201_CR27 doi: 10.1109/HPCC-CSS-ICESS.2015.81 – volume: 66 start-page: 137 year: 2017 ident: 8201_CR32 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2016.04.012 – ident: 8201_CR42 – ident: 8201_CR24 doi: 10.1145/1557019.1557077 – ident: 8201_CR46 doi: 10.1145/1031171.1031258 – ident: 8201_CR15 doi: 10.1109/ICDE.2016.7498413 – ident: 8201_CR38 doi: 10.1109/DSC.2017.53 – ident: 8201_CR39 doi: 10.3115/v1/P14-5010 – ident: 8201_CR29 |
SSID | ssj0002025522 |
Score | 2.4412744 |
Snippet | Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but... |
SourceID | proquest crossref springer higheredpress |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 145612 |
SubjectTerms | Computer Science Correlation analysis Earthquakes event detection event evolution Evolution Keywords multi-lingual anomaly detection Multilingualism Research Article Semantics stream processing |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odhHE-ROnU3LwpGS0SZu2xyHqUPS0wTyFpElR1Cqu8-Bfb5K2lg0d7NRDk9C-l-R9L-_LewBnVGWKUhbjgMUeDqRHsWSBxCmNmWSChMolq75_YMNxcDsJJ9U97mnNdq9Dkm6nbi67-ZFjTCTYWi3M1qFt4IcXtqA9uHm8a45WiMXJLn5ADIDA9oyjjmf-Nc6cRdp8cvQKrRwNdQ52LkRKnQG67sCo_vSSd_LSnxWyn34vZHVc8d-2YasCpGhQzqAdWNP5LnTqYg-oWvt7YDC3sU9I6cKRt3IkcoX0VzVz0XOOHDcR2-vtMzNgeRiP7F0U8Tbdh_H11ehyiKvaC0ZLLCyw8gObWkxERIcy9JjZ2IiIYqFoTDLFzDPLEpoanzYOpZ_oRBq_TsWpQQ-BAUmEHkArf8_1ISCRJS5qLGjIgswXItIGc5GIZDRKJVFd8Gr587RKTG7rY7zyJqWyFQ834uFWPJx14fy3y0eZlWNZY39OqTyzqSFsofFlfXq14nm1qKecJH5sHOaI-l24qPXYvP53sKOVWh_DBrE-vSMM9qBVfM70iQE-hTytJvoPZ6H0iA priority: 102 providerName: Springer Nature |
Title | Event detection and evolution in multi-lingual social streams |
URI | https://journal.hep.com.cn/fcs/EN/10.1007/s11704-019-8201-6 https://link.springer.com/article/10.1007/s11704-019-8201-6 https://www.proquest.com/docview/2918721731 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vQjiW6zWkoMnJdhNdrPZk1TpA8UiYqGelmSTRUG31bb-fpM021LBnvaQTQ6TZOabmS8zABdU5YpSxnHIeBOHskmxZKHEGeVMMkEi5YpVP_ZZbxDeD6OhD7hNPK2y1IlOUatRZmPk1yQJuPFWYhrcjL-w7Rpls6u-hcYmVI0K5rwC1dt2_-l5EWUhFjK7VAIxWALbcEeZ2nTv54LYkTASbA0hZivGafvNMS20cozUFQT6J2nqbFFnD3Y8iESt-a7vw4YuDmC3bNCA_H09BIOTjU1BSk8d4apAolBI__jTht4L5PiE2D5Jn5kF5wF0ZN-PiM_JEQw67Ze7Hvb9EoxkWTTFKghtOTAREx3JqMmMMiIi5kJRTnLFzDfPE5oZP5RHMkh0Io0vpnhmLH5ogA2hx1ApRoU-ASTyxGV6BY1YmAdCxNrgJBKTnMaZJKoGzVJQaeaLidueFh_psgyylW1qZJta2aasBpeLKeN5JY11Pwcr0k9zW87BNgdfN6de7lDqL-IkXR6bGlyVu7Yc_nex0_WLncEWsY63Y_XVoTL9nulzg06msgGbvNNtQLXVfX1oN_yB_AVEmN8k |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-qtgNIaONTlHXgA1xA1ho7cZIDQhNQOtrttEq9eXbsaEiQbjTbtH-Kv5H3nGRVkehtpxwSO9Lz8_t-vwfwVrrSSakyHqtsyGM7lNyq2PJCZsoqIxIXwKqPT9R4Fn-fJ_Me_Ol6YaisspOJQVC7RUEx8gORRxl6K6mMPl1ccpoaRdnVboRGwxYTf3uDLtvy49EXPN93Qoy-nn4e83aqAP5fJTV3UUygWSYVPrHJUOGVFSbNjJOZKJ3CZ1nmskBvLUtslPvcosfisgL1Yozqn4AOUORvxxI1OXWmj77dxXQEGeghcSHQcuEUXOkSqaFbL0pDyUfOSe1ytaYKH52Hug7vQv3rmr37T4o2aL7RY9hpTVZ22PDYE-j56insduMgWCsdngFa5ajBmPN1KO-qmKkc89ctb7MfFQvVi5wa4K9wwyZcz6hbxfxaPofZvdDxBWxVi8q_BGbKPOSVjUxUXEbGpB6tMpGKUqaFFa4Pw45Qumihy2mCxk-9Al0m2mqkrSbaatWH93dLLhrcjk0fR2vU1yWBR9Ao8k1rBt0J6fbaL_WKSfvwoTu11ev_bvZq82Zv4MH49Hiqp0cnkz14KMjlD_WEA9iqf1_5fbSLavs6MCODs_vm_r_hjxYP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRaoqVUBLUZev-tBTK-8mtuM4RwQsUFrUQ5HoydixLRBtQGyWA78e20kaLWqRKk45JB7Jnon9xjPzBuAjNc5QygVmXCSY6YRizZnGJRVcc0UyE8mqv53ww1P25Sw7a_ucTrts9y4k2dQ0BJamqh7fGDfuC9_SPGZPFDicYJi_gEWWiFwMYHHn4Odxf81CAmaOsQTiwQQO9x1dbPNvcuZOp9cXMdXCmpiSOgdBH0VN42E0WYbzbhpNDsrVaFbrUXn_iOHxGfNcgaUWqKKdxrLewIKt3sJy1wQCtXvCKngs7uUhY-uY1FUhVRlk71qLRpcVijmLOJS9z7zA5pIehRoV9Xv6Dk4n-z92D3Hbk8Frj2c1NikLlGMqJzbTWcL9hkdULpShgjjD_dO5gpbe1xWZTgtbaO_vGVF6VME8eCJ0DQbVdWXfA1KuiNFkRTPOXKpUbj0WIzlxNC81MUNIOl3IsiUsD30zfsmeajksj_TLI8PySD6ET3-G3DRsHU99nM4pWLpAGREakD81ZrMzAtn-7FNJilR4Rzqn6RA-dzrtX_9T2Pp_ff0BXn7fm8ivRyfHG_CKBLc_5hRuwqC-ndktj41qvd3a_wMfqwBq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event+detection+and+evolution+in+multi-lingual+social+streams&rft.jtitle=Frontiers+of+Computer+Science&rft.au=Liu%2C+Yaopeng&rft.au=Peng%2C+Hao&rft.au=Li%2C+Jianxin&rft.au=Song%2C+Yangqiu&rft.date=2020-10-01&rft.issn=2095-2228&rft.eissn=2095-2236&rft.volume=14&rft.issue=5&rft_id=info:doi/10.1007%2Fs11704-019-8201-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11704_019_8201_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2228&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2228&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2228&client=summon |