Event detection and evolution in multi-lingual social streams

Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but lack of interpretability and multi-lingual considerations. To this end, we propose a multi-lingual event mining model, namely MLEM, to automa...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of Computer Science Vol. 14; no. 5; p. 145612
Main Authors LIU, Yaopeng, PENG, Hao, LI, Jianxin, SONG, Yangqiu, LI, Xiong
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but lack of interpretability and multi-lingual considerations. To this end, we propose a multi-lingual event mining model, namely MLEM, to automatically detect events and generate evolution graph in multilingual hybrid-length text streams including English, Chinese, French, German, Russian and Japanese. Specially, we merge the same entities and similar phrases and present multiple similarity measures by incremental word2vec model. We propose an 8-tuple to describe event for correlation analysis and evolution graph generation. We evaluate the MLEM model using a massive humangenerated dataset containing real world events. Experimental results show that our new model MLEM outperforms the baseline method both in efficiency and effectiveness.
AbstractList Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but lack of interpretability and multi-lingual considerations. To this end, we propose a multi-lingual event mining model, namely MLEM, to automatically detect events and generate evolution graph in multilingual hybrid-length text streams including English, Chinese, French, German, Russian and Japanese. Specially, we merge the same entities and similar phrases and present multiple similarity measures by incremental word2vec model. We propose an 8-tuple to describe event for correlation analysis and evolution graph generation. We evaluate the MLEM model using a massive human-generated dataset containing real world events. Experimental results show that our new model MLEM outperforms the baseline method both in efficiency and effectiveness.
Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but lack of interpretability and multi-lingual considerations. To this end, we propose a multi-lingual event mining model, namely MLEM, to automatically detect events and generate evolution graph in multilingual hybrid-length text streams including English, Chinese, French, German, Russian and Japanese. Specially, we merge the same entities and similar phrases and present multiple similarity measures by incremental word2vec model. We propose an 8-tuple to describe event for correlation analysis and evolution graph generation. We evaluate the MLEM model using a massive humangenerated dataset containing real world events. Experimental results show that our new model MLEM outperforms the baseline method both in efficiency and effectiveness.
ArticleNumber 145612
Author LIU, Yaopeng
PENG, Hao
SONG, Yangqiu
LI, Jianxin
LI, Xiong
Author_xml – sequence: 1
  givenname: Yaopeng
  surname: LIU
  fullname: LIU, Yaopeng
  organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100083, China
– sequence: 2
  givenname: Hao
  surname: PENG
  fullname: PENG, Hao
  organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100083, China
– sequence: 3
  givenname: Jianxin
  surname: LI
  fullname: LI, Jianxin
  email: lijx@act.buaa.edu.cn
  organization: State Key Laboratory of Software Development Environment, Beihang University, Beijing 100083, China
– sequence: 4
  givenname: Yangqiu
  surname: SONG
  fullname: SONG, Yangqiu
  organization: Department of Computer Science and Engineering, HKUST, Hong Kong 99907, China
– sequence: 5
  givenname: Xiong
  surname: LI
  fullname: LI, Xiong
  organization: National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China
BookMark eNp9kE9PwzAMxSM0JMbYB-BWiXMgdpsmPXBA0_gjTeIC5yhr0y1Tl44kncS3p6UIJA47PVvyz89-l2TiWmcIuQZ2C4yJuwAgWEYZFFQiA5qfkSmyglPENJ_81igvyDyEHWMMGXKOOCX3y6NxMalMNGW0rUu0qxJzbJvuu7Mu2XdNtLSxbtPpJgltaQeJ3uh9uCLntW6Cmf_ojLw_Lt8Wz3T1-vSyeFjRMs15pBVkgMC0QMPXnOUIBWohdZVKrKu817ou0hJFJvkaClOsgWWVLLFIsxw4pjNyM-49-PajMyGqXdt511sqLEAKBJFCPwXjVOnbELyp1cHbvfafCpgaglJjUKoPSg1BqbxnxD-mtFEPv0evbXOSxJEMvYvbGP930ylIjtDWbrbGm-rgTQiq9r2fNf4U-gWs_460
CitedBy_id crossref_primary_10_1016_j_cie_2023_109852
crossref_primary_10_1016_j_future_2020_07_041
crossref_primary_10_1155_2020_8859407
crossref_primary_10_1155_2021_8859225
crossref_primary_10_1145_3447585
crossref_primary_10_1109_TKDE_2021_3139086
crossref_primary_10_1007_s11277_021_08331_4
crossref_primary_10_1145_3695869
crossref_primary_10_1145_3577031
crossref_primary_10_3390_app11020577
crossref_primary_10_1177_01655515211047422
crossref_primary_10_1016_j_procs_2022_11_015
crossref_primary_10_1109_TKDE_2021_3119686
crossref_primary_10_3390_ijgi13100360
crossref_primary_10_1007_s10618_024_01060_9
crossref_primary_10_1109_ACCESS_2023_3262462
crossref_primary_10_1109_TKDE_2023_3324510
crossref_primary_10_1016_j_inffus_2021_10_013
crossref_primary_10_1109_ACCESS_2020_3024194
crossref_primary_10_32628_IJSRSET2310611
crossref_primary_10_1007_s13042_022_01741_1
crossref_primary_10_1016_j_eswa_2023_120890
crossref_primary_10_1145_3689948
crossref_primary_10_1109_TBDATA_2024_3381017
Cites_doi 10.1109/TSMCA.2009.2015885
10.1016/j.future.2017.05.020
10.1109/TBDATA.2017.2672672
10.1145/1807167.1807306
10.1016/j.neucom.2014.08.045
10.14778/2336664.2336671
10.1109/WI.2016.0032
10.1109/ASAP.2013.6567598
10.1109/IPDPS.2013.101
10.1145/1978942.1978975
10.1109/ICDM.2015.112
10.1145/3178876.3186005
10.1145/2339530.2339772
10.1109/ICDM.2013.32
10.1007/s13278-015-0258-0
10.1109/ICDM.2010.80
10.1109/BDCloud-SocialCom-SustainCom.2016.76
10.1145/2484702.2484703
10.1109/PADSW.2014.7097806
10.3115/v1/P15-1056
10.1109/TKDE.2014.2313872
10.1145/2396761.2396787
10.1038/nature03607
10.1002/cpe.3657
10.1145/2488388.2488514
10.1145/2723772.2723780
10.1007/s00778-013-0340-z
10.1109/ASONAM.2012.54
10.1109/TKDE.2016.2556661
10.1609/aaai.v31i1.10994
10.1016/j.artmed.2015.06.005
10.1145/2623330.2623728
10.1109/HPCC-CSS-ICESS.2015.81
10.1016/j.future.2016.04.012
10.1145/1557019.1557077
10.1145/1031171.1031258
10.1109/ICDE.2016.7498413
10.1109/DSC.2017.53
10.3115/v1/P14-5010
ContentType Journal Article
Copyright Copyright reserved, 2019, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Copyright reserved, 2019, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
– notice: Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11704-019-8201-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2095-2236
ExternalDocumentID 10_1007_s11704_019_8201_6
10.1007/s11704-019-8201-6
GroupedDBID 06D
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40E
5VS
95-
95.
96X
AABHQ
AAEIZ
AAFGU
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATLR
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJOX
ABKAS
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABXPI
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIPQ
ACKNC
ACMLO
ACOKC
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTIX
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGQMX
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
C
CSCUP
DNIVK
EBLON
EBS
EIOEI
EJD
EM
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF
HG6
HMJXF
HRMNR
HZ
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
M4Y
MA-
NQJWS
NU0
O9J
P4S
PF0
PT4
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SCO
SHX
SISQX
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VFIZW
VR
W48
YLTOR
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
-EM
.VR
0R~
AACDK
AAJBT
AASML
AATNV
AAYZH
ABAKF
ABJNI
ABTKH
ABWNU
ACAOD
ACDTI
ACMDZ
ACPIV
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AFKRA
AGMZJ
AGQEE
AGRTI
AIGIU
AMXSW
AMYLF
AOCGG
ARAPS
BENPR
BGLVJ
BSONS
CCPQU
DDRTE
DPUIP
HCIFZ
HF~
HZ~
IKXTQ
IWAJR
K7-
LLZTM
NPVJJ
SJYHP
SNPRN
SOHCF
-SI
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEI
CITATION
PHGZM
PHGZT
Q--
U1G
U5S
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c365t-d141210a72e5b5062192a78ad382fd6ad3ff93c27485b19e9b104d8c293461523
IEDL.DBID BENPR
ISSN 2095-2228
IngestDate Fri Jul 25 23:30:18 EDT 2025
Tue Jul 01 02:22:07 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Fri Feb 21 02:48:01 EST 2025
Thu Aug 18 16:19:20 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords multi-lingual anomaly detection
stream processing
event detection
event evolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-d141210a72e5b5062192a78ad382fd6ad3ff93c27485b19e9b104d8c293461523
Notes Document accepted on :2019-02-18
multi-lingual anomaly detection
stream processing
event detection
Document received on :2018-06-05
event evolution
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918721731
PQPubID 2044369
ParticipantIDs proquest_journals_2918721731
crossref_primary_10_1007_s11704_019_8201_6
crossref_citationtrail_10_1007_s11704_019_8201_6
springer_journals_10_1007_s11704_019_8201_6
higheredpress_frontiers_10_1007_s11704_019_8201_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of Computer Science
PublicationTitleAbbrev Front. Comput. Sci
PublicationYear 2020
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Li D, Chen X, Becchi M, Zong Z. Evaluating the energy efficiency of deep convolutional neural networks on CPUs and GPUs. In: Proceedings of IEEE International Conferences on Big Data and Cloud Computing, Social Computing and Networking, Sustainable Computing and Communications. 2016, 477–484
XieWZhuFJiangJLimE PWangKTopicsketch: real-time bursty topic detection from twitterIEEE Transactions on Knowledge & Data Engineering20162882216222910.1109/TKDE.2016.2556661
Cordeiro M. Twitter event detection: combining wavelet analysis and topic inference summarization. In: Proceedings of the Doctoral Symposium on Informatics Engineering. 2012, 11–16
ZhangXChenXChenYWangSLiZXiaJEvent detection and popularity prediction in microbloggingNeurocomputing20151491469148010.1016/j.neucom.2014.08.045
YangC CShiXWeiC PDiscovering event evolution graphs from news corporaEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans200939485086310.1109/TSMCA.2009.2015885
LiJWenJTaiZZhangRYuWBursty event detection from microblog: a distributed and incremental approachConcurrency & Computation Practice & Experience201628113115313010.1002/cpe.3657
Yu W, Li J, Bhuiyan M Z A, Zhang R, Huai J. Ring: real-time emerging anomaly monitoring system over text streams. IEEE Transactions on Big Data, 2017, DOI:https://doi.org/10.1109/TBDATA.2017.2672672
Lee P, Lakshmanan L V S, Milios E E. Event evolution tracking from streaming social posts. Computer Science, 2013
Zhou P, Wu B, Cao Z. Emmbtt: a novel event evolution model based on TFxIEF and TDC in tracking news streams. In: Proceedings of the 2nd IEEE International Conference on Data Science in Cyberspace. 2017, 102–107
Li D, Becchi M. Deploying graph algorithms on GPUs: an adaptive solution. In: Proceedings of the 27th IEEE International Symposium on Parallel and Distributed Processing. 2013, 1013–1024
ChengXYanXLanYGuoJBTM: topic modeling over short textsIEEE Transactions on Knowledge & Data Engineering201426122928294110.1109/TKDE.2014.2313872
Peng H, Li J, He Y, Liu Y, Bao M, Wang L, Song Y, Yang Q. Large-scale hierarchical text classification with recursively regularized deep graph-CNN. In: Proceedings of the 2018 World Wide Web Conference. 2018, 1063–1072
Ioffe S. Improved consistent sampling, weighted minhash, l1 sketching. In: Proceedings of IEEE International Conference on Data Mining. 2010, 246–255
Li D, Sajjapongse K, Truong H, Conant G, Becchi M. A distributed CPU-GPU framework for pairwise alignments on large-scale sequence datasets. In: Proceedings of the 24th IEEE International Conference on Application-Specific Systems, Architectures and Processors. 2013, 329–338
PengHBaoMLiJBhuiyanM ZLiuYHeYYangEIncremental term representation learning for social network analysisFuture Generation Computer Systems2018861503151210.1016/j.future.2017.05.020
Devlin J, Chang M, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding. 2018, arXiv preprint arXiv:1810.04805
LejeuneGBrixtelRDoucetALucasNMultilingual event extraction for epidemic detectionArtificial Intelligence in Medicine201565213114310.1016/j.artmed.2015.06.005
Yu W, Aggarwal C C, Ma S, Wang H. On anomalous hotspot discovery in graph streams. In: Proceedings of the 13th IEEE International Conference on Data Mining. 2014, 1271–1276
Pei L, Lakshmanan L V S, Milios E E. Incremental cluster evolution tracking from highly dynamic network data. In: Proceedings of the 30th IEEE International Conference on Data Engineering. 2014, 3–14
Marcus A, Bernstein M S, Badar O, Karger D R, Madden S, Miller R C. Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2011, 227–236
Agerri R, Aldabe I, Laparra E, Rigau G, Fokkens A, Huijgen P, Erp M V, Bevia R I, Vossen P, Minard A L. Multilingual event detection using the newsreader pipelines. In: Proceedings of International Conference on Language Resources and Evaluation. 2016
Manning C D, Surdeanu M, Bauer J, Finkel J, Bethard S J, Mcclosky D. The stanford corenlp natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. 2014
Li D, Wu H, Becchi M. Exploiting dynamic parallelism to efficiently support irregular nested loops on GPUs. In: Proceedings of International Workshop on Code Optimisation for Multi and Many Cores. 2015
Lin C, Lin C, Li J, Wang D, Chen Y, Li T. Generating event storylines from microblogs. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management. 2012, 175–184
Lu Z, Yu W, Zhang R, Li J, Wei H. Discovering event evolution chain in microblog. In: Proceedings of the 17th IEEE International Conference on High Performance Computing and Communications. 2015, 635–640
Ge T, Pei W, Ji H, Li S, Chang B, Sui Z. Bring you to the past: automatic generation of topically relevant event chronicles. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2015, 575–585
Reid F, Mcdaid A, Hurley N. Percolation computation in complex networks. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2012, 274–281
Cai H, Huang Z, Srivastava D, Zhang Q. Indexing evolving events from tweet streams. In: Proceedings of the 32nd IEEE International Conference on Data Engineering. 2016, 1538–1539
Wang S, Hu X, Yu P S, Li Z. Mmrate: inferring multi-aspect diffusion networks with multi-pattern cascades. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014, 1246–1255
Liu Y, Peng H, Guo J, He T, Li X, Song Y, Li J. Event detection and evolution based on knowledge base. In: Proceedings of the 1st Workshop on Knowledge Base Construction, Reasoning and Mining. 2018, 38–39
Leskovec J, Backstrom L, Kleinberg J. Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009, 497–506
AgarwalM KBhideMBhideMReal time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environmentsProceedings of the VLDB Endowment201251098099110.14778/2336664.2336671
Weiler A, Grossniklaus M, Scholl M H. Event identification and tracking in social media streaming data. In: Proceedings of the Workshop on Multimodal Social Data Management. 2014, 798–807
Yan X, Guo J, Lan Y, Cheng X. A biterm topic model for short texts. In: Proceedings of the 22nd International Conference on World Wide Web. 2013, 1445–1456
Mathioudakis M, Koudas N. Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. 2010, 1155–1158
Nallapati R, Feng A, Peng F, Allan J. Event threading within news topics. In: Proceedings of the 13th ACM International Conference on Information and Knowledge Management. 2004, 446–453
Mihalcea R, Tarau P. Textrank: bringing order into texts. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. 2004, 404–411
Peng H, Li J, Song Y, Liu Y. Incrementally learning the hierarchical softmax function for neural language models. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017
NguyenD TJungJ EReal-time event detection for online behavioral analysis of big social dataFuture Generation Computer Systems20176613714510.1016/j.future.2016.04.012
AngelAKoudasNSarkasNSrivastavaDSvendsenMTirthapuraSDense subgraph maintenance under streaming edge weight updates for real-time story identificationThe VLDB Journal201423217519910.1007/s00778-013-0340-z
Benson E, Haghighi A, Barzilay R. Event discovery in social media feeds. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011, 389–398
Wang J, Tong W, Yu H, Li M, Ma X, Cai H, Hanratty T, Han J. Mining multi-aspect reflection of news events in twitter: discovery, linking and presentation. In: Proceedings of the 15th IEEE International Conference on Data Mining. 2016, 429–438
Li D, Chakradhar S, Becchi M. Grapid: a compilation and runtime framework for rapid prototyping of graph applications on many-core processors. In: Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems. 2015, 174–182
Zhao J, Dong L, Wu J, Xu K. Moodlens: an emoticon-based sentiment analysis system for Chinese tweets. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012, 1528–1531
GuilleAFavreCEvent detection, tracking, and visualization in twitter: a mention-anomaly-based approachSocial Network Analysis & Mining2015511810.1007/s13278-015-0258-0
PallaGDerényiIFarkasIVicsekTUncovering the overlapping community structure of complex networks in nature and societyNature2005435704381410.1038/nature03607
Bonchi F, Bordino I, Gullo F, Stilo G. Identifying buzzing stories via anomalous temporal subgraph discovery. In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence. 2017, 161–168
8201_CR36
8201_CR15
8201_CR37
8201_CR12
8201_CR35
G Palla (8201_CR45) 2005; 435
W Xie (8201_CR3) 2016; 28
8201_CR11
8201_CR33
8201_CR30
M K Agarwal (8201_CR14) 2012; 5
C C Yang (8201_CR25) 2009; 39
8201_CR18
8201_CR19
8201_CR16
8201_CR38
8201_CR17
8201_CR39
D T Nguyen (8201_CR32) 2017; 66
X Zhang (8201_CR5) 2015; 149
J Li (8201_CR4) 2016; 28
8201_CR1
8201_CR47
8201_CR26
8201_CR23
8201_CR6
8201_CR24
8201_CR46
8201_CR7
8201_CR21
8201_CR43
8201_CR8
8201_CR22
8201_CR44
8201_CR9
8201_CR41
8201_CR20
8201_CR42
8201_CR29
8201_CR27
8201_CR28
A Guille (8201_CR2) 2015; 5
A Angel (8201_CR13) 2014; 23
H Peng (8201_CR31) 2018; 86
8201_CR40
G Lejeune (8201_CR34) 2015; 65
X Cheng (8201_CR10) 2014; 26
References_xml – reference: Bonchi F, Bordino I, Gullo F, Stilo G. Identifying buzzing stories via anomalous temporal subgraph discovery. In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence. 2017, 161–168
– reference: Devlin J, Chang M, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding. 2018, arXiv preprint arXiv:1810.04805
– reference: Reid F, Mcdaid A, Hurley N. Percolation computation in complex networks. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2012, 274–281
– reference: AgarwalM KBhideMBhideMReal time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environmentsProceedings of the VLDB Endowment201251098099110.14778/2336664.2336671
– reference: XieWZhuFJiangJLimE PWangKTopicsketch: real-time bursty topic detection from twitterIEEE Transactions on Knowledge & Data Engineering20162882216222910.1109/TKDE.2016.2556661
– reference: Marcus A, Bernstein M S, Badar O, Karger D R, Madden S, Miller R C. Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2011, 227–236
– reference: Wang J, Tong W, Yu H, Li M, Ma X, Cai H, Hanratty T, Han J. Mining multi-aspect reflection of news events in twitter: discovery, linking and presentation. In: Proceedings of the 15th IEEE International Conference on Data Mining. 2016, 429–438
– reference: Lin C, Lin C, Li J, Wang D, Chen Y, Li T. Generating event storylines from microblogs. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management. 2012, 175–184
– reference: Weiler A, Grossniklaus M, Scholl M H. Event identification and tracking in social media streaming data. In: Proceedings of the Workshop on Multimodal Social Data Management. 2014, 798–807
– reference: Li D, Chakradhar S, Becchi M. Grapid: a compilation and runtime framework for rapid prototyping of graph applications on many-core processors. In: Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems. 2015, 174–182
– reference: Li D, Chen X, Becchi M, Zong Z. Evaluating the energy efficiency of deep convolutional neural networks on CPUs and GPUs. In: Proceedings of IEEE International Conferences on Big Data and Cloud Computing, Social Computing and Networking, Sustainable Computing and Communications. 2016, 477–484
– reference: Lu Z, Yu W, Zhang R, Li J, Wei H. Discovering event evolution chain in microblog. In: Proceedings of the 17th IEEE International Conference on High Performance Computing and Communications. 2015, 635–640
– reference: LejeuneGBrixtelRDoucetALucasNMultilingual event extraction for epidemic detectionArtificial Intelligence in Medicine201565213114310.1016/j.artmed.2015.06.005
– reference: Zhou P, Wu B, Cao Z. Emmbtt: a novel event evolution model based on TFxIEF and TDC in tracking news streams. In: Proceedings of the 2nd IEEE International Conference on Data Science in Cyberspace. 2017, 102–107
– reference: Yu W, Li J, Bhuiyan M Z A, Zhang R, Huai J. Ring: real-time emerging anomaly monitoring system over text streams. IEEE Transactions on Big Data, 2017, DOI:https://doi.org/10.1109/TBDATA.2017.2672672
– reference: Yu W, Aggarwal C C, Ma S, Wang H. On anomalous hotspot discovery in graph streams. In: Proceedings of the 13th IEEE International Conference on Data Mining. 2014, 1271–1276
– reference: PengHBaoMLiJBhuiyanM ZLiuYHeYYangEIncremental term representation learning for social network analysisFuture Generation Computer Systems2018861503151210.1016/j.future.2017.05.020
– reference: Agerri R, Aldabe I, Laparra E, Rigau G, Fokkens A, Huijgen P, Erp M V, Bevia R I, Vossen P, Minard A L. Multilingual event detection using the newsreader pipelines. In: Proceedings of International Conference on Language Resources and Evaluation. 2016
– reference: LiJWenJTaiZZhangRYuWBursty event detection from microblog: a distributed and incremental approachConcurrency & Computation Practice & Experience201628113115313010.1002/cpe.3657
– reference: Yan X, Guo J, Lan Y, Cheng X. A biterm topic model for short texts. In: Proceedings of the 22nd International Conference on World Wide Web. 2013, 1445–1456
– reference: Peng H, Li J, Song Y, Liu Y. Incrementally learning the hierarchical softmax function for neural language models. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017
– reference: Liu Y, Peng H, Guo J, He T, Li X, Song Y, Li J. Event detection and evolution based on knowledge base. In: Proceedings of the 1st Workshop on Knowledge Base Construction, Reasoning and Mining. 2018, 38–39
– reference: Wang S, Hu X, Yu P S, Li Z. Mmrate: inferring multi-aspect diffusion networks with multi-pattern cascades. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014, 1246–1255
– reference: Manning C D, Surdeanu M, Bauer J, Finkel J, Bethard S J, Mcclosky D. The stanford corenlp natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. 2014
– reference: Benson E, Haghighi A, Barzilay R. Event discovery in social media feeds. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011, 389–398
– reference: Pei L, Lakshmanan L V S, Milios E E. Incremental cluster evolution tracking from highly dynamic network data. In: Proceedings of the 30th IEEE International Conference on Data Engineering. 2014, 3–14
– reference: ChengXYanXLanYGuoJBTM: topic modeling over short textsIEEE Transactions on Knowledge & Data Engineering201426122928294110.1109/TKDE.2014.2313872
– reference: Cai H, Huang Z, Srivastava D, Zhang Q. Indexing evolving events from tweet streams. In: Proceedings of the 32nd IEEE International Conference on Data Engineering. 2016, 1538–1539
– reference: Li D, Becchi M. Deploying graph algorithms on GPUs: an adaptive solution. In: Proceedings of the 27th IEEE International Symposium on Parallel and Distributed Processing. 2013, 1013–1024
– reference: ZhangXChenXChenYWangSLiZXiaJEvent detection and popularity prediction in microbloggingNeurocomputing20151491469148010.1016/j.neucom.2014.08.045
– reference: Mathioudakis M, Koudas N. Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. 2010, 1155–1158
– reference: Li D, Wu H, Becchi M. Exploiting dynamic parallelism to efficiently support irregular nested loops on GPUs. In: Proceedings of International Workshop on Code Optimisation for Multi and Many Cores. 2015
– reference: NguyenD TJungJ EReal-time event detection for online behavioral analysis of big social dataFuture Generation Computer Systems20176613714510.1016/j.future.2016.04.012
– reference: Zhao J, Dong L, Wu J, Xu K. Moodlens: an emoticon-based sentiment analysis system for Chinese tweets. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012, 1528–1531
– reference: Peng H, Li J, He Y, Liu Y, Bao M, Wang L, Song Y, Yang Q. Large-scale hierarchical text classification with recursively regularized deep graph-CNN. In: Proceedings of the 2018 World Wide Web Conference. 2018, 1063–1072
– reference: Li D, Sajjapongse K, Truong H, Conant G, Becchi M. A distributed CPU-GPU framework for pairwise alignments on large-scale sequence datasets. In: Proceedings of the 24th IEEE International Conference on Application-Specific Systems, Architectures and Processors. 2013, 329–338
– reference: Nallapati R, Feng A, Peng F, Allan J. Event threading within news topics. In: Proceedings of the 13th ACM International Conference on Information and Knowledge Management. 2004, 446–453
– reference: GuilleAFavreCEvent detection, tracking, and visualization in twitter: a mention-anomaly-based approachSocial Network Analysis & Mining2015511810.1007/s13278-015-0258-0
– reference: Leskovec J, Backstrom L, Kleinberg J. Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009, 497–506
– reference: Ge T, Pei W, Ji H, Li S, Chang B, Sui Z. Bring you to the past: automatic generation of topically relevant event chronicles. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2015, 575–585
– reference: Mihalcea R, Tarau P. Textrank: bringing order into texts. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. 2004, 404–411
– reference: Lee P, Lakshmanan L V S, Milios E E. Event evolution tracking from streaming social posts. Computer Science, 2013
– reference: Cordeiro M. Twitter event detection: combining wavelet analysis and topic inference summarization. In: Proceedings of the Doctoral Symposium on Informatics Engineering. 2012, 11–16
– reference: Ioffe S. Improved consistent sampling, weighted minhash, l1 sketching. In: Proceedings of IEEE International Conference on Data Mining. 2010, 246–255
– reference: AngelAKoudasNSarkasNSrivastavaDSvendsenMTirthapuraSDense subgraph maintenance under streaming edge weight updates for real-time story identificationThe VLDB Journal201423217519910.1007/s00778-013-0340-z
– reference: PallaGDerényiIFarkasIVicsekTUncovering the overlapping community structure of complex networks in nature and societyNature2005435704381410.1038/nature03607
– reference: YangC CShiXWeiC PDiscovering event evolution graphs from news corporaEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans200939485086310.1109/TSMCA.2009.2015885
– volume: 39
  start-page: 850
  issue: 4
  year: 2009
  ident: 8201_CR25
  publication-title: EEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans
  doi: 10.1109/TSMCA.2009.2015885
– volume: 86
  start-page: 1503
  year: 2018
  ident: 8201_CR31
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.05.020
– ident: 8201_CR6
  doi: 10.1109/TBDATA.2017.2672672
– ident: 8201_CR1
  doi: 10.1145/1807167.1807306
– volume: 149
  start-page: 1469
  year: 2015
  ident: 8201_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.045
– volume: 5
  start-page: 980
  issue: 10
  year: 2012
  ident: 8201_CR14
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/2336664.2336671
– ident: 8201_CR33
– ident: 8201_CR17
  doi: 10.1109/WI.2016.0032
– ident: 8201_CR21
  doi: 10.1109/ASAP.2013.6567598
– ident: 8201_CR22
  doi: 10.1109/IPDPS.2013.101
– ident: 8201_CR28
  doi: 10.1145/1978942.1978975
– ident: 8201_CR35
– ident: 8201_CR16
  doi: 10.1109/ICDM.2015.112
– ident: 8201_CR12
– ident: 8201_CR11
  doi: 10.1145/3178876.3186005
– ident: 8201_CR43
  doi: 10.1145/2339530.2339772
– ident: 8201_CR40
  doi: 10.1109/ICDM.2013.32
– volume: 5
  start-page: 18
  issue: 1
  year: 2015
  ident: 8201_CR2
  publication-title: Social Network Analysis & Mining
  doi: 10.1007/s13278-015-0258-0
– ident: 8201_CR26
– ident: 8201_CR44
  doi: 10.1109/ICDM.2010.80
– ident: 8201_CR19
  doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.76
– ident: 8201_CR47
– ident: 8201_CR8
  doi: 10.1145/2484702.2484703
– ident: 8201_CR18
  doi: 10.1109/PADSW.2014.7097806
– ident: 8201_CR37
  doi: 10.3115/v1/P15-1056
– volume: 26
  start-page: 2928
  issue: 12
  year: 2014
  ident: 8201_CR10
  publication-title: IEEE Transactions on Knowledge & Data Engineering
  doi: 10.1109/TKDE.2014.2313872
– ident: 8201_CR36
  doi: 10.1145/2396761.2396787
– volume: 435
  start-page: 814
  issue: 7043
  year: 2005
  ident: 8201_CR45
  publication-title: Nature
  doi: 10.1038/nature03607
– volume: 28
  start-page: 3115
  issue: 11
  year: 2016
  ident: 8201_CR4
  publication-title: Concurrency & Computation Practice & Experience
  doi: 10.1002/cpe.3657
– ident: 8201_CR9
  doi: 10.1145/2488388.2488514
– ident: 8201_CR20
  doi: 10.1145/2723772.2723780
– volume: 23
  start-page: 175
  issue: 2
  year: 2014
  ident: 8201_CR13
  publication-title: The VLDB Journal
  doi: 10.1007/s00778-013-0340-z
– ident: 8201_CR41
  doi: 10.1109/ASONAM.2012.54
– volume: 28
  start-page: 2216
  issue: 8
  year: 2016
  ident: 8201_CR3
  publication-title: IEEE Transactions on Knowledge & Data Engineering
  doi: 10.1109/TKDE.2016.2556661
– ident: 8201_CR7
– ident: 8201_CR30
  doi: 10.1609/aaai.v31i1.10994
– volume: 65
  start-page: 131
  issue: 2
  year: 2015
  ident: 8201_CR34
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2015.06.005
– ident: 8201_CR23
  doi: 10.1145/2623330.2623728
– ident: 8201_CR27
  doi: 10.1109/HPCC-CSS-ICESS.2015.81
– volume: 66
  start-page: 137
  year: 2017
  ident: 8201_CR32
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2016.04.012
– ident: 8201_CR42
– ident: 8201_CR24
  doi: 10.1145/1557019.1557077
– ident: 8201_CR46
  doi: 10.1145/1031171.1031258
– ident: 8201_CR15
  doi: 10.1109/ICDE.2016.7498413
– ident: 8201_CR38
  doi: 10.1109/DSC.2017.53
– ident: 8201_CR39
  doi: 10.3115/v1/P14-5010
– ident: 8201_CR29
SSID ssj0002025522
Score 2.4412744
Snippet Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but...
SourceID proquest
crossref
springer
higheredpress
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 145612
SubjectTerms Computer Science
Correlation analysis
Earthquakes
event detection
event evolution
Evolution
Keywords
multi-lingual anomaly detection
Multilingualism
Research Article
Semantics
stream processing
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odhHE-ROnU3LwpGS0SZu2xyHqUPS0wTyFpElR1Cqu8-Bfb5K2lg0d7NRDk9C-l-R9L-_LewBnVGWKUhbjgMUeDqRHsWSBxCmNmWSChMolq75_YMNxcDsJJ9U97mnNdq9Dkm6nbi67-ZFjTCTYWi3M1qFt4IcXtqA9uHm8a45WiMXJLn5ADIDA9oyjjmf-Nc6cRdp8cvQKrRwNdQ52LkRKnQG67sCo_vSSd_LSnxWyn34vZHVc8d-2YasCpGhQzqAdWNP5LnTqYg-oWvt7YDC3sU9I6cKRt3IkcoX0VzVz0XOOHDcR2-vtMzNgeRiP7F0U8Tbdh_H11ehyiKvaC0ZLLCyw8gObWkxERIcy9JjZ2IiIYqFoTDLFzDPLEpoanzYOpZ_oRBq_TsWpQQ-BAUmEHkArf8_1ISCRJS5qLGjIgswXItIGc5GIZDRKJVFd8Gr587RKTG7rY7zyJqWyFQ834uFWPJx14fy3y0eZlWNZY39OqTyzqSFsofFlfXq14nm1qKecJH5sHOaI-l24qPXYvP53sKOVWh_DBrE-vSMM9qBVfM70iQE-hTytJvoPZ6H0iA
  priority: 102
  providerName: Springer Nature
Title Event detection and evolution in multi-lingual social streams
URI https://journal.hep.com.cn/fcs/EN/10.1007/s11704-019-8201-6
https://link.springer.com/article/10.1007/s11704-019-8201-6
https://www.proquest.com/docview/2918721731
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vQjiW6zWkoMnJdhNdrPZk1TpA8UiYqGelmSTRUG31bb-fpM021LBnvaQTQ6TZOabmS8zABdU5YpSxnHIeBOHskmxZKHEGeVMMkEi5YpVP_ZZbxDeD6OhD7hNPK2y1IlOUatRZmPk1yQJuPFWYhrcjL-w7Rpls6u-hcYmVI0K5rwC1dt2_-l5EWUhFjK7VAIxWALbcEeZ2nTv54LYkTASbA0hZivGafvNMS20cozUFQT6J2nqbFFnD3Y8iESt-a7vw4YuDmC3bNCA_H09BIOTjU1BSk8d4apAolBI__jTht4L5PiE2D5Jn5kF5wF0ZN-PiM_JEQw67Ze7Hvb9EoxkWTTFKghtOTAREx3JqMmMMiIi5kJRTnLFzDfPE5oZP5RHMkh0Io0vpnhmLH5ogA2hx1ApRoU-ASTyxGV6BY1YmAdCxNrgJBKTnMaZJKoGzVJQaeaLidueFh_psgyylW1qZJta2aasBpeLKeN5JY11Pwcr0k9zW87BNgdfN6de7lDqL-IkXR6bGlyVu7Yc_nex0_WLncEWsY63Y_XVoTL9nulzg06msgGbvNNtQLXVfX1oN_yB_AVEmN8k
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-qtgNIaONTlHXgA1xA1ho7cZIDQhNQOtrttEq9eXbsaEiQbjTbtH-Kv5H3nGRVkehtpxwSO9Lz8_t-vwfwVrrSSakyHqtsyGM7lNyq2PJCZsoqIxIXwKqPT9R4Fn-fJ_Me_Ol6YaisspOJQVC7RUEx8gORRxl6K6mMPl1ccpoaRdnVboRGwxYTf3uDLtvy49EXPN93Qoy-nn4e83aqAP5fJTV3UUygWSYVPrHJUOGVFSbNjJOZKJ3CZ1nmskBvLUtslPvcosfisgL1Yozqn4AOUORvxxI1OXWmj77dxXQEGeghcSHQcuEUXOkSqaFbL0pDyUfOSe1ytaYKH52Hug7vQv3rmr37T4o2aL7RY9hpTVZ22PDYE-j56insduMgWCsdngFa5ajBmPN1KO-qmKkc89ctb7MfFQvVi5wa4K9wwyZcz6hbxfxaPofZvdDxBWxVi8q_BGbKPOSVjUxUXEbGpB6tMpGKUqaFFa4Pw45Qumihy2mCxk-9Al0m2mqkrSbaatWH93dLLhrcjk0fR2vU1yWBR9Ao8k1rBt0J6fbaL_WKSfvwoTu11ev_bvZq82Zv4MH49Hiqp0cnkz14KMjlD_WEA9iqf1_5fbSLavs6MCODs_vm_r_hjxYP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRaoqVUBLUZev-tBTK-8mtuM4RwQsUFrUQ5HoydixLRBtQGyWA78e20kaLWqRKk45JB7Jnon9xjPzBuAjNc5QygVmXCSY6YRizZnGJRVcc0UyE8mqv53ww1P25Sw7a_ucTrts9y4k2dQ0BJamqh7fGDfuC9_SPGZPFDicYJi_gEWWiFwMYHHn4Odxf81CAmaOsQTiwQQO9x1dbPNvcuZOp9cXMdXCmpiSOgdBH0VN42E0WYbzbhpNDsrVaFbrUXn_iOHxGfNcgaUWqKKdxrLewIKt3sJy1wQCtXvCKngs7uUhY-uY1FUhVRlk71qLRpcVijmLOJS9z7zA5pIehRoV9Xv6Dk4n-z92D3Hbk8Frj2c1NikLlGMqJzbTWcL9hkdULpShgjjD_dO5gpbe1xWZTgtbaO_vGVF6VME8eCJ0DQbVdWXfA1KuiNFkRTPOXKpUbj0WIzlxNC81MUNIOl3IsiUsD30zfsmeajksj_TLI8PySD6ET3-G3DRsHU99nM4pWLpAGREakD81ZrMzAtn-7FNJilR4Rzqn6RA-dzrtX_9T2Pp_ff0BXn7fm8ivRyfHG_CKBLc_5hRuwqC-ndktj41qvd3a_wMfqwBq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event+detection+and+evolution+in+multi-lingual+social+streams&rft.jtitle=Frontiers+of+Computer+Science&rft.au=Liu%2C+Yaopeng&rft.au=Peng%2C+Hao&rft.au=Li%2C+Jianxin&rft.au=Song%2C+Yangqiu&rft.date=2020-10-01&rft.issn=2095-2228&rft.eissn=2095-2236&rft.volume=14&rft.issue=5&rft_id=info:doi/10.1007%2Fs11704-019-8201-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11704_019_8201_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2228&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2228&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2228&client=summon