Hydrophobic organic coating based water--solid TENG for water-flow energy collection and self-powered cathodic protection

Water-solid triboelectric nanogenerators (TENGs), as new energy collection devices, have attracted increasing attention in ocean energy harvesting and self-powered sensing. Polyacrylic acid (PAA) coating, usually used on the surface of marine equipment, has the property of anti-aging and anti-wear b...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of materials science Vol. 15; no. 4; pp. 601 - 610
Main Authors LIU, Yupeng, SUN, Guoyun, LIU, Ying, SUN, Weixiang, WANG, Daoai
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water-solid triboelectric nanogenerators (TENGs), as new energy collection devices, have attracted increasing attention in ocean energy harvesting and self-powered sensing. Polyacrylic acid (PAA) coating, usually used on the surface of marine equipment, has the property of anti-aging and anti-wear but limits triboelectrical output when used with TENGs. In this paper, polyacrylic acid coating was modified with fluorinated polyacrylate resin (F-PAA) to increase its triboelectrical output, by 6 times, and also to increase its anti-corrosion property. In addition, the corrosion resistance property can be further enhanced by cathodic protection using the electrical output generated by the water-flow triboelectrical energy transfer process. Given their easy fabrication, water-flow energy harvesting, and corrosion resistance, PAA/F-PAA coating-based TENGs have promising applications in river and ocean energy collection and corrosion protection.
AbstractList Water-solid triboelectric nanogenerators (TENGs), as new energy collection devices, have attracted increasing attention in ocean energy harvesting and self-powered sensing. Polyacrylic acid (PAA) coating, usually used on the surface of marine equipment, has the property of anti-aging and anti-wear but limits triboelectrical output when used with TENGs. In this paper, polyacrylic acid coating was modified with fluorinated polyacrylate resin (F-PAA) to increase its triboelectrical output, by 6 times, and also to increase its anti-corrosion property. In addition, the corrosion resistance property can be further enhanced by cathodic protection using the electrical output generated by the water-flow triboelectrical energy transfer process. Given their easy fabrication, water-flow energy harvesting, and corrosion resistance, PAA/F-PAA coating-based TENGs have promising applications in river and ocean energy collection and corrosion protection.
Author LIU, Yupeng
SUN, Weixiang
SUN, Guoyun
WANG, Daoai
LIU, Ying
Author_xml – sequence: 1
  givenname: Yupeng
  surname: LIU
  fullname: LIU, Yupeng
  organization: Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
– sequence: 2
  givenname: Guoyun
  surname: SUN
  fullname: SUN, Guoyun
  organization: Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
– sequence: 3
  givenname: Ying
  surname: LIU
  fullname: LIU, Ying
  email: liuyingwda@ouc.edu.cn (Y.L.)
  organization: Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
– sequence: 4
  givenname: Weixiang
  surname: SUN
  fullname: SUN, Weixiang
  organization: School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266100, China
– sequence: 5
  givenname: Daoai
  surname: WANG
  fullname: WANG, Daoai
  email: wangda@licp.cas.cn (D.W.)
  organization: Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
BookMark eNp9kEFr3DAQhUVJIGmSH5CboWe1kmVJ3mMJaVIIySWB3MRYHnkVXMmVFJb999Xi0EIPq8uI4X1vHu8zOQkxICHXnH3ljOlvmXPNFGUtp0xqScUnct6yjawb1Z_8_cvXM3KV8xurT3K56fg52d_vxxSXbRy8bWKaINRpIxQfpmaAjGOzg4KJ0hxnPzbPt493jYvpY-vmuGswYJr2lZpntMXH0EAYm4yzo0vcYaoeFso2jtV6SbGsokty6mDOePUxL8jLj9vnm3v68HT38-b7A7VCyULtMA5Cd6IbFCLvhQMJCp12fMNbzXpkIFSPVdaB7kbpgEk2jBtwzCKAFRfky-pbT_9-x1zMW3xPoZ40reK6Z0JxVVV6VdkUc07ojPUFDjlLAj8bzsyharNWbWrV5lC1EZXk_5FL8r8g7Y8y7crkqg0Tpn-ZjkH9Cm39tD20uiTM2bhUM3pMx9A_mxKnXA
CitedBy_id crossref_primary_10_1002_admt_202300802
crossref_primary_10_3390_s23020579
crossref_primary_10_2139_ssrn_4134287
crossref_primary_10_1039_D3MH00614J
crossref_primary_10_1002_aesr_202200186
crossref_primary_10_1016_j_apsusc_2022_154765
crossref_primary_10_1007_s11706_023_0635_y
crossref_primary_10_1007_s12274_023_5623_0
crossref_primary_10_1039_D4TA02760D
crossref_primary_10_1002_adem_202201442
Cites_doi 10.1016/j.corsci.2013.11.026
10.1016/j.cej.2020.126863
10.1007/s12274-017-1805-y
10.1002/adma.201400021
10.1038/nature06601
10.1021/acsami.5b10923
10.1002/aenm.201501152
10.1021/acsami.1c06330
10.1021/nn4053292
10.1038/nature21002
10.1016/j.nanoen.2017.04.048
10.1039/C6SC02562E
10.1016/j.corsci.2015.05.059
10.1002/adma.201400373
10.1002/maco.201106060
10.1021/nn5012732
10.1021/acsnano.6b03293
10.1002/adfm.201304295
10.1038/ncomms9975
10.1016/j.nanoen.2017.06.017
10.1038/s41529-017-0005-2
10.1021/acsnano.5b07157
10.1016/j.renene.2015.07.015
10.1016/j.corsci.2014.01.009
10.1016/j.nanoen.2014.11.041
10.1021/nn406565k
10.1021/acsnano.1c04258
10.3390/en9121056
10.1016/S1006-706X(08)60247-2
10.1002/adfm.201401168
10.1021/nn501732z
10.1002/aenm.201502566
10.1016/j.corsci.2010.04.018
10.1016/j.oceaneng.2016.08.017
ContentType Journal Article
Copyright Copyright reserved, 2021, Higher Education Press
Higher Education Press 2021
Higher Education Press 2021.
Copyright_xml – notice: Copyright reserved, 2021, Higher Education Press
– notice: Higher Education Press 2021
– notice: Higher Education Press 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11706-021-0575-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2095-0268
EndPage 610
ExternalDocumentID 10_1007_s11706_021_0575_3
10.1007/s11706-021-0575-3
GroupedDBID -58
-5G
-BR
-EM
-~C
.VR
06C
06D
0R~
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40E
5VS
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9N
PF0
PT4
QOR
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z85
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AFBBN
AGRTI
AIGIU
SJYHP
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
Q--
U1G
U5L
ABRTQ
ID FETCH-LOGICAL-c365t-cbdb37434b6ee183fa5a6ef7f1912708e0a368ecbd4a74d5fa050bd9af0ceaac3
IEDL.DBID U2A
ISSN 2095-025X
IngestDate Fri Jul 25 11:00:21 EDT 2025
Tue Jul 01 02:09:54 EDT 2025
Thu Apr 24 23:00:32 EDT 2025
Fri Feb 21 02:46:30 EST 2025
Tue Feb 27 04:42:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords hydrophobic coating
anticorrosion
TENG
cathodic protection
energy collection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-cbdb37434b6ee183fa5a6ef7f1912708e0a368ecbd4a74d5fa050bd9af0ceaac3
Notes Document accepted on :2021-09-30
anticorrosion
energy collection
Document received on :2021-08-11
hydrophobic coating
TENG
cathodic protection
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2617803616
PQPubID 2044428
PageCount 10
ParticipantIDs proquest_journals_2617803616
crossref_citationtrail_10_1007_s11706_021_0575_3
crossref_primary_10_1007_s11706_021_0575_3
springer_journals_10_1007_s11706_021_0575_3
higheredpress_frontiers_10_1007_s11706_021_0575_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of materials science
PublicationTitleAbbrev Front. Mater. Sci
PublicationYear 2021
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Henriques, Gomes, Gato (CR18) 2016; 85
Feng, Zheng, Zhang (CR2) 2017; 38
Zhou, Zhang, Zhang (CR24) 2012; 63
Zhang, Yang, Zhong (CR10) 2014; 8
Bailey, Robertson, Buckham (CR19) 2016; 125
Zhu, Zhou, Bai (CR12) 2014; 26
Hou, Li, Ma (CR21) 2017; 1
Patrick, Robb, Sottos (CR23) 2016; 540
Guo, Li, Chen (CR32) 2014; 24
Cui, Zheng, Liang (CR33) 2018; 11
Cheng, Lin, Du (CR17) 2014; 8
Christodoulou, Glass, Webb (CR28) 2010; 52
Yun, Kim, Ko (CR4) 2017; 36
Tang, Zheng, Yuan (CR5) 2021; 13
Zhang, Zhang, Yao (CR31) 2015; 7
Li, Wang, Liu (CR27) 2014; 82
Zhao, Liu, Gao (CR26) 2014; 80
Zhao, Pu, Du (CR9) 2016; 10
Zhong, Zhang, Zhong (CR11) 2014; 8
Qiang, Guo, Li (CR22) 2021; 406
Cui, Zheng, Liang (CR30) 2016; 7
Qin, Wang, Wang (CR14) 2008; 451
Xiao, Dong, Li (CR25) 2008; 15
Niu, Wang, Yi (CR7) 2015; 6
Zheng, Cheng, Chen (CR3) 2015; 5
Zhu, Tang, Gao (CR34) 2015; 14
Yang, Zhang, Wang (CR15) 2014; 24
Cui, Yin, Yu (CR29) 2015; 98
Zhang, Jiang, Li (CR6) 2021; 15
Sheng, Lewis (CR20) 2016; 9
Wen, Guo, Zi (CR1) 2016; 10
Lin, Cheng, Lee (CR8) 2014; 26
Zhu, Su, Bai (CR13) 2014; 8
Lee, Yoon, Jiang (CR16) 2016; 6
J C C Henriques (575_CR18) 2016; 85
G Cheng (575_CR17) 2014; 8
C Christodoulou (575_CR28) 2010; 52
S W Cui (575_CR29) 2015; 98
L Zhao (575_CR26) 2014; 80
Y Yang (575_CR15) 2014; 24
L Zheng (575_CR3) 2015; 5
Q Zhang (575_CR6) 2021; 15
H Zhang (575_CR10) 2014; 8
S Cui (575_CR30) 2016; 7
W X Guo (575_CR32) 2014; 24
K Y Lee (575_CR16) 2016; 6
H R Zhu (575_CR34) 2015; 14
J F Patrick (575_CR23) 2016; 540
Z Wen (575_CR1) 2016; 10
G Zhu (575_CR13) 2014; 8
Y Qin (575_CR14) 2008; 451
M J Zhou (575_CR24) 2012; 63
Z H Lin (575_CR8) 2014; 26
S W Cui (575_CR33) 2018; 11
B K Yun (575_CR4) 2017; 36
H Zhang (575_CR31) 2015; 7
S Niu (575_CR7) 2015; 6
H Bailey (575_CR19) 2016; 125
H Li (575_CR27) 2014; 82
N Tang (575_CR5) 2021; 13
Y Qiang (575_CR22) 2021; 406
J Zhong (575_CR11) 2014; 8
Y Feng (575_CR2) 2017; 38
B Hou (575_CR21) 2017; 1
Z Zhao (575_CR9) 2016; 10
G Zhu (575_CR12) 2014; 26
W Sheng (575_CR20) 2016; 9
K Xiao (575_CR25) 2008; 15
References_xml – volume: 80
  start-page: 177
  year: 2014
  end-page: 183
  ident: CR26
  article-title: One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2013.11.026
– volume: 406
  start-page: 126863
  year: 2021
  ident: CR22
  article-title: Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.126863
– volume: 11
  start-page: 1873
  issue: 4
  year: 2018
  end-page: 1882
  ident: CR33
  article-title: Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind
  publication-title: Nano Research
  doi: 10.1007/s12274-017-1805-y
– volume: 26
  start-page: 3788
  issue: 23
  year: 2014
  end-page: 3796
  ident: CR12
  article-title: A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification
  publication-title: Advanced Materials
  doi: 10.1002/adma.201400021
– volume: 451
  start-page: 809
  issue: 7180
  year: 2008
  end-page: 813
  ident: CR14
  article-title: Microfibre-nanowire hybrid structure for energy scavenging
  publication-title: Nature
  doi: 10.1038/nature06601
– volume: 7
  start-page: 28142
  issue: 51
  year: 2015
  end-page: 28147
  ident: CR31
  article-title: Simultaneously harvesting thermal and mechanical energies based on flexible hybrid nanogenerator for self-powered cathodic protection
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.5b10923
– volume: 5
  start-page: 1501152
  issue: 21
  year: 2015
  ident: CR3
  article-title: A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201501152
– volume: 13
  start-page: 32106
  issue: 27
  year: 2021
  end-page: 32114
  ident: CR5
  article-title: High-performance polyimide-based water-solid triboelectric nanogenerator for hydropower harvesting
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c06330
– volume: 8
  start-page: 680
  issue: 1
  year: 2014
  end-page: 689
  ident: CR10
  article-title: Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires
  publication-title: ACS Nano
  doi: 10.1021/nn4053292
– volume: 540
  start-page: 363
  issue: 7633
  year: 2016
  end-page: 370
  ident: CR23
  article-title: Polymers with autonomous life-cycle control
  publication-title: Nature
  doi: 10.1038/nature21002
– volume: 36
  start-page: 233
  year: 2017
  end-page: 240
  ident: CR4
  article-title: Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.048
– volume: 7
  start-page: 6477
  issue: 10
  year: 2016
  end-page: 6483
  ident: CR30
  article-title: Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection
  publication-title: Chemical Science
  doi: 10.1039/C6SC02562E
– volume: 98
  start-page: 471
  year: 2015
  end-page: 477
  ident: CR29
  article-title: Polypyrrole nanowire/TiO nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2015.05.059
– volume: 26
  start-page: 4690
  issue: 27
  year: 2014
  end-page: 4696
  ident: CR8
  article-title: Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process
  publication-title: Advanced Materials
  doi: 10.1002/adma.201400373
– volume: 63
  start-page: 703
  issue: 8
  year: 2012
  end-page: 706
  ident: CR24
  article-title: Photocathodic protection properties of NiP/TiO bilayer coatings by a combined electroless plating and sol-gel method
  publication-title: Materials and Corrosion-Werkstoffe und Korrosion
  doi: 10.1002/maco.201106060
– volume: 8
  start-page: 6031
  issue: 6
  year: 2014
  end-page: 6037
  ident: CR13
  article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface
  publication-title: ACS Nano
  doi: 10.1021/nn5012732
– volume: 10
  start-page: 6526
  issue: 7
  year: 2016
  end-page: 6534
  ident: CR1
  article-title: Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03293
– volume: 24
  start-page: 3745
  issue: 24
  year: 2014
  end-page: 3750
  ident: CR15
  article-title: Direct-current triboelectric generator
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201304295
– volume: 6
  start-page: 8975
  issue: 1
  year: 2015
  ident: CR7
  article-title: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics
  publication-title: Nature Communications
  doi: 10.1038/ncomms9975
– volume: 38
  start-page: 467
  year: 2017
  end-page: 476
  ident: CR2
  article-title: A new protocol toward high output TENG with polyimide as charge storage layer
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.017
– volume: 1
  start-page: 4
  issue: 1
  year: 2017
  ident: CR21
  article-title: The cost of corrosion in China
  publication-title: NPJ Materials Degradation
  doi: 10.1038/s41529-017-0005-2
– volume: 10
  start-page: 1780
  issue: 2
  year: 2016
  end-page: 1787
  ident: CR9
  article-title: Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07157
– volume: 85
  start-page: 714
  year: 2016
  end-page: 724
  ident: CR18
  article-title: Testing and control of a power take-off system for an oscillating-water-column wave energy converter
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2015.07.015
– volume: 82
  start-page: 145
  year: 2014
  end-page: 153
  ident: CR27
  article-title: Ag and SnO co-sensitized TiO photoanodes for protection of 304SS under visible light
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2014.01.009
– volume: 14
  start-page: 193
  year: 2015
  end-page: 200
  ident: CR34
  article-title: Self-powered metal surface anticorrosion protection using energy harvested from rain drops and wind
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.041
– volume: 8
  start-page: 1932
  issue: 2
  year: 2014
  end-page: 1939
  ident: CR17
  article-title: Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/nn406565k
– volume: 15
  start-page: 12314
  issue: 7
  year: 2021
  end-page: 12323
  ident: CR6
  article-title: Highly efficient raindrop energy-based triboelectric nanogenerator for self-powered intelligent greenhouse
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04258
– volume: 9
  start-page: 1056
  issue: 12
  year: 2016
  ident: CR20
  article-title: Energy conversion: A comparison of fix- and self-referenced wave energy converters
  publication-title: Energies
  doi: 10.3390/en9121056
– volume: 15
  start-page: 42
  issue: 5
  year: 2008
  end-page: 48
  ident: CR25
  article-title: Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel
  publication-title: Journal of Iron and Steel Research International
  doi: 10.1016/S1006-706X(08)60247-2
– volume: 24
  start-page: 6691
  issue: 42
  year: 2014
  end-page: 6699
  ident: CR32
  article-title: Electrochemical cathodic protection powered by triboelectric nanogenerator
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201401168
– volume: 8
  start-page: 6273
  issue: 6
  year: 2014
  end-page: 6280
  ident: CR11
  article-title: Fiber-based generator for wearable electronics and mobile medication
  publication-title: ACS Nano
  doi: 10.1021/nn501732z
– volume: 6
  start-page: 1502566
  issue: 11
  year: 2016
  ident: CR16
  article-title: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201502566
– volume: 52
  start-page: 2671
  issue: 8
  year: 2010
  end-page: 2679
  ident: CR28
  article-title: Assessing the long term benefits of impressed current cathodic protection
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2010.04.018
– volume: 125
  start-page: 248
  year: 2016
  end-page: 260
  ident: CR19
  article-title: Wave-to-wire simulation of a floating oscillating water column wave energy converter
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.08.017
– volume: 98
  start-page: 471
  year: 2015
  ident: 575_CR29
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2015.05.059
– volume: 24
  start-page: 6691
  issue: 42
  year: 2014
  ident: 575_CR32
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201401168
– volume: 82
  start-page: 145
  year: 2014
  ident: 575_CR27
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2014.01.009
– volume: 52
  start-page: 2671
  issue: 8
  year: 2010
  ident: 575_CR28
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2010.04.018
– volume: 8
  start-page: 680
  issue: 1
  year: 2014
  ident: 575_CR10
  publication-title: ACS Nano
  doi: 10.1021/nn4053292
– volume: 15
  start-page: 12314
  issue: 7
  year: 2021
  ident: 575_CR6
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04258
– volume: 36
  start-page: 233
  year: 2017
  ident: 575_CR4
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.048
– volume: 8
  start-page: 1932
  issue: 2
  year: 2014
  ident: 575_CR17
  publication-title: ACS Nano
  doi: 10.1021/nn406565k
– volume: 10
  start-page: 6526
  issue: 7
  year: 2016
  ident: 575_CR1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03293
– volume: 451
  start-page: 809
  issue: 7180
  year: 2008
  ident: 575_CR14
  publication-title: Nature
  doi: 10.1038/nature06601
– volume: 540
  start-page: 363
  issue: 7633
  year: 2016
  ident: 575_CR23
  publication-title: Nature
  doi: 10.1038/nature21002
– volume: 9
  start-page: 1056
  issue: 12
  year: 2016
  ident: 575_CR20
  publication-title: Energies
  doi: 10.3390/en9121056
– volume: 10
  start-page: 1780
  issue: 2
  year: 2016
  ident: 575_CR9
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07157
– volume: 7
  start-page: 28142
  issue: 51
  year: 2015
  ident: 575_CR31
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.5b10923
– volume: 13
  start-page: 32106
  issue: 27
  year: 2021
  ident: 575_CR5
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c06330
– volume: 8
  start-page: 6273
  issue: 6
  year: 2014
  ident: 575_CR11
  publication-title: ACS Nano
  doi: 10.1021/nn501732z
– volume: 85
  start-page: 714
  year: 2016
  ident: 575_CR18
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2015.07.015
– volume: 125
  start-page: 248
  year: 2016
  ident: 575_CR19
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2016.08.017
– volume: 80
  start-page: 177
  year: 2014
  ident: 575_CR26
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2013.11.026
– volume: 38
  start-page: 467
  year: 2017
  ident: 575_CR2
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.017
– volume: 14
  start-page: 193
  year: 2015
  ident: 575_CR34
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.041
– volume: 24
  start-page: 3745
  issue: 24
  year: 2014
  ident: 575_CR15
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201304295
– volume: 6
  start-page: 1502566
  issue: 11
  year: 2016
  ident: 575_CR16
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201502566
– volume: 6
  start-page: 8975
  issue: 1
  year: 2015
  ident: 575_CR7
  publication-title: Nature Communications
  doi: 10.1038/ncomms9975
– volume: 26
  start-page: 4690
  issue: 27
  year: 2014
  ident: 575_CR8
  publication-title: Advanced Materials
  doi: 10.1002/adma.201400373
– volume: 7
  start-page: 6477
  issue: 10
  year: 2016
  ident: 575_CR30
  publication-title: Chemical Science
  doi: 10.1039/C6SC02562E
– volume: 11
  start-page: 1873
  issue: 4
  year: 2018
  ident: 575_CR33
  publication-title: Nano Research
  doi: 10.1007/s12274-017-1805-y
– volume: 5
  start-page: 1501152
  issue: 21
  year: 2015
  ident: 575_CR3
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201501152
– volume: 1
  start-page: 4
  issue: 1
  year: 2017
  ident: 575_CR21
  publication-title: NPJ Materials Degradation
  doi: 10.1038/s41529-017-0005-2
– volume: 26
  start-page: 3788
  issue: 23
  year: 2014
  ident: 575_CR12
  publication-title: Advanced Materials
  doi: 10.1002/adma.201400021
– volume: 8
  start-page: 6031
  issue: 6
  year: 2014
  ident: 575_CR13
  publication-title: ACS Nano
  doi: 10.1021/nn5012732
– volume: 406
  start-page: 126863
  year: 2021
  ident: 575_CR22
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.126863
– volume: 63
  start-page: 703
  issue: 8
  year: 2012
  ident: 575_CR24
  publication-title: Materials and Corrosion-Werkstoffe und Korrosion
  doi: 10.1002/maco.201106060
– volume: 15
  start-page: 42
  issue: 5
  year: 2008
  ident: 575_CR25
  publication-title: Journal of Iron and Steel Research International
  doi: 10.1016/S1006-706X(08)60247-2
SSID ssj0000515941
Score 2.275236
Snippet Water-solid triboelectric nanogenerators (TENGs), as new energy collection devices, have attracted increasing attention in ocean energy harvesting and...
SourceID proquest
crossref
springer
higheredpress
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms Acrylic resins
anticorrosion
Cathodic coating (process)
Cathodic protection
Chemistry and Materials Science
Collection
Corrosion prevention
Corrosion resistance
Energy
energy collection
Energy harvesting
Energy transfer
hydrophobic coating
Materials Science
Nanogenerators
Organic coatings
Polyacrylic acid
Protective coatings
Research Article
TENG
Water flow
Title Hydrophobic organic coating based water--solid TENG for water-flow energy collection and self-powered cathodic protection
URI https://journal.hep.com.cn/foms/EN/10.1007/s11706-021-0575-3
https://link.springer.com/article/10.1007/s11706-021-0575-3
https://www.proquest.com/docview/2617803616
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58XBQRn1gfZQ-elIU0m83jWKRaFHuyUE9hn1QoSWkr6r93ZptYK1rwmkzmkJnNfJOZ-YaQyzTUSSJFxlxLZwzwbYulqXWMu1TFEeAR4yv4j72424_uB2JQzXFP6273uiTpv9SLYTdkemHYUoAYg_F1sikgdcc-rn7Y_vqxgktLMr-xMgz89LEY1NXM37QsxaOdoW-usMY3oS6Bzh91Uh9-bvfIboUbaXtu6H2yZosDsv2NTfCQvHc_zKQcD0v1oul8W5OmupTY2EwxWhn6BshywsDdXgx96vTuKEDW6qIblW_U-klAis7hW7QKKgtDp3bk2BjXqYEK5HktDWiuGB5A6Ij0bztPN11WLVZgmsdixrQyigN0iFRsLZxpJ4WMrUscJG9hEqQ2kDxOLYhFMomMcDIQgTKZdIG2Ump-TDaKsrAnhDodK5NECvIsFQkO6VvKrXKBjTKlQyEbJKhfb64r1nFcfjHKF3zJaJEcLJKjRXLeIFdfj4znlBurhFtLNssd8j7gFvFVz5zXds2rEzvNkZk-hXDeihvkurb14vafyk7_JX1GtkL0Pd8Pc042ZpNXewGoZqaaZLN99_zQaXpv_gTqmvBr
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VcgCEEJ8iUMAHuIAsbXbXu94DhwpaUtrmlEi5GX-qlaLdKAlK-3v6R5lxdhuCoBKHXndta-UZ2887M-8BvJepLUstKh76tuKIb_tcSh94FqQpcsQjLkbwT4fFYJx_n4jJDlx1tTAx270LScadelPsRkwvnFIKCGPwTrH62F-u8J62-Hz0FY36IU0PD0ZfBryVEuA2K8SSW-NMhodlbgrv0YuDFrrwoQx4XUnLRPpEZ4X02CzXZe5E0IlIjKt0SKzX2mY47h24i9hD0tIZp_vXP3JIJKWKCplpEqudxaSLnv7tq7fOv4dnMZnDu5j0ugVy_4jLxuPu8DE8anEq21871hPY8fVTePAbe-EzuBhcunkzO2vMuWVrdSjLbKMpkZrR6ejYCpHsnKN7nzs2Ohh-YwiR24dh2qyYj5WHjJwxpoTVTNeOLfw08BnJt-EQxCvbOBy5ZZTARs9hfCuz_wJ266b2L4EFWxhX5gbvdSYXGV4XZeZNSHxeGZsK3YOkm15lW5ZzEtuYqg0_M1lEoUUUWURlPfh43WW2pvi4qXF_y2YqEM8EqZbf1Gevs6tqd4iFIiZ8ifChX_TgU2frzet_Dvbqv1q_g3uD0emJOjkaHr-G-yn5YczF2YPd5fynf4OIamneRo9m8OO2l9AvP7cujw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiEQQjxFoMAe4AJa1bF3_ThwqGhDSiHi0Ei5LftUK0V2lASF_ir-IjMbuyEIKnHo1d4dWZ5ZzzeemW8AXpepLQotKx76tuKIb_u8LH3gWShNLhCPuJjB_zLKh2PxaSInO_Cz64WJ1e5dSnLd00AsTfVyf-bC_qbxjVhfOJUXEN7g3fTqE3-xwpht8f74EBX8Jk0HR6cfhrwdK8Btlsslt8aZDB2nMLn3aNFBS537UAQMXdIiKX2is7z0uEzoQjgZdCIT4yodEuu1thnKvQE3BTUf4wEapweXP3VoYEoVp2WmSex8lpMuk_q3p97yhXfPYmGHd7EAdgvw_pGjja5vcB_utZiVHayN7AHs-Poh3PmNyfAR_BheuHkzO2vMuWXrSVGW2UZTUTUjT-nYClHtnKOpnzt2ejT6yBAutxfDtFkxH7sQGRlmLA-rma4dW_hp4DMa5YYiiGO2cSi5ZZfARY9hfC1v_wns1k3tnwILNjeuEAZjPCNkhqFjmXkTEi8qY1Ope5B0r1fZlvGcBm9M1YarmTSiUCOKNKKyHry93DJb031ctbi_pTMViHOCJphftWev06tqvxYLRaz4JUKJft6Dd52uN7f_KezZf61-Bbe-Hg7U5-PRyXO4nZIZxrKcPdhdzr_7FwiuluZlNGgG3677BP0ChRcywg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+organic+coating+based+water-solid+TENG+for+water-flow+energy+collection+and+self-powered+cathodic+protection&rft.jtitle=Frontiers+of+materials+science&rft.au=Liu%2C+Yupeng&rft.au=Sun%2C+Guoyun&rft.au=Liu%2C+Ying&rft.au=Sun%2C+Weixiang&rft.date=2021-12-01&rft.pub=Higher+Education+Press&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=15&rft.issue=4&rft.spage=601&rft.epage=610&rft_id=info:doi/10.1007%2Fs11706-021-0575-3&rft.externalDocID=10_1007_s11706_021_0575_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon