Comparison of bias-corrected covariance estimators for MMRM analysis in longitudinal data with dropouts

In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 26; no. 5; p. 2389
Main Authors Gosho, Masahiko, Hirakawa, Akihiro, Noma, Hisashi, Maruo, Kazushi, Sato, Yasunori
Format Journal Article
LanguageEnglish
Published England 01.10.2017
Subjects
Online AccessGet more information

Cover

Loading…
Abstract In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as a primary analysis for group comparisons in these trials. Furthermore, model-based covariance estimators have been routinely used for testing the group difference and estimating confidence intervals of the difference in the MMRM analysis using the UN covariance. However, using the MMRM analysis with the UN covariance could lead to convergence problems for numerical optimization, especially in trials with a small-sample size. Although the so-called sandwich covariance estimator is robust to misspecification of the covariance structure, its performance deteriorates in settings with small-sample size. We investigated the performance of the sandwich covariance estimator and covariance estimators adjusted for small-sample bias proposed by Kauermann and Carroll ( J Am Stat Assoc 2001; 96: 1387-1396) and Mancl and DeRouen ( Biometrics 2001; 57: 126-134) fitting simpler covariance structures through a simulation study. In terms of the type 1 error rate and coverage probability of confidence intervals, Mancl and DeRouen's covariance estimator with compound symmetry, first-order autoregressive (AR(1)), heterogeneous AR(1), and antedependence structures performed better than the original sandwich estimator and Kauermann and Carroll's estimator with these structures in the scenarios where the variance increased across visits. The performance based on Mancl and DeRouen's estimator with these structures was nearly equivalent to that based on the Kenward-Roger method for adjusting the standard errors and degrees of freedom with the UN structure. The model-based covariance estimator with the UN structure under unadjustment of the degrees of freedom, which is frequently used in applications, resulted in substantial inflation of the type 1 error rate. We recommend the use of Mancl and DeRouen's estimator in MMRM analysis if the number of subjects completing is ( n + 5) or less, where n is the number of planned visits. Otherwise, the use of Kenward and Roger's method with UN structure should be the best way.
AbstractList In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as a primary analysis for group comparisons in these trials. Furthermore, model-based covariance estimators have been routinely used for testing the group difference and estimating confidence intervals of the difference in the MMRM analysis using the UN covariance. However, using the MMRM analysis with the UN covariance could lead to convergence problems for numerical optimization, especially in trials with a small-sample size. Although the so-called sandwich covariance estimator is robust to misspecification of the covariance structure, its performance deteriorates in settings with small-sample size. We investigated the performance of the sandwich covariance estimator and covariance estimators adjusted for small-sample bias proposed by Kauermann and Carroll ( J Am Stat Assoc 2001; 96: 1387-1396) and Mancl and DeRouen ( Biometrics 2001; 57: 126-134) fitting simpler covariance structures through a simulation study. In terms of the type 1 error rate and coverage probability of confidence intervals, Mancl and DeRouen's covariance estimator with compound symmetry, first-order autoregressive (AR(1)), heterogeneous AR(1), and antedependence structures performed better than the original sandwich estimator and Kauermann and Carroll's estimator with these structures in the scenarios where the variance increased across visits. The performance based on Mancl and DeRouen's estimator with these structures was nearly equivalent to that based on the Kenward-Roger method for adjusting the standard errors and degrees of freedom with the UN structure. The model-based covariance estimator with the UN structure under unadjustment of the degrees of freedom, which is frequently used in applications, resulted in substantial inflation of the type 1 error rate. We recommend the use of Mancl and DeRouen's estimator in MMRM analysis if the number of subjects completing is ( n + 5) or less, where n is the number of planned visits. Otherwise, the use of Kenward and Roger's method with UN structure should be the best way.
Author Gosho, Masahiko
Noma, Hisashi
Maruo, Kazushi
Hirakawa, Akihiro
Sato, Yasunori
Author_xml – sequence: 1
  givenname: Masahiko
  surname: Gosho
  fullname: Gosho, Masahiko
  organization: 1 Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
– sequence: 2
  givenname: Akihiro
  surname: Hirakawa
  fullname: Hirakawa, Akihiro
  organization: 2 Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
– sequence: 3
  givenname: Hisashi
  surname: Noma
  fullname: Noma, Hisashi
  organization: 3 Department of Data Science, The Institute of Statistical Mathematics, Tokyo, Japan
– sequence: 4
  givenname: Kazushi
  surname: Maruo
  fullname: Maruo, Kazushi
  organization: 4 Clinical Data Science Department, Kowa Company, Ltd., Tokyo, Japan
– sequence: 5
  givenname: Yasunori
  surname: Sato
  fullname: Sato, Yasunori
  organization: 5 Department of Global Clinical Research, Graduate School of Medicine, Chiba University, Chiba, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26265765$$D View this record in MEDLINE/PubMed
BookMark eNo1j0lLQzEYRYModtC9K8kfeJo5eUspTtCHILouXzPUSJs8klTpv7egri7cA5dzZ-g05eQRuqLkhlKtb0mvGDOEUSl73XNzgqZUaN0RzsUEzWr9JIRoIvpzNGGKKamVnKLNIu9GKLHmhHPA6wi1s7kUb5t32OavI4NkPfa1xR20XCoOueBheB0wJNgeaqw4JrzNaRPb3sVjhx00wN-xfWBX8pj3rV6gswDb6i__co7eH-7fFk_d8uXxeXG37CxXsnWWSG16zzyTRghHQzC9DUIz8MJT5QkHboA6wo3VDgJTgawZoyIA5wCazdH17-64X--8W43laF0Oq__H7AcfGVoY
CitedBy_id crossref_primary_10_1002_jrsm_1652
crossref_primary_10_1080_19466315_2020_1752297
crossref_primary_10_3390_stats2020013
crossref_primary_10_1002_da_23064
crossref_primary_10_1007_s11095_020_02882_0
crossref_primary_10_1515_ijb_2022_0101
crossref_primary_10_1111_insr_12447
crossref_primary_10_1080_03610918_2022_2084107
crossref_primary_10_1186_s12874_024_02368_2
crossref_primary_10_1016_j_dsx_2021_102233
crossref_primary_10_1002_pst_2045
crossref_primary_10_1002_pst_2058
crossref_primary_10_1002_sim_8474
crossref_primary_10_1002_pst_1872
crossref_primary_10_5023_jappstat_46_53
crossref_primary_10_1002_sim_7279
crossref_primary_10_1002_sim_9744
crossref_primary_10_3389_fpubh_2024_1106578
crossref_primary_10_1002_pst_1964
crossref_primary_10_1002_pst_2328
crossref_primary_10_5691_jjb_40_15
crossref_primary_10_1186_s12874_019_0676_1
crossref_primary_10_1080_03610926_2021_1909732
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1177/0962280215597938
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
ExternalDocumentID 26265765
Genre Journal Article
Comparative Study
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADUE
AAEJI
AAEWN
AAGGD
AAGLT
AAJIQ
AAJOX
AAJPV
AANSI
AAPEO
AAPII
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABIDT
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADEIA
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AJEFB
AJGYC
AJMMQ
AJUZI
AJVBE
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
AMVHM
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
CGR
COF
CORYS
CQQTX
CS3
CUY
CVF
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EBS
ECM
EIF
EJD
EMOBN
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M7S
N9A
NPM
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PJZUB
POGQB
PPXIY
PQGLB
PQQKQ
PROAC
PRQQA
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SASJQ
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
ID FETCH-LOGICAL-c365t-c05789e2e25844d1ff89cf472ae4e16e03a38a1d038c7daf26f0b2214fa33aa72
IngestDate Mon Jul 21 05:41:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Covariance structure
missingness
mixed-effects model
robust covariance estimator
small sample
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-c05789e2e25844d1ff89cf472ae4e16e03a38a1d038c7daf26f0b2214fa33aa72
PMID 26265765
ParticipantIDs pubmed_primary_26265765
PublicationCentury 2000
PublicationDate 2017-Oct
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2017
SSID ssj0007049
Score 2.2899315
Snippet In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained....
SourceID pubmed
SourceType Index Database
StartPage 2389
SubjectTerms Bias
Clinical Trials as Topic - methods
Humans
Longitudinal Studies
Models, Statistical
Patient Dropouts - statistics & numerical data
Sample Size
Treatment Outcome
Title Comparison of bias-corrected covariance estimators for MMRM analysis in longitudinal data with dropouts
URI https://www.ncbi.nlm.nih.gov/pubmed/26265765
Volume 26
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2IKFyQLC8SgH5wG0VSOy89oiqwgopPaBW6q1yHJuNtptUmw2V-mf6VztjOw8WEI9LtPJko8jzxZ4Zz3xDyDsRBIXSyodPXM69kCvuiSQCQ47JJAhUGgaGSy87iRdn4Zfz6HwyuR1lLbXb_L28-WVdyf9oFcZAr1gl-w-a7R8KA_Ab9AtX0DBc_0rHR-MmgrO8FI0nsduGRDNS1t9BZioCkEljLUxfHcwqzLKv2Ux0bCRlNbussWtRW5gOWZgzasOzBXZQaC3VU2fAonFquJ1N1Ql2nzZPWLvzHscd1MeYP9fNsrY1QY1Ylqt6CHVvxEpc26juqlyWm150Uq_N8KJssNPTEDPftLVNALlpu3EXr4A9sMt8g-3GrrFhkng-dzFMtwjbsnkHtmi8onLbYujnpd4cNoMHhoQ-DE9XYalJx7eCsq7WRvUM3DZwrKI_S3fItzvRHtkDNwT7qmIwyG30CXhXw8n3h91XQZ5p9_cdn8XYLqePySPndNCPFkFPyERVU_Iw6xl7myl5kLkkiynZ73XcPCXfBozRWtMfMUYHjNEBYxQwRhFjtMMYLSs6xhhFjFHEGO0w9oycfTo-PVp4rjmHJ3kcbT0Jhn46V0wxMGHDItA6nUsdJkyoUAWx8rngqQgKn6cyKYRmsfZzxoJQC86FSNhzcq-qK_WSUGQ14IVMZZzIkOdgosJ9BUyvYlrMpTwgL-zsXVxZBpaLbl5f_VZySPYH8L0m9zV88uoN2I_b_K3R4h1bA3Nd
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+bias-corrected+covariance+estimators+for+MMRM+analysis+in+longitudinal+data+with+dropouts&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Gosho%2C+Masahiko&rft.au=Hirakawa%2C+Akihiro&rft.au=Noma%2C+Hisashi&rft.au=Maruo%2C+Kazushi&rft.date=2017-10-01&rft.eissn=1477-0334&rft.volume=26&rft.issue=5&rft.spage=2389&rft_id=info:doi/10.1177%2F0962280215597938&rft_id=info%3Apmid%2F26265765&rft_id=info%3Apmid%2F26265765&rft.externalDocID=26265765