Comparison of bias-corrected covariance estimators for MMRM analysis in longitudinal data with dropouts
In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as...
Saved in:
Published in | Statistical methods in medical research Vol. 26; no. 5; p. 2389 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.10.2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as a primary analysis for group comparisons in these trials. Furthermore, model-based covariance estimators have been routinely used for testing the group difference and estimating confidence intervals of the difference in the MMRM analysis using the UN covariance. However, using the MMRM analysis with the UN covariance could lead to convergence problems for numerical optimization, especially in trials with a small-sample size. Although the so-called sandwich covariance estimator is robust to misspecification of the covariance structure, its performance deteriorates in settings with small-sample size. We investigated the performance of the sandwich covariance estimator and covariance estimators adjusted for small-sample bias proposed by Kauermann and Carroll ( J Am Stat Assoc 2001; 96: 1387-1396) and Mancl and DeRouen ( Biometrics 2001; 57: 126-134) fitting simpler covariance structures through a simulation study. In terms of the type 1 error rate and coverage probability of confidence intervals, Mancl and DeRouen's covariance estimator with compound symmetry, first-order autoregressive (AR(1)), heterogeneous AR(1), and antedependence structures performed better than the original sandwich estimator and Kauermann and Carroll's estimator with these structures in the scenarios where the variance increased across visits. The performance based on Mancl and DeRouen's estimator with these structures was nearly equivalent to that based on the Kenward-Roger method for adjusting the standard errors and degrees of freedom with the UN structure. The model-based covariance estimator with the UN structure under unadjustment of the degrees of freedom, which is frequently used in applications, resulted in substantial inflation of the type 1 error rate. We recommend the use of Mancl and DeRouen's estimator in MMRM analysis if the number of subjects completing is ( n + 5) or less, where n is the number of planned visits. Otherwise, the use of Kenward and Roger's method with UN structure should be the best way. |
---|---|
AbstractList | In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained. Mixed-effects models for repeated measures (MMRM) analysis with "unstructured" (UN) covariance structure are increasingly common as a primary analysis for group comparisons in these trials. Furthermore, model-based covariance estimators have been routinely used for testing the group difference and estimating confidence intervals of the difference in the MMRM analysis using the UN covariance. However, using the MMRM analysis with the UN covariance could lead to convergence problems for numerical optimization, especially in trials with a small-sample size. Although the so-called sandwich covariance estimator is robust to misspecification of the covariance structure, its performance deteriorates in settings with small-sample size. We investigated the performance of the sandwich covariance estimator and covariance estimators adjusted for small-sample bias proposed by Kauermann and Carroll ( J Am Stat Assoc 2001; 96: 1387-1396) and Mancl and DeRouen ( Biometrics 2001; 57: 126-134) fitting simpler covariance structures through a simulation study. In terms of the type 1 error rate and coverage probability of confidence intervals, Mancl and DeRouen's covariance estimator with compound symmetry, first-order autoregressive (AR(1)), heterogeneous AR(1), and antedependence structures performed better than the original sandwich estimator and Kauermann and Carroll's estimator with these structures in the scenarios where the variance increased across visits. The performance based on Mancl and DeRouen's estimator with these structures was nearly equivalent to that based on the Kenward-Roger method for adjusting the standard errors and degrees of freedom with the UN structure. The model-based covariance estimator with the UN structure under unadjustment of the degrees of freedom, which is frequently used in applications, resulted in substantial inflation of the type 1 error rate. We recommend the use of Mancl and DeRouen's estimator in MMRM analysis if the number of subjects completing is ( n + 5) or less, where n is the number of planned visits. Otherwise, the use of Kenward and Roger's method with UN structure should be the best way. |
Author | Gosho, Masahiko Noma, Hisashi Maruo, Kazushi Hirakawa, Akihiro Sato, Yasunori |
Author_xml | – sequence: 1 givenname: Masahiko surname: Gosho fullname: Gosho, Masahiko organization: 1 Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan – sequence: 2 givenname: Akihiro surname: Hirakawa fullname: Hirakawa, Akihiro organization: 2 Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan – sequence: 3 givenname: Hisashi surname: Noma fullname: Noma, Hisashi organization: 3 Department of Data Science, The Institute of Statistical Mathematics, Tokyo, Japan – sequence: 4 givenname: Kazushi surname: Maruo fullname: Maruo, Kazushi organization: 4 Clinical Data Science Department, Kowa Company, Ltd., Tokyo, Japan – sequence: 5 givenname: Yasunori surname: Sato fullname: Sato, Yasunori organization: 5 Department of Global Clinical Research, Graduate School of Medicine, Chiba University, Chiba, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26265765$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j0lLQzEYRYModtC9K8kfeJo5eUspTtCHILouXzPUSJs8klTpv7egri7cA5dzZ-g05eQRuqLkhlKtb0mvGDOEUSl73XNzgqZUaN0RzsUEzWr9JIRoIvpzNGGKKamVnKLNIu9GKLHmhHPA6wi1s7kUb5t32OavI4NkPfa1xR20XCoOueBheB0wJNgeaqw4JrzNaRPb3sVjhx00wN-xfWBX8pj3rV6gswDb6i__co7eH-7fFk_d8uXxeXG37CxXsnWWSG16zzyTRghHQzC9DUIz8MJT5QkHboA6wo3VDgJTgawZoyIA5wCazdH17-64X--8W43laF0Oq__H7AcfGVoY |
CitedBy_id | crossref_primary_10_1002_jrsm_1652 crossref_primary_10_1080_19466315_2020_1752297 crossref_primary_10_3390_stats2020013 crossref_primary_10_1002_da_23064 crossref_primary_10_1007_s11095_020_02882_0 crossref_primary_10_1515_ijb_2022_0101 crossref_primary_10_1111_insr_12447 crossref_primary_10_1080_03610918_2022_2084107 crossref_primary_10_1186_s12874_024_02368_2 crossref_primary_10_1016_j_dsx_2021_102233 crossref_primary_10_1002_pst_2045 crossref_primary_10_1002_pst_2058 crossref_primary_10_1002_sim_8474 crossref_primary_10_1002_pst_1872 crossref_primary_10_5023_jappstat_46_53 crossref_primary_10_1002_sim_7279 crossref_primary_10_1002_sim_9744 crossref_primary_10_3389_fpubh_2024_1106578 crossref_primary_10_1002_pst_1964 crossref_primary_10_1002_pst_2328 crossref_primary_10_5691_jjb_40_15 crossref_primary_10_1186_s12874_019_0676_1 crossref_primary_10_1080_03610926_2021_1909732 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1177/0962280215597938 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Statistics Mathematics |
EISSN | 1477-0334 |
ExternalDocumentID | 26265765 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADUE AAEJI AAEWN AAGGD AAGLT AAJIQ AAJOX AAJPV AANSI AAPEO AAPII AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABIDT ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEBD ADEIA ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGQPQ AGWFA AGWNL AHDMH AHHFK AHMBA AJEFB AJGYC AJMMQ AJUZI AJVBE AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ AMVHM ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU CGR COF CORYS CQQTX CS3 CUY CVF DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EBS ECM EIF EJD EMOBN F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M7S N9A NPM O9- OVD P.B P2P PHGZM PHGZT PJZUB POGQB PPXIY PQGLB PQQKQ PROAC PRQQA PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SASJQ SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI |
ID | FETCH-LOGICAL-c365t-c05789e2e25844d1ff89cf472ae4e16e03a38a1d038c7daf26f0b2214fa33aa72 |
IngestDate | Mon Jul 21 05:41:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Covariance structure missingness mixed-effects model robust covariance estimator small sample |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-c05789e2e25844d1ff89cf472ae4e16e03a38a1d038c7daf26f0b2214fa33aa72 |
PMID | 26265765 |
ParticipantIDs | pubmed_primary_26265765 |
PublicationCentury | 2000 |
PublicationDate | 2017-Oct |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Statistical methods in medical research |
PublicationTitleAlternate | Stat Methods Med Res |
PublicationYear | 2017 |
SSID | ssj0007049 |
Score | 2.2899315 |
Snippet | In longitudinal clinical trials, some subjects will drop out before completing the trial, so their measurements towards the end of the trial are not obtained.... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 2389 |
SubjectTerms | Bias Clinical Trials as Topic - methods Humans Longitudinal Studies Models, Statistical Patient Dropouts - statistics & numerical data Sample Size Treatment Outcome |
Title | Comparison of bias-corrected covariance estimators for MMRM analysis in longitudinal data with dropouts |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26265765 |
Volume | 26 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2IKFyQLC8SgH5wG0VSOy89oiqwgopPaBW6q1yHJuNtptUmw2V-mf6VztjOw8WEI9LtPJko8jzxZ4Zz3xDyDsRBIXSyodPXM69kCvuiSQCQ47JJAhUGgaGSy87iRdn4Zfz6HwyuR1lLbXb_L28-WVdyf9oFcZAr1gl-w-a7R8KA_Ab9AtX0DBc_0rHR-MmgrO8FI0nsduGRDNS1t9BZioCkEljLUxfHcwqzLKv2Ux0bCRlNbussWtRW5gOWZgzasOzBXZQaC3VU2fAonFquJ1N1Ql2nzZPWLvzHscd1MeYP9fNsrY1QY1Ylqt6CHVvxEpc26juqlyWm150Uq_N8KJssNPTEDPftLVNALlpu3EXr4A9sMt8g-3GrrFhkng-dzFMtwjbsnkHtmi8onLbYujnpd4cNoMHhoQ-DE9XYalJx7eCsq7WRvUM3DZwrKI_S3fItzvRHtkDNwT7qmIwyG30CXhXw8n3h91XQZ5p9_cdn8XYLqePySPndNCPFkFPyERVU_Iw6xl7myl5kLkkiynZ73XcPCXfBozRWtMfMUYHjNEBYxQwRhFjtMMYLSs6xhhFjFHEGO0w9oycfTo-PVp4rjmHJ3kcbT0Jhn46V0wxMGHDItA6nUsdJkyoUAWx8rngqQgKn6cyKYRmsfZzxoJQC86FSNhzcq-qK_WSUGQ14IVMZZzIkOdgosJ9BUyvYlrMpTwgL-zsXVxZBpaLbl5f_VZySPYH8L0m9zV88uoN2I_b_K3R4h1bA3Nd |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+bias-corrected+covariance+estimators+for+MMRM+analysis+in+longitudinal+data+with+dropouts&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Gosho%2C+Masahiko&rft.au=Hirakawa%2C+Akihiro&rft.au=Noma%2C+Hisashi&rft.au=Maruo%2C+Kazushi&rft.date=2017-10-01&rft.eissn=1477-0334&rft.volume=26&rft.issue=5&rft.spage=2389&rft_id=info:doi/10.1177%2F0962280215597938&rft_id=info%3Apmid%2F26265765&rft_id=info%3Apmid%2F26265765&rft.externalDocID=26265765 |