Ice breaking by a collapsing bubble

This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice breaking with a single collapsing bubble, where the bubble was generated by underwater electric discharge and collapsed at various distances...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 841; pp. 287 - 309
Main Authors Cui, Pu, Zhang, A-Man, Wang, Shiping, Khoo, Boo Cheong
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice breaking with a single collapsing bubble, where the bubble was generated by underwater electric discharge and collapsed at various distances under ice plates with different thicknesses. Characteristics of the ice fracturing, bubble jets and shock waves emitted during the collapse of the bubble were captured. The pattern of the ice fracturing is related to the ice thickness and the bubble–ice distance. Fractures develop from the top of the ice plate, i.e. the ice–air interface, and this is attributed to the tension caused by the reflection of the shock waves at the interface. Such fracturing is lessened when the thickness of the ice plate or the bubble–ice distance increases. Fractures may also form from the bottom of the ice plate upon the shock wave incidence when the bubble–ice distance is sufficiently small. The ice plate motion and its effect on the bubble behaviour were analysed. The ice plate motion results in higher jet speed and greater elongation of the bubble shape along the vertical direction. It also causes the bubble initiated close to the ice plate to split and emit multiple shock waves at the end of the collapse. The findings suggest that collapsing bubbles can be used as a brand new way of ice breaking.
AbstractList This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice breaking with a single collapsing bubble, where the bubble was generated by underwater electric discharge and collapsed at various distances under ice plates with different thicknesses. Characteristics of the ice fracturing, bubble jets and shock waves emitted during the collapse of the bubble were captured. The pattern of the ice fracturing is related to the ice thickness and the bubble-ice distance. Fractures develop from the top of the ice plate, i.e. the ice-air interface, and this is attributed to the tension caused by the reflection of the shock waves at the interface. Such fracturing is lessened when the thickness of the ice plate or the bubble-ice distance increases. Fractures may also form from the bottom of the ice plate upon the shock wave incidence when the bubble-ice distance is sufficiently small. The ice plate motion and its effect on the bubble behaviour were analysed. The ice plate motion results in higher jet speed and greater elongation of the bubble shape along the vertical direction. It also causes the bubble initiated close to the ice plate to split and emit multiple shock waves at the end of the collapse. The findings suggest that collapsing bubbles can be used as a brand new way of ice breaking.
Author Cui, Pu
Khoo, Boo Cheong
Wang, Shiping
Zhang, A-Man
Author_xml – sequence: 1
  givenname: Pu
  orcidid: 0000-0001-8179-1366
  surname: Cui
  fullname: Cui, Pu
  organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 2
  givenname: A-Man
  orcidid: 0000-0003-1299-3049
  surname: Zhang
  fullname: Zhang, A-Man
  email: zhangaman@hrbeu.edu.cn
  organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 3
  givenname: Shiping
  surname: Wang
  fullname: Wang, Shiping
  organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 4
  givenname: Boo Cheong
  surname: Khoo
  fullname: Khoo, Boo Cheong
  organization: Department of Mechanical Engineering, National University of Singapore, 117576, Singapore
BookMark eNp1kMtKw0AUhgepYFpd-QKBLiV1bpnLUoqXQsGNroeZyUlJTZM4ky769k5tQRBdHQ583zk__xRNur4DhG4JXhBM5P223i0oJmoh2AXKCBe6kIKXE5RhTGlBCMVXaBrjFmPCsJYZmq885C6A_Wi6Te4Ouc1937Z2iN_73rkWrtFlbdsIN-c5Q-9Pj2_Ll2L9-rxaPqwLz0Q5Fk5oWrHSUgJOcy6V86pSknupCIBivAKGmfJeYcl1XdqUmHMQWmnnnKZshuanu0PoP_cQR7Pt96FLLw1NYql4mWLPEDlRPvQxBqiNb0Y7Nn03Btu0hmBz7MKkLsyxCyNYcu5-OUNodjYc_qGLM213LjTVBn6C_MV_ASJrbk0
CitedBy_id crossref_primary_10_1016_j_jfluidstructs_2019_102799
crossref_primary_10_1016_j_oceaneng_2018_09_032
crossref_primary_10_1007_s42241_019_0056_7
crossref_primary_10_1007_s42241_023_0074_3
crossref_primary_10_1016_j_apm_2021_06_029
crossref_primary_10_1016_j_oceaneng_2022_111383
crossref_primary_10_1016_j_surfin_2024_105305
crossref_primary_10_1016_j_expthermflusci_2020_110218
crossref_primary_10_1016_j_oceaneng_2022_111664
crossref_primary_10_1016_j_jfluidstructs_2019_102833
crossref_primary_10_1063_5_0219866
crossref_primary_10_1007_s42241_018_0112_8
crossref_primary_10_1016_j_ultsonch_2023_106576
crossref_primary_10_1016_j_taml_2020_01_003
crossref_primary_10_1016_j_oceaneng_2024_117362
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103335
crossref_primary_10_1063_1_5082258
crossref_primary_10_3390_jmse12010058
crossref_primary_10_1016_j_jfluidstructs_2020_103016
crossref_primary_10_1063_5_0037682
crossref_primary_10_1063_1_5112049
crossref_primary_10_1134_S0869864323020154
crossref_primary_10_1007_s42241_022_0040_5
crossref_primary_10_1007_s11012_019_01106_z
crossref_primary_10_1016_j_rinp_2018_12_001
crossref_primary_10_1007_s42241_023_0063_6
crossref_primary_10_1155_2019_5341317
crossref_primary_10_1007_s42241_019_0061_x
crossref_primary_10_1016_j_apor_2019_102013
crossref_primary_10_1063_5_0186165
crossref_primary_10_1088_1742_6596_2458_1_012042
crossref_primary_10_1063_1_5097929
crossref_primary_10_1063_5_0230489
crossref_primary_10_1016_j_ultsonch_2024_106846
crossref_primary_10_1016_j_dt_2020_04_001
crossref_primary_10_1088_1742_6596_2478_7_072033
crossref_primary_10_3390_jmse10091302
crossref_primary_10_1063_5_0244809
crossref_primary_10_1063_5_0063040
crossref_primary_10_3390_jmse12122211
crossref_primary_10_1016_j_ultsonch_2022_106042
crossref_primary_10_1016_j_apor_2020_102300
crossref_primary_10_1017_jfm_2020_552
crossref_primary_10_1063_5_0199266
crossref_primary_10_1063_5_0213651
crossref_primary_10_1007_s42241_020_0078_1
crossref_primary_10_1016_j_coldregions_2021_103281
crossref_primary_10_3390_app9245292
crossref_primary_10_1016_j_pss_2022_105578
crossref_primary_10_1063_5_0204629
crossref_primary_10_1063_5_0244760
crossref_primary_10_1016_j_ultsonch_2020_105147
crossref_primary_10_1016_j_oceaneng_2019_106714
crossref_primary_10_1016_j_oceaneng_2023_113782
crossref_primary_10_3390_w10091262
crossref_primary_10_1016_j_oceaneng_2022_111401
crossref_primary_10_2514_1_T6244
crossref_primary_10_1063_5_0009903
crossref_primary_10_1063_5_0218632
crossref_primary_10_1007_s11804_024_00478_3
crossref_primary_10_1016_j_apor_2018_08_016
crossref_primary_10_1017_jfm_2021_999
crossref_primary_10_1016_j_oceaneng_2024_118162
crossref_primary_10_1088_1402_4896_ad4ca8
crossref_primary_10_1007_s42241_018_0141_3
crossref_primary_10_1007_s13344_023_0025_3
crossref_primary_10_1063_5_0241368
crossref_primary_10_1007_s40571_019_00268_7
crossref_primary_10_1016_j_ultsonch_2020_105141
crossref_primary_10_1016_j_oceaneng_2020_108311
crossref_primary_10_1155_2018_8273469
crossref_primary_10_1016_j_oceaneng_2023_115838
crossref_primary_10_1016_j_jfluidstructs_2022_103594
crossref_primary_10_1016_j_ultsonch_2020_105375
crossref_primary_10_1038_s41598_018_37868_x
crossref_primary_10_1017_jfm_2021_368
crossref_primary_10_1016_j_apor_2025_104434
crossref_primary_10_1016_j_expthermflusci_2019_04_005
crossref_primary_10_1016_j_ultsonch_2020_104969
crossref_primary_10_1016_j_apor_2024_104259
crossref_primary_10_1016_j_apor_2021_102946
crossref_primary_10_1016_j_expthermflusci_2019_109897
crossref_primary_10_1063_1_5088528
crossref_primary_10_1063_5_0205211
crossref_primary_10_1016_j_enconman_2021_114541
crossref_primary_10_1515_nanoph_2018_0195
crossref_primary_10_1016_j_oceaneng_2021_109650
crossref_primary_10_1063_5_0163793
crossref_primary_10_1063_5_0163431
crossref_primary_10_1063_5_0218482
crossref_primary_10_1007_s42241_019_0016_2
crossref_primary_10_1017_jfm_2021_976
crossref_primary_10_1007_s11804_023_00344_8
crossref_primary_10_1016_j_ultsonch_2020_105440
crossref_primary_10_1007_s12206_023_0421_x
crossref_primary_10_1016_j_apor_2025_104423
crossref_primary_10_1016_j_jfluidstructs_2019_02_022
crossref_primary_10_1080_15376494_2022_2069308
crossref_primary_10_1134_S1028335821110033
crossref_primary_10_1016_j_taml_2021_100311
crossref_primary_10_1007_s42757_023_0177_7
crossref_primary_10_1016_j_applthermaleng_2023_122095
crossref_primary_10_1007_s42241_021_0004_1
crossref_primary_10_1007_s11804_024_00422_5
crossref_primary_10_1016_j_ultsonch_2019_104699
crossref_primary_10_1007_s13344_023_0063_x
crossref_primary_10_1017_jfm_2020_400
crossref_primary_10_3390_inventions8050131
crossref_primary_10_1016_j_ijmultiphaseflow_2019_103096
crossref_primary_10_1016_j_ultsonch_2018_11_025
crossref_primary_10_1016_j_oceaneng_2021_109393
crossref_primary_10_1016_j_enganabound_2024_106041
crossref_primary_10_1016_j_ultsonch_2020_105157
crossref_primary_10_1007_s11431_018_9420_2
crossref_primary_10_1063_1_5143095
crossref_primary_10_1017_jfm_2022_20
crossref_primary_10_1140_epje_i2019_11833_8
crossref_primary_10_1016_j_ijnaoe_2024_100600
crossref_primary_10_1063_5_0037095
crossref_primary_10_3390_fluids8080220
crossref_primary_10_1016_j_ijmultiphaseflow_2019_03_026
crossref_primary_10_1021_acs_langmuir_3c02679
crossref_primary_10_32604_cmes_2021_015259
crossref_primary_10_1063_5_0248927
crossref_primary_10_1063_5_0220659
crossref_primary_10_1016_j_icheatmasstransfer_2024_107802
crossref_primary_10_1007_s42241_018_0038_1
crossref_primary_10_1016_j_oceaneng_2019_106115
crossref_primary_10_1016_j_ultsonch_2021_105587
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122298
crossref_primary_10_1063_5_0177085
crossref_primary_10_3390_w10101439
crossref_primary_10_1063_5_0234757
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103834
crossref_primary_10_1016_j_oceaneng_2021_110270
crossref_primary_10_1007_s11804_024_00401_w
crossref_primary_10_1063_5_0240514
crossref_primary_10_1007_s42241_020_0047_8
crossref_primary_10_1007_s42241_023_0028_9
crossref_primary_10_1088_1873_7005_ac522c
crossref_primary_10_1063_5_0107299
crossref_primary_10_1063_5_0184967
crossref_primary_10_1063_1_5115097
crossref_primary_10_1007_s42241_018_0023_8
crossref_primary_10_1007_s42241_018_0066_x
crossref_primary_10_1016_j_oceaneng_2019_106523
crossref_primary_10_1016_j_oceaneng_2023_115811
crossref_primary_10_1063_1_5121380
crossref_primary_10_1017_jmech_2018_62
crossref_primary_10_2139_ssrn_3914054
crossref_primary_10_1007_s42241_019_0025_1
crossref_primary_10_1063_1_5089268
crossref_primary_10_1103_PhysRevFluids_9_043603
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105032
crossref_primary_10_1016_j_ultsonch_2018_08_006
crossref_primary_10_3390_w16010161
crossref_primary_10_1103_PhysRevFluids_6_083601
crossref_primary_10_1016_j_ultsonch_2025_107255
crossref_primary_10_1016_j_oceaneng_2020_108500
crossref_primary_10_1142_S2424913018500066
crossref_primary_10_1063_5_0151939
crossref_primary_10_1016_j_icheatmasstransfer_2024_108112
crossref_primary_10_1007_s00366_022_01616_7
crossref_primary_10_1016_j_oceaneng_2021_109175
Cites_doi 10.1016/j.ultsonch.2015.05.004
10.1103/PhysRevLett.107.204501
10.1017/jfm.2011.85
10.5962/bhl.title.48411
10.1017/S0022112086000745
10.1063/1.1421102
10.1111/j.1365-246X.1970.tb01773.x
10.1039/b806912c
10.1063/1.1542669
10.1016/j.ultras.2004.06.006
10.1115/1.3650589
10.1016/S0301-5629(02)00506-9
10.1016/j.ijimpeng.2007.01.007
10.1073/pnas.1015771108
10.1243/09544110360729072
10.1021/op050109x
10.1017/jfm.2014.394
10.1121/1.1476919
10.1017/S0022112005005306
10.1103/PhysRevLett.99.045701
10.1098/rsfs.2015.0017
10.1017/S0022112006003296
10.1016/j.oceaneng.2014.05.005
10.1017/S0022112000003347
10.1063/1.4922293
10.1017/jfm.2016.583
10.1017/S0022112002003695
10.1126/science.289.5487.2114
10.1017/jfm.2015.183
10.1088/0034-4885/73/10/106501
10.1016/j.pbiomolbio.2006.07.005
10.1038/nature00895
10.1017/S0022112009993776
10.1017/jfm.2013.341
10.1007/978-3-642-34297-4_10
10.1017/S0022112009993338
10.1017/S0022112089002314
10.1038/srep12572
10.1038/nature03361
10.1529/biophysj.105.075366
10.1115/1.4023650
10.1190/1.1443559
10.1073/pnas.1606915113
10.1243/09544119JEIM622
10.1016/j.ijmultiphaseflow.2016.03.021
10.1016/j.rser.2015.11.052
10.1016/j.expthermflusci.2014.02.025
10.1098/rsta.1966.0046
10.1017/jfm.2015.33
10.1017/jfm.2016.463
10.1038/35097152
10.1016/j.ultsonch.2015.04.026
10.1016/j.jsv.2010.04.030
10.1063/1.2338125
10.1080/01418618408233279
10.1063/1.1707821
10.1016/j.memsci.2004.02.031
10.1063/1.4944561
10.1017/jfm.2015.323
10.1017/S0022112098008738
10.1088/0031-9155/50/20/004
ContentType Journal Article
Copyright 2018 Cambridge University Press
Copyright_xml – notice: 2018 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2018.63
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate P. Cui, A. M. Zhang, S. P. Wang and B. C. Khoo
Ice breaking by a collapsing bubble
EISSN 1469-7645
EndPage 309
ExternalDocumentID 10_1017_jfm_2018_63
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABVZP
ABXAU
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABXHF
AKMAY
CITATION
PHGZM
PHGZT
7TB
7U5
7UA
7XB
8FD
8FK
ADMLS
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c365t-b692d35a21eb94478bc8d874c781ee834de3038cc80749f5a01744e6989bbb923
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 16 09:10:57 EDT 2025
Tue Jul 01 03:01:12 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Tue Jan 21 06:25:12 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords drops and bubbles
bubble dynamics
cavitation
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-b692d35a21eb94478bc8d874c781ee834de3038cc80749f5a01744e6989bbb923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8179-1366
0000-0003-1299-3049
PQID 2038584501
PQPubID 34769
PageCount 23
ParticipantIDs proquest_journals_2038584501
crossref_citationtrail_10_1017_jfm_2018_63
crossref_primary_10_1017_jfm_2018_63
cambridge_journals_10_1017_jfm_2018_63
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-25
PublicationDateYYYYMMDD 2018-04-25
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2011; 677
2002; 14
2003; 479
2010; 224
2002; 111
2005; 537
2008; 35
2008; 8
1981; 48
2003; 93
2000; 289
2015; 776
2015; 771
2007; 570
2016; 113
1970; 21
2014; 55
2010; 73
2001; 413
1998; 361
2014; 755
2006; 91
2015; 5
2003; 217
2010; 329
1966; 37
2010; 646
2016; 802
1984; 49
2005; 434
2016; 805
2005; 43
2002; 418
2007; 93
2015; 767
2007; 99
1966; 260
2014; 87
2016; 56
2002; 28
1965; 87
2004; 237
1986; 169
2017; 90
2011; 108
2015; 27
2011; 107
1989; 206
2005; 9
2010; 651
2013; 730
2013; 135
1994; 59
2005; 50
2016; 29
2016; 28
2001; 433
2006; 100
Chahine (S0022112018000630_r11) 1995; 2
S0022112018000630_r19
S0022112018000630_r17
S0022112018000630_r18
S0022112018000630_r15
S0022112018000630_r59
S0022112018000630_r16
S0022112018000630_r57
S0022112018000630_r58
S0022112018000630_r14
S0022112018000630_r55
S0022112018000630_r56
S0022112018000630_r12
S0022112018000630_r53
S0022112018000630_r54
S0022112018000630_r10
S0022112018000630_r51
S0022112018000630_r52
S0022112018000630_r50
Chalmers (S0022112018000630_r13) 1964
S0022112018000630_r28
S0022112018000630_r29
S0022112018000630_r26
S0022112018000630_r27
S0022112018000630_r25
S0022112018000630_r22
S0022112018000630_r23
S0022112018000630_r64
S0022112018000630_r20
Shima (S0022112018000630_r48) 1981; 48
S0022112018000630_r65
S0022112018000630_r21
S0022112018000630_r62
S0022112018000630_r63
S0022112018000630_r60
S0022112018000630_r61
Hobbs (S0022112018000630_r24) 1974
S0022112018000630_r39
S0022112018000630_r37
S0022112018000630_r38
S0022112018000630_r35
S0022112018000630_r36
S0022112018000630_r33
S0022112018000630_r34
S0022112018000630_r31
S0022112018000630_r32
S0022112018000630_r30
S0022112018000630_r2
S0022112018000630_r3
S0022112018000630_r4
S0022112018000630_r5
S0022112018000630_r1
S0022112018000630_r6
S0022112018000630_r49
S0022112018000630_r7
S0022112018000630_r8
S0022112018000630_r46
S0022112018000630_r9
S0022112018000630_r47
S0022112018000630_r44
S0022112018000630_r45
S0022112018000630_r42
S0022112018000630_r43
S0022112018000630_r40
S0022112018000630_r41
References_xml – volume: 755
  start-page: 142
  year: 2014
  end-page: 175
  article-title: Modelling of material pitting from cavitation bubble collapse
  publication-title: J. Fluid Mech.
– volume: 37
  start-page: 254
  year: 1966
  end-page: 257
  article-title: Nucleation of solid in an undercooled liquid by cavitation
  publication-title: J. Appl. Phys.
– volume: 90
  start-page: 156
  year: 2017
  end-page: 166
  article-title: Spark-generated bubble near an elastic sphere
  publication-title: Intl J. Multiphase Flow
– volume: 135
  year: 2013
  article-title: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation
  publication-title: J. Fluids Engng
– volume: 570
  start-page: 407
  year: 2007
  end-page: 429
  article-title: On the boundary integral method for the rebounding bubble
  publication-title: J. Fluid Mech.
– volume: 87
  start-page: 511
  year: 1965
  end-page: 517
  article-title: A photographic study of the dynamics and damage capabilities of bubbles collapsing near solid boundaries
  publication-title: J. Basic Engng
– volume: 289
  start-page: 2114
  year: 2000
  end-page: 2117
  article-title: How snapping shrimp snap: through cavitating bubbles
  publication-title: Science
– volume: 802
  start-page: 263
  year: 2016
  end-page: 293
  article-title: Scaling laws for jets of single cavitation bubbles
  publication-title: J. Fluid Mech.
– volume: 418
  start-page: 394
  year: 2002
  end-page: 397
  article-title: The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation
  publication-title: Nature
– volume: 43
  start-page: 227
  year: 2005
  end-page: 230
  article-title: A study on the primary and secondary nucleation of ice by power ultrasound
  publication-title: Ultrasonics
– volume: 767
  start-page: 31
  year: 2015
  end-page: 51
  article-title: Fast transient microjets induced by hemispherical cavitation bubbles
  publication-title: J. Fluid Mech.
– volume: 329
  start-page: 4266
  year: 2010
  end-page: 4278
  article-title: Intensity of oscillation of spark-generated bubbles
  publication-title: J. Sound Vib.
– volume: 237
  start-page: 213
  year: 2004
  end-page: 223
  article-title: Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes
  publication-title: J. Membr. Sci.
– volume: 8
  start-page: 1676
  year: 2008
  end-page: 1681
  article-title: Laser-induced cavitation based micropump
  publication-title: Lab on a Chip
– volume: 771
  start-page: 706
  year: 2015
  end-page: 742
  article-title: Dynamics of laser-induced bubble pairs
  publication-title: J. Fluid Mech.
– volume: 99
  year: 2007
  article-title: Ice crystallization induced by optical breakdown
  publication-title: Phys. Rev. Lett.
– volume: 224
  start-page: 171
  year: 2010
  end-page: 191
  article-title: Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy
  publication-title: Proc. Inst. Mech. Engrs H
– volume: 434
  start-page: 52
  year: 2005
  end-page: 55
  article-title: Plasma formation and temperature measurement during single-bubble cavitation
  publication-title: Nature
– volume: 217
  start-page: 429
  year: 2003
  end-page: 447
  article-title: Microbubble ultrasound contrast agents: a review
  publication-title: Proc. Inst. Mech. Engrs H
– volume: 111
  start-page: 2594
  year: 2002
  end-page: 2600
  article-title: Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model
  publication-title: J. Acoust. Soc. Am.
– volume: 14
  start-page: 85
  year: 2002
  end-page: 92
  article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary
  publication-title: Phys. Fluids
– volume: 50
  start-page: 4797
  year: 2005
  article-title: Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound
  publication-title: Phys. Med. Biol.
– volume: 100
  year: 2006
  article-title: Experimental and numerical study of transient bubble-elastic membrane interaction
  publication-title: J. Appl. Phys.
– volume: 73
  year: 2010
  article-title: Physics of bubble oscillations
  publication-title: Rep. Prog. Phys.
– volume: 93
  start-page: 111
  year: 2007
  end-page: 129
  article-title: Therapeutic applications of ultrasound
  publication-title: Prog. Biophys. Mol. Bio.
– volume: 59
  start-page: 1729
  year: 1994
  end-page: 1734
  article-title: Understanding air-gun bubble behavior
  publication-title: Geophysics
– volume: 651
  start-page: 55
  year: 2010
  end-page: 80
  article-title: Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries
  publication-title: J. Fluid Mech.
– volume: 206
  start-page: 299
  year: 1989
  end-page: 338
  article-title: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary
  publication-title: J. Fluid Mech.
– volume: 87
  start-page: 64
  year: 2014
  end-page: 77
  article-title: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction
  publication-title: Ocean Engng
– volume: 107
  year: 2011
  article-title: Universal scaling law for jets of collapsing bubbles
  publication-title: Phys. Rev. Lett.
– volume: 28
  year: 2016
  article-title: Numerical simulation of a collapsing bubble subject to gravity
  publication-title: Phys. Fluids
– volume: 48
  start-page: 293
  year: 1981
  end-page: 301
  article-title: An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse
  publication-title: Acta Acust. Acust.
– volume: 260
  start-page: 221
  issue: 1110
  year: 1966
  end-page: 240
  article-title: The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries
  publication-title: Phil. Trans. R. Soc. Lond. A
– volume: 29
  start-page: 528
  year: 2016
  end-page: 549
  article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse
  publication-title: Ultrason. Sonochemi.
– volume: 677
  start-page: 305
  year: 2011
  end-page: 341
  article-title: The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy
  publication-title: J. Fluid Mech.
– volume: 108
  start-page: 3258
  year: 2011
  end-page: 3263
  article-title: Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 29
  start-page: 519
  year: 2016
  end-page: 523
  article-title: Ultrasonic cleaning: an historical perspective
  publication-title: Ultrason. Sonochem.
– volume: 361
  start-page: 75
  year: 1998
  end-page: 116
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J. Fluid Mech.
– volume: 646
  start-page: 363
  year: 2010
  end-page: 373
  article-title: Shock emission from collapsing gas bubbles
  publication-title: J. Fluid Mech.
– volume: 5
  year: 2015
  article-title: Cavitation and bubble dynamics: the Kelvin impulse and its applications
  publication-title: Interface Focus
– volume: 49
  start-page: 353
  year: 1984
  end-page: 363
  article-title: A brittle to ductile transition in ice under tension
  publication-title: Phil. Mag. A
– volume: 169
  start-page: 535
  year: 1986
  end-page: 564
  article-title: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse
  publication-title: J. Fluid Mech.
– volume: 21
  start-page: 137
  year: 1970
  end-page: 161
  article-title: A method for calculating the output pressure waveform from an air gun
  publication-title: Geophys. J. Intl
– volume: 56
  start-page: 303
  year: 2016
  end-page: 318
  article-title: A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow
  publication-title: J. Renew. Sustain. Energy Rev.
– volume: 805
  start-page: 551
  year: 2016
  end-page: 576
  article-title: Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles
  publication-title: J. Fluid Mech.
– volume: 35
  start-page: 206
  year: 2008
  end-page: 225
  article-title: A study of explosive effects in close proximity to a submerged cylinder
  publication-title: Intl J. Impact Engng
– volume: 113
  start-page: 9983
  year: 2016
  end-page: 9988
  article-title: Biophysical insight into mechanisms of sonoporation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 776
  start-page: 137
  year: 2015
  end-page: 160
  article-title: Experimental study on bubble dynamics subject to buoyancy
  publication-title: J. Fluid Mech.
– volume: 433
  start-page: 251
  year: 2001
  end-page: 281
  article-title: Dynamics of laser-induced cavitation bubbles near an elastic boundary
  publication-title: J. Fluid Mech.
– volume: 27
  year: 2015
  article-title: Study on splitting of a toroidal bubble near a rigid boundary
  publication-title: Phys. Fluids
– volume: 479
  start-page: 327
  year: 2003
  end-page: 348
  article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 661
  year: 2002
  end-page: 671
  article-title: The role of stress waves and cavitation in stone comminution in shock wave lithotripsy
  publication-title: Ultrasound Med. Biol.
– volume: 730
  start-page: 245
  year: 2013
  end-page: 272
  article-title: Ultrasonic cavitation near a tissue layer
  publication-title: J. Fluid Mech.
– volume: 93
  start-page: 3039
  year: 2003
  end-page: 3048
  article-title: Energy evaluation of cavitation bubble generation and shock wave emission by laser focusing in liquid nitrogen
  publication-title: J. Appl. Phys.
– volume: 537
  start-page: 387
  year: 2005
  end-page: 413
  article-title: Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure
  publication-title: J. Fluid Mech.
– volume: 9
  start-page: 923
  year: 2005
  end-page: 932
  article-title: Sonocrystallization: the use of ultrasound for improved industrial crystallization
  publication-title: Org. Process Res. Dev.
– volume: 91
  start-page: 4285
  year: 2006
  end-page: 4295
  article-title: Sonoporation from jetting cavitation bubbles
  publication-title: Biophys J.
– volume: 55
  start-page: 239
  year: 2014
  end-page: 249
  article-title: The pressure field generated by a seismic airgun
  publication-title: Exp. Therm. Fluid Sci.
– volume: 5
  start-page: 12572
  year: 2015
  article-title: Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid–liquid extraction with a microfluidic device
  publication-title: Sci. Rep.
– volume: 413
  start-page: 477
  year: 2001
  end-page: 478
  article-title: Snapping shrimp make flashing bubbles
  publication-title: Nature
– ident: S0022112018000630_r41
  doi: 10.1016/j.ultsonch.2015.05.004
– ident: S0022112018000630_r42
  doi: 10.1103/PhysRevLett.107.204501
– ident: S0022112018000630_r29
  doi: 10.1017/jfm.2011.85
– ident: S0022112018000630_r15
  doi: 10.5962/bhl.title.48411
– ident: S0022112018000630_r54
  doi: 10.1017/S0022112086000745
– ident: S0022112018000630_r7
  doi: 10.1063/1.1421102
– ident: S0022112018000630_r65
  doi: 10.1111/j.1365-246X.1970.tb01773.x
– ident: S0022112018000630_r19
  doi: 10.1039/b806912c
– ident: S0022112018000630_r55
  doi: 10.1063/1.1542669
– ident: S0022112018000630_r14
  doi: 10.1016/j.ultras.2004.06.006
– ident: S0022112018000630_r49
  doi: 10.1115/1.3650589
– ident: S0022112018000630_r64
  doi: 10.1016/S0301-5629(02)00506-9
– ident: S0022112018000630_r5
  doi: 10.1016/j.ijimpeng.2007.01.007
– ident: S0022112018000630_r34
  doi: 10.1073/pnas.1015771108
– ident: S0022112018000630_r51
  doi: 10.1243/09544110360729072
– ident: S0022112018000630_r45
  doi: 10.1021/op050109x
– ident: S0022112018000630_r25
  doi: 10.1017/jfm.2014.394
– volume-title: Ice Physics
  year: 1974
  ident: S0022112018000630_r24
– volume-title: Principles of Solidification
  year: 1964
  ident: S0022112018000630_r13
– ident: S0022112018000630_r9
  doi: 10.1121/1.1476919
– ident: S0022112018000630_r32
  doi: 10.1017/S0022112005005306
– ident: S0022112018000630_r39
  doi: 10.1103/PhysRevLett.99.045701
– ident: S0022112018000630_r4
  doi: 10.1098/rsfs.2015.0017
– ident: S0022112018000630_r37
  doi: 10.1017/S0022112006003296
– ident: S0022112018000630_r30
  doi: 10.1016/j.oceaneng.2014.05.005
– ident: S0022112018000630_r8
  doi: 10.1017/S0022112000003347
– ident: S0022112018000630_r61
  doi: 10.1063/1.4922293
– ident: S0022112018000630_r1
  doi: 10.1017/jfm.2016.583
– ident: S0022112018000630_r38
  doi: 10.1017/S0022112002003695
– ident: S0022112018000630_r57
  doi: 10.1126/science.289.5487.2114
– ident: S0022112018000630_r22
  doi: 10.1017/jfm.2015.183
– ident: S0022112018000630_r36
  doi: 10.1088/0034-4885/73/10/106501
– ident: S0022112018000630_r53
  doi: 10.1016/j.pbiomolbio.2006.07.005
– ident: S0022112018000630_r18
  doi: 10.1038/nature00895
– ident: S0022112018000630_r27
  doi: 10.1017/S0022112009993776
– volume: 2
  start-page: 265
  volume-title: Proceedings of 66th Sock and Vibrations Symposium
  year: 1995
  ident: S0022112018000630_r11
– ident: S0022112018000630_r16
  doi: 10.1017/jfm.2013.341
– ident: S0022112018000630_r63
  doi: 10.1007/978-3-642-34297-4_10
– ident: S0022112018000630_r47
  doi: 10.1017/S0022112009993338
– ident: S0022112018000630_r58
  doi: 10.1017/S0022112089002314
– ident: S0022112018000630_r59
  doi: 10.1038/srep12572
– ident: S0022112018000630_r20
  doi: 10.1038/nature03361
– ident: S0022112018000630_r43
  doi: 10.1529/biophysj.105.075366
– ident: S0022112018000630_r26
  doi: 10.1115/1.4023650
– ident: S0022112018000630_r31
  doi: 10.1190/1.1443559
– ident: S0022112018000630_r23
  doi: 10.1073/pnas.1606915113
– ident: S0022112018000630_r50
  doi: 10.1243/09544119JEIM622
– ident: S0022112018000630_r21
  doi: 10.1016/j.ijmultiphaseflow.2016.03.021
– ident: S0022112018000630_r62
  doi: 10.1016/j.rser.2015.11.052
– ident: S0022112018000630_r17
  doi: 10.1016/j.expthermflusci.2014.02.025
– ident: S0022112018000630_r3
  doi: 10.1098/rsta.1966.0046
– ident: S0022112018000630_r2
  doi: 10.1017/jfm.2015.33
– ident: S0022112018000630_r52
  doi: 10.1017/jfm.2016.463
– ident: S0022112018000630_r40
  doi: 10.1038/35097152
– ident: S0022112018000630_r12
  doi: 10.1016/j.ultsonch.2015.04.026
– ident: S0022112018000630_r10
  doi: 10.1016/j.jsv.2010.04.030
– ident: S0022112018000630_r56
  doi: 10.1063/1.2338125
– ident: S0022112018000630_r46
  doi: 10.1080/01418618408233279
– ident: S0022112018000630_r28
  doi: 10.1063/1.1707821
– ident: S0022112018000630_r35
  doi: 10.1016/j.memsci.2004.02.031
– ident: S0022112018000630_r33
  doi: 10.1063/1.4944561
– ident: S0022112018000630_r60
  doi: 10.1017/jfm.2015.323
– volume: 48
  start-page: 293
  year: 1981
  ident: S0022112018000630_r48
  article-title: An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse
  publication-title: Acta Acust. Acust.
– ident: S0022112018000630_r44
  doi: 10.1017/S0022112098008738
– ident: S0022112018000630_r6
  doi: 10.1088/0031-9155/50/20/004
SSID ssj0013097
Score 2.6041603
Snippet This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 287
SubjectTerms Air-ice interface
Breaking
Bubble barriers
Bubbles
Distance
Elongation
Fluid mechanics
Fluids
Fractures
Fracturing
Ice
Ice breaking
Ice cover
Ice plates
Ice thickness
JFM Papers
Lithotripsy
Plate motion
Shock waves
Ultrasonic imaging
Wave reflection
Title Ice breaking by a collapsing bubble
URI https://www.cambridge.org/core/product/identifier/S0022112018000630/type/journal_article
https://www.proquest.com/docview/2038584501
Volume 841
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IxEQPPlAjiqSJxINJDW233e3JoIJohBiVhFvTffRgCKCFg__e2bKlkhCPTbdtOjs7j53Z7wNo8sDX5RliO75kNkk8ZXOPEsxSWkxQwhKe0b31B0FvSJ5H_shsuKWmrTK3iZmhllOh98gxSdclLOK3nNvZl61Zo3R11VBolKCCJphh8lW56wxe34o6QiukOV44RhYtc0JPg0Z_JvogusNuNAJogauw7p_WzXPmc7oHsGeCRau9nN1D2FKTKuybwNEyyzKtwu4fVMEqbGddnSI9gssnoSzMeTPGKYv_WLGVzfssza4XnI_VMQy7nY_7nm1YEWzhBf7c5kHoSs-PXUfxkBDKuGCSUSIoc5RiHpEK3RITQsPchIkf488SojRRJOcc47kTKE-mE3UKFhOYjEmX4prGwELIWHJKJD5EUJhJSGtwtZJLZHQ7jZZ9YTRCAUZagFHg1eA6F1okDLa4prgYbx7cXA2eLSE1Ng-r59Ivvl1owdn_t89hR79H131cvw7l-fdCXWD4MOcNKLHuYwMq7Yf-y3vDaMwvSn_CFQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsJAFL0hGKMufKBGFLWJ6MKkpo9pZ7owxqgI8lhBwq4yjy4MAbQQw0_5jc4tLUhC3LFsOm2TO2fuo3fmHIAy9z1szxDT9iQzSeQqk7uU6CrFYoISFvFE7q3Z8qsd8tb1ujn4yc7C4LbKzCcmjloOBf4j10U6trCIZ9kPo08TVaOwu5pJaMxgUVfTb12yxfe1Zz2_145TeWk_Vc1UVcAUru-NTe4HjnS9nmMrHhBCGRdMMkoEZbZSzCVSabfOhECamCDyehqzhCgUWuScB0h0oF3-BnHdAFcUq7wuuhZWQDN2cp3HWOl5QKSo_ojw2LvN7pBvdMHisBwNl4NBEuEq-7CbpqbG4wxLB5BTgwLspWmqkTqBuAA7fzgMC7CZ7CEV8SFc1YQydIWd6FsZfGr0jARlozi5nnDeV0fQWYu1jiE_GA7UCRhM6NJPOlR7EJ3GCNmTnBKpHyI6RkYBLcLN3C5hupLicLYLjYbagCEaMPTdItxmRgtFymSOghr91YPL88GjGYHH6mGlzPqLby8wd_r_7UvYqrabjbBRa9XPYBvfiR0nxytBfvw1Uec6cRnziwQtBryvG56_SiD6BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ice+breaking+by+a+collapsing+bubble&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Cui%2C+Pu&rft.au=Zhang%2C+A-Man&rft.au=Wang%2C+Shiping&rft.au=Khoo%2C+Boo+Cheong&rft.date=2018-04-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=841&rft.spage=287&rft.epage=309&rft_id=info:doi/10.1017%2Fjfm.2018.63&rft.externalDocID=10_1017_jfm_2018_63
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon