Ice breaking by a collapsing bubble
This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice breaking with a single collapsing bubble, where the bubble was generated by underwater electric discharge and collapsed at various distances...
Saved in:
Published in | Journal of fluid mechanics Vol. 841; pp. 287 - 309 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice breaking with a single collapsing bubble, where the bubble was generated by underwater electric discharge and collapsed at various distances under ice plates with different thicknesses. Characteristics of the ice fracturing, bubble jets and shock waves emitted during the collapse of the bubble were captured. The pattern of the ice fracturing is related to the ice thickness and the bubble–ice distance. Fractures develop from the top of the ice plate, i.e. the ice–air interface, and this is attributed to the tension caused by the reflection of the shock waves at the interface. Such fracturing is lessened when the thickness of the ice plate or the bubble–ice distance increases. Fractures may also form from the bottom of the ice plate upon the shock wave incidence when the bubble–ice distance is sufficiently small. The ice plate motion and its effect on the bubble behaviour were analysed. The ice plate motion results in higher jet speed and greater elongation of the bubble shape along the vertical direction. It also causes the bubble initiated close to the ice plate to split and emit multiple shock waves at the end of the collapse. The findings suggest that collapsing bubbles can be used as a brand new way of ice breaking. |
---|---|
AbstractList | This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice breaking with a single collapsing bubble, where the bubble was generated by underwater electric discharge and collapsed at various distances under ice plates with different thicknesses. Characteristics of the ice fracturing, bubble jets and shock waves emitted during the collapse of the bubble were captured. The pattern of the ice fracturing is related to the ice thickness and the bubble-ice distance. Fractures develop from the top of the ice plate, i.e. the ice-air interface, and this is attributed to the tension caused by the reflection of the shock waves at the interface. Such fracturing is lessened when the thickness of the ice plate or the bubble-ice distance increases. Fractures may also form from the bottom of the ice plate upon the shock wave incidence when the bubble-ice distance is sufficiently small. The ice plate motion and its effect on the bubble behaviour were analysed. The ice plate motion results in higher jet speed and greater elongation of the bubble shape along the vertical direction. It also causes the bubble initiated close to the ice plate to split and emit multiple shock waves at the end of the collapse. The findings suggest that collapsing bubbles can be used as a brand new way of ice breaking. |
Author | Cui, Pu Khoo, Boo Cheong Wang, Shiping Zhang, A-Man |
Author_xml | – sequence: 1 givenname: Pu orcidid: 0000-0001-8179-1366 surname: Cui fullname: Cui, Pu organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 2 givenname: A-Man orcidid: 0000-0003-1299-3049 surname: Zhang fullname: Zhang, A-Man email: zhangaman@hrbeu.edu.cn organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 3 givenname: Shiping surname: Wang fullname: Wang, Shiping organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 4 givenname: Boo Cheong surname: Khoo fullname: Khoo, Boo Cheong organization: Department of Mechanical Engineering, National University of Singapore, 117576, Singapore |
BookMark | eNp1kMtKw0AUhgepYFpd-QKBLiV1bpnLUoqXQsGNroeZyUlJTZM4ky769k5tQRBdHQ583zk__xRNur4DhG4JXhBM5P223i0oJmoh2AXKCBe6kIKXE5RhTGlBCMVXaBrjFmPCsJYZmq885C6A_Wi6Te4Ouc1937Z2iN_73rkWrtFlbdsIN-c5Q-9Pj2_Ll2L9-rxaPqwLz0Q5Fk5oWrHSUgJOcy6V86pSknupCIBivAKGmfJeYcl1XdqUmHMQWmnnnKZshuanu0PoP_cQR7Pt96FLLw1NYql4mWLPEDlRPvQxBqiNb0Y7Nn03Btu0hmBz7MKkLsyxCyNYcu5-OUNodjYc_qGLM213LjTVBn6C_MV_ASJrbk0 |
CitedBy_id | crossref_primary_10_1016_j_jfluidstructs_2019_102799 crossref_primary_10_1016_j_oceaneng_2018_09_032 crossref_primary_10_1007_s42241_019_0056_7 crossref_primary_10_1007_s42241_023_0074_3 crossref_primary_10_1016_j_apm_2021_06_029 crossref_primary_10_1016_j_oceaneng_2022_111383 crossref_primary_10_1016_j_surfin_2024_105305 crossref_primary_10_1016_j_expthermflusci_2020_110218 crossref_primary_10_1016_j_oceaneng_2022_111664 crossref_primary_10_1016_j_jfluidstructs_2019_102833 crossref_primary_10_1063_5_0219866 crossref_primary_10_1007_s42241_018_0112_8 crossref_primary_10_1016_j_ultsonch_2023_106576 crossref_primary_10_1016_j_taml_2020_01_003 crossref_primary_10_1016_j_oceaneng_2024_117362 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103335 crossref_primary_10_1063_1_5082258 crossref_primary_10_3390_jmse12010058 crossref_primary_10_1016_j_jfluidstructs_2020_103016 crossref_primary_10_1063_5_0037682 crossref_primary_10_1063_1_5112049 crossref_primary_10_1134_S0869864323020154 crossref_primary_10_1007_s42241_022_0040_5 crossref_primary_10_1007_s11012_019_01106_z crossref_primary_10_1016_j_rinp_2018_12_001 crossref_primary_10_1007_s42241_023_0063_6 crossref_primary_10_1155_2019_5341317 crossref_primary_10_1007_s42241_019_0061_x crossref_primary_10_1016_j_apor_2019_102013 crossref_primary_10_1063_5_0186165 crossref_primary_10_1088_1742_6596_2458_1_012042 crossref_primary_10_1063_1_5097929 crossref_primary_10_1063_5_0230489 crossref_primary_10_1016_j_ultsonch_2024_106846 crossref_primary_10_1016_j_dt_2020_04_001 crossref_primary_10_1088_1742_6596_2478_7_072033 crossref_primary_10_3390_jmse10091302 crossref_primary_10_1063_5_0244809 crossref_primary_10_1063_5_0063040 crossref_primary_10_3390_jmse12122211 crossref_primary_10_1016_j_ultsonch_2022_106042 crossref_primary_10_1016_j_apor_2020_102300 crossref_primary_10_1017_jfm_2020_552 crossref_primary_10_1063_5_0199266 crossref_primary_10_1063_5_0213651 crossref_primary_10_1007_s42241_020_0078_1 crossref_primary_10_1016_j_coldregions_2021_103281 crossref_primary_10_3390_app9245292 crossref_primary_10_1016_j_pss_2022_105578 crossref_primary_10_1063_5_0204629 crossref_primary_10_1063_5_0244760 crossref_primary_10_1016_j_ultsonch_2020_105147 crossref_primary_10_1016_j_oceaneng_2019_106714 crossref_primary_10_1016_j_oceaneng_2023_113782 crossref_primary_10_3390_w10091262 crossref_primary_10_1016_j_oceaneng_2022_111401 crossref_primary_10_2514_1_T6244 crossref_primary_10_1063_5_0009903 crossref_primary_10_1063_5_0218632 crossref_primary_10_1007_s11804_024_00478_3 crossref_primary_10_1016_j_apor_2018_08_016 crossref_primary_10_1017_jfm_2021_999 crossref_primary_10_1016_j_oceaneng_2024_118162 crossref_primary_10_1088_1402_4896_ad4ca8 crossref_primary_10_1007_s42241_018_0141_3 crossref_primary_10_1007_s13344_023_0025_3 crossref_primary_10_1063_5_0241368 crossref_primary_10_1007_s40571_019_00268_7 crossref_primary_10_1016_j_ultsonch_2020_105141 crossref_primary_10_1016_j_oceaneng_2020_108311 crossref_primary_10_1155_2018_8273469 crossref_primary_10_1016_j_oceaneng_2023_115838 crossref_primary_10_1016_j_jfluidstructs_2022_103594 crossref_primary_10_1016_j_ultsonch_2020_105375 crossref_primary_10_1038_s41598_018_37868_x crossref_primary_10_1017_jfm_2021_368 crossref_primary_10_1016_j_apor_2025_104434 crossref_primary_10_1016_j_expthermflusci_2019_04_005 crossref_primary_10_1016_j_ultsonch_2020_104969 crossref_primary_10_1016_j_apor_2024_104259 crossref_primary_10_1016_j_apor_2021_102946 crossref_primary_10_1016_j_expthermflusci_2019_109897 crossref_primary_10_1063_1_5088528 crossref_primary_10_1063_5_0205211 crossref_primary_10_1016_j_enconman_2021_114541 crossref_primary_10_1515_nanoph_2018_0195 crossref_primary_10_1016_j_oceaneng_2021_109650 crossref_primary_10_1063_5_0163793 crossref_primary_10_1063_5_0163431 crossref_primary_10_1063_5_0218482 crossref_primary_10_1007_s42241_019_0016_2 crossref_primary_10_1017_jfm_2021_976 crossref_primary_10_1007_s11804_023_00344_8 crossref_primary_10_1016_j_ultsonch_2020_105440 crossref_primary_10_1007_s12206_023_0421_x crossref_primary_10_1016_j_apor_2025_104423 crossref_primary_10_1016_j_jfluidstructs_2019_02_022 crossref_primary_10_1080_15376494_2022_2069308 crossref_primary_10_1134_S1028335821110033 crossref_primary_10_1016_j_taml_2021_100311 crossref_primary_10_1007_s42757_023_0177_7 crossref_primary_10_1016_j_applthermaleng_2023_122095 crossref_primary_10_1007_s42241_021_0004_1 crossref_primary_10_1007_s11804_024_00422_5 crossref_primary_10_1016_j_ultsonch_2019_104699 crossref_primary_10_1007_s13344_023_0063_x crossref_primary_10_1017_jfm_2020_400 crossref_primary_10_3390_inventions8050131 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103096 crossref_primary_10_1016_j_ultsonch_2018_11_025 crossref_primary_10_1016_j_oceaneng_2021_109393 crossref_primary_10_1016_j_enganabound_2024_106041 crossref_primary_10_1016_j_ultsonch_2020_105157 crossref_primary_10_1007_s11431_018_9420_2 crossref_primary_10_1063_1_5143095 crossref_primary_10_1017_jfm_2022_20 crossref_primary_10_1140_epje_i2019_11833_8 crossref_primary_10_1016_j_ijnaoe_2024_100600 crossref_primary_10_1063_5_0037095 crossref_primary_10_3390_fluids8080220 crossref_primary_10_1016_j_ijmultiphaseflow_2019_03_026 crossref_primary_10_1021_acs_langmuir_3c02679 crossref_primary_10_32604_cmes_2021_015259 crossref_primary_10_1063_5_0248927 crossref_primary_10_1063_5_0220659 crossref_primary_10_1016_j_icheatmasstransfer_2024_107802 crossref_primary_10_1007_s42241_018_0038_1 crossref_primary_10_1016_j_oceaneng_2019_106115 crossref_primary_10_1016_j_ultsonch_2021_105587 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122298 crossref_primary_10_1063_5_0177085 crossref_primary_10_3390_w10101439 crossref_primary_10_1063_5_0234757 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103834 crossref_primary_10_1016_j_oceaneng_2021_110270 crossref_primary_10_1007_s11804_024_00401_w crossref_primary_10_1063_5_0240514 crossref_primary_10_1007_s42241_020_0047_8 crossref_primary_10_1007_s42241_023_0028_9 crossref_primary_10_1088_1873_7005_ac522c crossref_primary_10_1063_5_0107299 crossref_primary_10_1063_5_0184967 crossref_primary_10_1063_1_5115097 crossref_primary_10_1007_s42241_018_0023_8 crossref_primary_10_1007_s42241_018_0066_x crossref_primary_10_1016_j_oceaneng_2019_106523 crossref_primary_10_1016_j_oceaneng_2023_115811 crossref_primary_10_1063_1_5121380 crossref_primary_10_1017_jmech_2018_62 crossref_primary_10_2139_ssrn_3914054 crossref_primary_10_1007_s42241_019_0025_1 crossref_primary_10_1063_1_5089268 crossref_primary_10_1103_PhysRevFluids_9_043603 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105032 crossref_primary_10_1016_j_ultsonch_2018_08_006 crossref_primary_10_3390_w16010161 crossref_primary_10_1103_PhysRevFluids_6_083601 crossref_primary_10_1016_j_ultsonch_2025_107255 crossref_primary_10_1016_j_oceaneng_2020_108500 crossref_primary_10_1142_S2424913018500066 crossref_primary_10_1063_5_0151939 crossref_primary_10_1016_j_icheatmasstransfer_2024_108112 crossref_primary_10_1007_s00366_022_01616_7 crossref_primary_10_1016_j_oceaneng_2021_109175 |
Cites_doi | 10.1016/j.ultsonch.2015.05.004 10.1103/PhysRevLett.107.204501 10.1017/jfm.2011.85 10.5962/bhl.title.48411 10.1017/S0022112086000745 10.1063/1.1421102 10.1111/j.1365-246X.1970.tb01773.x 10.1039/b806912c 10.1063/1.1542669 10.1016/j.ultras.2004.06.006 10.1115/1.3650589 10.1016/S0301-5629(02)00506-9 10.1016/j.ijimpeng.2007.01.007 10.1073/pnas.1015771108 10.1243/09544110360729072 10.1021/op050109x 10.1017/jfm.2014.394 10.1121/1.1476919 10.1017/S0022112005005306 10.1103/PhysRevLett.99.045701 10.1098/rsfs.2015.0017 10.1017/S0022112006003296 10.1016/j.oceaneng.2014.05.005 10.1017/S0022112000003347 10.1063/1.4922293 10.1017/jfm.2016.583 10.1017/S0022112002003695 10.1126/science.289.5487.2114 10.1017/jfm.2015.183 10.1088/0034-4885/73/10/106501 10.1016/j.pbiomolbio.2006.07.005 10.1038/nature00895 10.1017/S0022112009993776 10.1017/jfm.2013.341 10.1007/978-3-642-34297-4_10 10.1017/S0022112009993338 10.1017/S0022112089002314 10.1038/srep12572 10.1038/nature03361 10.1529/biophysj.105.075366 10.1115/1.4023650 10.1190/1.1443559 10.1073/pnas.1606915113 10.1243/09544119JEIM622 10.1016/j.ijmultiphaseflow.2016.03.021 10.1016/j.rser.2015.11.052 10.1016/j.expthermflusci.2014.02.025 10.1098/rsta.1966.0046 10.1017/jfm.2015.33 10.1017/jfm.2016.463 10.1038/35097152 10.1016/j.ultsonch.2015.04.026 10.1016/j.jsv.2010.04.030 10.1063/1.2338125 10.1080/01418618408233279 10.1063/1.1707821 10.1016/j.memsci.2004.02.031 10.1063/1.4944561 10.1017/jfm.2015.323 10.1017/S0022112098008738 10.1088/0031-9155/50/20/004 |
ContentType | Journal Article |
Copyright | 2018 Cambridge University Press |
Copyright_xml | – notice: 2018 Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2018.63 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | P. Cui, A. M. Zhang, S. P. Wang and B. C. Khoo Ice breaking by a collapsing bubble |
EISSN | 1469-7645 |
EndPage | 309 |
ExternalDocumentID | 10_1017_jfm_2018_63 |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVKB ABVZP ABXAU ABZCX ACBEA ACBMC ACDLN ACGFO ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEUYN AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WYP ZE2 ZMEZD ZYDXJ ~02 AAYXX ABXHF AKMAY CITATION PHGZM PHGZT 7TB 7U5 7UA 7XB 8FD 8FK ADMLS C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c365t-b692d35a21eb94478bc8d874c781ee834de3038cc80749f5a01744e6989bbb923 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Sat Aug 16 09:10:57 EDT 2025 Tue Jul 01 03:01:12 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Tue Jan 21 06:25:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | drops and bubbles bubble dynamics cavitation |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-b692d35a21eb94478bc8d874c781ee834de3038cc80749f5a01744e6989bbb923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8179-1366 0000-0003-1299-3049 |
PQID | 2038584501 |
PQPubID | 34769 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2038584501 crossref_citationtrail_10_1017_jfm_2018_63 crossref_primary_10_1017_jfm_2018_63 cambridge_journals_10_1017_jfm_2018_63 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-25 |
PublicationDateYYYYMMDD | 2018-04-25 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2018 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2011; 677 2002; 14 2003; 479 2010; 224 2002; 111 2005; 537 2008; 35 2008; 8 1981; 48 2003; 93 2000; 289 2015; 776 2015; 771 2007; 570 2016; 113 1970; 21 2014; 55 2010; 73 2001; 413 1998; 361 2014; 755 2006; 91 2015; 5 2003; 217 2010; 329 1966; 37 2010; 646 2016; 802 1984; 49 2005; 434 2016; 805 2005; 43 2002; 418 2007; 93 2015; 767 2007; 99 1966; 260 2014; 87 2016; 56 2002; 28 1965; 87 2004; 237 1986; 169 2017; 90 2011; 108 2015; 27 2011; 107 1989; 206 2005; 9 2010; 651 2013; 730 2013; 135 1994; 59 2005; 50 2016; 29 2016; 28 2001; 433 2006; 100 Chahine (S0022112018000630_r11) 1995; 2 S0022112018000630_r19 S0022112018000630_r17 S0022112018000630_r18 S0022112018000630_r15 S0022112018000630_r59 S0022112018000630_r16 S0022112018000630_r57 S0022112018000630_r58 S0022112018000630_r14 S0022112018000630_r55 S0022112018000630_r56 S0022112018000630_r12 S0022112018000630_r53 S0022112018000630_r54 S0022112018000630_r10 S0022112018000630_r51 S0022112018000630_r52 S0022112018000630_r50 Chalmers (S0022112018000630_r13) 1964 S0022112018000630_r28 S0022112018000630_r29 S0022112018000630_r26 S0022112018000630_r27 S0022112018000630_r25 S0022112018000630_r22 S0022112018000630_r23 S0022112018000630_r64 S0022112018000630_r20 Shima (S0022112018000630_r48) 1981; 48 S0022112018000630_r65 S0022112018000630_r21 S0022112018000630_r62 S0022112018000630_r63 S0022112018000630_r60 S0022112018000630_r61 Hobbs (S0022112018000630_r24) 1974 S0022112018000630_r39 S0022112018000630_r37 S0022112018000630_r38 S0022112018000630_r35 S0022112018000630_r36 S0022112018000630_r33 S0022112018000630_r34 S0022112018000630_r31 S0022112018000630_r32 S0022112018000630_r30 S0022112018000630_r2 S0022112018000630_r3 S0022112018000630_r4 S0022112018000630_r5 S0022112018000630_r1 S0022112018000630_r6 S0022112018000630_r49 S0022112018000630_r7 S0022112018000630_r8 S0022112018000630_r46 S0022112018000630_r9 S0022112018000630_r47 S0022112018000630_r44 S0022112018000630_r45 S0022112018000630_r42 S0022112018000630_r43 S0022112018000630_r40 S0022112018000630_r41 |
References_xml | – volume: 755 start-page: 142 year: 2014 end-page: 175 article-title: Modelling of material pitting from cavitation bubble collapse publication-title: J. Fluid Mech. – volume: 37 start-page: 254 year: 1966 end-page: 257 article-title: Nucleation of solid in an undercooled liquid by cavitation publication-title: J. Appl. Phys. – volume: 90 start-page: 156 year: 2017 end-page: 166 article-title: Spark-generated bubble near an elastic sphere publication-title: Intl J. Multiphase Flow – volume: 135 year: 2013 article-title: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation publication-title: J. Fluids Engng – volume: 570 start-page: 407 year: 2007 end-page: 429 article-title: On the boundary integral method for the rebounding bubble publication-title: J. Fluid Mech. – volume: 87 start-page: 511 year: 1965 end-page: 517 article-title: A photographic study of the dynamics and damage capabilities of bubbles collapsing near solid boundaries publication-title: J. Basic Engng – volume: 289 start-page: 2114 year: 2000 end-page: 2117 article-title: How snapping shrimp snap: through cavitating bubbles publication-title: Science – volume: 802 start-page: 263 year: 2016 end-page: 293 article-title: Scaling laws for jets of single cavitation bubbles publication-title: J. Fluid Mech. – volume: 418 start-page: 394 year: 2002 end-page: 397 article-title: The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation publication-title: Nature – volume: 43 start-page: 227 year: 2005 end-page: 230 article-title: A study on the primary and secondary nucleation of ice by power ultrasound publication-title: Ultrasonics – volume: 767 start-page: 31 year: 2015 end-page: 51 article-title: Fast transient microjets induced by hemispherical cavitation bubbles publication-title: J. Fluid Mech. – volume: 329 start-page: 4266 year: 2010 end-page: 4278 article-title: Intensity of oscillation of spark-generated bubbles publication-title: J. Sound Vib. – volume: 237 start-page: 213 year: 2004 end-page: 223 article-title: Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes publication-title: J. Membr. Sci. – volume: 8 start-page: 1676 year: 2008 end-page: 1681 article-title: Laser-induced cavitation based micropump publication-title: Lab on a Chip – volume: 771 start-page: 706 year: 2015 end-page: 742 article-title: Dynamics of laser-induced bubble pairs publication-title: J. Fluid Mech. – volume: 99 year: 2007 article-title: Ice crystallization induced by optical breakdown publication-title: Phys. Rev. Lett. – volume: 224 start-page: 171 year: 2010 end-page: 191 article-title: Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy publication-title: Proc. Inst. Mech. Engrs H – volume: 434 start-page: 52 year: 2005 end-page: 55 article-title: Plasma formation and temperature measurement during single-bubble cavitation publication-title: Nature – volume: 217 start-page: 429 year: 2003 end-page: 447 article-title: Microbubble ultrasound contrast agents: a review publication-title: Proc. Inst. Mech. Engrs H – volume: 111 start-page: 2594 year: 2002 end-page: 2600 article-title: Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model publication-title: J. Acoust. Soc. Am. – volume: 14 start-page: 85 year: 2002 end-page: 92 article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary publication-title: Phys. Fluids – volume: 50 start-page: 4797 year: 2005 article-title: Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound publication-title: Phys. Med. Biol. – volume: 100 year: 2006 article-title: Experimental and numerical study of transient bubble-elastic membrane interaction publication-title: J. Appl. Phys. – volume: 73 year: 2010 article-title: Physics of bubble oscillations publication-title: Rep. Prog. Phys. – volume: 93 start-page: 111 year: 2007 end-page: 129 article-title: Therapeutic applications of ultrasound publication-title: Prog. Biophys. Mol. Bio. – volume: 59 start-page: 1729 year: 1994 end-page: 1734 article-title: Understanding air-gun bubble behavior publication-title: Geophysics – volume: 651 start-page: 55 year: 2010 end-page: 80 article-title: Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries publication-title: J. Fluid Mech. – volume: 206 start-page: 299 year: 1989 end-page: 338 article-title: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary publication-title: J. Fluid Mech. – volume: 87 start-page: 64 year: 2014 end-page: 77 article-title: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction publication-title: Ocean Engng – volume: 107 year: 2011 article-title: Universal scaling law for jets of collapsing bubbles publication-title: Phys. Rev. Lett. – volume: 28 year: 2016 article-title: Numerical simulation of a collapsing bubble subject to gravity publication-title: Phys. Fluids – volume: 48 start-page: 293 year: 1981 end-page: 301 article-title: An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse publication-title: Acta Acust. Acust. – volume: 260 start-page: 221 issue: 1110 year: 1966 end-page: 240 article-title: The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries publication-title: Phil. Trans. R. Soc. Lond. A – volume: 29 start-page: 528 year: 2016 end-page: 549 article-title: Modeling of surface cleaning by cavitation bubble dynamics and collapse publication-title: Ultrason. Sonochemi. – volume: 677 start-page: 305 year: 2011 end-page: 341 article-title: The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy publication-title: J. Fluid Mech. – volume: 108 start-page: 3258 year: 2011 end-page: 3263 article-title: Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects publication-title: Proc. Natl Acad. Sci. USA – volume: 29 start-page: 519 year: 2016 end-page: 523 article-title: Ultrasonic cleaning: an historical perspective publication-title: Ultrason. Sonochem. – volume: 361 start-page: 75 year: 1998 end-page: 116 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J. Fluid Mech. – volume: 646 start-page: 363 year: 2010 end-page: 373 article-title: Shock emission from collapsing gas bubbles publication-title: J. Fluid Mech. – volume: 5 year: 2015 article-title: Cavitation and bubble dynamics: the Kelvin impulse and its applications publication-title: Interface Focus – volume: 49 start-page: 353 year: 1984 end-page: 363 article-title: A brittle to ductile transition in ice under tension publication-title: Phil. Mag. A – volume: 169 start-page: 535 year: 1986 end-page: 564 article-title: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse publication-title: J. Fluid Mech. – volume: 21 start-page: 137 year: 1970 end-page: 161 article-title: A method for calculating the output pressure waveform from an air gun publication-title: Geophys. J. Intl – volume: 56 start-page: 303 year: 2016 end-page: 318 article-title: A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow publication-title: J. Renew. Sustain. Energy Rev. – volume: 805 start-page: 551 year: 2016 end-page: 576 article-title: Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles publication-title: J. Fluid Mech. – volume: 35 start-page: 206 year: 2008 end-page: 225 article-title: A study of explosive effects in close proximity to a submerged cylinder publication-title: Intl J. Impact Engng – volume: 113 start-page: 9983 year: 2016 end-page: 9988 article-title: Biophysical insight into mechanisms of sonoporation publication-title: Proc. Natl Acad. Sci. USA – volume: 776 start-page: 137 year: 2015 end-page: 160 article-title: Experimental study on bubble dynamics subject to buoyancy publication-title: J. Fluid Mech. – volume: 433 start-page: 251 year: 2001 end-page: 281 article-title: Dynamics of laser-induced cavitation bubbles near an elastic boundary publication-title: J. Fluid Mech. – volume: 27 year: 2015 article-title: Study on splitting of a toroidal bubble near a rigid boundary publication-title: Phys. Fluids – volume: 479 start-page: 327 year: 2003 end-page: 348 article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall publication-title: J. Fluid Mech. – volume: 28 start-page: 661 year: 2002 end-page: 671 article-title: The role of stress waves and cavitation in stone comminution in shock wave lithotripsy publication-title: Ultrasound Med. Biol. – volume: 730 start-page: 245 year: 2013 end-page: 272 article-title: Ultrasonic cavitation near a tissue layer publication-title: J. Fluid Mech. – volume: 93 start-page: 3039 year: 2003 end-page: 3048 article-title: Energy evaluation of cavitation bubble generation and shock wave emission by laser focusing in liquid nitrogen publication-title: J. Appl. Phys. – volume: 537 start-page: 387 year: 2005 end-page: 413 article-title: Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure publication-title: J. Fluid Mech. – volume: 9 start-page: 923 year: 2005 end-page: 932 article-title: Sonocrystallization: the use of ultrasound for improved industrial crystallization publication-title: Org. Process Res. Dev. – volume: 91 start-page: 4285 year: 2006 end-page: 4295 article-title: Sonoporation from jetting cavitation bubbles publication-title: Biophys J. – volume: 55 start-page: 239 year: 2014 end-page: 249 article-title: The pressure field generated by a seismic airgun publication-title: Exp. Therm. Fluid Sci. – volume: 5 start-page: 12572 year: 2015 article-title: Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid–liquid extraction with a microfluidic device publication-title: Sci. Rep. – volume: 413 start-page: 477 year: 2001 end-page: 478 article-title: Snapping shrimp make flashing bubbles publication-title: Nature – ident: S0022112018000630_r41 doi: 10.1016/j.ultsonch.2015.05.004 – ident: S0022112018000630_r42 doi: 10.1103/PhysRevLett.107.204501 – ident: S0022112018000630_r29 doi: 10.1017/jfm.2011.85 – ident: S0022112018000630_r15 doi: 10.5962/bhl.title.48411 – ident: S0022112018000630_r54 doi: 10.1017/S0022112086000745 – ident: S0022112018000630_r7 doi: 10.1063/1.1421102 – ident: S0022112018000630_r65 doi: 10.1111/j.1365-246X.1970.tb01773.x – ident: S0022112018000630_r19 doi: 10.1039/b806912c – ident: S0022112018000630_r55 doi: 10.1063/1.1542669 – ident: S0022112018000630_r14 doi: 10.1016/j.ultras.2004.06.006 – ident: S0022112018000630_r49 doi: 10.1115/1.3650589 – ident: S0022112018000630_r64 doi: 10.1016/S0301-5629(02)00506-9 – ident: S0022112018000630_r5 doi: 10.1016/j.ijimpeng.2007.01.007 – ident: S0022112018000630_r34 doi: 10.1073/pnas.1015771108 – ident: S0022112018000630_r51 doi: 10.1243/09544110360729072 – ident: S0022112018000630_r45 doi: 10.1021/op050109x – ident: S0022112018000630_r25 doi: 10.1017/jfm.2014.394 – volume-title: Ice Physics year: 1974 ident: S0022112018000630_r24 – volume-title: Principles of Solidification year: 1964 ident: S0022112018000630_r13 – ident: S0022112018000630_r9 doi: 10.1121/1.1476919 – ident: S0022112018000630_r32 doi: 10.1017/S0022112005005306 – ident: S0022112018000630_r39 doi: 10.1103/PhysRevLett.99.045701 – ident: S0022112018000630_r4 doi: 10.1098/rsfs.2015.0017 – ident: S0022112018000630_r37 doi: 10.1017/S0022112006003296 – ident: S0022112018000630_r30 doi: 10.1016/j.oceaneng.2014.05.005 – ident: S0022112018000630_r8 doi: 10.1017/S0022112000003347 – ident: S0022112018000630_r61 doi: 10.1063/1.4922293 – ident: S0022112018000630_r1 doi: 10.1017/jfm.2016.583 – ident: S0022112018000630_r38 doi: 10.1017/S0022112002003695 – ident: S0022112018000630_r57 doi: 10.1126/science.289.5487.2114 – ident: S0022112018000630_r22 doi: 10.1017/jfm.2015.183 – ident: S0022112018000630_r36 doi: 10.1088/0034-4885/73/10/106501 – ident: S0022112018000630_r53 doi: 10.1016/j.pbiomolbio.2006.07.005 – ident: S0022112018000630_r18 doi: 10.1038/nature00895 – ident: S0022112018000630_r27 doi: 10.1017/S0022112009993776 – volume: 2 start-page: 265 volume-title: Proceedings of 66th Sock and Vibrations Symposium year: 1995 ident: S0022112018000630_r11 – ident: S0022112018000630_r16 doi: 10.1017/jfm.2013.341 – ident: S0022112018000630_r63 doi: 10.1007/978-3-642-34297-4_10 – ident: S0022112018000630_r47 doi: 10.1017/S0022112009993338 – ident: S0022112018000630_r58 doi: 10.1017/S0022112089002314 – ident: S0022112018000630_r59 doi: 10.1038/srep12572 – ident: S0022112018000630_r20 doi: 10.1038/nature03361 – ident: S0022112018000630_r43 doi: 10.1529/biophysj.105.075366 – ident: S0022112018000630_r26 doi: 10.1115/1.4023650 – ident: S0022112018000630_r31 doi: 10.1190/1.1443559 – ident: S0022112018000630_r23 doi: 10.1073/pnas.1606915113 – ident: S0022112018000630_r50 doi: 10.1243/09544119JEIM622 – ident: S0022112018000630_r21 doi: 10.1016/j.ijmultiphaseflow.2016.03.021 – ident: S0022112018000630_r62 doi: 10.1016/j.rser.2015.11.052 – ident: S0022112018000630_r17 doi: 10.1016/j.expthermflusci.2014.02.025 – ident: S0022112018000630_r3 doi: 10.1098/rsta.1966.0046 – ident: S0022112018000630_r2 doi: 10.1017/jfm.2015.33 – ident: S0022112018000630_r52 doi: 10.1017/jfm.2016.463 – ident: S0022112018000630_r40 doi: 10.1038/35097152 – ident: S0022112018000630_r12 doi: 10.1016/j.ultsonch.2015.04.026 – ident: S0022112018000630_r10 doi: 10.1016/j.jsv.2010.04.030 – ident: S0022112018000630_r56 doi: 10.1063/1.2338125 – ident: S0022112018000630_r46 doi: 10.1080/01418618408233279 – ident: S0022112018000630_r28 doi: 10.1063/1.1707821 – ident: S0022112018000630_r35 doi: 10.1016/j.memsci.2004.02.031 – ident: S0022112018000630_r33 doi: 10.1063/1.4944561 – ident: S0022112018000630_r60 doi: 10.1017/jfm.2015.323 – volume: 48 start-page: 293 year: 1981 ident: S0022112018000630_r48 article-title: An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse publication-title: Acta Acust. Acust. – ident: S0022112018000630_r44 doi: 10.1017/S0022112098008738 – ident: S0022112018000630_r6 doi: 10.1088/0031-9155/50/20/004 |
SSID | ssj0013097 |
Score | 2.6041603 |
Snippet | This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 287 |
SubjectTerms | Air-ice interface Breaking Bubble barriers Bubbles Distance Elongation Fluid mechanics Fluids Fractures Fracturing Ice Ice breaking Ice cover Ice plates Ice thickness JFM Papers Lithotripsy Plate motion Shock waves Ultrasonic imaging Wave reflection |
Title | Ice breaking by a collapsing bubble |
URI | https://www.cambridge.org/core/product/identifier/S0022112018000630/type/journal_article https://www.proquest.com/docview/2038584501 |
Volume | 841 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IxEQPPlAjiqSJxINJDW233e3JoIJohBiVhFvTffRgCKCFg__e2bKlkhCPTbdtOjs7j53Z7wNo8sDX5RliO75kNkk8ZXOPEsxSWkxQwhKe0b31B0FvSJ5H_shsuKWmrTK3iZmhllOh98gxSdclLOK3nNvZl61Zo3R11VBolKCCJphh8lW56wxe34o6QiukOV44RhYtc0JPg0Z_JvogusNuNAJogauw7p_WzXPmc7oHsGeCRau9nN1D2FKTKuybwNEyyzKtwu4fVMEqbGddnSI9gssnoSzMeTPGKYv_WLGVzfssza4XnI_VMQy7nY_7nm1YEWzhBf7c5kHoSs-PXUfxkBDKuGCSUSIoc5RiHpEK3RITQsPchIkf488SojRRJOcc47kTKE-mE3UKFhOYjEmX4prGwELIWHJKJD5EUJhJSGtwtZJLZHQ7jZZ9YTRCAUZagFHg1eA6F1okDLa4prgYbx7cXA2eLSE1Ng-r59Ivvl1owdn_t89hR79H131cvw7l-fdCXWD4MOcNKLHuYwMq7Yf-y3vDaMwvSn_CFQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsJAFL0hGKMufKBGFLWJ6MKkpo9pZ7owxqgI8lhBwq4yjy4MAbQQw0_5jc4tLUhC3LFsOm2TO2fuo3fmHIAy9z1szxDT9iQzSeQqk7uU6CrFYoISFvFE7q3Z8qsd8tb1ujn4yc7C4LbKzCcmjloOBf4j10U6trCIZ9kPo08TVaOwu5pJaMxgUVfTb12yxfe1Zz2_145TeWk_Vc1UVcAUru-NTe4HjnS9nmMrHhBCGRdMMkoEZbZSzCVSabfOhECamCDyehqzhCgUWuScB0h0oF3-BnHdAFcUq7wuuhZWQDN2cp3HWOl5QKSo_ojw2LvN7pBvdMHisBwNl4NBEuEq-7CbpqbG4wxLB5BTgwLspWmqkTqBuAA7fzgMC7CZ7CEV8SFc1YQydIWd6FsZfGr0jARlozi5nnDeV0fQWYu1jiE_GA7UCRhM6NJPOlR7EJ3GCNmTnBKpHyI6RkYBLcLN3C5hupLicLYLjYbagCEaMPTdItxmRgtFymSOghr91YPL88GjGYHH6mGlzPqLby8wd_r_7UvYqrabjbBRa9XPYBvfiR0nxytBfvw1Uec6cRnziwQtBryvG56_SiD6BQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ice+breaking+by+a+collapsing+bubble&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Cui%2C+Pu&rft.au=Zhang%2C+A-Man&rft.au=Wang%2C+Shiping&rft.au=Khoo%2C+Boo+Cheong&rft.date=2018-04-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=841&rft.spage=287&rft.epage=309&rft_id=info:doi/10.1017%2Fjfm.2018.63&rft.externalDocID=10_1017_jfm_2018_63 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |