A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers
Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals signifi...
Saved in:
Published in | Journal of neural engineering Vol. 18; no. 3; p. 31002 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions. |
---|---|
AbstractList | Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions. Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions.Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions. |
Author | McAlpine, David Wang, Xianzhi Zhang, Yu Zhang, Xiang Yao, Lina Monaghan, Jessica |
Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0001-5097-2113 surname: Zhang fullname: Zhang, Xiang – sequence: 2 givenname: Lina surname: Yao fullname: Yao, Lina – sequence: 3 givenname: Xianzhi surname: Wang fullname: Wang, Xianzhi – sequence: 4 givenname: Jessica orcidid: 0000-0003-1416-4164 surname: Monaghan fullname: Monaghan, Jessica – sequence: 5 givenname: David surname: McAlpine fullname: McAlpine, David – sequence: 6 givenname: Yu surname: Zhang fullname: Zhang, Yu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33171452$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtLAzEQh4NU7EPvniRHL2vz2KRbb6X4goIXPUrIJpMS2WZrsq30vzeltQfB0wyT7zdhviHqhTYAQteU3FFSVWM6KWnBhGBjXZspYWdocBr1Tr0kfTRM6ZMQTidTcoH6PDe0FGyAPmY4beIWdrgN2AKscQM6Bh-WRa0TWJx_LHzY6uS3gOuofcDJL4Nu0j2OYCB0WNutDgYS1iHz8I1dbEPnIaZLdO4yCVfHOkLvjw9v8-di8fr0Mp8tCsOl6IpacEec05XhvBK0gkoKakFacLYS1pmJZUZObF0ClLzML7Salkxz62zNJfARuj3sXcf2awOpUyufDDSNDtBukmKlmEomGaUZvTmim3oFVq2jX-m4U79KMiAPgIltShGcMr7Tnc8n5esbRYnau1d7uWovWh3c5yD5E_zd_W_kB1r9h4s |
CitedBy_id | crossref_primary_10_1038_s41746_023_00983_9 crossref_primary_10_1109_ACCESS_2021_3118038 crossref_primary_10_1109_TCDS_2024_3431224 crossref_primary_10_1038_s41597_022_01280_y crossref_primary_10_1007_s11571_023_10035_3 crossref_primary_10_1016_j_bspc_2024_106171 crossref_primary_10_1088_1741_2552_acd1b6 crossref_primary_10_1088_1741_2552_ada30b crossref_primary_10_3390_brainsci13020268 crossref_primary_10_3390_s22082948 crossref_primary_10_1109_TBME_2024_3356665 crossref_primary_10_32604_cmc_2022_029073 crossref_primary_10_1007_s00521_021_06352_5 crossref_primary_10_1109_JIOT_2022_3180215 crossref_primary_10_1186_s12938_023_01129_4 crossref_primary_10_1016_j_neuri_2023_100126 crossref_primary_10_1016_j_bspc_2022_103857 crossref_primary_10_1016_j_compbiomed_2022_106196 crossref_primary_10_1109_TBME_2021_3115799 crossref_primary_10_1016_j_neunet_2024_107066 crossref_primary_10_3390_s21196343 crossref_primary_10_1109_TCDS_2020_3040438 crossref_primary_10_1155_2023_7741735 crossref_primary_10_1088_1741_2552_ac9e75 crossref_primary_10_3390_a16030149 crossref_primary_10_1080_27706710_2023_2181102 crossref_primary_10_3390_s23010482 crossref_primary_10_1007_s12559_023_10233_5 crossref_primary_10_3390_s22093331 crossref_primary_10_1109_TII_2023_3297323 crossref_primary_10_1109_JBHI_2023_3315974 crossref_primary_10_3390_app14104199 crossref_primary_10_1016_j_bspc_2024_106189 crossref_primary_10_3389_fnhum_2024_1320457 crossref_primary_10_1016_j_jneumeth_2023_109953 crossref_primary_10_3390_brainsci14050462 crossref_primary_10_1007_s11431_024_2744_5 crossref_primary_10_1007_s11831_023_10047_6 crossref_primary_10_1109_TWC_2024_3470108 crossref_primary_10_3390_brainsci13030483 crossref_primary_10_3390_s21248291 crossref_primary_10_1038_s41598_022_06805_4 crossref_primary_10_1109_TNSRE_2023_3268979 crossref_primary_10_3390_a16080377 crossref_primary_10_1088_1741_2552_ad9403 crossref_primary_10_3390_electronics13030541 crossref_primary_10_1088_2632_2153_ad9135 crossref_primary_10_3389_fnins_2022_1062889 crossref_primary_10_1016_j_knosys_2025_113315 crossref_primary_10_1109_ACCESS_2022_3228164 crossref_primary_10_3390_s21175746 crossref_primary_10_1109_TNSRE_2023_3300961 crossref_primary_10_3389_fnins_2022_801818 crossref_primary_10_1088_1741_2552_ac7257 crossref_primary_10_3390_s22041475 crossref_primary_10_1109_TCDS_2023_3293321 crossref_primary_10_1016_j_bspc_2023_105214 crossref_primary_10_1109_JBHI_2024_3464550 crossref_primary_10_3389_fnins_2022_824471 crossref_primary_10_1016_j_asoc_2024_111575 crossref_primary_10_25130_tjes_30_3_14 crossref_primary_10_1109_TNSRE_2023_3297654 crossref_primary_10_1016_j_eswa_2023_120575 crossref_primary_10_3390_brainsci13050770 crossref_primary_10_1016_j_patcog_2023_109915 crossref_primary_10_1088_1741_2552_acf2c9 crossref_primary_10_3389_fnhum_2021_643386 crossref_primary_10_3233_JIFS_237890 crossref_primary_10_1109_COMST_2024_3387124 crossref_primary_10_1088_1741_2552_ad2a36 crossref_primary_10_1186_s12938_024_01244_w crossref_primary_10_3390_app112110294 crossref_primary_10_1109_ACCESS_2021_3132024 crossref_primary_10_1007_s11517_025_03340_y crossref_primary_10_1016_j_neunet_2023_04_045 crossref_primary_10_1088_1741_2552_ad3eb5 crossref_primary_10_3390_app12031695 crossref_primary_10_1088_1741_2552_ac4f9a crossref_primary_10_1007_s10489_024_06013_9 crossref_primary_10_1088_1741_2552_ad9cc0 crossref_primary_10_1109_ACCESS_2024_3351204 crossref_primary_10_1109_TNSRE_2023_3275172 crossref_primary_10_1007_s12652_022_04469_6 crossref_primary_10_1016_j_bspc_2023_105154 crossref_primary_10_1142_S0129065724500692 crossref_primary_10_1016_j_bspc_2023_104579 crossref_primary_10_3389_fnbot_2023_1174613 crossref_primary_10_1016_j_buildenv_2023_110661 crossref_primary_10_1109_TNSRE_2020_3040984 crossref_primary_10_1016_j_neurad_2024_02_006 crossref_primary_10_3389_fnhum_2021_653659 crossref_primary_10_1080_03091902_2021_1906966 crossref_primary_10_1109_ACCESS_2022_3195513 crossref_primary_10_3390_medicines10080045 crossref_primary_10_1038_s41746_023_00859_y crossref_primary_10_1111_exsy_13235 crossref_primary_10_1109_TCSII_2022_3177616 crossref_primary_10_1109_ACCESS_2022_3178100 crossref_primary_10_3389_fncom_2022_868642 crossref_primary_10_1155_2021_6472586 crossref_primary_10_1080_21681163_2023_2192831 crossref_primary_10_1109_TCDS_2021_3099344 crossref_primary_10_1007_s00521_022_07843_9 crossref_primary_10_1109_TNSRE_2024_3502135 crossref_primary_10_1016_j_neuroimage_2022_119056 crossref_primary_10_1590_s1982_21702024000100001 crossref_primary_10_1109_TNSRE_2023_3286688 crossref_primary_10_3389_fnins_2021_795488 crossref_primary_10_3389_fnins_2024_1509358 crossref_primary_10_1186_s12877_025_05676_4 crossref_primary_10_3390_app12136681 crossref_primary_10_1109_ACCESS_2023_3320561 crossref_primary_10_1109_TNNLS_2021_3053576 crossref_primary_10_1109_TNSRE_2023_3315717 crossref_primary_10_1016_j_bspc_2023_105497 crossref_primary_10_1088_1741_2552_ac7908 crossref_primary_10_3389_fnhum_2024_1348154 crossref_primary_10_1109_THMS_2022_3189576 crossref_primary_10_1007_s11704_021_0587_2 crossref_primary_10_1109_ACCESS_2024_3430838 crossref_primary_10_1088_1741_2552_ad48bc crossref_primary_10_3390_info15060301 crossref_primary_10_3389_fnins_2023_1148855 crossref_primary_10_3390_math12060806 crossref_primary_10_3390_s24061889 |
Cites_doi | 10.1109/mmsp.2017.8122291 10.1109/mlsp.2016.7738824 10.1109/cvprw.2018.00267 10.1016/j.procs.2016.07.422 10.1109/upcon.2017.8251115 10.1016/j.neuroimage.2018.07.043 10.1109/jiot.2018.2877786 10.1007/978-3-319-49685-6_3 10.1109/bibe.2014.26 10.1016/j.bspc.2014.12.007 10.1016/j.neunet.2014.09.003 10.1109/isbi.2018.8363678 10.23919/icact.2018.8323715 10.1109/spmb.2017.8257019 10.1016/j.eij.2015.06.002 10.1007/978-3-319-70096-0_76 10.1109/eusipco.2015.7362882 10.1142/S0129065716500398 10.3389/fnins.2017.00103 10.1109/smc.2017.8122608 10.1109/smc.2016.7844325 10.1109/TPAMI.2010.125 10.1109/icc.2016.7510831 10.1063/1.5005474 10.1109/isbi.2018.8363685 10.1016/j.neucom.2016.01.007 10.1007/978-3-319-46672-9_58 10.1155/2016/5480760 10.1109/icecds.2017.8390035 10.1109/TNSRE.2012.2190299 10.1109/iww-bci.2018.8311531 10.1109/JBHI.2017.2727218 10.1088/1741-2552/aaaf82 10.1007/978-3-319-58628-1_4 10.24963/ijcai.2018/432 10.1109/5.939829 10.1109/icme.2014.6890166 10.1109/TNSRE.2018.2884641 10.1016/j.ijpsycho.2015.05.004 10.1109/JBHI.2017.2650199 10.1016/j.neuroimage.2016.03.063 10.1109/icassp.2013.6639347 10.11591/ijra.v4i4.pp292-310 10.1145/3264959 10.1007/s12559-017-9533-x 10.1109/iecbes.2016.7843428 10.1109/embc.2017.8037251 10.1007/978-3-319-73600-6_8 10.1016/j.neuroimage.2011.04.040 10.1016/j.cmpb.2016.12.005 10.3389/fnins.2014.00229 10.1142/S0129065716500258 10.1155/2016/5642856 10.4108/eai.7-11-2017.2273696 10.1016/j.clinph.2006.10.019 10.1002/aic.690370209 10.4249/scholarpedia.5947 10.1109/embc.2015.7318929 10.3389/fninf.2018.00023 10.1109/ner.2015.7146583 10.1007/978-3-319-16628-5_25 10.1088/1741-2560/8/2/025022 10.1016/j.neucom.2014.08.092 10.1016/j.neuroimage.2016.01.005 10.1142/S0129065718500119 10.1007/978-3-319-70096-0_78 10.1109/rtsi.2016.7740576 10.1155/2018/1350692 10.1101/304774 10.1145/3123266.3127907 10.2172/1366924 10.1109/TNSRE.2017.2733220 10.1038/s41598-018-21495-7 10.1016/j.neucom.2017.08.039 10.5755/j01.itc.46.2.17528 10.1016/j.jneumeth.2016.11.002 10.1038/srep27755 10.1016/j.biopsycho.2013.04.010 10.1109/iww-bci.2018.8311491 10.1109/embc.2012.6346563 10.1109/icac.2017.41 10.1016/j.media.2017.07.005 10.1109/ijcnn.2014.6889383 10.1109/bibm.2017.8217737 10.1109/tpami.2013.50 10.1109/mmsp.2016.7813351 10.1109/socpar.2015.7492799 10.1109/embc.2016.7590835 10.1016/j.bspc.2016.11.013 10.1371/journal.pone.0077089 10.3389/fncom.2016.00130 10.1109/apwc-on-cse.2016.017 10.1109/ner.2017.8008295 10.1142/S0129065718500090 10.3389/fnins.2015.00438 10.1088/1741-2560/4/2/R03 10.1088/1741-2552/aaf12e 10.1056/NEJM198205203062004 10.1109/embc.2016.7590716 10.1109/chinasip.2014.6889297 10.1007/978-3-319-09330-7_25 10.1016/j.eswa.2018.04.021 10.1109/TNNLS.2018.2790388 10.1088/1741-2552/aab2f2 10.1088/1741-2560/14/1/016003 10.11591/ijece.v6i6.12967 10.1109/prni.2017.7981506 10.1109/dmiaf.2016.7574921 10.1109/bibm.2013.6732507 10.1007/978-3-319-44778-0_36 10.1109/ner.2017.8008425 10.1109/fg.2018.00060 10.1007/978-3-319-26561-2_5 10.1167/15.6.4 10.3115/v1/D14-1179 10.31031/rdms.2018.07.000662 10.1109/ijcnn.2016.7727656 10.1007/978-3-319-10443-0_39 10.26599/BDMA.2018.9020001 10.1007/978-981-10-2666-9 10.1109/bhi.2018.8333405 10.1109/MLSP.2017.8168133 10.1109/TNSRE.2018.2813138 10.1145/3292500.3330966 10.1109/cspa.2017.8064956 10.3389/fninf.2018.00029 10.1109/embc.2015.7318984 10.1088/1741-2552/aace8c 10.1117/12.2224172 10.1109/TNSRE.2015.2403270 10.1016/j.jneumeth.2016.10.008 10.1007/978-3-319-63312-1_20 10.1109/TNSRE.2017.2721116 10.1109/cidm.2014.7008672 10.1109/iccv.2017.369 10.3390/s19030551 10.1016/j.ijpsycho.2014.09.003 10.1016/j.ijpsycho.2016.07.500 10.1109/TNNLS.2014.2302898 10.3389/fnhum.2017.00290 10.1109/TAMD.2015.2431497 10.1371/journal.pone.0172578 10.1109/TBDATA.2017.2769670 10.1155/2018/6058065 10.1371/journal.pcbi.1006633 10.3389/fnins.2017.00302 10.1364/JOSA.67.001475 10.3389/fncom.2015.00146 10.1016/j.compbiomed.2017.09.017 10.1016/j.media.2016.05.004 10.1088/1741-2560/4/2/R01 10.1371/journal.pone.0131328 10.1109/cvpr.2017.479 10.1088/1741-2552/ab260c 1Emotion recognition based on EEG using LSTM recurrent neural network 10.1109/smc.2017.8122606 10.1109/ijcnn.2018.8489727 10.1109/icoin.2018.8343254 10.1007/978-3-319-18356-5_24 10.1109/camsap.2015.7383844 10.1177/0142331215587568 10.1088/1361-6579/aad57e 10.1109/chicc.2015.7260182 10.1109/ftc.2016.7821697 10.1109/spmb.2015.7405422 10.1016/j.nbd.2014.11.025 10.1126/science.1127647 10.1088/1741-2552/aa9817 10.1016/j.compbiomed.2016.10.019 10.1016/j.neuroimage.2009.02.028 10.1038/s41598-017-17562-0 10.1109/tcyb.2017.2788081 10.1016/j.neulet.2009.06.045 10.3389/fnhum.2015.00003 10.1007/978-3-319-12637-1_63 10.1109/72.159058 10.1007/978-3-319-59081-3_62 10.1101/070441 10.1007/s10827-009-0196-9 10.1007/978-3-319-59072-1_55 10.1371/journal.pone.0184713 10.1016/j.neubiorev.2017.01.002 10.1016/j.bspc.2017.12.001 10.3390/app7111197 10.1145/3038439.3038444 10.1017/atsip.2014.4 10.1016/j.jneumeth.2015.01.033 10.1016/j.ijleo.2016.10.117 10.1145/3393619 10.1109/embc.2015.7318980 10.1109/spmb.2017.8257015 10.1109/amc.2019.8371082 10.1007/978-3-319-59081-3_58 chinasip.2015.7230517 10.1109/TNSRE.2016.2601240 10.1109/iww-bci.2018.8311493 10.1016/j.cmpb.2018.04.012 10.1016/j.compbiomed.2018.05.019 10.1145/3230632 10.1016/S1388-2457(99)00141-8 10.1007/s10439-006-9170-0 10.1088/1741-2552/aae5d8 10.1016/S0165-0173(03)00193-0 10.1109/ACCESS.2018.2833746 10.22323/1.299.0002 10.1109/embc.2016.7590822 10.1145/2903150.2903159 10.1007/978-3-030-00928-1_21 10.1007/978-3-319-42297-8_74 10.1109/icassp.2016.7471776 10.1109/percom.2018.8444575 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd. |
Copyright_xml | – notice: 2021 IOP Publishing Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1741-2552/abc902 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | 33171452 10_1088_1741_2552_abc902 |
Genre | Journal Article Review |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAYXX ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP CGR CUY CVF ECM EIF HAK NPM 7X8 |
ID | FETCH-LOGICAL-c365t-b53f0ffa8c338518e8651de6defd85dfc7d2c67db4ee434de618942a3dfdb36e3 |
ISSN | 1741-2560 1741-2552 |
IngestDate | Fri Jul 11 11:33:53 EDT 2025 Thu Jan 02 22:54:38 EST 2025 Tue Jul 01 01:58:41 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | brain signals brain–computer interface survey deep learning algorithms |
Language | English |
License | 2021 IOP Publishing Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-b53f0ffa8c338518e8651de6defd85dfc7d2c67db4ee434de618942a3dfdb36e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1416-4164 0000-0001-5097-2113 |
PMID | 33171452 |
PQID | 2459626211 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2459626211 pubmed_primary_33171452 crossref_citationtrail_10_1088_1741_2552_abc902 crossref_primary_10_1088_1741_2552_abc902 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAlternate | J Neural Eng |
PublicationYear | 2021 |
References | Zhang (jneabc902bib76) 2017 Soekadar (jneabc902bib20) 2015; 83 Yin (jneabc902bib107) 2017; 140 Manor (jneabc902bib176) 2015; 9 Ortiz (jneabc902bib212) 2016; 26 Fatourechi (jneabc902bib32) 2007; 118 Lawhern (jneabc902bib73) 2018; 15 Mioranda-Correa (jneabc902bib104) 2018 Attia (jneabc902bib196) 2018 Plis (jneabc902bib211) 2014; 8 Koyamada (jneabc902bib202) 2015 Wen (jneabc902bib14) 2018; 12 Lees (jneabc902bib249) 2018; 15 Gui (jneabc902bib26) 2019; 51 Cecotti (jneabc902bib28) 2017; 111 Zhao (jneabc902bib126) 2014 Hiroyasu (jneabc902bib201) 2014 Mason (jneabc902bib15) 2007; 35 Parasuraman (jneabc902bib231) 2012; 59 Singh (jneabc902bib39) 2018; 6 Li (jneabc902bib100) 2015 Cichy (jneabc902bib254) 2017; 153 Mao (jneabc902bib180) 2017 Fraiwan (jneabc902bib56) 2017 Kramer (jneabc902bib43) 1991; 37 Rutkove (jneabc902bib239) 2007 Nurse (jneabc902bib84) 2015; 10 Li (jneabc902bib89) 2016 Sainath (jneabc902bib42) 2013 Hosseini (jneabc902bib129) 2017 Nurse (jneabc902bib60) 2016 Kumar (jneabc902bib79) 2016 Ahn (jneabc902bib21) 2015; 243 Cecotti (jneabc902bib177) 2017 Lin (jneabc902bib182) 2017; 12 Hernández (jneabc902bib144) 2018; 12 Tabar (jneabc902bib4) 2016; 14 Abiri (jneabc902bib27) 2019; 16 Kulasingham (jneabc902bib195) 2016 Gordienko (jneabc902bib220) 2017 Vieira (jneabc902bib33) 2017; 74 Kawde (jneabc902bib105) 2017 Bashivan (jneabc902bib159) 2015 Shamwell (jneabc902bib185) 2016; 9836 Supratak (jneabc902bib57) 2017; 25 An (jneabc902bib3) 2014 Yin (jneabc902bib223) 2015; 23 Bengio (jneabc902bib257) 2013; 35 Jingwei (jneabc902bib63) 2015 St-Yves (jneabc902bib259) 2018 Stober (jneabc902bib142) 2014 Wang (jneabc902bib67) 2017 Ruiz (jneabc902bib22) 2014; 95 Behncke (jneabc902bib139) 2018 Zhang (jneabc902bib88) 2018; 99 Zhang (jneabc902bib10) 2018 Gao (jneabc902bib167) 2015; 18 Hung (jneabc902bib140) 2017 Dong (jneabc902bib58) 2018; 26 Zhang (jneabc902bib6) 2018; 2 Reddy (jneabc902bib136) 2016 Pfurtscheller (jneabc902bib35) 2001; 89 Chu (jneabc902bib149) 2017 Mao (jneabc902bib174) 2014 Maddula (jneabc902bib170) 2017 Schmidhuber (jneabc902bib30) 2015; 61 Regan (jneabc902bib37) 1977; 67 Cichy (jneabc902bib204) 2016; 6 Zheng (jneabc902bib102) 2014 Tang (jneabc902bib66) 2017; 130 Solon (jneabc902bib178) 2017 Page (jneabc902bib125) 2014 Vařeka (jneabc902bib186) 2017; 11 Dai (jneabc902bib81) 2019; 19 Li (jneabc902bib208) 2014 Pal (jneabc902bib40) 1992; 3 Movahedi (jneabc902bib19) 2018; 22 Xu (jneabc902bib101) 2016 Kingma (jneabc902bib46) 2013 Kwak (jneabc902bib191) 2017; 12 Zhang (jneabc902bib2) 2018; 6 Liu (jneabc902bib168) 2017 jneabc902bib246 Acharya (jneabc902bib113) 2018; 161 Suk (jneabc902bib210) 2015 Kavasidis (jneabc902bib134) 2017 Bashashati (jneabc902bib8) 2007; 4 Zheng (jneabc902bib97) 2015 Li (jneabc902bib155) 2016 Kalunga (jneabc902bib236) 2016; 191 Liu (jneabc902bib24) 2018; 1 Tsiouris (jneabc902bib53) 2018; 99 Haider (jneabc902bib23) 2017 Baltatzis (jneabc902bib141) 2017; 7 Zhang (jneabc902bib233) 2019 Fernández-Varela (jneabc902bib70) Li (jneabc902bib92) 2017; 10 Ullah (jneabc902bib112) 2018; 107 jneabc902bib242 Roy (jneabc902bib17) 2019; 16 Lee (jneabc902bib64) 2018 Yuan (jneabc902bib109) 2018 Morabito (jneabc902bib123) 2017; 27 Wang (jneabc902bib91) 2018 Radford (jneabc902bib227) 2016 Tan (jneabc902bib54) 2015 Mikolov (jneabc902bib41) 2010 Biswal (jneabc902bib52) 2017 Bashivan (jneabc902bib172) 2016 Suk (jneabc902bib209) 2016; 129 Teo (jneabc902bib135) 2017; vol Hochreiter (jneabc902bib255) 1997; 9 Litjens (jneabc902bib16) 2017; 42 Li (jneabc902bib77) 2014 Chiarelli (jneabc902bib71) 2018; 15 Talathi (jneabc902bib110) 2017 Naseer (jneabc902bib29) 2015; 9 Xu (jneabc902bib99) 2016 Stober (jneabc902bib188) 2014; 1 Redkar (jneabc902bib75) 2015; 4 Shanbhag (jneabc902bib173) 2017 Völker (jneabc902bib143) 2018 Jia (jneabc902bib98) 2014 Schirrmeister (jneabc902bib116) 2017 Samek (jneabc902bib9) 2012 Tsinalis (jneabc902bib25) 2016 Du (jneabc902bib151) 2017 Yuan (jneabc902bib121) 2017 Narejo (jneabc902bib152) 2016; 6 Zheng (jneabc902bib232) 2016 Almogbel (jneabc902bib145) 2018 Pérez-Benítez (jneabc902bib197) 2018 Shahin (jneabc902bib69) 2017; 21 Acharya (jneabc902bib114) 2018; 100 Morabito (jneabc902bib115) 2016 Tan (jneabc902bib82) 2017 Hosseini (jneabc902bib120) 2017; 3 Shen (jneabc902bib203) 2019; 15 Sturm (jneabc902bib68) 2016; 274 Seeliger (jneabc902bib213) 2018; 181 Gordon (jneabc902bib183) 2017 Li (jneabc902bib103) 2013 Min (jneabc902bib224) 2017; 18 Stober (jneabc902bib157) 2015 Bashivan (jneabc902bib171) 2016 Antoniades (jneabc902bib230) 2018; 28 Aliakbaryhosseinabadi (jneabc902bib235) 2019 Vilamala (jneabc902bib51) 2017 Al-kaysi (jneabc902bib131) 2015 Sarkar (jneabc902bib165) 2016; 7 Koike-Akino (jneabc902bib161) 2016 Hajinoroozi (jneabc902bib179) 2017 Hu (jneabc902bib216) 2016 Frydenlund (jneabc902bib87) 2015 Yoon (jneabc902bib184) 2018; 2018 Burle (jneabc902bib240) 2015; 97 Mao (jneabc902bib175) 2016 Mayya (jneabc902bib247) 2017 Marc Moreno (jneabc902bib226) 2017 Waytowich (jneabc902bib192) 2018 Hajinoroozi (jneabc902bib147) 2015 Ball (jneabc902bib1) 2009; 46 Cho (jneabc902bib256) 2014 Alhagry (jneabc902bib108) 2017; 8 Hajinoroozi (jneabc902bib153) 2015 Huve (jneabc902bib198) 2017 Lin (jneabc902bib122) 2016 Turner (jneabc902bib127) 2014 Hasasneh (jneabc902bib219) 2018; 2018 Sakhavi (jneabc902bib86) 2015 Pfurtscheller (jneabc902bib221) 1999; 110 Kawasaki (jneabc902bib162) 2015 Sors (jneabc902bib50) 2018; 42 Zheng (jneabc902bib96) 2015; 7 Wang (jneabc902bib93) 2016; 2016 Carabez (jneabc902bib187) 2017; 7 Guger (jneabc902bib251) 2009; 462 Salek-Haddadi (jneabc902bib244) 2003; 43 Chambon (jneabc902bib48) 2018; 26 Yepes (jneabc902bib137) 2017 Huve (jneabc902bib199) 2018 Abdulkader (jneabc902bib7) 2015; 16 Hinton (jneabc902bib45) 2009; 4 Zhang (jneabc902bib85) 2018 Tu (jneabc902bib194) 2018 Yang (jneabc902bib62) 2015 Johansen (jneabc902bib118) 2016 Antoniades (jneabc902bib229) 2016 Huang (jneabc902bib36) 2012; 20 Shreyas (jneabc902bib206) 2017 Koyama (jneabc902bib234) 2010; 29 Mahmud (jneabc902bib13) 2018; 29 Shang (jneabc902bib138) 2017 Norcia (jneabc902bib248) 2015; 15 Cecotti (jneabc902bib166) 2011; 33 Mikkelsen (jneabc902bib238) 2015; 9 San (jneabc902bib154) 2016 Chiappa (jneabc902bib250) 1997; 306 Sarraf (jneabc902bib207) 2016 Hartmann (jneabc902bib59) 2018 Hosseini (jneabc902bib117) 2017 Hachem (jneabc902bib189) 2014; 65 Ruffini (jneabc902bib111) 2016 Chai (jneabc902bib94) 2016; 79 Sarraf (jneabc902bib225) 2016 Tortella-Feliu (jneabc902bib243) 2014; 94 Malmivuo (jneabc902bib241) 1995 Thomas (jneabc902bib190) 2017 Lu (jneabc902bib80) 2017; 25 Glauner (jneabc902bib258) 2015 Hennrich (jneabc902bib200) 2015 Lotte (jneabc902bib11) 2007; 4 Welvaert (jneabc902bib253) 2013; 8 Zhang (jneabc902bib61) 2017; 11 Abdelfattah (jneabc902bib132) 2018 Naseer (jneabc902bib38) 2016; 2016 Belitski (jneabc902bib252) 2011; 8 Zhang (jneabc902bib160) 2018 Aznan (jneabc902bib193) 2018 Manzano (jneabc902bib55) 2017 Arjovsky (jneabc902bib228) 2017 Liu (jneabc902bib95) 2016 Shah (jneabc902bib128) 2017 Lotte (jneabc902bib5) 2018; 15 Ren (jneabc902bib78) 2014 Palazzo (jneabc902bib133) 2017 Chai (jneabc902bib158) 2017; 11 Zhang (jneabc902bib156) 2018; 27 Manor (jneabc902bib181) 2016; 10 Gao (jneabc902bib106) 2015 Sternin (jneabc902bib148) 2015 Uktveris (jneabc902bib72) 2017; 46 Putten (jneabc902bib146) 2018; 8 Ikeda (jneabc902bib245) 2019 Ansari (jneabc902bib119) 2018; 29 Wang (jneabc902bib18) 2016 Duan (jneabc902bib83) 2016; 88 Garg (jneabc902bib217) 2017 Shu (jneabc902bib218) 2013 Ma (jneabc902bib169) 2017; 275 Khurana (jneabc902bib222) 2016 Cecotti (jneabc902bib12) 2014; 25 Spampinato (jneabc902bib163) 2017 Zhang (jneabc902bib65) 2017 Deng (jneabc902bib31) 2014; 3 Han (jneabc902bib214) 2018 Yin (jneabc902bib150) 2017; 33 Golmohammadi (jneabc902bib130) 2017 Liu (jneabc902bib164) 2018; 275 Zhang (jneabc902bib215) 2018 Pacharra (jneabc902bib237) 2017; 11 Li (jneabc902bib74) 2015; 165 Wen (jneabc902bib124) 2018; 6 Havaei (jneabc902bib205) 2017; 35 Zhang (jneabc902bib49) 2016; 38 Liu (jneabc902bib90) 2017; 299 Hinton (jneabc902bib44) 2006; 313 Aricò (jneabc902bib34) 2018; 39 Goodfellow (jneabc902bib47) 2014; 2 |
References_xml | – start-page: 1 year: 2017 ident: jneabc902bib206 article-title: A deep learning architecture for brain tumor segmentation in MRI images doi: 10.1109/mmsp.2017.8122291 – start-page: 1 year: 2016 ident: jneabc902bib229 article-title: Deep learning for epileptic intracranial EEG data doi: 10.1109/mlsp.2016.7738824 – start-page: 1985 year: 2018 ident: jneabc902bib194 article-title: Relating deep neural network representations to EEG-fMRI spatiotemporal dynamics in a perceptual decision-making task doi: 10.1109/cvprw.2018.00267 – volume: 88 start-page: 176 year: 2016 ident: jneabc902bib83 article-title: Classification based on multilayer extreme learning machine for motor imagery task from EEG signals publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2016.07.422 – start-page: 587 year: 2017 ident: jneabc902bib105 article-title: Deep belief network based affect recognition from physiological signals doi: 10.1109/upcon.2017.8251115 – volume: 181 start-page: 775 year: 2018 ident: jneabc902bib213 article-title: Generative adversarial networks for reconstructing natural images from brain activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.07.043 – year: 1995 ident: jneabc902bib241 – volume: 6 start-page: 2084 year: 2018 ident: jneabc902bib2 article-title: Internet of things meets brain-computer interface: a unified deep learning framework for enabling human-thing cognitive interactivity publication-title: IEEE Internet Things J. doi: 10.1109/jiot.2018.2877786 – start-page: 22 year: 2016 ident: jneabc902bib89 article-title: Implementation of EEG emotion recognition system based on hierarchical convolutional neural networks doi: 10.1007/978-3-319-49685-6_3 – start-page: 30 year: 2014 ident: jneabc902bib98 article-title: A novel semi-supervised deep learning framework for affective state recognition on EEG signals doi: 10.1109/bibe.2014.26 – volume: 18 start-page: 127 year: 2015 ident: jneabc902bib167 article-title: Multi-ganglion ANN based feature learning with application to p300-BCI signal classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.12.007 – volume: 61 start-page: 85 year: 2015 ident: jneabc902bib30 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – start-page: 734 year: 2018 ident: jneabc902bib214 article-title: GAN-based synthetic brain MR image generation doi: 10.1109/isbi.2018.8363678 – start-page: 256 year: 2018 ident: jneabc902bib145 article-title: EEG-signals based cognitive workload detection of vehicle driver using deep learning doi: 10.23919/icact.2018.8323715 – start-page: 1 year: 2017 ident: jneabc902bib128 article-title: Optimizing channel selection for seizure detection doi: 10.1109/spmb.2017.8257019 – volume: 16 start-page: 213 year: 2015 ident: jneabc902bib7 article-title: Brain computer interfacing: applications and challenges publication-title: Egypt. Inf. J. doi: 10.1016/j.eij.2015.06.002 – start-page: 748 year: 2017 ident: jneabc902bib65 article-title: Intent recognition in smart living through deep recurrent neural networks doi: 10.1007/978-3-319-70096-0_76 – start-page: 2736 year: 2015 ident: jneabc902bib86 article-title: Parallel convolutional-linear neural network for motor imagery classification doi: 10.1109/eusipco.2015.7362882 – start-page: 214 year: 2017 ident: jneabc902bib228 article-title: Wasserstein generative adversarial networks – volume: 27 year: 2017 ident: jneabc902bib123 article-title: Deep learning representation from electroencephalography of early-stage Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive dementia publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500398 – volume: 11 start-page: 103 year: 2017 ident: jneabc902bib158 article-title: Improving EEG-based driver fatigue classification using sparse-deep belief networks publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2017.00103 – year: 2017 ident: jneabc902bib23 – volume: 2 start-page: 2672 year: 2014 ident: jneabc902bib47 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – start-page: 234 year: 2017 ident: jneabc902bib190 article-title: Deep learning-based classification for brain-computer interfaces doi: 10.1109/smc.2017.8122608 – start-page: 712 year: 2016 ident: jneabc902bib136 article-title: Online eye state recognition from EEG data using deep architectures doi: 10.1109/smc.2016.7844325 – volume: 33 start-page: 433 year: 2011 ident: jneabc902bib166 article-title: Convolutional neural networks for p300 detection with application to brain-computer interfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.125 – start-page: 1 year: 2016 ident: jneabc902bib216 article-title: Clinical decision support for Alzheimer’s disease based on deep learning and brain network doi: 10.1109/icc.2016.7510831 – volume: vol year: 2017 ident: jneabc902bib135 article-title: Deep learning for EEG-based preference classification doi: 10.1063/1.5005474 – start-page: 766 year: 2018 ident: jneabc902bib196 article-title: A time domain classification of steady-state visual evoked potentials using deep recurrent-convolutional neural networks doi: 10.1109/isbi.2018.8363685 – volume: 191 start-page: 55 year: 2016 ident: jneabc902bib236 article-title: Online SSVEP-based BCI using Riemannian geometry publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.007 – start-page: 521 year: 2016 ident: jneabc902bib95 article-title: Emotion recognition using multimodal deep learning doi: 10.1007/978-3-319-46672-9_58 – volume: 2016 start-page: 1 year: 2016 ident: jneabc902bib38 article-title: Analysis of different classification techniques for two-class functional near-infrared spectroscopy-based brain-computer interface publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/5480760 – year: 2018 ident: jneabc902bib160 article-title: Brain2Object: printing your mind from brain signals with spatial correlation embedding – start-page: 3142 year: 2017 ident: jneabc902bib173 article-title: P300 analysis using deep neural network doi: 10.1109/icecds.2017.8390035 – start-page: 1573 year: 2017 ident: jneabc902bib198 article-title: Brain activity recognition with a wearable fNIRS using neural networks – volume: 20 start-page: 379 year: 2012 ident: jneabc902bib36 article-title: Electroencephalography (EEG)-based brain–computer interface (BCI): a 2D virtual wheelchair control based on event-related desynchronization/synchronization and state control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2190299 – start-page: 1 year: 2018 ident: jneabc902bib139 article-title: The signature of robot action success in EEG signals of a human observer: decoding and visualization using deep convolutional neural networks doi: 10.1109/iww-bci.2018.8311531 – volume: 22 start-page: 642 year: 2018 ident: jneabc902bib19 article-title: Deep belief networks for electroencephalography: a review of recent contributions and future outlooks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2727218 – volume: 15 year: 2018 ident: jneabc902bib71 article-title: Deep learning for hybrid EEG-fNIRs brain–computer interface: application to motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaaf82 – year: 2015 ident: jneabc902bib148 article-title: Tempo estimation from the EEG signal during perception and imagination of music – year: 2015 ident: jneabc902bib100 article-title: EEG based emotion identification using unsupervised deep feature learning – start-page: 45 year: 2017 ident: jneabc902bib179 article-title: Deep transfer learning for cross-subject and cross-experiment prediction of image rapid serial visual presentation events from EEG data doi: 10.1007/978-3-319-58628-1_4 – year: 2018 ident: jneabc902bib85 article-title: Multi-modality sensor data classification with selective attention doi: 10.24963/ijcai.2018/432 – year: 2017 ident: jneabc902bib130 article-title: Deep architectures for automated seizure detection in scalp EEGs – volume: 89 start-page: 1123 year: 2001 ident: jneabc902bib35 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – start-page: 1 year: 2014 ident: jneabc902bib102 article-title: EEG-based emotion classification using deep belief networks doi: 10.1109/icme.2014.6890166 – year: 2017 ident: jneabc902bib129 article-title: Cloud-based deep learning of big EEG data for epileptic seizure prediction – volume: 27 start-page: 31 year: 2018 ident: jneabc902bib156 article-title: Learning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2884641 – volume: 97 start-page: 210 year: 2015 ident: jneabc902bib240 article-title: Spatial and temporal resolutions of EEG: is it really black and white? A scalp current density view publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2015.05.004 – volume: 21 start-page: 1546 year: 2017 ident: jneabc902bib69 article-title: Deep learning and insomnia: assisting clinicians with their diagnosis publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2650199 – volume: 153 start-page: 346 year: 2017 ident: jneabc902bib254 article-title: Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.03.063 – start-page: 8614 year: 2013 ident: jneabc902bib42 article-title: Deep convolutional neural networks for LVCSR doi: 10.1109/icassp.2013.6639347 – year: 2016 ident: jneabc902bib171 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks – volume: 4 start-page: 4 year: 2015 ident: jneabc902bib75 article-title: Using deep learning for human computer interface via electroencephalography publication-title: IAES Int. J. Robot. Autom. doi: 10.11591/ijra.v4i4.pp292-310 – volume: 2 start-page: 149 year: 2018 ident: jneabc902bib6 article-title: Mindid: person identification from brain waves through attention-based recurrent neural network publication-title: Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. doi: 10.1145/3264959 – volume: 10 start-page: 368 year: 2017 ident: jneabc902bib92 article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition publication-title: Cogn. Comput. doi: 10.1007/s12559-017-9533-x – start-page: 127 year: 2016 ident: jneabc902bib195 article-title: Deep belief networks and stacked autoencoders for the p300 guilty knowledge test doi: 10.1109/iecbes.2016.7843428 – start-page: 2031 year: 2017 ident: jneabc902bib177 article-title: Convolutional neural networks for event-related potential detection: impact of the architecture doi: 10.1109/embc.2017.8037251 – start-page: 82 year: 2018 ident: jneabc902bib91 article-title: Data augmentation for EEG-based emotion recognition with deep convolutional neural networks doi: 10.1007/978-3-319-73600-6_8 – volume: 59 start-page: 70 year: 2012 ident: jneabc902bib231 article-title: Individual differences in cognition, affect and performance: behavioral, neuroimaging and molecular genetic approaches publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.04.040 – year: 2016 ident: jneabc902bib25 – volume: 140 start-page: 93 year: 2017 ident: jneabc902bib107 article-title: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.12.005 – volume: 8 start-page: 229 year: 2014 ident: jneabc902bib211 article-title: Deep learning for neuroimaging: a validation study publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2014.00229 – volume: 26 year: 2016 ident: jneabc902bib212 article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500258 – volume: 2016 start-page: 1 year: 2016 ident: jneabc902bib93 article-title: Research on healthy anomaly detection model based on deep learning from multiple time-series physiological signals publication-title: Sci. Program. doi: 10.1155/2016/5642856 – start-page: 31 year: 2019 ident: jneabc902bib235 – start-page: 28 year: 2017 ident: jneabc902bib76 article-title: Multi-person brain activity recognition via comprehensive EEG signal analysis doi: 10.4108/eai.7-11-2017.2273696 – volume: 118 start-page: 480 year: 2007 ident: jneabc902bib32 article-title: EMG and EOG artifacts in brain computer interface systems: a survey publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.10.019 – volume: 1 start-page: 1449 year: 2014 ident: jneabc902bib188 article-title: Using convolutional neural networks to recognize rhythm stimuli from electroencephalography recordings publication-title: Adv. Neural Inf. Process. Syst. (NIPS) – volume: 37 start-page: 233 year: 1991 ident: jneabc902bib43 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE J. doi: 10.1002/aic.690370209 – volume: 4 start-page: 5947 year: 2009 ident: jneabc902bib45 article-title: Deep belief networks publication-title: Scholarpedia doi: 10.4249/scholarpedia.5947 – start-page: 2620 year: 2015 ident: jneabc902bib62 article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification doi: 10.1109/embc.2015.7318929 – volume: 12 start-page: 23 year: 2018 ident: jneabc902bib14 article-title: Deep learning methods to process fMRI data and their application in the diagnosis of cognitive impairment: a brief overview and our opinion publication-title: Frontiers Neuroinform. doi: 10.3389/fninf.2018.00023 – start-page: 154 year: 2015 ident: jneabc902bib97 article-title: Revealing critical channels and frequency bands for emotion recognition from EEG with deep belief network doi: 10.1109/ner.2015.7146583 – start-page: 340 year: 2014 ident: jneabc902bib126 article-title: Deep learning in the EEG diagnosis of Alzheimer’s disease doi: 10.1007/978-3-319-16628-5_25 – volume: 8 year: 2011 ident: jneabc902bib252 article-title: P300 audio-visual speller publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025022 – volume: 165 start-page: 23 year: 2015 ident: jneabc902bib74 article-title: Feature learning from incomplete EEG with denoising autoencoder publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.092 – volume: 129 start-page: 292 year: 2016 ident: jneabc902bib209 article-title: State-space model with deep learning for functional dynamics estimation in resting-state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.005 – volume: 29 year: 2018 ident: jneabc902bib119 article-title: Neonatal seizure detection using deep convolutional neural networks publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500119 – start-page: 767 year: 2017 ident: jneabc902bib82 article-title: Multimodal classification with deep convolutional-recurrent neural networks for electroencephalography doi: 10.1007/978-3-319-70096-0_78 – start-page: 1 year: 2016 ident: jneabc902bib115 article-title: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings doi: 10.1109/rtsi.2016.7740576 – volume: 2018 year: 2018 ident: jneabc902bib219 article-title: Deep learning approach for automatic classification of ocular and cardiac artifacts in meg data publication-title: J. Eng. doi: 10.1155/2018/1350692 – start-page: 1054 year: 2018 ident: jneabc902bib259 article-title: Generative adversarial networks conditioned on brain activity reconstruct seen images doi: 10.1101/304774 – start-page: 1809 year: 2017 ident: jneabc902bib134 article-title: Brain2Image: converting brain signals into images doi: 10.1145/3123266.3127907 – year: 2017 ident: jneabc902bib110 article-title: Deep recurrent neural networks for seizure detection and early seizure detection systems doi: 10.2172/1366924 – year: 2017 ident: jneabc902bib247 article-title: Information-theoretic analysis of refractory effects in the p300 speller – volume: 26 start-page: 324 year: 2018 ident: jneabc902bib58 article-title: Mixed neural network approach for temporal sleep stage classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2733220 – volume: 8 start-page: 3069 year: 2018 ident: jneabc902bib146 article-title: Predicting sex from brain rhythms with deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-018-21495-7 – volume: 275 start-page: 288 year: 2018 ident: jneabc902bib164 article-title: Deep learning based on batch normalization for p300 signal detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.039 – year: 2016 ident: jneabc902bib172 article-title: Mental state recognition via wearable EEG – volume: 46 start-page: 260 year: 2017 ident: jneabc902bib72 article-title: Application of convolutional neural networks to four-class motor imagery classification problem publication-title: Inf. Technol. Control doi: 10.5755/j01.itc.46.2.17528 – volume: 275 start-page: 80 year: 2017 ident: jneabc902bib169 article-title: The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.11.002 – volume: 6 year: 2016 ident: jneabc902bib204 article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence publication-title: Sci. Rep. doi: 10.1038/srep27755 – volume: 95 start-page: 4 year: 2014 ident: jneabc902bib22 article-title: Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2013.04.010 – start-page: 18 year: 2018 ident: jneabc902bib197 article-title: Development of a brain computer interface interface using multi-frequency visual stimulation and deep neural networks doi: 10.1109/isbi.2018.8363685 – start-page: 1 year: 2018 ident: jneabc902bib143 article-title: Deep transfer learning for error decoding from non-invasive EEG doi: 10.1109/iww-bci.2018.8311491 – start-page: 2873 year: 2012 ident: jneabc902bib9 article-title: Brain-computer interfacing in discriminative and stationary subspaces doi: 10.1109/embc.2012.6346563 – start-page: 83 year: 2017 ident: jneabc902bib117 article-title: Deep learning with edge computing for localization of epileptogenicity using multimodal rs-fMRI and EEG big data doi: 10.1109/icac.2017.41 – volume: 42 start-page: 60 year: 2017 ident: jneabc902bib16 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – start-page: 2850 year: 2014 ident: jneabc902bib78 article-title: Convolutional deep belief networks for feature extraction of EEG signal doi: 10.1109/ijcnn.2014.6889383 – start-page: 694 year: 2017 ident: jneabc902bib121 article-title: A novel wavelet-based model for EEG epileptic seizure detection using multi-context learning doi: 10.1109/bibm.2017.8217737 – year: 2014 ident: jneabc902bib125 article-title: Comparing raw data and feature extraction for seizure detection with deep learning methods – volume: 9 start-page: 1735 year: 1997 ident: jneabc902bib255 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1109/tpami.2013.50 – start-page: 1 year: 2016 ident: jneabc902bib99 article-title: Affective states classification using EEG and semi-supervised deep learning approaches doi: 10.1109/mmsp.2016.7813351 – start-page: 149 year: 2015 ident: jneabc902bib162 article-title: Visualizing extracted feature by deep learning in p300 discrimination task doi: 10.1109/socpar.2015.7492799 – start-page: 854 year: 2016 ident: jneabc902bib161 article-title: High-accuracy user identification using EEG biometrics doi: 10.1109/embc.2016.7590835 – volume: 33 start-page: 30 year: 2017 ident: jneabc902bib150 article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.11.013 – volume: 8 start-page: 11 year: 2013 ident: jneabc902bib253 article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data publication-title: PLoS One doi: 10.1371/journal.pone.0077089 – start-page: 1045 year: 2010 ident: jneabc902bib41 article-title: Recurrent neural network based language model – volume: 10 start-page: 130 year: 2016 ident: jneabc902bib181 article-title: Multimodal neural network for rapid serial visual presentation brain computer interface publication-title: Frontiers Comput. Neurosci. doi: 10.3389/fncom.2016.00130 – start-page: 34 year: 2016 ident: jneabc902bib79 article-title: A deep learning approach for motor imagery EEG signal classification doi: 10.1109/apwc-on-cse.2016.017 – start-page: 74 year: 2017 ident: jneabc902bib151 article-title: Detecting driving fatigue with multimodal deep learning doi: 10.1109/ner.2017.8008295 – volume: 28 year: 2018 ident: jneabc902bib230 article-title: Deep neural architectures for mapping scalp to intracranial EEG publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500090 – volume: 9 start-page: 438 year: 2015 ident: jneabc902bib238 article-title: EEG recorded from the ear: characterizing the ear-EEG method publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2015.00438 – volume: 4 start-page: R32 year: 2007 ident: jneabc902bib8 article-title: A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R03 – ident: jneabc902bib246 – year: 2015 ident: jneabc902bib157 article-title: Deep feature learning for EEG recordings – volume: 16 year: 2019 ident: jneabc902bib27 article-title: A comprehensive review of EEG-based brain–computer interface paradigms publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf12e – volume: 306 start-page: 1140–50 year: 1997 ident: jneabc902bib250 article-title: Evoked potentials in clinical medicine publication-title: New England Journal of Medicine doi: 10.1056/NEJM198205203062004 – start-page: 367 year: 2016 ident: jneabc902bib155 article-title: Single-channel EEG-based mental fatigue detection based on deep belief network doi: 10.1109/embc.2016.7590716 – start-page: 520 year: 2014 ident: jneabc902bib174 article-title: Classification of non-time-locked rapid serial visual presentation events for brain-computer interaction using deep learning doi: 10.1109/chinasip.2014.6889297 – start-page: 203 year: 2014 ident: jneabc902bib3 article-title: A deep learning method for classification of EEG data based on motor imagery doi: 10.1007/978-3-319-09330-7_25 – volume: 107 start-page: 61 year: 2018 ident: jneabc902bib112 article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.021 – volume: 7 start-page: 1 year: 2016 ident: jneabc902bib165 article-title: Wearable EEG-based activity recognition in PHM-related service environment via deep learning publication-title: Int. J. Progn. Health Manag. – volume: 29 start-page: 2063 year: 2018 ident: jneabc902bib13 article-title: Applications of deep learning and reinforcement learning to biological data publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2790388 – volume: 15 year: 2018 ident: jneabc902bib5 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – volume: 14 year: 2016 ident: jneabc902bib4 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. doi: 10.1088/1741-2560/14/1/016003 – start-page: 203 year: 2015 ident: jneabc902bib210 – volume: 6 start-page: 3131 year: 2016 ident: jneabc902bib152 article-title: EEG based eye state classification using deep belief network and stacked autoencoder publication-title: Int. J. Electr. Computer Eng. doi: 10.11591/ijece.v6i6.12967 – start-page: 1 year: 2017 ident: jneabc902bib217 article-title: Automatic 1D convolutional neural network-based detection of artifacts in MEG acquired without electrooculography or electrocardiography doi: 10.1109/prni.2017.7981506 – start-page: 148 year: 2016 ident: jneabc902bib101 article-title: EEG-based affect states classification using deep belief networks doi: 10.1109/dmiaf.2016.7574921 – start-page: 305 year: 2013 ident: jneabc902bib103 article-title: Affective state recognition from EEG with deep belief networks doi: 10.1109/bibm.2013.6732507 – start-page: 306 year: 2016 ident: jneabc902bib111 article-title: EEG-driven RNN classification for prognosis of neurodegeneration in at-risk patients doi: 10.1007/978-3-319-44778-0_36 – start-page: 609 year: 2017 ident: jneabc902bib180 article-title: EEG-based biometric identification with deep learning doi: 10.1109/ner.2017.8008425 – start-page: 373 year: 2018 ident: jneabc902bib104 article-title: A multi-task cascaded network for prediction of affect, personality, mood and social context using EEG signals doi: 10.1109/fg.2018.00060 – start-page: 38 year: 2015 ident: jneabc902bib131 article-title: A multichannel deep belief network for the classification of EEG data doi: 10.1007/978-3-319-26561-2_5 – volume: 18 start-page: 851 year: 2017 ident: jneabc902bib224 article-title: Deep learning in bioinformatics publication-title: Briefings Bioinform. – start-page: 649 year: 2014 ident: jneabc902bib142 article-title: Classifying EEG recordings of rhythm perception – volume: 15 start-page: 4 year: 2015 ident: jneabc902bib248 article-title: The steady-state visual evoked potential in vision research: a review publication-title: J. Vision doi: 10.1167/15.6.4 – year: 2014 ident: jneabc902bib256 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation doi: 10.3115/v1/D14-1179 – volume: 6 start-page: 175 year: 2018 ident: jneabc902bib39 article-title: Study for reduction of pollution level in diesel engines, petrol engines and generator sets by bio signal ring publication-title: Int. J. Adv. Res. Innov. doi: 10.31031/rdms.2018.07.000662 – start-page: 3556 year: 2016 ident: jneabc902bib222 article-title: Class-wise deep dictionaries for EEG classification doi: 10.1109/ijcnn.2016.7727656 – start-page: 305 year: 2014 ident: jneabc902bib208 article-title: Deep learning based imaging data completion for improved brain disease diagnosis doi: 10.1007/978-3-319-10443-0_39 – volume: 1 start-page: 1 year: 2018 ident: jneabc902bib24 article-title: Applications of deep learning to MRI images: a survey publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2018.9020001 – start-page: 102 year: 2016 ident: jneabc902bib18 doi: 10.1007/978-981-10-2666-9 – start-page: 206 year: 2018 ident: jneabc902bib109 article-title: A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning doi: 10.1109/bhi.2018.8333405 – start-page: 1 year: 2017 ident: jneabc902bib51 article-title: Deep convolutional neural networks for interpretable analysis of EEG sleep stage scoring doi: 10.1109/MLSP.2017.8168133 – volume: 26 start-page: 758 year: 2018 ident: jneabc902bib48 article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2813138 – start-page: 139 year: 2019 ident: jneabc902bib233 article-title: Adversarial variational embedding for robust semi-supervised learning doi: 10.1145/3292500.3330966 – start-page: 228 year: 2017 ident: jneabc902bib56 article-title: Neonatal sleep state identification using deep learning autoencoders doi: 10.1109/cspa.2017.8064956 – year: 2016 ident: jneabc902bib175 article-title: Deep learning for rapid serial visual presentation event from electroencephalography signal – volume: 12 start-page: 29 year: 2018 ident: jneabc902bib144 article-title: EEG-based detection of braking intention under different car driving conditions publication-title: Frontiers Neuroinform. doi: 10.3389/fninf.2018.00029 – start-page: 2844 year: 2015 ident: jneabc902bib200 article-title: Investigating deep learning for fNIRs based BCI doi: 10.1109/embc.2015.7318984 – volume: 15 year: 2018 ident: jneabc902bib73 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 9836 year: 2016 ident: jneabc902bib185 article-title: Single-trial EEG rsvp classification using convolutional neural networks publication-title: Micro- Nanotechnol. Sensors Syst. Appl. VIII doi: 10.1117/12.2224172 – volume: 23 start-page: 693 year: 2015 ident: jneabc902bib223 article-title: A hybrid brain–computer interface based on the fusion of p300 and SSVEP scores publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2403270 – volume: 274 start-page: 141 year: 2016 ident: jneabc902bib68 article-title: Interpretable deep neural networks for single-trial EEG classification publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.10.008 – start-page: 219 year: 2017 ident: jneabc902bib55 article-title: Combination of EEG data time and frequency representations in deep networks for sleep stage classification doi: 10.1007/978-3-319-63312-1_20 – volume: 25 start-page: 1998 year: 2017 ident: jneabc902bib57 article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2721116 – start-page: 229 year: 2014 ident: jneabc902bib201 article-title: Gender classification of subjects from cerebral blood flow changes using deep learning doi: 10.1109/cidm.2014.7008672 – start-page: 3410 year: 2017 ident: jneabc902bib133 article-title: Generative adversarial networks conditioned by brain signals doi: 10.1109/iccv.2017.369 – year: 2017 ident: jneabc902bib137 article-title: Improving classification accuracy of feedforward neural networks for spiking neuromorphic chips – volume: 19 start-page: 551 year: 2019 ident: jneabc902bib81 article-title: EEG classification of motor imagery using a novel deep learning framework publication-title: Sensors doi: 10.3390/s19030551 – start-page: 43 year: 2007 ident: jneabc902bib239 – volume: 94 start-page: 365 year: 2014 ident: jneabc902bib243 article-title: Spontaneous EEG activity and spontaneous emotion regulation publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2014.09.003 – volume: 111 start-page: 156 year: 2017 ident: jneabc902bib28 article-title: Best practice for single-trial detection of event-related potentials: application to brain-computer interfaces publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2016.07.500 – volume: 25 start-page: 2030 year: 2014 ident: jneabc902bib12 article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2302898 – volume: 11 start-page: 290 year: 2017 ident: jneabc902bib237 article-title: Concealed around-the-ear EEG captures cognitive processing in a visual simon task publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00290 – volume: 7 start-page: 162 year: 2015 ident: jneabc902bib96 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Mental Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 12 year: 2017 ident: jneabc902bib191 article-title: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment publication-title: PLoS One doi: 10.1371/journal.pone.0172578 – ident: jneabc902bib242 – volume: 3 start-page: 392 year: 2017 ident: jneabc902bib120 article-title: Optimized deep learning for EEG big data and seizure prediction BCI via internet of things publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2017.2769670 – year: 2014 ident: jneabc902bib127 article-title: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection – volume: 2018 year: 2018 ident: jneabc902bib184 article-title: Spatial and time domain feature of ERP speller system extracted via convolutional neural network publication-title: Computat. Intell. Neurosci. doi: 10.1155/2018/6058065 – volume: 15 year: 2019 ident: jneabc902bib203 article-title: Deep image reconstruction from human brain activity publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006633 – volume: 11 start-page: 302 year: 2017 ident: jneabc902bib186 article-title: Stacked autoencoders for the p300 component detection publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2017.00302 – volume: 67 start-page: 1475 year: 1977 ident: jneabc902bib37 article-title: Steady-state evoked potentials publication-title: JOSA doi: 10.1364/JOSA.67.001475 – volume: 9 start-page: 146 year: 2015 ident: jneabc902bib176 article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI publication-title: Frontiers Comput. Neurosci. doi: 10.3389/fncom.2015.00146 – volume: 100 start-page: 270 year: 2018 ident: jneabc902bib114 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 35 start-page: 18 year: 2017 ident: jneabc902bib205 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 – year: 2017 ident: jneabc902bib226 article-title: Deep learning for brain tumor segmentation – volume: 4 start-page: R1 year: 2007 ident: jneabc902bib11 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – volume: 10 year: 2015 ident: jneabc902bib84 article-title: A generalizable brain-computer interface (BCI) using machine learning for feature discovery publication-title: PLoS One doi: 10.1371/journal.pone.0131328 – start-page: 6809 year: 2017 ident: jneabc902bib163 article-title: Deep learning human mind for automated visual classification doi: 10.1109/cvpr.2017.479 – start-page: 495 year: 2019 ident: jneabc902bib245 article-title: Spontaneous EEG classification using complex valued neural network – volume: 16 year: 2019 ident: jneabc902bib17 article-title: Deep learning-based electroencephalography analysis: a systematic review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab260c – volume: 8 start-page: 10 year: 2017 ident: jneabc902bib108 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Emotion doi: 1Emotion recognition based on EEG using LSTM recurrent neural network – start-page: 222 year: 2017 ident: jneabc902bib140 article-title: Brain dynamic states analysis based on 3D convolutional neural network doi: 10.1109/smc.2017.8122606 – start-page: 1 year: 2018 ident: jneabc902bib132 article-title: Augmenting the size of EEG datasets using generative adversarial networks doi: 10.1109/ijcnn.2018.8489727 – start-page: 2732 year: 2016 ident: jneabc902bib232 article-title: Personalizing EEG-based affective models with transfer learning – start-page: 906 year: 2018 ident: jneabc902bib64 article-title: A convolution neural networks scheme for classification of motor imagery EEG based on wavelet time-frequency image doi: 10.1109/icoin.2018.8343254 – start-page: 273 year: 2015 ident: jneabc902bib87 article-title: Emotional affect estimation using video and EEG data in deep neural networks doi: 10.1007/978-3-319-18356-5_24 – volume: 35 start-page: 1798 year: 2013 ident: jneabc902bib257 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2013.50 – start-page: 493 year: 2015 ident: jneabc902bib147 article-title: Prediction of driver’s drowsy and alert states from EEG signals with deep learning doi: 10.1109/camsap.2015.7383844 – volume: 38 start-page: 435 year: 2016 ident: jneabc902bib49 article-title: Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331215587568 – volume: 39 start-page: 08TR02 year: 2018 ident: jneabc902bib34 article-title: Passive BCI beyond the lab: current trends and future directions publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aad57e – start-page: 3518 year: 2015 ident: jneabc902bib63 article-title: Deep learning EEG response representation for brain computer interface doi: 10.1109/chicc.2015.7260182 – start-page: 816 year: 2016 ident: jneabc902bib207 article-title: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data doi: 10.1109/ftc.2016.7821697 – start-page: 1 year: 2015 ident: jneabc902bib159 article-title: Single trial prediction of normal and excessive cognitive load through EEG feature fusion doi: 10.1109/spmb.2015.7405422 – volume: 83 start-page: 172 year: 2015 ident: jneabc902bib20 article-title: Brain–machine interfaces in neurorehabilitation of stroke publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2014.11.025 – volume: 313 start-page: 504 year: 2006 ident: jneabc902bib44 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 15 year: 2018 ident: jneabc902bib249 article-title: A review of rapid serial visual presentation-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9817 – volume: 79 start-page: 205 year: 2016 ident: jneabc902bib94 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.019 – volume: 46 start-page: 708 year: 2009 ident: jneabc902bib1 article-title: Signal quality of simultaneously recorded invasive and non-invasive EEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.028 – volume: 7 year: 2017 ident: jneabc902bib141 article-title: Bullying incidences identification within an immersive environment using hd EEG-based analysis: a swarm decomposition and deep learning approach publication-title: Sci. Rep. doi: 10.1038/s41598-017-17562-0 – year: 2016 ident: jneabc902bib227 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – volume: 99 start-page: 1 year: 2018 ident: jneabc902bib88 article-title: Spatial-temporal recurrent neural network for emotion recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/tcyb.2017.2788081 – volume: 462 start-page: 94 year: 2009 ident: jneabc902bib251 article-title: How many people are able to control a p300-based brain–computer interface (BCI)? publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.06.045 – volume: 9 start-page: 3 year: 2015 ident: jneabc902bib29 article-title: fNIRS-based brain-computer interfaces: a review publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00003 – start-page: 1 year: 2015 ident: jneabc902bib106 article-title: Deep learning of EEG signals for emotion recognition – start-page: 503 year: 2014 ident: jneabc902bib77 article-title: Deep learning of multifractal attributes from motor imagery induced EEG doi: 10.1007/978-3-319-12637-1_63 – volume: 3 start-page: 683 year: 1992 ident: jneabc902bib40 article-title: Multilayer perceptron, fuzzy sets and classification publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.159058 – start-page: 533 year: 2017 ident: jneabc902bib67 article-title: Multi-channel EEG classification based on fast convolutional feature extraction doi: 10.1007/978-3-319-59081-3_62 – year: 2013 ident: jneabc902bib46 article-title: Auto-encoding variational Bayes – year: 2016 ident: jneabc902bib225 article-title: DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI doi: 10.1101/070441 – year: 2015 ident: jneabc902bib202 – year: 2017 ident: jneabc902bib52 – volume: 29 start-page: 73 year: 2010 ident: jneabc902bib234 article-title: Comparison of brain–computer interface decoding algorithms in open-loop and closed-loop control publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-009-0196-9 – start-page: 466 year: 2017 ident: jneabc902bib138 article-title: Cognitive load recognition using multi-channel complex network method doi: 10.1007/978-3-319-59072-1_55 – year: 2015 ident: jneabc902bib258 article-title: Comparison of training methods for deep neural networks – volume: 12 year: 2017 ident: jneabc902bib182 article-title: Method for enhancing single-trial p300 detection by introducing the complexity degree of image information in rapid serial visual presentation tasks publication-title: PLoS One doi: 10.1371/journal.pone.0184713 – volume: 74 start-page: 58 year: 2017 ident: jneabc902bib33 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.01.002 – year: 2018 ident: jneabc902bib193 – volume: 42 start-page: 107 year: 2018 ident: jneabc902bib50 article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.12.001 – volume: 7 start-page: 1197 year: 2017 ident: jneabc902bib187 article-title: Identifying single trial event-related potentials in an earphone-based auditory brain-computer interface publication-title: Appl. Sci. doi: 10.3390/app7111197 – start-page: 25 year: 2017 ident: jneabc902bib183 article-title: Real world BCI: cross-domain learning and practical applications doi: 10.1145/3038439.3038444 – volume: 3 start-page: e2 year: 2014 ident: jneabc902bib31 article-title: A tutorial survey of architectures, algorithms and applications for deep learning publication-title: APSIPA Trans. Signal Inf. Process. doi: 10.1017/atsip.2014.4 – volume: 243 start-page: 103 year: 2015 ident: jneabc902bib21 article-title: Performance variation in motor imagery brain–computer interface: a brief review publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.033 – volume: 130 start-page: 11 year: 2017 ident: jneabc902bib66 article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks publication-title: Optik-Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2016.10.117 – volume: 11 start-page: 4 year: 2017 ident: jneabc902bib61 article-title: DeepKey: A Multimodal Biometric Authentication System via Deep Decoding Gaits and Brainwaves publication-title: ACM Trans. on Intelligent Systems and Technology (TIST) doi: 10.1145/3393619 – start-page: 5 year: 2017 ident: jneabc902bib178 article-title: Deep learning approaches for p300 classification in image triage: applications to the nails task – start-page: 2828 year: 2015 ident: jneabc902bib54 article-title: Sleep spindle detection using deep learning: a validation study based on crowdsourcing doi: 10.1109/embc.2015.7318980 – year: 2013 ident: jneabc902bib218 article-title: Sparse autoencoders for word decoding from magnetoencephalography – year: 2017 ident: jneabc902bib220 article-title: Deep learning for fatigue estimation on the basis of multimodal human-machine interactions – start-page: 1 year: 2017 ident: jneabc902bib116 article-title: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology doi: 10.1109/spmb.2017.8257015 – start-page: 18 year: 2017 ident: jneabc902bib170 article-title: Deep recurrent convolutional neural networks for classifying p300 BCI signals – start-page: 169 year: 2018 ident: jneabc902bib199 article-title: Brain-computer interface using deep neural network and its application to mobile robot control doi: 10.1109/amc.2019.8371082 – start-page: 498 year: 2017 ident: jneabc902bib168 article-title: Deep belief networks for EEG-based concealed information test doi: 10.1007/978-3-319-59081-3_58 – start-page: 812 year: 2015 ident: jneabc902bib153 article-title: Feature extraction with deep belief networks for driver’s cognitive states prediction from EEG data doi: chinasip.2015.7230517 – volume: 25 start-page: 566 year: 2017 ident: jneabc902bib80 article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2601240 – start-page: 1 year: 2018 ident: jneabc902bib59 article-title: Hierarchical internal representation of spectral features in deep convolutional networks trained for EEG decoding doi: 10.1109/iww-bci.2018.8311493 – volume: 161 start-page: 103 year: 2018 ident: jneabc902bib113 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.012 – ident: jneabc902bib70 article-title: Sleep staging with deep learning: a convolutional model – volume: 99 start-page: 24 year: 2018 ident: jneabc902bib53 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – volume: 51 start-page: 112 year: 2019 ident: jneabc902bib26 article-title: A survey on brain biometrics publication-title: ACM Comput. Surv. doi: 10.1145/3230632 – volume: 110 start-page: 1842 year: 1999 ident: jneabc902bib221 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 35 start-page: 137 year: 2007 ident: jneabc902bib15 article-title: A comprehensive survey of brain interface technology designs publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-006-9170-0 – year: 2018 ident: jneabc902bib192 article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials doi: 10.1088/1741-2552/aae5d8 – volume: 43 start-page: 110 year: 2003 ident: jneabc902bib244 article-title: Studying spontaneous EEG activity with fMRI publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(03)00193-0 – volume: 6 start-page: 25399 year: 2018 ident: jneabc902bib124 article-title: Deep convolution neural network and autoencoders-based unsupervised feature learning of EEG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2833746 – volume: 299 start-page: 002 year: 2017 ident: jneabc902bib90 article-title: Analyze EEG signals with convolutional neural network based on power spectrum feature selection publication-title: Proc. Sci. doi: 10.22323/1.299.0002 – year: 2017 ident: jneabc902bib149 article-title: Individual recognition in schizophrenia using deep learning methods with random forest and voting classifiers: Insights from resting state EEG streams – volume: 65 start-page: 1 year: 2014 ident: jneabc902bib189 article-title: Effect of fatigue on SSVEP during virtual wheelchair navigation publication-title: J. Theor. Appl. Inf. Technol. – start-page: 800 year: 2016 ident: jneabc902bib154 article-title: EEG-based driver fatigue detection using hybrid deep generic model doi: 10.1109/embc.2016.7590822 – start-page: 259 year: 2016 ident: jneabc902bib60 article-title: Decoding EEG and LFP signals using deep learning: heading TrueNorth doi: 10.1145/2903150.2903159 – start-page: 180 year: 2018 ident: jneabc902bib215 article-title: Multi-channel generative adversarial network for parallel magnetic resonance image reconstruction in k-space doi: 10.1007/978-3-030-00928-1_21 – start-page: 802 year: 2016 ident: jneabc902bib122 article-title: Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning doi: 10.1007/978-3-319-42297-8_74 – start-page: 754 year: 2016 ident: jneabc902bib118 article-title: Epileptiform spike detection via convolutional neural networks doi: 10.1109/icassp.2016.7471776 – start-page: 1 year: 2018 ident: jneabc902bib10 article-title: Converting your thoughts to texts: enabling brain typing via deep feature learning of EEG signals doi: 10.1109/percom.2018.8444575 |
SSID | ssj0031790 |
Score | 2.6510944 |
SecondaryResourceType | review_article |
Snippet | Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 31002 |
SubjectTerms | Algorithms Brain Brain-Computer Interfaces Deep Learning Electroencephalography - methods Humans |
Title | A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33171452 https://www.proquest.com/docview/2459626211 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFDcal4yIjISRUhS624zq8VQg0JnF52KTygKLEl60SJNOWTmI_YL9758ROmkKLGC9R5KSnab8v52Ifn0PIS8GdkolRkdIQrorUmKjQTkYWTJXWE5fkTW_AT5_l_pE4mCWzweCql7W0qIs3-nLtvpL_QRXGAFfcJXsDZDuhMADngC8cAWE4_hPG09H54uwC3uoKU1rtadsD4jhC42RGENpH8_Ii9ynq2AxihPka8Fw4EQC6rkkw91kAvlYzONm446Ss5yEzfo3jiiUw4cwuKxn-Mfs8A9J1o9_yKkT_SxPQu-_yZN6hDmHB8Ymfkj3A_NyQRxRmJVgveyooUvBUInSnvJ3pjyUbtO8yOG9UKa48sLVKHhQjzje00tCaFTr1N69W1P7N0nX5h83Ku1IZyshQRuYl3CK3GYQb2Anj45evrUXnWMXMb6z1vyksd4OEcfcUYy9h1b3ZELM0vsvhNrkbsKNTz6B7ZGDL-2RnWuZ19fMXfUWbNOBmfWWHfJ9STypalRRJRVdJRfukog2paCDVW-opRVtKUaAUBUrRjlIPyNGH94fv9qPQgyPSXCZ1VCTc7TmXK805OOfKwpsdGyuNdUYlxumJYVpOTCGsFVzAlVilguXcOFNwaflDsgXPZR8TCpdyluaFZcoIm0hlHI-tdVIra_ReOiTj9q_LdChQj31SfmSb4BqS190nTn1xlr_c-6JFIwMNistieWmrxXnGBHagkiyOh-SRh6mTxgH7WCRs9wbf9ITcWb4RT8lWfbawz8BzrYvnDa2uAX8NmK4 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+deep+learning-based+non-invasive+brain+signals%3A+recent+advances+and+new+frontiers&rft.jtitle=Journal+of+neural+engineering&rft.au=Zhang%2C+Xiang&rft.au=Yao%2C+Lina&rft.au=Wang%2C+Xianzhi&rft.au=Monaghan%2C+Jessica&rft.date=2021-06-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=18&rft.issue=3&rft.spage=31002&rft_id=info:doi/10.1088%2F1741-2552%2Fabc902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2552_abc902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |