Factors influencing nitroxide reduction and cytotoxicity in vitro

Nitroxides have been shown to be effective antioxidants, radiation protectors, and redox-active probes for functional electron paramagnetic resonance (EPR) imaging. More recently, the nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-N-oxyl (Tempol) has been shown to exert differential cytotoxicity...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants & redox signaling Vol. 6; no. 3; p. 587
Main Authors Samuni, Yuval, Gamson, Janet, Samuni, Ayelet, Yamada, Kenichi, Russo, Angelo, Krishna, Murali C, Mitchell, James B
Format Journal Article
LanguageEnglish
Published United States 01.06.2004
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Nitroxides have been shown to be effective antioxidants, radiation protectors, and redox-active probes for functional electron paramagnetic resonance (EPR) imaging. More recently, the nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-N-oxyl (Tempol) has been shown to exert differential cytotoxicity to tumor compared with normal cell counterparts. Nitroxides are readily reduced in tissues to their respective hydroxylamines, which exhibit less cytotoxicity in vitro and do not provide radiation protection or an EPR-detectable signal for imaging. In order to better understand factors that influence nitroxide reduction, the rate of reduction of Tempol in mouse and human cell lines and in primary cultures of tumor cells was measured using EPR spectroscopy. Additionally, the cytotoxicity of high concentrations of Tempol and the hydroxylamine of Tempol (Tempol-H) was evaluated in wild-type and glucose-6-phosphate dehydrogenase (G6PD)-deficient Chinese hamster ovary cells. The results show that in general Tempol was reduced at a faster rate when cells were under hypoxic compared with aerobic conditions. Neither depletion of intracellular glutathione nor treatment of cells with sodium cyanide influenced Tempol reduction rates. G6PD-deficient cells were found to reduce Tempol at a significantly slower rate than wild-type cells. Likewise, Tempol-induced cytotoxicity was markedly less for G6PD-deficient cells compared with wild-type cells. Tempol-H exhibited no cytotoxicity to either cell type. Tempol-mediated cytotoxicity was enhanced by glutathione depletion and inhibition of 6-phosphogluconate dehydrogenase in wild-type cells, but was unaltered in G6PD-deficient cells. Collectively, the results indicate that while the bioreduction of Tempol can be influenced by a number of factors, the hexose monophosphate shunt appears to be involved in both nitroxide reduction as well as cytotoxicity induced by high levels of exposure to Tempol.
AbstractList Nitroxides have been shown to be effective antioxidants, radiation protectors, and redox-active probes for functional electron paramagnetic resonance (EPR) imaging. More recently, the nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-N-oxyl (Tempol) has been shown to exert differential cytotoxicity to tumor compared with normal cell counterparts. Nitroxides are readily reduced in tissues to their respective hydroxylamines, which exhibit less cytotoxicity in vitro and do not provide radiation protection or an EPR-detectable signal for imaging. In order to better understand factors that influence nitroxide reduction, the rate of reduction of Tempol in mouse and human cell lines and in primary cultures of tumor cells was measured using EPR spectroscopy. Additionally, the cytotoxicity of high concentrations of Tempol and the hydroxylamine of Tempol (Tempol-H) was evaluated in wild-type and glucose-6-phosphate dehydrogenase (G6PD)-deficient Chinese hamster ovary cells. The results show that in general Tempol was reduced at a faster rate when cells were under hypoxic compared with aerobic conditions. Neither depletion of intracellular glutathione nor treatment of cells with sodium cyanide influenced Tempol reduction rates. G6PD-deficient cells were found to reduce Tempol at a significantly slower rate than wild-type cells. Likewise, Tempol-induced cytotoxicity was markedly less for G6PD-deficient cells compared with wild-type cells. Tempol-H exhibited no cytotoxicity to either cell type. Tempol-mediated cytotoxicity was enhanced by glutathione depletion and inhibition of 6-phosphogluconate dehydrogenase in wild-type cells, but was unaltered in G6PD-deficient cells. Collectively, the results indicate that while the bioreduction of Tempol can be influenced by a number of factors, the hexose monophosphate shunt appears to be involved in both nitroxide reduction as well as cytotoxicity induced by high levels of exposure to Tempol.
Author Samuni, Ayelet
Krishna, Murali C
Samuni, Yuval
Mitchell, James B
Yamada, Kenichi
Gamson, Janet
Russo, Angelo
Author_xml – sequence: 1
  givenname: Yuval
  surname: Samuni
  fullname: Samuni, Yuval
  organization: Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
– sequence: 2
  givenname: Janet
  surname: Gamson
  fullname: Gamson, Janet
– sequence: 3
  givenname: Ayelet
  surname: Samuni
  fullname: Samuni, Ayelet
– sequence: 4
  givenname: Kenichi
  surname: Yamada
  fullname: Yamada, Kenichi
– sequence: 5
  givenname: Angelo
  surname: Russo
  fullname: Russo, Angelo
– sequence: 6
  givenname: Murali C
  surname: Krishna
  fullname: Krishna, Murali C
– sequence: 7
  givenname: James B
  surname: Mitchell
  fullname: Mitchell, James B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15130285$$D View this record in MEDLINE/PubMed
BookMark eNo1T8lOwzAU9KGILvADHJB_IODnJU6OVUUpUiUucK68PCOj1qkSB5G_xxVwGmk2zSzJLHUJCbkD9gCsaR9BccGamkmtRSukkDAjiwtZFVbOyXIYPhljHIBdkzkoEIw3akHWW-Ny1w80pnAcMbmYPmiKue--o0faox9djl2iJnnqptzlIriYpxKgXxffDbkK5jjg7R-uyPv26W2zq_avzy-b9b5yola5slzp2nOJ2mlrrNNBIfrGllGBmbZpQ9GUQitbXg4giBCksApqo2SQwFfk_rf3PNoT-sO5jyfTT4f_L_wHhw1Mng
CitedBy_id crossref_primary_10_1080_13102818_2019_1573153
crossref_primary_10_1016_j_freeradbiomed_2008_01_027
crossref_primary_10_1111_j_1476_5381_2011_01527_x
crossref_primary_10_1016_j_redox_2015_10_007
crossref_primary_10_3390_pharmaceutics12080772
crossref_primary_10_1158_1535_7163_MCT_09_1207
crossref_primary_10_4161_cbt_10_10_13250
crossref_primary_10_1016_j_freeradbiomed_2005_12_011
crossref_primary_10_1016_j_tetlet_2019_151207
crossref_primary_10_1371_journal_pone_0055868
crossref_primary_10_1016_j_pharmthera_2009_02_002
crossref_primary_10_1007_s11060_010_0387_2
crossref_primary_10_1124_pr_108_000240
crossref_primary_10_3892_ijo_2012_1638
crossref_primary_10_1016_j_freeradbiomed_2011_05_019
crossref_primary_10_1158_0008_5472_CAN_06_0879
crossref_primary_10_1080_10715760400019661
crossref_primary_10_3164_jcbn_21_83
crossref_primary_10_1007_s12013_018_0862_5
crossref_primary_10_1039_D1PY01645H
crossref_primary_10_1089_pho_2007_2046
crossref_primary_10_3390_antiox12020402
crossref_primary_10_1016_j_freeradbiomed_2010_11_028
crossref_primary_10_1021_acscentsci_7b00253
crossref_primary_10_1124_jpet_107_127167
crossref_primary_10_1186_s40795_015_0025_7
crossref_primary_10_1042_CBI20090276
crossref_primary_10_1038_ncomms6460
crossref_primary_10_1021_acsabm_9b00855
crossref_primary_10_1211_jpp_60_8_0011
crossref_primary_10_1016_j_ultsonch_2012_01_014
crossref_primary_10_1016_j_ejmech_2018_12_033
crossref_primary_10_3390_ijms151221703
crossref_primary_10_1089_152308604773934332
crossref_primary_10_1016_j_freeradbiomed_2020_05_021
crossref_primary_10_1152_ajpheart_00687_2008
crossref_primary_10_1124_jpet_111_183681
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/152308604773934341
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Chemistry
ExternalDocumentID 15130285
Genre Journal Article
GroupedDBID ---
0R~
0VX
1-M
23M
34G
39C
4.4
53G
5GY
5RE
6AZ
ABBKN
ABJNI
ACGFS
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CAG
CGR
COF
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
IAO
IER
IHR
IM4
ITC
MV1
NPM
NQHIM
O9-
P2P
RIG
RML
RMSOB
UE5
Z0Y
ID FETCH-LOGICAL-c365t-b2576d24e7c7babc7f5eed8b000f0a989f24e55eb492934e13ff43b516a54f412
ISSN 1523-0864
IngestDate Sat Sep 28 07:41:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-b2576d24e7c7babc7f5eed8b000f0a989f24e55eb492934e13ff43b516a54f412
PMID 15130285
ParticipantIDs pubmed_primary_15130285
PublicationCentury 2000
PublicationDate 2004-06-01
PublicationDateYYYYMMDD 2004-06-01
PublicationDate_xml – month: 06
  year: 2004
  text: 2004-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Antioxidants & redox signaling
PublicationTitleAlternate Antioxid Redox Signal
PublicationYear 2004
SSID ssj0002110
Score 2.0060081
Snippet Nitroxides have been shown to be effective antioxidants, radiation protectors, and redox-active probes for functional electron paramagnetic resonance (EPR)...
SourceID pubmed
SourceType Index Database
StartPage 587
SubjectTerms Animals
Cell Line
Cell Line, Tumor
CHO Cells
Cricetinae
Cyclic N-Oxides - pharmacology
Dose-Response Relationship, Drug
Electron Spin Resonance Spectroscopy - methods
Fibroblasts - metabolism
Free Radical Scavengers - pharmacology
Glucosephosphate Dehydrogenase - metabolism
Glutathione - metabolism
Humans
Mice
Mice, Inbred C3H
Nitrogen Oxides - chemistry
Oxygen - metabolism
Oxygen Consumption
Spin Labels
Time Factors
Title Factors influencing nitroxide reduction and cytotoxicity in vitro
URI https://www.ncbi.nlm.nih.gov/pubmed/15130285
Volume 6
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6ugnoRXd8vevAm1XaTtN3jIq6LoCcFPUmSJlhwuyJV1F_vTJo-fOHjUpZMG7qdr5Nv0nkQstePeI-ZSPs6CJXPZEh9AcuUr1IB9B3bIRl0FM_Oo9ElO73iV82nGJtdUsgD9fplXsl_tApjoFfMkv2DZutJYQB-g37hCBqG4690PHTNcjLXaQTdfnhFHybPWYrtUNJH1wgcc9deikkBAoW0O8v3n_C8NjUdYNwjXGgDYxAQWEr0eR8DPMRdtcDhXozAjBJruh-fRB2gcSLGLnnrVORNVnVz9uAFVrh6_FqMRSpcZlCmbrN32w-sCZOqLGaP-uAXsbZJjVrIoS3zyMvF9ZPZDhKseopTwUwBi7FMH6NlRayWHu_HVpFAUijQIv6z9EMp7UrUIZ04QaN4jls7btlGT9gW13X_x2VYwa0dfr4x282pnOyDP2J5ycUiWXAOhTco0bFEpnTeJXNHVR-_Lpk9c-ETy2TgAOO1AOPVgPFqwHgAGK8NGLjAs4BZIZfD44ujke96aPiKRrzwJTqUaY_pWMVSSBUbDqwoQe5nAtFP-gZknGvJgCdTpkNqDKOSh5HgzLCwt0qm80mu14mnkpBqxYVRXLEwljKNRWq0CGScGJ7yDbJWPoib-7JQyk31iDa_lWyR-QZU22TGwJupd4DmFXLXqucN_WtQig
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+influencing+nitroxide+reduction+and+cytotoxicity+in+vitro&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Samuni%2C+Yuval&rft.au=Gamson%2C+Janet&rft.au=Samuni%2C+Ayelet&rft.au=Yamada%2C+Kenichi&rft.date=2004-06-01&rft.issn=1523-0864&rft.volume=6&rft.issue=3&rft.spage=587&rft_id=info:doi/10.1089%2F152308604773934341&rft_id=info%3Apmid%2F15130285&rft_id=info%3Apmid%2F15130285&rft.externalDocID=15130285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1523-0864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1523-0864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1523-0864&client=summon