A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM
Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optim...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 59; no. 5; pp. 1485 - 1492 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal. |
---|---|
AbstractList | Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal. |
Author | Chang, C.Q. Jialiang Chen Minfen Shen Lanxin Lin |
Author_xml | – sequence: 1 surname: Minfen Shen fullname: Minfen Shen organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China – sequence: 2 surname: Lanxin Lin fullname: Lanxin Lin organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China – sequence: 3 surname: Jialiang Chen fullname: Jialiang Chen organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China – sequence: 4 givenname: C.Q. surname: Chang fullname: Chang, C.Q. organization: Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China |
BookMark | eNpdkEFrwkAQRpdioWp7L_Sy0ENPsbOb7G5yFLFWUFpQ22NYNxONxKzNJoX--25QeuhlhoH3DTNvQHqVrZCQewYjxiB5Xs-XIw5-4hBBAuKK9JkQKkik5D3SB2BxkERC3pCBcwcAUDJSfbIa0_cas8I0ha3o-HSqrTZ7mtuaLtuyKcxeVxWWdDqd0VWxq3Tp6NJmWBbVjm5cVxfW6JJ-6m8ssaGrj-Utuc49h3eXPiSbl-l68hos3mbzyXgRmFCKJthylvNIo1EixIxDGOe5VKhioVkeK2lYDInJwjjmQusQIUKUYcgR861RGQ-H5Om81x_91aJr0mPhDJalrtC2LlWRUCC9DE8-_iMPtq27Z1IGXDHJVcw8BWfK1Na5GvP0VBdHXf94KO0kp15y2klOL5J95OEcKRDxDxcRSxK_8BdRCHg6 |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1016_j_engappai_2020_103692 crossref_primary_10_1016_j_patrec_2012_10_026 crossref_primary_10_1109_TIM_2013_2278562 crossref_primary_10_3389_fnhum_2023_1033420 crossref_primary_10_1016_j_engappai_2023_106401 crossref_primary_10_1109_TIM_2021_3094619 crossref_primary_10_1109_TII_2015_2500098 crossref_primary_10_1109_TIM_2018_2855518 crossref_primary_10_1002_acs_1197 crossref_primary_10_1109_TNNLS_2013_2275003 crossref_primary_10_1016_j_compbiomed_2017_12_008 crossref_primary_10_1109_TIM_2022_3193407 crossref_primary_10_1109_TCDS_2022_3212019 crossref_primary_10_1109_TNB_2014_2316811 crossref_primary_10_1109_TIM_2017_2779329 crossref_primary_10_1088_1674_1056_19_11_110507 crossref_primary_10_1109_TCSI_2012_2185290 crossref_primary_10_1109_TIM_2020_3011817 crossref_primary_10_1016_j_imu_2021_100792 crossref_primary_10_1016_j_neucom_2017_01_126 crossref_primary_10_1088_1674_1056_20_12_120507 crossref_primary_10_1109_TIM_2015_2450352 crossref_primary_10_1016_j_compbiomed_2021_104250 |
Cites_doi | 10.55782/ane-2000-1369 10.1007/978-1-4757-2440-0 10.1023/A:1022936519097 10.1109/TNN.2006.875985 10.1109/10.966601 10.1109/NEBC.1991.154576 10.1146/annurev.bioeng.5.040202.121601 10.1016/S0893-6080(98)00032-X 10.1023/A:1018628609742 10.1109/TSMCB.2003.811113 10.1109/IMTC.2009.5168535 10.1023/A:1009715923555 10.1109/ICMSE.2008.4668945 10.7498/aps.56.67 10.1103/PhysRevE.64.061907 10.1109/ICBBE.2008.850 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M 7TK |
DOI | 10.1109/TIM.2010.2040905 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Neurosciences Abstracts |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Neurosciences Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 1492 |
ExternalDocumentID | 2716626481 10_1109_TIM_2010_2040905 5419981 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TN5 TWZ VH1 VJK XFK AAYXX CITATION 7SP 7U5 8FD L7M 7TK |
ID | FETCH-LOGICAL-c365t-b21f24aec753ed2038ff67e785a1f876c1809cd38825aa3e04ee6332eefbc7d23 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Fri Aug 16 10:39:07 EDT 2024 Thu Oct 10 19:19:10 EDT 2024 Fri Aug 23 03:39:24 EDT 2024 Wed Jun 26 19:26:39 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-b21f24aec753ed2038ff67e785a1f876c1809cd38825aa3e04ee6332eefbc7d23 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://hub.hku.hk/bitstream/10722/123834/2/Content.pdf |
PQID | 1027162781 |
PQPubID | 85462 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5419981 proquest_miscellaneous_745706090 crossref_primary_10_1109_TIM_2010_2040905 proquest_journals_1027162781 |
PublicationCentury | 2000 |
PublicationDate | 2010-May 2010-05-00 20100501 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-May |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2010 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref23 smola (ref9) 1998 zhang (ref14) 2007; 56 ref20 ref11 ref10 ref21 takens (ref13) 1981 platt (ref16) 1999 ref1 shen (ref7) 0 ref19 ref18 ref8 joachims (ref15) 1998 ref4 ref3 ref6 ref5 joydeep (ref2) 2000; 60 cui (ref22) 2004; 38 keerthi (ref17) 1999 |
References_xml | – volume: 60 start-page: 495 year: 2000 ident: ref2 article-title: complexity analysis of spontaneous eeg publication-title: Acta Neurobiol Exp doi: 10.55782/ane-2000-1369 contributor: fullname: joydeep – ident: ref11 doi: 10.1007/978-1-4757-2440-0 – start-page: 366 year: 1981 ident: ref13 publication-title: Dynamical Systems and Turbulence contributor: fullname: takens – ident: ref19 doi: 10.1023/A:1022936519097 – ident: ref8 doi: 10.1109/TNN.2006.875985 – ident: ref3 doi: 10.1109/10.966601 – ident: ref5 doi: 10.1109/NEBC.1991.154576 – ident: ref1 doi: 10.1146/annurev.bioeng.5.040202.121601 – ident: ref20 doi: 10.1016/S0893-6080(98)00032-X – ident: ref18 doi: 10.1023/A:1018628609742 – start-page: 347 year: 0 ident: ref7 publication-title: Novel Coupled Map Lattice Model for Prediction of EEG Signal contributor: fullname: shen – year: 1998 ident: ref15 publication-title: Advances in Kernel Methods Support Vector Machines contributor: fullname: joachims – ident: ref21 doi: 10.1109/TSMCB.2003.811113 – year: 1999 ident: ref17 publication-title: Improvements to Platts SMO algorithm for SVM classier design contributor: fullname: keerthi – ident: ref12 doi: 10.1109/IMTC.2009.5168535 – ident: ref10 doi: 10.1023/A:1009715923555 – ident: ref4 doi: 10.1109/ICMSE.2008.4668945 – year: 1998 ident: ref9 publication-title: A tutorial on support vector regression contributor: fullname: smola – year: 1999 ident: ref16 publication-title: Advances in Kernel Methods Support Vector Learning contributor: fullname: platt – volume: 38 start-page: 563 year: 2004 ident: ref22 article-title: least squares wavelet support vector machines and its application to nonlinear system identification publication-title: J Xi an Jiaotong University contributor: fullname: cui – volume: 56 start-page: 67 year: 2007 ident: ref14 article-title: local support vector machine prediction of spatiotemporal chaotic time series publication-title: Acta Phys Sin doi: 10.7498/aps.56.67 contributor: fullname: zhang – ident: ref23 doi: 10.1103/PhysRevE.64.061907 – ident: ref6 doi: 10.1109/ICBBE.2008.850 |
SSID | ssj0007647 |
Score | 2.1577322 |
Snippet | Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1485 |
SubjectTerms | Approximation algorithms Brain modeling Electroencephalogram (EEG) signal Electroencephalography local prediction method Optimization methods Prediction methods Predictive models Signal processing Signal processing algorithms Spatiotemporal phenomena support vector machine (SVM) Support vector machines wavelet kernel |
Title | A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM |
URI | https://ieeexplore.ieee.org/document/5419981 https://www.proquest.com/docview/1027162781 https://search.proquest.com/docview/745706090 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3SQKA9pPloyaZJ0SGXQLyxJdmWjkvZNC3ZUtikzc3I0qiUBG_Iei_59dHI9hLaHnozyAihmZFmNPPeAJyYwmqO1iVZoX0IUESWKGFUopQxMtdGu4itmn0rLm_k19v8dgPO1lgYRIzFZzimz5jLdwu7oqey81wSIizEOq9KrTus1vrULQvZ8WNmwYCDVzCkJFN9fv1l1tVw8aCxmhrVvbiCYk-Vvw7ieLtcvIXZsK6uqORuvGrrsX36g7Lxfxe-A9u9m8kmnV7swgY2e_DmBfngHmzF4k-73If5hH1_pIQNCYlNepZxFtxZFvG5BA5u8J5Np5_Z_PcvYlxm1EONkOws1hywK7oS2U9DbSxaNv8xewc3F9PrT5dJ32whsaLI26TmmefSoA3xCzqeCuV9UWKpcpP5cGRaIvqyTgSPPDdGYCoRCyE4oq9t6bh4D5vNosEDYOi0sHVQAl97aVJtlHeKW6d8KkuUbgSnw_5XDx2nRhVjkVRXQVYVyarqZTWCfdrO9X_9To7gaBBY1RvdMszBiQ-rpGG2Hg7mQjkQ0-BitaxKmRNfkE4P_z3xB3g91Aek2RFsto8rPA5uR1t_jPr2DC5q0-Y |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VRQg48NGCWCjgAxcksk1sJ7GPK7RlC5sKabfQW-TYY4RAWdTNXvj1eJxkVQEHbpEcWZZnxp7xzHsD8NoUVnO0LskK7UOAIrJECaMSpYyRuTbaRWxVdVEsLuWHq_zqAN7usTCIGIvPcEqfMZfvNnZHT2WnuSREWIh1buXkV_Rorf25WxayZ8jMggkHv2BMSqb6dH1e9VVcPOisplZ1Ny6h2FXlr6M43i9nD6AaV9aXlXyf7rpman_9Qdr4v0t_CPcHR5PNes14BAfYHsG9G_SDR3A7ln_a7TGsZuzTNaVsSExsNvCMs-DQsojQJXhwiz_YfP6erb59Jc5lRl3UCMvOYtUBW9KlyL4YamTRsdXn6jFcns3X7xbJ0G4hsaLIu6ThmefSoA0RDDqeCuV9UWKpcpP5cGhaovqyTgSfPDdGYCoRCyE4om9s6bh4AoftpsWnwNBpYZugBr7x0qTaKO8Ut075VJYo3QTejPtf_-xZNeoYjaS6DrKqSVb1IKsJHNN27v8bdnICJ6PA6sHstmEOToxYJQ2z_XAwGMqCmBY3u21dypwYg3T67N8Tv4I7i3W1rJfnFx-fw92xWiDNTuCwu97hi-CEdM3LqHu_AXDG1zM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prediction+Approach+for+Multichannel+EEG+Signals+Modeling+Using+Local+Wavelet+SVM&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Minfen+Shen&rft.au=Lanxin+Lin&rft.au=Jialiang+Chen&rft.au=Chang%2C+C.Q.&rft.date=2010-05-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=59&rft.issue=5&rft.spage=1485&rft.epage=1492&rft_id=info:doi/10.1109%2FTIM.2010.2040905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2010_2040905 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |