A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM

Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optim...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 59; no. 5; pp. 1485 - 1492
Main Authors Minfen Shen, Lanxin Lin, Jialiang Chen, Chang, C.Q.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal.
AbstractList Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal.
Author Chang, C.Q.
Jialiang Chen
Minfen Shen
Lanxin Lin
Author_xml – sequence: 1
  surname: Minfen Shen
  fullname: Minfen Shen
  organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China
– sequence: 2
  surname: Lanxin Lin
  fullname: Lanxin Lin
  organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China
– sequence: 3
  surname: Jialiang Chen
  fullname: Jialiang Chen
  organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China
– sequence: 4
  givenname: C.Q.
  surname: Chang
  fullname: Chang, C.Q.
  organization: Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China
BookMark eNpdkEFrwkAQRpdioWp7L_Sy0ENPsbOb7G5yFLFWUFpQ22NYNxONxKzNJoX--25QeuhlhoH3DTNvQHqVrZCQewYjxiB5Xs-XIw5-4hBBAuKK9JkQKkik5D3SB2BxkERC3pCBcwcAUDJSfbIa0_cas8I0ha3o-HSqrTZ7mtuaLtuyKcxeVxWWdDqd0VWxq3Tp6NJmWBbVjm5cVxfW6JJ-6m8ssaGrj-Utuc49h3eXPiSbl-l68hos3mbzyXgRmFCKJthylvNIo1EixIxDGOe5VKhioVkeK2lYDInJwjjmQusQIUKUYcgR861RGQ-H5Om81x_91aJr0mPhDJalrtC2LlWRUCC9DE8-_iMPtq27Z1IGXDHJVcw8BWfK1Na5GvP0VBdHXf94KO0kp15y2klOL5J95OEcKRDxDxcRSxK_8BdRCHg6
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_engappai_2020_103692
crossref_primary_10_1016_j_patrec_2012_10_026
crossref_primary_10_1109_TIM_2013_2278562
crossref_primary_10_3389_fnhum_2023_1033420
crossref_primary_10_1016_j_engappai_2023_106401
crossref_primary_10_1109_TIM_2021_3094619
crossref_primary_10_1109_TII_2015_2500098
crossref_primary_10_1109_TIM_2018_2855518
crossref_primary_10_1002_acs_1197
crossref_primary_10_1109_TNNLS_2013_2275003
crossref_primary_10_1016_j_compbiomed_2017_12_008
crossref_primary_10_1109_TIM_2022_3193407
crossref_primary_10_1109_TCDS_2022_3212019
crossref_primary_10_1109_TNB_2014_2316811
crossref_primary_10_1109_TIM_2017_2779329
crossref_primary_10_1088_1674_1056_19_11_110507
crossref_primary_10_1109_TCSI_2012_2185290
crossref_primary_10_1109_TIM_2020_3011817
crossref_primary_10_1016_j_imu_2021_100792
crossref_primary_10_1016_j_neucom_2017_01_126
crossref_primary_10_1088_1674_1056_20_12_120507
crossref_primary_10_1109_TIM_2015_2450352
crossref_primary_10_1016_j_compbiomed_2021_104250
Cites_doi 10.55782/ane-2000-1369
10.1007/978-1-4757-2440-0
10.1023/A:1022936519097
10.1109/TNN.2006.875985
10.1109/10.966601
10.1109/NEBC.1991.154576
10.1146/annurev.bioeng.5.040202.121601
10.1016/S0893-6080(98)00032-X
10.1023/A:1018628609742
10.1109/TSMCB.2003.811113
10.1109/IMTC.2009.5168535
10.1023/A:1009715923555
10.1109/ICMSE.2008.4668945
10.7498/aps.56.67
10.1103/PhysRevE.64.061907
10.1109/ICBBE.2008.850
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
7TK
DOI 10.1109/TIM.2010.2040905
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Neurosciences Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Neurosciences Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1492
ExternalDocumentID 2716626481
10_1109_TIM_2010_2040905
5419981
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
7U5
8FD
L7M
7TK
ID FETCH-LOGICAL-c365t-b21f24aec753ed2038ff67e785a1f876c1809cd38825aa3e04ee6332eefbc7d23
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Fri Aug 16 10:39:07 EDT 2024
Thu Oct 10 19:19:10 EDT 2024
Fri Aug 23 03:39:24 EDT 2024
Wed Jun 26 19:26:39 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-b21f24aec753ed2038ff67e785a1f876c1809cd38825aa3e04ee6332eefbc7d23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://hub.hku.hk/bitstream/10722/123834/2/Content.pdf
PQID 1027162781
PQPubID 85462
PageCount 8
ParticipantIDs ieee_primary_5419981
proquest_miscellaneous_745706090
crossref_primary_10_1109_TIM_2010_2040905
proquest_journals_1027162781
PublicationCentury 2000
PublicationDate 2010-May
2010-05-00
20100501
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-May
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref23
smola (ref9) 1998
zhang (ref14) 2007; 56
ref20
ref11
ref10
ref21
takens (ref13) 1981
platt (ref16) 1999
ref1
shen (ref7) 0
ref19
ref18
ref8
joachims (ref15) 1998
ref4
ref3
ref6
ref5
joydeep (ref2) 2000; 60
cui (ref22) 2004; 38
keerthi (ref17) 1999
References_xml – volume: 60
  start-page: 495
  year: 2000
  ident: ref2
  article-title: complexity analysis of spontaneous eeg
  publication-title: Acta Neurobiol Exp
  doi: 10.55782/ane-2000-1369
  contributor:
    fullname: joydeep
– ident: ref11
  doi: 10.1007/978-1-4757-2440-0
– start-page: 366
  year: 1981
  ident: ref13
  publication-title: Dynamical Systems and Turbulence
  contributor:
    fullname: takens
– ident: ref19
  doi: 10.1023/A:1022936519097
– ident: ref8
  doi: 10.1109/TNN.2006.875985
– ident: ref3
  doi: 10.1109/10.966601
– ident: ref5
  doi: 10.1109/NEBC.1991.154576
– ident: ref1
  doi: 10.1146/annurev.bioeng.5.040202.121601
– ident: ref20
  doi: 10.1016/S0893-6080(98)00032-X
– ident: ref18
  doi: 10.1023/A:1018628609742
– start-page: 347
  year: 0
  ident: ref7
  publication-title: Novel Coupled Map Lattice Model for Prediction of EEG Signal
  contributor:
    fullname: shen
– year: 1998
  ident: ref15
  publication-title: Advances in Kernel Methods Support Vector Machines
  contributor:
    fullname: joachims
– ident: ref21
  doi: 10.1109/TSMCB.2003.811113
– year: 1999
  ident: ref17
  publication-title: Improvements to Platts SMO algorithm for SVM classier design
  contributor:
    fullname: keerthi
– ident: ref12
  doi: 10.1109/IMTC.2009.5168535
– ident: ref10
  doi: 10.1023/A:1009715923555
– ident: ref4
  doi: 10.1109/ICMSE.2008.4668945
– year: 1998
  ident: ref9
  publication-title: A tutorial on support vector regression
  contributor:
    fullname: smola
– year: 1999
  ident: ref16
  publication-title: Advances in Kernel Methods Support Vector Learning
  contributor:
    fullname: platt
– volume: 38
  start-page: 563
  year: 2004
  ident: ref22
  article-title: least squares wavelet support vector machines and its application to nonlinear system identification
  publication-title: J Xi an Jiaotong University
  contributor:
    fullname: cui
– volume: 56
  start-page: 67
  year: 2007
  ident: ref14
  article-title: local support vector machine prediction of spatiotemporal chaotic time series
  publication-title: Acta Phys Sin
  doi: 10.7498/aps.56.67
  contributor:
    fullname: zhang
– ident: ref23
  doi: 10.1103/PhysRevE.64.061907
– ident: ref6
  doi: 10.1109/ICBBE.2008.850
SSID ssj0007647
Score 2.1577322
Snippet Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1485
SubjectTerms Approximation algorithms
Brain modeling
Electroencephalogram (EEG) signal
Electroencephalography
local prediction method
Optimization methods
Prediction methods
Predictive models
Signal processing
Signal processing algorithms
Spatiotemporal phenomena
support vector machine (SVM)
Support vector machines
wavelet kernel
Title A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM
URI https://ieeexplore.ieee.org/document/5419981
https://www.proquest.com/docview/1027162781
https://search.proquest.com/docview/745706090
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3SQKA9pPloyaZJ0SGXQLyxJdmWjkvZNC3ZUtikzc3I0qiUBG_Iei_59dHI9hLaHnozyAihmZFmNPPeAJyYwmqO1iVZoX0IUESWKGFUopQxMtdGu4itmn0rLm_k19v8dgPO1lgYRIzFZzimz5jLdwu7oqey81wSIizEOq9KrTus1vrULQvZ8WNmwYCDVzCkJFN9fv1l1tVw8aCxmhrVvbiCYk-Vvw7ieLtcvIXZsK6uqORuvGrrsX36g7Lxfxe-A9u9m8kmnV7swgY2e_DmBfngHmzF4k-73If5hH1_pIQNCYlNepZxFtxZFvG5BA5u8J5Np5_Z_PcvYlxm1EONkOws1hywK7oS2U9DbSxaNv8xewc3F9PrT5dJ32whsaLI26TmmefSoA3xCzqeCuV9UWKpcpP5cGRaIvqyTgSPPDdGYCoRCyE4oq9t6bh4D5vNosEDYOi0sHVQAl97aVJtlHeKW6d8KkuUbgSnw_5XDx2nRhVjkVRXQVYVyarqZTWCfdrO9X_9To7gaBBY1RvdMszBiQ-rpGG2Hg7mQjkQ0-BitaxKmRNfkE4P_z3xB3g91Aek2RFsto8rPA5uR1t_jPr2DC5q0-Y
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VRQg48NGCWCjgAxcksk1sJ7GPK7RlC5sKabfQW-TYY4RAWdTNXvj1eJxkVQEHbpEcWZZnxp7xzHsD8NoUVnO0LskK7UOAIrJECaMSpYyRuTbaRWxVdVEsLuWHq_zqAN7usTCIGIvPcEqfMZfvNnZHT2WnuSREWIh1buXkV_Rorf25WxayZ8jMggkHv2BMSqb6dH1e9VVcPOisplZ1Ny6h2FXlr6M43i9nD6AaV9aXlXyf7rpman_9Qdr4v0t_CPcHR5PNes14BAfYHsG9G_SDR3A7ln_a7TGsZuzTNaVsSExsNvCMs-DQsojQJXhwiz_YfP6erb59Jc5lRl3UCMvOYtUBW9KlyL4YamTRsdXn6jFcns3X7xbJ0G4hsaLIu6ThmefSoA0RDDqeCuV9UWKpcpP5cGhaovqyTgSfPDdGYCoRCyE4om9s6bh4AoftpsWnwNBpYZugBr7x0qTaKO8Ut075VJYo3QTejPtf_-xZNeoYjaS6DrKqSVb1IKsJHNN27v8bdnICJ6PA6sHstmEOToxYJQ2z_XAwGMqCmBY3u21dypwYg3T67N8Tv4I7i3W1rJfnFx-fw92xWiDNTuCwu97hi-CEdM3LqHu_AXDG1zM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prediction+Approach+for+Multichannel+EEG+Signals+Modeling+Using+Local+Wavelet+SVM&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Minfen+Shen&rft.au=Lanxin+Lin&rft.au=Jialiang+Chen&rft.au=Chang%2C+C.Q.&rft.date=2010-05-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=59&rft.issue=5&rft.spage=1485&rft.epage=1492&rft_id=info:doi/10.1109%2FTIM.2010.2040905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2010_2040905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon