Osmotic tablet coatings: Drying stress, mechanical properties and microstructure

[Display omitted] The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coa...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 617; p. 121611
Main Authors Tomar, Bhawana Singh, Tirumkudulu, Mahesh S., Yu, Weili, Berchielli, Alfred, Doshi, Pankaj
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.04.2022
Subjects
Online AccessGet full text
ISSN0378-5173
1873-3476
1873-3476
DOI10.1016/j.ijpharm.2022.121611

Cover

Abstract [Display omitted] The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young’s modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings.
AbstractList The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young's modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings.
[Display omitted] The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young’s modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings.
The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young's modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings.The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young's modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings.
ArticleNumber 121611
Author Tirumkudulu, Mahesh S.
Yu, Weili
Tomar, Bhawana Singh
Doshi, Pankaj
Berchielli, Alfred
Author_xml – sequence: 1
  givenname: Bhawana Singh
  surname: Tomar
  fullname: Tomar, Bhawana Singh
  organization: Department of Chemical Engineering, IIT Bombay, Mumbai, India
– sequence: 2
  givenname: Mahesh S.
  surname: Tirumkudulu
  fullname: Tirumkudulu, Mahesh S.
  email: mahesh@che.iitb.ac.in
  organization: Department of Chemical Engineering, IIT Bombay, Mumbai, India
– sequence: 3
  givenname: Weili
  surname: Yu
  fullname: Yu, Weili
  organization: Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
– sequence: 4
  givenname: Alfred
  surname: Berchielli
  fullname: Berchielli, Alfred
  organization: Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
– sequence: 5
  givenname: Pankaj
  surname: Doshi
  fullname: Doshi, Pankaj
  organization: Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35231549$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOAzEQRS0UBEngE0BbUrDBr7U3UCDEW0KCAmrLa8-Co30E24uUv8dRQkOTylOcO-N7JmjU9R0gdELwjGAiLhYzt1h-ad_OKKZ0RigRhOyhMSklyxmXYoTGmMkyL4hkh2gSwgJjLChhB-iQFZSRgs_H6O01tH10Jou6aiBmptfRdZ_hMrvzqzRkIXoI4TxrwXzpzhndZEvfL8FHByHTnc1aZ3yfsMHEwcMR2q91E-B4-07Rx8P9--1T_vL6-Hx785IbJoqYa2Hqoma6IBpTVlvNSsv4XM5NWQkqU0VLQVLJhDVYck1TS845YyWntqpqNkVnm73pN98DhKhaFww0je6gH4KiIpXkRJY0oadbdKhasGrpXav9Sv1ZSMDVBlgXCR5qZVxMHvoueu0aRbBaO1cLtXWu1s7VxnlKF__Sfwd25a43OUiafhx4FYyDzoB1HkxUtnc7NvwCiuOd5Q
CitedBy_id crossref_primary_10_1063_5_0155070
crossref_primary_10_1208_s12249_022_02474_8
crossref_primary_10_1039_D3SM00253E
Cites_doi 10.1007/BF02584524
10.1016/j.ijpharm.2013.10.021
10.1016/S0378-5173(97)00133-6
10.1016/j.powtec.2018.02.051
10.1016/0300-9440(80)80011-7
10.1039/C9SM02294E
10.1016/j.jconrel.2003.09.009
10.1016/S0939-6411(97)00151-3
10.1007/s11242-020-01483-0
10.1016/j.jconrel.2007.12.003
10.1016/0300-9440(95)00585-4
10.1016/0020-7683(92)90015-L
10.1016/S0032-3861(02)00042-3
10.1016/j.jconrel.2008.11.017
10.1103/PhysRevLett.90.074302
10.1021/la0356250
10.1111/j.2042-7158.1983.tb04280.x
10.1023/A:1020886802632
10.1081/PDT-35915
10.1016/0168-3659(92)90185-T
10.1021/acs.langmuir.1c03124
10.1002/1096-9837(200012)25:13<1473::AID-ESP158>3.0.CO;2-C
10.1002/app.1988.070360402
10.1021/la990256m
10.1002/app.1979.070230319
10.1063/1.1148432
10.1002/app.11022
10.1111/j.2042-7158.1985.tb04988.x
10.2147/DDDT.S277439
10.1016/j.polymer.2011.03.055
10.1016/0376-7388(96)00088-9
10.1016/j.ejpb.2009.07.002
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ijpharm.2022.121611
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-3476
ExternalDocumentID 35231549
10_1016_j_ijpharm_2022_121611
S037851732200165X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSP
SSZ
T5K
TEORI
~02
~G-
.GJ
29J
3O-
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMT
HVGLF
HZ~
R2-
RIG
SEW
SPT
SSH
WUQ
ZXP
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c365t-a6cf5f3a51a023fda38d34979c8b627101d2e72736dc074a220244433842dbbf3
IEDL.DBID AIKHN
ISSN 0378-5173
1873-3476
IngestDate Fri Sep 05 04:57:16 EDT 2025
Wed Feb 19 02:26:26 EST 2025
Tue Jul 01 01:19:14 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
Fri Feb 23 02:39:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mechanical Properties
Fracture
Microstructure
Osmotic coatings
Adhesion
Drying Stress
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-a6cf5f3a51a023fda38d34979c8b627101d2e72736dc074a220244433842dbbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35231549
PQID 2635241782
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2635241782
pubmed_primary_35231549
crossref_citationtrail_10_1016_j_ijpharm_2022_121611
crossref_primary_10_1016_j_ijpharm_2022_121611
elsevier_sciencedirect_doi_10_1016_j_ijpharm_2022_121611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-05
PublicationDateYYYYMMDD 2022-04-05
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-05
  day: 05
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of pharmaceutics
PublicationTitleAlternate Int J Pharm
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Felton, McGinity (b0070) 1997; 154
Lawn (b0110) 1993
van de Witte, Dijkstra, van den Berg, Feijen (b0200) 1996; 117
Cellulose Acetate. https://www.azom.com/properties.aspx?ArticleID=1461. Accessed: 2021-06-09.
Jinghua Yuan, Nancy M. Clipse, Ray J. Newton Jr, and Doug Dunn. Formulation effects on the thermomechanical properties and permeability of free films and coating films. Pharm. Technol. Eur, 26, 2009.
Tirumkudulu, Punati (bib216) 2022; 38
Deblieck, van Beek, Remerie, Ward (b0060) 2011; 52
Rials, Glasser (b0150) 1988; 36
Zaid (b0215) 2020; 14
Marucci, Ragnarsson, Nyman, Axelsson (b0120) 2008; 127
Al-Nasassrah, Podczeck, Newton (b0005) 1998; 46
Sato (b0160) 1980; 8
Tomar, Shahin, Tirumkudulu (b0190) 2020; 16
Okhamafe, York (b0130) 1985; 37
Thombre, Appel, Chidlaw, Daugherity, Dumont, Evans, Sutton (b0180) 2004; 94
Chowdary, Naidu (b0040) 1992; 29
Corcoran (b0045) 1969; 41
Vaessen, McCormick, Francis (b0195) 2002; 43
Nemat-Nasser, Hori (b0125) 1993
Theeuwes, Yum (b0175) 1976; 4
Waterman, MacDonald, Roy (b0205) 2009; 134
Beuth (b0015) 1992; 29
Croll (b0055) 1979; 23
Malaterre, Ogorka, Loggia, Gurny (b0115) 2009; 73
Cellulose Acetate - CA-394-60LF. https://www.eastman.com/Pages/ProductHome.aspx?product=71001237, b. Accessed: 2021-04-09.
Perera (b0140) 1996; 28
Fox (b0075) 1956; 1
Tirumkudulu, Mahesh S. and Russel, William B., Role of capillary stresses in film formation. Langmuir, 20 (7): 2947–2961, 2004. ISSN 07437463. doi:10.1021/la0356250.
Payne, McCormick, Francis (b0135) 1997; 68
am Ende, Berchielli (b0065) 2005; 10
Kuethe, Augenstein, Gresser, Wise (b0105) 1992; 18
Cellulose Acetate - CA-398-10. https://www.eastman.com/Pages/ProductHome.aspx?product=71001220, a. Accessed: 2021-04-09.
Jinghua Yuan, Shang, Wu (b0095) 2001; 25
Badar, Tirumkudulu (b0010) 2020; 135
Joshia, Petereit (b0100) 2013; 457
Rowe (b0155) 1983; 35
F Theeuwes and A D Ayer. Osmotic devices having composite, 1978. US Patent 4,077,407.
Croll (b0050) 1978; 50
Graham, Midgley (b0085) 2000; 25
E Cerda and L Mahadevan. Geometry and physics of wrinkling. Phys. Rev. Lett., 90 (7), 2003.
Petersen, Heldmann, Johannsmann (b0145) 1999; 15
Sun, Kothari, Sun (b0165) 2018; 331
Francis, McCormick, Vaessen, Payne (b0080) 2002; 37
Hao, Wang (b0090) 2002; 86
10.1016/j.ijpharm.2022.121611_b0030
10.1016/j.ijpharm.2022.121611_b0170
10.1016/j.ijpharm.2022.121611_b0210
Vaessen (10.1016/j.ijpharm.2022.121611_b0195) 2002; 43
Waterman (10.1016/j.ijpharm.2022.121611_b0205) 2009; 134
Tirumkudulu (10.1016/j.ijpharm.2022.121611_bib216) 2022; 38
Joshia (10.1016/j.ijpharm.2022.121611_b0100) 2013; 457
Theeuwes (10.1016/j.ijpharm.2022.121611_b0175) 1976; 4
Thombre (10.1016/j.ijpharm.2022.121611_b0180) 2004; 94
Graham (10.1016/j.ijpharm.2022.121611_b0085) 2000; 25
Chowdary (10.1016/j.ijpharm.2022.121611_b0040) 1992; 29
Hao (10.1016/j.ijpharm.2022.121611_b0090) 2002; 86
Lawn (10.1016/j.ijpharm.2022.121611_b0110) 1993
Sato (10.1016/j.ijpharm.2022.121611_b0160) 1980; 8
Croll (10.1016/j.ijpharm.2022.121611_b0055) 1979; 23
10.1016/j.ijpharm.2022.121611_b0035
Payne (10.1016/j.ijpharm.2022.121611_b0135) 1997; 68
Fox (10.1016/j.ijpharm.2022.121611_b0075) 1956; 1
Nemat-Nasser (10.1016/j.ijpharm.2022.121611_b0125) 1993
Rials (10.1016/j.ijpharm.2022.121611_b0150) 1988; 36
Zaid (10.1016/j.ijpharm.2022.121611_b0215) 2020; 14
Al-Nasassrah (10.1016/j.ijpharm.2022.121611_b0005) 1998; 46
Beuth (10.1016/j.ijpharm.2022.121611_b0015) 1992; 29
Kuethe (10.1016/j.ijpharm.2022.121611_b0105) 1992; 18
Malaterre (10.1016/j.ijpharm.2022.121611_b0115) 2009; 73
van de Witte (10.1016/j.ijpharm.2022.121611_b0200) 1996; 117
Perera (10.1016/j.ijpharm.2022.121611_b0140) 1996; 28
Sun (10.1016/j.ijpharm.2022.121611_b0165) 2018; 331
10.1016/j.ijpharm.2022.121611_b0020
Deblieck (10.1016/j.ijpharm.2022.121611_b0060) 2011; 52
Marucci (10.1016/j.ijpharm.2022.121611_b0120) 2008; 127
10.1016/j.ijpharm.2022.121611_b0185
Francis (10.1016/j.ijpharm.2022.121611_b0080) 2002; 37
Badar (10.1016/j.ijpharm.2022.121611_b0010) 2020; 135
Croll (10.1016/j.ijpharm.2022.121611_b0050) 1978; 50
Felton (10.1016/j.ijpharm.2022.121611_b0070) 1997; 154
Corcoran (10.1016/j.ijpharm.2022.121611_b0045) 1969; 41
Okhamafe (10.1016/j.ijpharm.2022.121611_b0130) 1985; 37
Tomar (10.1016/j.ijpharm.2022.121611_b0190) 2020; 16
Rowe (10.1016/j.ijpharm.2022.121611_b0155) 1983; 35
Jinghua Yuan (10.1016/j.ijpharm.2022.121611_b0095) 2001; 25
10.1016/j.ijpharm.2022.121611_b0025
am Ende (10.1016/j.ijpharm.2022.121611_b0065) 2005; 10
Petersen (10.1016/j.ijpharm.2022.121611_b0145) 1999; 15
References_xml – reference: Cellulose Acetate - CA-394-60LF. https://www.eastman.com/Pages/ProductHome.aspx?product=71001237, b. Accessed: 2021-04-09.
– volume: 14
  start-page: 4613
  year: 2020
  end-page: 4623
  ident: b0215
  article-title: A comprehensive review on pharmaceutical film coating: Past, present, and future
  publication-title: Drug Des. Devel. Ther.
– year: 1993
  ident: b0110
  article-title: Fracture of brittle solids
– volume: 35
  start-page: 112
  year: 1983
  end-page: 113
  ident: b0155
  article-title: A reappraisal of the equations used to predict the internal stresses in film coatings applied to tablet substrates
  publication-title: J. Pharm. Pharmacol.
– volume: 36
  start-page: 749
  year: 1988
  end-page: 758
  ident: b0150
  article-title: Thermal and dynamic mechanical properties of hydroxypropyl cellulose films
  publication-title: Journal of applied polymer science
– volume: 10
  start-page: 47
  year: 2005
  end-page: 58
  ident: b0065
  article-title: A thermodynamic model for organic and aqueous tablet film coating
  publication-title: Pharmaceutical development and technology
– volume: 73
  start-page: 311
  year: 2009
  end-page: 323
  ident: b0115
  article-title: Oral osmotically driven systems: 30 years of development and clinical use
  publication-title: Eur. J. Pharm. Biopharm.
– reference: E Cerda and L Mahadevan. Geometry and physics of wrinkling. Phys. Rev. Lett., 90 (7), 2003.
– volume: 16
  start-page: 3476
  year: 2020
  end-page: 3484
  ident: b0190
  article-title: Cracking in drying films of polymer solutions
  publication-title: Soft matter
– volume: 94
  start-page: 75
  year: 2004
  end-page: 89
  ident: b0180
  article-title: Osmotic drug delivery using swellable-core technology
  publication-title: J Control Release
– reference: Cellulose Acetate. https://www.azom.com/properties.aspx?ArticleID=1461. Accessed: 2021-06-09.
– volume: 331
  start-page: 1
  year: 2018
  end-page: 6
  ident: b0165
  article-title: The relationship among tensile strength, young’s modulus, and indentation hardness of pharmaceutical compacts
  publication-title: J Powder Technol.
– volume: 457
  start-page: 395
  year: 2013
  end-page: 406
  ident: b0100
  article-title: Film coatings for taste masking and moisture protection
  publication-title: Int. J. Pharm.
– volume: 135
  start-page: 457
  year: 2020
  end-page: 486
  ident: b0010
  article-title: Mechanics of saturated colloidal packings: A comparison of two models
  publication-title: Transp. Porous Media
– volume: 18
  start-page: 159
  year: 1992
  end-page: 164
  ident: b0105
  article-title: Design of capsules that burst at predetermined times by dialysis
  publication-title: J Control Release
– volume: 68
  start-page: 4564
  year: 1997
  end-page: 4568
  ident: b0135
  article-title: In situ stress measurement apparatus for liquid applied coatings
  publication-title: Rev. Sci. Instrum.
– reference: Tirumkudulu, Mahesh S. and Russel, William B., Role of capillary stresses in film formation. Langmuir, 20 (7): 2947–2961, 2004. ISSN 07437463. doi:10.1021/la0356250.
– volume: 43
  start-page: 2267
  year: 2002
  end-page: 2277
  ident: b0195
  article-title: Effects of phase separation on stress development in polymeric coatings
  publication-title: Polymer
– volume: 4
  start-page: 343
  year: 1976
  end-page: 353
  ident: b0175
  article-title: Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations
  publication-title: Ann. Biomed. Eng.
– volume: 154
  start-page: 167
  year: 1997
  end-page: 178
  ident: b0070
  article-title: Influence of plasticizers on the adhesive properties of an acrylic resin copolymer to hydrophilic and hydrophobic tablet compacts
  publication-title: Int. J. Pharmceutics
– volume: 25
  start-page: 62
  year: 2001
  end-page: 74
  ident: b0095
  article-title: Effects of polyethylene glycol: on morphology, thermomechanical properties, and water vapor permeability of cellulose acetate-free films
  publication-title: Pharm. Technol.
– volume: 8
  start-page: 143
  year: 1980
  end-page: 160
  ident: b0160
  article-title: The internal stress of coating films
  publication-title: Prog Org Coatings
– volume: 37
  start-page: 849
  year: 1985
  end-page: 853
  ident: b0130
  article-title: The adhesion characteristics of some pigmented and unpigmented aqueous-based film coatings applied to aspirin tablets
  publication-title: J. Pharm. Pharmacol.
– volume: 23
  start-page: 847
  year: 1979
  end-page: 858
  ident: b0055
  article-title: The origin of residual internal stress in solvent-cast thermoplastic coatings
  publication-title: J. Appl. Polym. Sci.
– volume: 37
  start-page: 4717
  year: 2002
  end-page: 4731
  ident: b0080
  article-title: Development and measurement of stress in polymer coatings
  publication-title: J. Mater. Sci.
– volume: 1
  start-page: 123
  year: 1956
  ident: b0075
  article-title: Influence of diluent and of copolymer composition on the glass temperature of a poly-mer system
  publication-title: Bull. Am. Phys. Soc.
– volume: 15
  start-page: 7745
  year: 1999
  end-page: 7751
  ident: b0145
  article-title: Internal stresses during film formation of polymer latices
  publication-title: Langmuir
– volume: 50
  start-page: 33
  year: 1978
  end-page: 38
  ident: b0050
  article-title: Internal stress in a solvent-cast thermoplastic coating
  publication-title: J. Coat. Technol.
– reference: F Theeuwes and A D Ayer. Osmotic devices having composite, 1978. US Patent 4,077,407.
– volume: 38
  start-page: 2409
  year: 2022
  end-page: 2414
  ident: bib216
  article-title: Solventborne Polymer Coatings: Drying, Film Formation, Stress Evolution, and Failure
  publication-title: Langmuir
– reference: Cellulose Acetate - CA-398-10. https://www.eastman.com/Pages/ProductHome.aspx?product=71001220, a. Accessed: 2021-04-09.
– volume: 117
  start-page: 1
  year: 1996
  end-page: 31
  ident: b0200
  article-title: Phase separation processes in polymer solutions in relation to membrane formation
  publication-title: J. Membr. Sci.
– volume: 46
  start-page: 31
  year: 1998
  end-page: 38
  ident: b0005
  article-title: The effect of an increase in chain length on the mechanical properties of polyethylene glycols
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 29
  start-page: 312
  year: 1992
  end-page: 315
  ident: b0040
  article-title: Preparation and evaluation of cellulose acetate films as rate controlling membranes for transdermal use
  publication-title: Indian Drugs
– year: 1993
  ident: b0125
  article-title: Micromechanics
– volume: 41
  start-page: 635
  year: 1969
  end-page: 640
  ident: b0045
  article-title: Determining stresses in organic coatings using plate beam deflection
  publication-title: J. Paint Technol.
– volume: 25
  start-page: 1473
  year: 2000
  end-page: 1477
  ident: b0085
  article-title: Graphical representation of particle shape using triangular diagrams: an excel spreadsheet method
  publication-title: Earth Surf Process Landf
– volume: 134
  start-page: 201
  year: 2009
  end-page: 206
  ident: b0205
  article-title: Extrudable core system: development of a single-layer osmotic controlled-release tablet
  publication-title: J Control Release
– reference: Jinghua Yuan, Nancy M. Clipse, Ray J. Newton Jr, and Doug Dunn. Formulation effects on the thermomechanical properties and permeability of free films and coating films. Pharm. Technol. Eur, 26, 2009.
– volume: 127
  start-page: 31
  year: 2008
  end-page: 40
  ident: b0120
  article-title: Mechanistic model for drug release during the lag phase from pellets coated with a semi-permeable membrane
  publication-title: J. Control Release
– volume: 86
  start-page: 1564
  year: 2002
  end-page: 1571
  ident: b0090
  article-title: Mass transfer dynamics of the evaporation step in membrane formation by phase inversion
  publication-title: Journal of applied polymer science
– volume: 28
  start-page: 21
  year: 1996
  end-page: 23
  ident: b0140
  article-title: On adhesion and stress in organic coatings
  publication-title: Prog. Org. Coat.
– volume: 52
  start-page: 2979
  year: 2011
  end-page: 2990
  ident: b0060
  article-title: Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network
  publication-title: Polymer
– volume: 29
  start-page: 1657
  year: 1992
  end-page: 1675
  ident: b0015
  article-title: Cracking of thin bonded films in residual tension
  publication-title: Int J Solids Struct
– volume: 4
  start-page: 343
  issue: 4
  year: 1976
  ident: 10.1016/j.ijpharm.2022.121611_b0175
  article-title: Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02584524
– volume: 457
  start-page: 395
  year: 2013
  ident: 10.1016/j.ijpharm.2022.121611_b0100
  article-title: Film coatings for taste masking and moisture protection
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.10.021
– volume: 154
  start-page: 167
  year: 1997
  ident: 10.1016/j.ijpharm.2022.121611_b0070
  article-title: Influence of plasticizers on the adhesive properties of an acrylic resin copolymer to hydrophilic and hydrophobic tablet compacts
  publication-title: Int. J. Pharmceutics
  doi: 10.1016/S0378-5173(97)00133-6
– ident: 10.1016/j.ijpharm.2022.121611_b0170
– volume: 331
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijpharm.2022.121611_b0165
  article-title: The relationship among tensile strength, young’s modulus, and indentation hardness of pharmaceutical compacts
  publication-title: J Powder Technol.
  doi: 10.1016/j.powtec.2018.02.051
– volume: 8
  start-page: 143
  year: 1980
  ident: 10.1016/j.ijpharm.2022.121611_b0160
  article-title: The internal stress of coating films
  publication-title: Prog Org Coatings
  doi: 10.1016/0300-9440(80)80011-7
– volume: 16
  start-page: 3476
  issue: 14
  year: 2020
  ident: 10.1016/j.ijpharm.2022.121611_b0190
  article-title: Cracking in drying films of polymer solutions
  publication-title: Soft matter
  doi: 10.1039/C9SM02294E
– volume: 25
  start-page: 62
  issue: 10
  year: 2001
  ident: 10.1016/j.ijpharm.2022.121611_b0095
  article-title: Effects of polyethylene glycol: on morphology, thermomechanical properties, and water vapor permeability of cellulose acetate-free films
  publication-title: Pharm. Technol.
– ident: 10.1016/j.ijpharm.2022.121611_b0025
– volume: 94
  start-page: 75
  year: 2004
  ident: 10.1016/j.ijpharm.2022.121611_b0180
  article-title: Osmotic drug delivery using swellable-core technology
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2003.09.009
– volume: 46
  start-page: 31
  issue: 1
  year: 1998
  ident: 10.1016/j.ijpharm.2022.121611_b0005
  article-title: The effect of an increase in chain length on the mechanical properties of polyethylene glycols
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(97)00151-3
– ident: 10.1016/j.ijpharm.2022.121611_b0210
– volume: 135
  start-page: 457
  year: 2020
  ident: 10.1016/j.ijpharm.2022.121611_b0010
  article-title: Mechanics of saturated colloidal packings: A comparison of two models
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-020-01483-0
– volume: 127
  start-page: 31
  issue: 1
  year: 2008
  ident: 10.1016/j.ijpharm.2022.121611_b0120
  article-title: Mechanistic model for drug release during the lag phase from pellets coated with a semi-permeable membrane
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2007.12.003
– volume: 41
  start-page: 635
  year: 1969
  ident: 10.1016/j.ijpharm.2022.121611_b0045
  article-title: Determining stresses in organic coatings using plate beam deflection
  publication-title: J. Paint Technol.
– volume: 29
  start-page: 312
  issue: 7
  year: 1992
  ident: 10.1016/j.ijpharm.2022.121611_b0040
  article-title: Preparation and evaluation of cellulose acetate films as rate controlling membranes for transdermal use
  publication-title: Indian Drugs
– volume: 28
  start-page: 21
  issue: 1
  year: 1996
  ident: 10.1016/j.ijpharm.2022.121611_b0140
  article-title: On adhesion and stress in organic coatings
  publication-title: Prog. Org. Coat.
  doi: 10.1016/0300-9440(95)00585-4
– year: 1993
  ident: 10.1016/j.ijpharm.2022.121611_b0125
– volume: 29
  start-page: 1657
  issue: 13
  year: 1992
  ident: 10.1016/j.ijpharm.2022.121611_b0015
  article-title: Cracking of thin bonded films in residual tension
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(92)90015-L
– volume: 43
  start-page: 2267
  issue: 8
  year: 2002
  ident: 10.1016/j.ijpharm.2022.121611_b0195
  article-title: Effects of phase separation on stress development in polymeric coatings
  publication-title: Polymer
  doi: 10.1016/S0032-3861(02)00042-3
– volume: 134
  start-page: 201
  issue: 3
  year: 2009
  ident: 10.1016/j.ijpharm.2022.121611_b0205
  article-title: Extrudable core system: development of a single-layer osmotic controlled-release tablet
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2008.11.017
– ident: 10.1016/j.ijpharm.2022.121611_b0035
  doi: 10.1103/PhysRevLett.90.074302
– volume: 50
  start-page: 33
  year: 1978
  ident: 10.1016/j.ijpharm.2022.121611_b0050
  article-title: Internal stress in a solvent-cast thermoplastic coating
  publication-title: J. Coat. Technol.
– ident: 10.1016/j.ijpharm.2022.121611_b0185
  doi: 10.1021/la0356250
– ident: 10.1016/j.ijpharm.2022.121611_b0020
– volume: 35
  start-page: 112
  year: 1983
  ident: 10.1016/j.ijpharm.2022.121611_b0155
  article-title: A reappraisal of the equations used to predict the internal stresses in film coatings applied to tablet substrates
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.1983.tb04280.x
– volume: 37
  start-page: 4717
  issue: 22
  year: 2002
  ident: 10.1016/j.ijpharm.2022.121611_b0080
  article-title: Development and measurement of stress in polymer coatings
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1020886802632
– volume: 10
  start-page: 47
  issue: 1
  year: 2005
  ident: 10.1016/j.ijpharm.2022.121611_b0065
  article-title: A thermodynamic model for organic and aqueous tablet film coating
  publication-title: Pharmaceutical development and technology
  doi: 10.1081/PDT-35915
– volume: 18
  start-page: 159
  year: 1992
  ident: 10.1016/j.ijpharm.2022.121611_b0105
  article-title: Design of capsules that burst at predetermined times by dialysis
  publication-title: J Control Release
  doi: 10.1016/0168-3659(92)90185-T
– volume: 38
  start-page: 2409
  issue: 8
  year: 2022
  ident: 10.1016/j.ijpharm.2022.121611_bib216
  article-title: Solventborne Polymer Coatings: Drying, Film Formation, Stress Evolution, and Failure
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c03124
– volume: 1
  start-page: 123
  year: 1956
  ident: 10.1016/j.ijpharm.2022.121611_b0075
  article-title: Influence of diluent and of copolymer composition on the glass temperature of a poly-mer system
  publication-title: Bull. Am. Phys. Soc.
– volume: 25
  start-page: 1473
  year: 2000
  ident: 10.1016/j.ijpharm.2022.121611_b0085
  article-title: Graphical representation of particle shape using triangular diagrams: an excel spreadsheet method
  publication-title: Earth Surf Process Landf
  doi: 10.1002/1096-9837(200012)25:13<1473::AID-ESP158>3.0.CO;2-C
– ident: 10.1016/j.ijpharm.2022.121611_b0030
– volume: 36
  start-page: 749
  issue: 4
  year: 1988
  ident: 10.1016/j.ijpharm.2022.121611_b0150
  article-title: Thermal and dynamic mechanical properties of hydroxypropyl cellulose films
  publication-title: Journal of applied polymer science
  doi: 10.1002/app.1988.070360402
– volume: 15
  start-page: 7745
  issue: 22
  year: 1999
  ident: 10.1016/j.ijpharm.2022.121611_b0145
  article-title: Internal stresses during film formation of polymer latices
  publication-title: Langmuir
  doi: 10.1021/la990256m
– volume: 23
  start-page: 847
  year: 1979
  ident: 10.1016/j.ijpharm.2022.121611_b0055
  article-title: The origin of residual internal stress in solvent-cast thermoplastic coatings
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1979.070230319
– volume: 68
  start-page: 4564
  issue: 12
  year: 1997
  ident: 10.1016/j.ijpharm.2022.121611_b0135
  article-title: In situ stress measurement apparatus for liquid applied coatings
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1148432
– volume: 86
  start-page: 1564
  issue: 7
  year: 2002
  ident: 10.1016/j.ijpharm.2022.121611_b0090
  article-title: Mass transfer dynamics of the evaporation step in membrane formation by phase inversion
  publication-title: Journal of applied polymer science
  doi: 10.1002/app.11022
– year: 1993
  ident: 10.1016/j.ijpharm.2022.121611_b0110
– volume: 37
  start-page: 849
  year: 1985
  ident: 10.1016/j.ijpharm.2022.121611_b0130
  article-title: The adhesion characteristics of some pigmented and unpigmented aqueous-based film coatings applied to aspirin tablets
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.1985.tb04988.x
– volume: 14
  start-page: 4613
  year: 2020
  ident: 10.1016/j.ijpharm.2022.121611_b0215
  article-title: A comprehensive review on pharmaceutical film coating: Past, present, and future
  publication-title: Drug Des. Devel. Ther.
  doi: 10.2147/DDDT.S277439
– volume: 52
  start-page: 2979
  year: 2011
  ident: 10.1016/j.ijpharm.2022.121611_b0060
  article-title: Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.03.055
– volume: 117
  start-page: 1
  year: 1996
  ident: 10.1016/j.ijpharm.2022.121611_b0200
  article-title: Phase separation processes in polymer solutions in relation to membrane formation
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(96)00088-9
– volume: 73
  start-page: 311
  year: 2009
  ident: 10.1016/j.ijpharm.2022.121611_b0115
  article-title: Oral osmotically driven systems: 30 years of development and clinical use
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2009.07.002
SSID ssj0006213
Score 2.401999
Snippet [Display omitted] The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by...
The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121611
SubjectTerms Adhesion
Drying Stress
Fracture
Mechanical Properties
Microstructure
Osmotic coatings
Title Osmotic tablet coatings: Drying stress, mechanical properties and microstructure
URI https://dx.doi.org/10.1016/j.ijpharm.2022.121611
https://www.ncbi.nlm.nih.gov/pubmed/35231549
https://www.proquest.com/docview/2635241782
Volume 617
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB0S59JLafrpNglbKDlZdrTaXUm5hbTBbWlqaAK-LfslsGlkYzuHXPrbOyOtbHoIgR4lMUjsW828kWbeAHwyecmly_PE-jORCOttUkhlE-ExZSmc9L4Z2vfjWo1vxbepnO7BZdcLQ2WV0fe3Pr3x1vHMKK7maDmbjX6dZc1gedyRxFvkdB8OeFYq2YODi6_fx9dbh6x4nJKMCRMZ7Bp5RvPhbL4kjWjMFDknqQWVpo-FqMcoaBOKrl7A88gh2UX7mIewF-qXcDppRagfBuxm11O1HrBTNtnJUz-8gsnPZnSPYxvqmtowtzBU-rw-Z59X1PPE2vaRAbsL1BVMILIlfbJfkfYqM7Vnd1TF1yrP3q_Ca7i9-nJzOU7iXIXEZUpuEqNcJavMyNRgxK68yQqfiTIvXWEVR8qReh6I1yjvkGEYXGAkAQKTWcG9tVX2Bnr1og7vgJk8L0LplHIFF8qrMnCbp5URZZEHJ9I-iG4ptYui4zT74rfuqsvmOiKgCQHdItCH4dZs2apuPGVQdDjpf7aPxsjwlOnHDleNrxb9LzF1WNyvNen0IMFBDtWHty3g26fBKxmp273__xt_gGd01JQBySPoIWrhGBnOxp7A_vBPehL38V8uuvqS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7S9NBeSt9xH-kWSk6WHa32IfVW8sBtk9RQB3xb9iWwaWRjO4dc-ts7o0dMDyGQq1aDlv1WO99IM98AfLG64NJrnbhwKBLhgktyqVwiAoYsuZch1E37zi_U6FL8mMrpDhx1tTCUVtme_c2ZXp_W7ZVhu5rD5Ww2_H2Y1Y3lcUcSb5HTR_BYyExTXt_g7zbPQ_G2RzKGS3T7toxnOB_M5ktSiMY4kXMSWlBpepeDuouA1o7o9Dk8axkk-9ZM8gXsxOolHIwbCeqbPptsK6rWfXbAxltx6ptXMP5VN-7xbEM1UxvmF5YSn9df2fGKKp5YUzzSZ1eRaoIJQrakD_YrUl5ltgrsinL4Gt3Z61V8DZenJ5OjUdJ2VUh8puQmscqXssysTC366zLYLA-ZKHThc6c4Eo408EisRgWP_MLi8iIFEBjKCh6cK7M3sFstqrgHzGqdx8Ir5XMuVFBF5E6npRVFrqMXaQ9Et5TGt5Lj1Pnij-lyy-amRcAQAqZBoAeDW7Nlo7lxn0He4WT-2zwG_cJ9pp87XA2-WPS3xFZxcb02pNKD9AYZVA_eNoDfzgZHMtK2e_fwB3-CJ6PJ-Zk5-37x8z08pZE6IUh-gF1EMH5ErrNx-_Ve_gdNnftd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osmotic+tablet+coatings%3A+Drying+stress%2C+mechanical+properties+and+microstructure&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Tomar%2C+Bhawana+Singh&rft.au=Tirumkudulu%2C+Mahesh+S&rft.au=Yu%2C+Weili&rft.au=Berchielli%2C+Alfred&rft.date=2022-04-05&rft.eissn=1873-3476&rft.volume=617&rft.spage=121611&rft_id=info:doi/10.1016%2Fj.ijpharm.2022.121611&rft_id=info%3Apmid%2F35231549&rft.externalDocID=35231549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon