Osmotic tablet coatings: Drying stress, mechanical properties and microstructure
[Display omitted] The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coa...
Saved in:
Published in | International journal of pharmaceutics Vol. 617; p. 121611 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-5173 1873-3476 1873-3476 |
DOI | 10.1016/j.ijpharm.2022.121611 |
Cover
Abstract | [Display omitted]
The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young’s modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings. |
---|---|
AbstractList | The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young's modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings. [Display omitted] The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young’s modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings. The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young's modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings.The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute polymer solution onto the tablet surface. During drying, the films develop shrinkage stress, which can cause cracking. The coatings are also subject to large tensile stress generated by osmotic pressure during the dissolution process, which may rupture the coating. Despite the role of tensile stress in causing fracture in osmotic tablet coatings, a rigorous quantification of the drying stress, mechanical properties and microstructure is missing. The present work fills this gap via detailed measurement of drying stress, Young's modulus and fracture properties of osmotic tablet coatings of cellulose acetate mixed with two different plasticisers, namely polyethylene glycol and hydroxypropyl cellulose. The measurements were complemented with imaging of the surface and the cross-section of films using scanning electron microscopy so as to relate the drying stress and mechanical properties to the microstructure of the films. The phase separation during the drying process increases the pore size, while simultaneously decreasing the modulus and the peak drying stress of the drying films. The results suggest that films with strong adhesion to the tablet surface will not rupture but if the films delaminate, the drying stress are sufficiently large to cause rupture. The detailed study presented here provides guidelines to the formulator for designing rupture-free osmotic coatings. |
ArticleNumber | 121611 |
Author | Tirumkudulu, Mahesh S. Yu, Weili Tomar, Bhawana Singh Doshi, Pankaj Berchielli, Alfred |
Author_xml | – sequence: 1 givenname: Bhawana Singh surname: Tomar fullname: Tomar, Bhawana Singh organization: Department of Chemical Engineering, IIT Bombay, Mumbai, India – sequence: 2 givenname: Mahesh S. surname: Tirumkudulu fullname: Tirumkudulu, Mahesh S. email: mahesh@che.iitb.ac.in organization: Department of Chemical Engineering, IIT Bombay, Mumbai, India – sequence: 3 givenname: Weili surname: Yu fullname: Yu, Weili organization: Worldwide Research and Development, Pfizer Inc., Groton, CT, USA – sequence: 4 givenname: Alfred surname: Berchielli fullname: Berchielli, Alfred organization: Worldwide Research and Development, Pfizer Inc., Groton, CT, USA – sequence: 5 givenname: Pankaj surname: Doshi fullname: Doshi, Pankaj organization: Worldwide Research and Development, Pfizer Inc., Groton, CT, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35231549$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOAzEQRS0UBEngE0BbUrDBr7U3UCDEW0KCAmrLa8-Co30E24uUv8dRQkOTylOcO-N7JmjU9R0gdELwjGAiLhYzt1h-ad_OKKZ0RigRhOyhMSklyxmXYoTGmMkyL4hkh2gSwgJjLChhB-iQFZSRgs_H6O01tH10Jou6aiBmptfRdZ_hMrvzqzRkIXoI4TxrwXzpzhndZEvfL8FHByHTnc1aZ3yfsMHEwcMR2q91E-B4-07Rx8P9--1T_vL6-Hx785IbJoqYa2Hqoma6IBpTVlvNSsv4XM5NWQkqU0VLQVLJhDVYck1TS845YyWntqpqNkVnm73pN98DhKhaFww0je6gH4KiIpXkRJY0oadbdKhasGrpXav9Sv1ZSMDVBlgXCR5qZVxMHvoueu0aRbBaO1cLtXWu1s7VxnlKF__Sfwd25a43OUiafhx4FYyDzoB1HkxUtnc7NvwCiuOd5Q |
CitedBy_id | crossref_primary_10_1063_5_0155070 crossref_primary_10_1208_s12249_022_02474_8 crossref_primary_10_1039_D3SM00253E |
Cites_doi | 10.1007/BF02584524 10.1016/j.ijpharm.2013.10.021 10.1016/S0378-5173(97)00133-6 10.1016/j.powtec.2018.02.051 10.1016/0300-9440(80)80011-7 10.1039/C9SM02294E 10.1016/j.jconrel.2003.09.009 10.1016/S0939-6411(97)00151-3 10.1007/s11242-020-01483-0 10.1016/j.jconrel.2007.12.003 10.1016/0300-9440(95)00585-4 10.1016/0020-7683(92)90015-L 10.1016/S0032-3861(02)00042-3 10.1016/j.jconrel.2008.11.017 10.1103/PhysRevLett.90.074302 10.1021/la0356250 10.1111/j.2042-7158.1983.tb04280.x 10.1023/A:1020886802632 10.1081/PDT-35915 10.1016/0168-3659(92)90185-T 10.1021/acs.langmuir.1c03124 10.1002/1096-9837(200012)25:13<1473::AID-ESP158>3.0.CO;2-C 10.1002/app.1988.070360402 10.1021/la990256m 10.1002/app.1979.070230319 10.1063/1.1148432 10.1002/app.11022 10.1111/j.2042-7158.1985.tb04988.x 10.2147/DDDT.S277439 10.1016/j.polymer.2011.03.055 10.1016/0376-7388(96)00088-9 10.1016/j.ejpb.2009.07.002 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.ijpharm.2022.121611 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3476 |
ExternalDocumentID | 35231549 10_1016_j_ijpharm_2022_121611 S037851732200165X |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSP SSZ T5K TEORI ~02 ~G- .GJ 29J 3O- 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMT HVGLF HZ~ R2- RIG SEW SPT SSH WUQ ZXP NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c365t-a6cf5f3a51a023fda38d34979c8b627101d2e72736dc074a220244433842dbbf3 |
IEDL.DBID | AIKHN |
ISSN | 0378-5173 1873-3476 |
IngestDate | Fri Sep 05 04:57:16 EDT 2025 Wed Feb 19 02:26:26 EST 2025 Tue Jul 01 01:19:14 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical Properties Fracture Microstructure Osmotic coatings Adhesion Drying Stress |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-a6cf5f3a51a023fda38d34979c8b627101d2e72736dc074a220244433842dbbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35231549 |
PQID | 2635241782 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2635241782 pubmed_primary_35231549 crossref_citationtrail_10_1016_j_ijpharm_2022_121611 crossref_primary_10_1016_j_ijpharm_2022_121611 elsevier_sciencedirect_doi_10_1016_j_ijpharm_2022_121611 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-05 |
PublicationDateYYYYMMDD | 2022-04-05 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of pharmaceutics |
PublicationTitleAlternate | Int J Pharm |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Felton, McGinity (b0070) 1997; 154 Lawn (b0110) 1993 van de Witte, Dijkstra, van den Berg, Feijen (b0200) 1996; 117 Cellulose Acetate. https://www.azom.com/properties.aspx?ArticleID=1461. Accessed: 2021-06-09. Jinghua Yuan, Nancy M. Clipse, Ray J. Newton Jr, and Doug Dunn. Formulation effects on the thermomechanical properties and permeability of free films and coating films. Pharm. Technol. Eur, 26, 2009. Tirumkudulu, Punati (bib216) 2022; 38 Deblieck, van Beek, Remerie, Ward (b0060) 2011; 52 Rials, Glasser (b0150) 1988; 36 Zaid (b0215) 2020; 14 Marucci, Ragnarsson, Nyman, Axelsson (b0120) 2008; 127 Al-Nasassrah, Podczeck, Newton (b0005) 1998; 46 Sato (b0160) 1980; 8 Tomar, Shahin, Tirumkudulu (b0190) 2020; 16 Okhamafe, York (b0130) 1985; 37 Thombre, Appel, Chidlaw, Daugherity, Dumont, Evans, Sutton (b0180) 2004; 94 Chowdary, Naidu (b0040) 1992; 29 Corcoran (b0045) 1969; 41 Vaessen, McCormick, Francis (b0195) 2002; 43 Nemat-Nasser, Hori (b0125) 1993 Theeuwes, Yum (b0175) 1976; 4 Waterman, MacDonald, Roy (b0205) 2009; 134 Beuth (b0015) 1992; 29 Croll (b0055) 1979; 23 Malaterre, Ogorka, Loggia, Gurny (b0115) 2009; 73 Cellulose Acetate - CA-394-60LF. https://www.eastman.com/Pages/ProductHome.aspx?product=71001237, b. Accessed: 2021-04-09. Perera (b0140) 1996; 28 Fox (b0075) 1956; 1 Tirumkudulu, Mahesh S. and Russel, William B., Role of capillary stresses in film formation. Langmuir, 20 (7): 2947–2961, 2004. ISSN 07437463. doi:10.1021/la0356250. Payne, McCormick, Francis (b0135) 1997; 68 am Ende, Berchielli (b0065) 2005; 10 Kuethe, Augenstein, Gresser, Wise (b0105) 1992; 18 Cellulose Acetate - CA-398-10. https://www.eastman.com/Pages/ProductHome.aspx?product=71001220, a. Accessed: 2021-04-09. Jinghua Yuan, Shang, Wu (b0095) 2001; 25 Badar, Tirumkudulu (b0010) 2020; 135 Joshia, Petereit (b0100) 2013; 457 Rowe (b0155) 1983; 35 F Theeuwes and A D Ayer. Osmotic devices having composite, 1978. US Patent 4,077,407. Croll (b0050) 1978; 50 Graham, Midgley (b0085) 2000; 25 E Cerda and L Mahadevan. Geometry and physics of wrinkling. Phys. Rev. Lett., 90 (7), 2003. Petersen, Heldmann, Johannsmann (b0145) 1999; 15 Sun, Kothari, Sun (b0165) 2018; 331 Francis, McCormick, Vaessen, Payne (b0080) 2002; 37 Hao, Wang (b0090) 2002; 86 10.1016/j.ijpharm.2022.121611_b0030 10.1016/j.ijpharm.2022.121611_b0170 10.1016/j.ijpharm.2022.121611_b0210 Vaessen (10.1016/j.ijpharm.2022.121611_b0195) 2002; 43 Waterman (10.1016/j.ijpharm.2022.121611_b0205) 2009; 134 Tirumkudulu (10.1016/j.ijpharm.2022.121611_bib216) 2022; 38 Joshia (10.1016/j.ijpharm.2022.121611_b0100) 2013; 457 Theeuwes (10.1016/j.ijpharm.2022.121611_b0175) 1976; 4 Thombre (10.1016/j.ijpharm.2022.121611_b0180) 2004; 94 Graham (10.1016/j.ijpharm.2022.121611_b0085) 2000; 25 Chowdary (10.1016/j.ijpharm.2022.121611_b0040) 1992; 29 Hao (10.1016/j.ijpharm.2022.121611_b0090) 2002; 86 Lawn (10.1016/j.ijpharm.2022.121611_b0110) 1993 Sato (10.1016/j.ijpharm.2022.121611_b0160) 1980; 8 Croll (10.1016/j.ijpharm.2022.121611_b0055) 1979; 23 10.1016/j.ijpharm.2022.121611_b0035 Payne (10.1016/j.ijpharm.2022.121611_b0135) 1997; 68 Fox (10.1016/j.ijpharm.2022.121611_b0075) 1956; 1 Nemat-Nasser (10.1016/j.ijpharm.2022.121611_b0125) 1993 Rials (10.1016/j.ijpharm.2022.121611_b0150) 1988; 36 Zaid (10.1016/j.ijpharm.2022.121611_b0215) 2020; 14 Al-Nasassrah (10.1016/j.ijpharm.2022.121611_b0005) 1998; 46 Beuth (10.1016/j.ijpharm.2022.121611_b0015) 1992; 29 Kuethe (10.1016/j.ijpharm.2022.121611_b0105) 1992; 18 Malaterre (10.1016/j.ijpharm.2022.121611_b0115) 2009; 73 van de Witte (10.1016/j.ijpharm.2022.121611_b0200) 1996; 117 Perera (10.1016/j.ijpharm.2022.121611_b0140) 1996; 28 Sun (10.1016/j.ijpharm.2022.121611_b0165) 2018; 331 10.1016/j.ijpharm.2022.121611_b0020 Deblieck (10.1016/j.ijpharm.2022.121611_b0060) 2011; 52 Marucci (10.1016/j.ijpharm.2022.121611_b0120) 2008; 127 10.1016/j.ijpharm.2022.121611_b0185 Francis (10.1016/j.ijpharm.2022.121611_b0080) 2002; 37 Badar (10.1016/j.ijpharm.2022.121611_b0010) 2020; 135 Croll (10.1016/j.ijpharm.2022.121611_b0050) 1978; 50 Felton (10.1016/j.ijpharm.2022.121611_b0070) 1997; 154 Corcoran (10.1016/j.ijpharm.2022.121611_b0045) 1969; 41 Okhamafe (10.1016/j.ijpharm.2022.121611_b0130) 1985; 37 Tomar (10.1016/j.ijpharm.2022.121611_b0190) 2020; 16 Rowe (10.1016/j.ijpharm.2022.121611_b0155) 1983; 35 Jinghua Yuan (10.1016/j.ijpharm.2022.121611_b0095) 2001; 25 10.1016/j.ijpharm.2022.121611_b0025 am Ende (10.1016/j.ijpharm.2022.121611_b0065) 2005; 10 Petersen (10.1016/j.ijpharm.2022.121611_b0145) 1999; 15 |
References_xml | – reference: Cellulose Acetate - CA-394-60LF. https://www.eastman.com/Pages/ProductHome.aspx?product=71001237, b. Accessed: 2021-04-09. – volume: 14 start-page: 4613 year: 2020 end-page: 4623 ident: b0215 article-title: A comprehensive review on pharmaceutical film coating: Past, present, and future publication-title: Drug Des. Devel. Ther. – year: 1993 ident: b0110 article-title: Fracture of brittle solids – volume: 35 start-page: 112 year: 1983 end-page: 113 ident: b0155 article-title: A reappraisal of the equations used to predict the internal stresses in film coatings applied to tablet substrates publication-title: J. Pharm. Pharmacol. – volume: 36 start-page: 749 year: 1988 end-page: 758 ident: b0150 article-title: Thermal and dynamic mechanical properties of hydroxypropyl cellulose films publication-title: Journal of applied polymer science – volume: 10 start-page: 47 year: 2005 end-page: 58 ident: b0065 article-title: A thermodynamic model for organic and aqueous tablet film coating publication-title: Pharmaceutical development and technology – volume: 73 start-page: 311 year: 2009 end-page: 323 ident: b0115 article-title: Oral osmotically driven systems: 30 years of development and clinical use publication-title: Eur. J. Pharm. Biopharm. – reference: E Cerda and L Mahadevan. Geometry and physics of wrinkling. Phys. Rev. Lett., 90 (7), 2003. – volume: 16 start-page: 3476 year: 2020 end-page: 3484 ident: b0190 article-title: Cracking in drying films of polymer solutions publication-title: Soft matter – volume: 94 start-page: 75 year: 2004 end-page: 89 ident: b0180 article-title: Osmotic drug delivery using swellable-core technology publication-title: J Control Release – reference: Cellulose Acetate. https://www.azom.com/properties.aspx?ArticleID=1461. Accessed: 2021-06-09. – volume: 331 start-page: 1 year: 2018 end-page: 6 ident: b0165 article-title: The relationship among tensile strength, young’s modulus, and indentation hardness of pharmaceutical compacts publication-title: J Powder Technol. – volume: 457 start-page: 395 year: 2013 end-page: 406 ident: b0100 article-title: Film coatings for taste masking and moisture protection publication-title: Int. J. Pharm. – volume: 135 start-page: 457 year: 2020 end-page: 486 ident: b0010 article-title: Mechanics of saturated colloidal packings: A comparison of two models publication-title: Transp. Porous Media – volume: 18 start-page: 159 year: 1992 end-page: 164 ident: b0105 article-title: Design of capsules that burst at predetermined times by dialysis publication-title: J Control Release – volume: 68 start-page: 4564 year: 1997 end-page: 4568 ident: b0135 article-title: In situ stress measurement apparatus for liquid applied coatings publication-title: Rev. Sci. Instrum. – reference: Tirumkudulu, Mahesh S. and Russel, William B., Role of capillary stresses in film formation. Langmuir, 20 (7): 2947–2961, 2004. ISSN 07437463. doi:10.1021/la0356250. – volume: 43 start-page: 2267 year: 2002 end-page: 2277 ident: b0195 article-title: Effects of phase separation on stress development in polymeric coatings publication-title: Polymer – volume: 4 start-page: 343 year: 1976 end-page: 353 ident: b0175 article-title: Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations publication-title: Ann. Biomed. Eng. – volume: 154 start-page: 167 year: 1997 end-page: 178 ident: b0070 article-title: Influence of plasticizers on the adhesive properties of an acrylic resin copolymer to hydrophilic and hydrophobic tablet compacts publication-title: Int. J. Pharmceutics – volume: 25 start-page: 62 year: 2001 end-page: 74 ident: b0095 article-title: Effects of polyethylene glycol: on morphology, thermomechanical properties, and water vapor permeability of cellulose acetate-free films publication-title: Pharm. Technol. – volume: 8 start-page: 143 year: 1980 end-page: 160 ident: b0160 article-title: The internal stress of coating films publication-title: Prog Org Coatings – volume: 37 start-page: 849 year: 1985 end-page: 853 ident: b0130 article-title: The adhesion characteristics of some pigmented and unpigmented aqueous-based film coatings applied to aspirin tablets publication-title: J. Pharm. Pharmacol. – volume: 23 start-page: 847 year: 1979 end-page: 858 ident: b0055 article-title: The origin of residual internal stress in solvent-cast thermoplastic coatings publication-title: J. Appl. Polym. Sci. – volume: 37 start-page: 4717 year: 2002 end-page: 4731 ident: b0080 article-title: Development and measurement of stress in polymer coatings publication-title: J. Mater. Sci. – volume: 1 start-page: 123 year: 1956 ident: b0075 article-title: Influence of diluent and of copolymer composition on the glass temperature of a poly-mer system publication-title: Bull. Am. Phys. Soc. – volume: 15 start-page: 7745 year: 1999 end-page: 7751 ident: b0145 article-title: Internal stresses during film formation of polymer latices publication-title: Langmuir – volume: 50 start-page: 33 year: 1978 end-page: 38 ident: b0050 article-title: Internal stress in a solvent-cast thermoplastic coating publication-title: J. Coat. Technol. – reference: F Theeuwes and A D Ayer. Osmotic devices having composite, 1978. US Patent 4,077,407. – volume: 38 start-page: 2409 year: 2022 end-page: 2414 ident: bib216 article-title: Solventborne Polymer Coatings: Drying, Film Formation, Stress Evolution, and Failure publication-title: Langmuir – reference: Cellulose Acetate - CA-398-10. https://www.eastman.com/Pages/ProductHome.aspx?product=71001220, a. Accessed: 2021-04-09. – volume: 117 start-page: 1 year: 1996 end-page: 31 ident: b0200 article-title: Phase separation processes in polymer solutions in relation to membrane formation publication-title: J. Membr. Sci. – volume: 46 start-page: 31 year: 1998 end-page: 38 ident: b0005 article-title: The effect of an increase in chain length on the mechanical properties of polyethylene glycols publication-title: Eur. J. Pharm. Biopharm. – volume: 29 start-page: 312 year: 1992 end-page: 315 ident: b0040 article-title: Preparation and evaluation of cellulose acetate films as rate controlling membranes for transdermal use publication-title: Indian Drugs – year: 1993 ident: b0125 article-title: Micromechanics – volume: 41 start-page: 635 year: 1969 end-page: 640 ident: b0045 article-title: Determining stresses in organic coatings using plate beam deflection publication-title: J. Paint Technol. – volume: 25 start-page: 1473 year: 2000 end-page: 1477 ident: b0085 article-title: Graphical representation of particle shape using triangular diagrams: an excel spreadsheet method publication-title: Earth Surf Process Landf – volume: 134 start-page: 201 year: 2009 end-page: 206 ident: b0205 article-title: Extrudable core system: development of a single-layer osmotic controlled-release tablet publication-title: J Control Release – reference: Jinghua Yuan, Nancy M. Clipse, Ray J. Newton Jr, and Doug Dunn. Formulation effects on the thermomechanical properties and permeability of free films and coating films. Pharm. Technol. Eur, 26, 2009. – volume: 127 start-page: 31 year: 2008 end-page: 40 ident: b0120 article-title: Mechanistic model for drug release during the lag phase from pellets coated with a semi-permeable membrane publication-title: J. Control Release – volume: 86 start-page: 1564 year: 2002 end-page: 1571 ident: b0090 article-title: Mass transfer dynamics of the evaporation step in membrane formation by phase inversion publication-title: Journal of applied polymer science – volume: 28 start-page: 21 year: 1996 end-page: 23 ident: b0140 article-title: On adhesion and stress in organic coatings publication-title: Prog. Org. Coat. – volume: 52 start-page: 2979 year: 2011 end-page: 2990 ident: b0060 article-title: Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network publication-title: Polymer – volume: 29 start-page: 1657 year: 1992 end-page: 1675 ident: b0015 article-title: Cracking of thin bonded films in residual tension publication-title: Int J Solids Struct – volume: 4 start-page: 343 issue: 4 year: 1976 ident: 10.1016/j.ijpharm.2022.121611_b0175 article-title: Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02584524 – volume: 457 start-page: 395 year: 2013 ident: 10.1016/j.ijpharm.2022.121611_b0100 article-title: Film coatings for taste masking and moisture protection publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.10.021 – volume: 154 start-page: 167 year: 1997 ident: 10.1016/j.ijpharm.2022.121611_b0070 article-title: Influence of plasticizers on the adhesive properties of an acrylic resin copolymer to hydrophilic and hydrophobic tablet compacts publication-title: Int. J. Pharmceutics doi: 10.1016/S0378-5173(97)00133-6 – ident: 10.1016/j.ijpharm.2022.121611_b0170 – volume: 331 start-page: 1 year: 2018 ident: 10.1016/j.ijpharm.2022.121611_b0165 article-title: The relationship among tensile strength, young’s modulus, and indentation hardness of pharmaceutical compacts publication-title: J Powder Technol. doi: 10.1016/j.powtec.2018.02.051 – volume: 8 start-page: 143 year: 1980 ident: 10.1016/j.ijpharm.2022.121611_b0160 article-title: The internal stress of coating films publication-title: Prog Org Coatings doi: 10.1016/0300-9440(80)80011-7 – volume: 16 start-page: 3476 issue: 14 year: 2020 ident: 10.1016/j.ijpharm.2022.121611_b0190 article-title: Cracking in drying films of polymer solutions publication-title: Soft matter doi: 10.1039/C9SM02294E – volume: 25 start-page: 62 issue: 10 year: 2001 ident: 10.1016/j.ijpharm.2022.121611_b0095 article-title: Effects of polyethylene glycol: on morphology, thermomechanical properties, and water vapor permeability of cellulose acetate-free films publication-title: Pharm. Technol. – ident: 10.1016/j.ijpharm.2022.121611_b0025 – volume: 94 start-page: 75 year: 2004 ident: 10.1016/j.ijpharm.2022.121611_b0180 article-title: Osmotic drug delivery using swellable-core technology publication-title: J Control Release doi: 10.1016/j.jconrel.2003.09.009 – volume: 46 start-page: 31 issue: 1 year: 1998 ident: 10.1016/j.ijpharm.2022.121611_b0005 article-title: The effect of an increase in chain length on the mechanical properties of polyethylene glycols publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(97)00151-3 – ident: 10.1016/j.ijpharm.2022.121611_b0210 – volume: 135 start-page: 457 year: 2020 ident: 10.1016/j.ijpharm.2022.121611_b0010 article-title: Mechanics of saturated colloidal packings: A comparison of two models publication-title: Transp. Porous Media doi: 10.1007/s11242-020-01483-0 – volume: 127 start-page: 31 issue: 1 year: 2008 ident: 10.1016/j.ijpharm.2022.121611_b0120 article-title: Mechanistic model for drug release during the lag phase from pellets coated with a semi-permeable membrane publication-title: J. Control Release doi: 10.1016/j.jconrel.2007.12.003 – volume: 41 start-page: 635 year: 1969 ident: 10.1016/j.ijpharm.2022.121611_b0045 article-title: Determining stresses in organic coatings using plate beam deflection publication-title: J. Paint Technol. – volume: 29 start-page: 312 issue: 7 year: 1992 ident: 10.1016/j.ijpharm.2022.121611_b0040 article-title: Preparation and evaluation of cellulose acetate films as rate controlling membranes for transdermal use publication-title: Indian Drugs – volume: 28 start-page: 21 issue: 1 year: 1996 ident: 10.1016/j.ijpharm.2022.121611_b0140 article-title: On adhesion and stress in organic coatings publication-title: Prog. Org. Coat. doi: 10.1016/0300-9440(95)00585-4 – year: 1993 ident: 10.1016/j.ijpharm.2022.121611_b0125 – volume: 29 start-page: 1657 issue: 13 year: 1992 ident: 10.1016/j.ijpharm.2022.121611_b0015 article-title: Cracking of thin bonded films in residual tension publication-title: Int J Solids Struct doi: 10.1016/0020-7683(92)90015-L – volume: 43 start-page: 2267 issue: 8 year: 2002 ident: 10.1016/j.ijpharm.2022.121611_b0195 article-title: Effects of phase separation on stress development in polymeric coatings publication-title: Polymer doi: 10.1016/S0032-3861(02)00042-3 – volume: 134 start-page: 201 issue: 3 year: 2009 ident: 10.1016/j.ijpharm.2022.121611_b0205 article-title: Extrudable core system: development of a single-layer osmotic controlled-release tablet publication-title: J Control Release doi: 10.1016/j.jconrel.2008.11.017 – ident: 10.1016/j.ijpharm.2022.121611_b0035 doi: 10.1103/PhysRevLett.90.074302 – volume: 50 start-page: 33 year: 1978 ident: 10.1016/j.ijpharm.2022.121611_b0050 article-title: Internal stress in a solvent-cast thermoplastic coating publication-title: J. Coat. Technol. – ident: 10.1016/j.ijpharm.2022.121611_b0185 doi: 10.1021/la0356250 – ident: 10.1016/j.ijpharm.2022.121611_b0020 – volume: 35 start-page: 112 year: 1983 ident: 10.1016/j.ijpharm.2022.121611_b0155 article-title: A reappraisal of the equations used to predict the internal stresses in film coatings applied to tablet substrates publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.1983.tb04280.x – volume: 37 start-page: 4717 issue: 22 year: 2002 ident: 10.1016/j.ijpharm.2022.121611_b0080 article-title: Development and measurement of stress in polymer coatings publication-title: J. Mater. Sci. doi: 10.1023/A:1020886802632 – volume: 10 start-page: 47 issue: 1 year: 2005 ident: 10.1016/j.ijpharm.2022.121611_b0065 article-title: A thermodynamic model for organic and aqueous tablet film coating publication-title: Pharmaceutical development and technology doi: 10.1081/PDT-35915 – volume: 18 start-page: 159 year: 1992 ident: 10.1016/j.ijpharm.2022.121611_b0105 article-title: Design of capsules that burst at predetermined times by dialysis publication-title: J Control Release doi: 10.1016/0168-3659(92)90185-T – volume: 38 start-page: 2409 issue: 8 year: 2022 ident: 10.1016/j.ijpharm.2022.121611_bib216 article-title: Solventborne Polymer Coatings: Drying, Film Formation, Stress Evolution, and Failure publication-title: Langmuir doi: 10.1021/acs.langmuir.1c03124 – volume: 1 start-page: 123 year: 1956 ident: 10.1016/j.ijpharm.2022.121611_b0075 article-title: Influence of diluent and of copolymer composition on the glass temperature of a poly-mer system publication-title: Bull. Am. Phys. Soc. – volume: 25 start-page: 1473 year: 2000 ident: 10.1016/j.ijpharm.2022.121611_b0085 article-title: Graphical representation of particle shape using triangular diagrams: an excel spreadsheet method publication-title: Earth Surf Process Landf doi: 10.1002/1096-9837(200012)25:13<1473::AID-ESP158>3.0.CO;2-C – ident: 10.1016/j.ijpharm.2022.121611_b0030 – volume: 36 start-page: 749 issue: 4 year: 1988 ident: 10.1016/j.ijpharm.2022.121611_b0150 article-title: Thermal and dynamic mechanical properties of hydroxypropyl cellulose films publication-title: Journal of applied polymer science doi: 10.1002/app.1988.070360402 – volume: 15 start-page: 7745 issue: 22 year: 1999 ident: 10.1016/j.ijpharm.2022.121611_b0145 article-title: Internal stresses during film formation of polymer latices publication-title: Langmuir doi: 10.1021/la990256m – volume: 23 start-page: 847 year: 1979 ident: 10.1016/j.ijpharm.2022.121611_b0055 article-title: The origin of residual internal stress in solvent-cast thermoplastic coatings publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1979.070230319 – volume: 68 start-page: 4564 issue: 12 year: 1997 ident: 10.1016/j.ijpharm.2022.121611_b0135 article-title: In situ stress measurement apparatus for liquid applied coatings publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1148432 – volume: 86 start-page: 1564 issue: 7 year: 2002 ident: 10.1016/j.ijpharm.2022.121611_b0090 article-title: Mass transfer dynamics of the evaporation step in membrane formation by phase inversion publication-title: Journal of applied polymer science doi: 10.1002/app.11022 – year: 1993 ident: 10.1016/j.ijpharm.2022.121611_b0110 – volume: 37 start-page: 849 year: 1985 ident: 10.1016/j.ijpharm.2022.121611_b0130 article-title: The adhesion characteristics of some pigmented and unpigmented aqueous-based film coatings applied to aspirin tablets publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.1985.tb04988.x – volume: 14 start-page: 4613 year: 2020 ident: 10.1016/j.ijpharm.2022.121611_b0215 article-title: A comprehensive review on pharmaceutical film coating: Past, present, and future publication-title: Drug Des. Devel. Ther. doi: 10.2147/DDDT.S277439 – volume: 52 start-page: 2979 year: 2011 ident: 10.1016/j.ijpharm.2022.121611_b0060 article-title: Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network publication-title: Polymer doi: 10.1016/j.polymer.2011.03.055 – volume: 117 start-page: 1 year: 1996 ident: 10.1016/j.ijpharm.2022.121611_b0200 article-title: Phase separation processes in polymer solutions in relation to membrane formation publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(96)00088-9 – volume: 73 start-page: 311 year: 2009 ident: 10.1016/j.ijpharm.2022.121611_b0115 article-title: Oral osmotically driven systems: 30 years of development and clinical use publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2009.07.002 |
SSID | ssj0006213 |
Score | 2.401999 |
Snippet | [Display omitted]
The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by... The coatings in osmotic tablets play a critical role in controlling the release of active pharmaceutical ingredient. Coatings are formed by spraying dilute... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121611 |
SubjectTerms | Adhesion Drying Stress Fracture Mechanical Properties Microstructure Osmotic coatings |
Title | Osmotic tablet coatings: Drying stress, mechanical properties and microstructure |
URI | https://dx.doi.org/10.1016/j.ijpharm.2022.121611 https://www.ncbi.nlm.nih.gov/pubmed/35231549 https://www.proquest.com/docview/2635241782 |
Volume | 617 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB0S59JLafrpNglbKDlZdrTaXUm5hbTBbWlqaAK-LfslsGlkYzuHXPrbOyOtbHoIgR4lMUjsW828kWbeAHwyecmly_PE-jORCOttUkhlE-ExZSmc9L4Z2vfjWo1vxbepnO7BZdcLQ2WV0fe3Pr3x1vHMKK7maDmbjX6dZc1gedyRxFvkdB8OeFYq2YODi6_fx9dbh6x4nJKMCRMZ7Bp5RvPhbL4kjWjMFDknqQWVpo-FqMcoaBOKrl7A88gh2UX7mIewF-qXcDppRagfBuxm11O1HrBTNtnJUz-8gsnPZnSPYxvqmtowtzBU-rw-Z59X1PPE2vaRAbsL1BVMILIlfbJfkfYqM7Vnd1TF1yrP3q_Ca7i9-nJzOU7iXIXEZUpuEqNcJavMyNRgxK68yQqfiTIvXWEVR8qReh6I1yjvkGEYXGAkAQKTWcG9tVX2Bnr1og7vgJk8L0LplHIFF8qrMnCbp5URZZEHJ9I-iG4ptYui4zT74rfuqsvmOiKgCQHdItCH4dZs2apuPGVQdDjpf7aPxsjwlOnHDleNrxb9LzF1WNyvNen0IMFBDtWHty3g26fBKxmp273__xt_gGd01JQBySPoIWrhGBnOxp7A_vBPehL38V8uuvqS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7S9NBeSt9xH-kWSk6WHa32IfVW8sBtk9RQB3xb9iWwaWRjO4dc-ts7o0dMDyGQq1aDlv1WO99IM98AfLG64NJrnbhwKBLhgktyqVwiAoYsuZch1E37zi_U6FL8mMrpDhx1tTCUVtme_c2ZXp_W7ZVhu5rD5Ww2_H2Y1Y3lcUcSb5HTR_BYyExTXt_g7zbPQ_G2RzKGS3T7toxnOB_M5ktSiMY4kXMSWlBpepeDuouA1o7o9Dk8axkk-9ZM8gXsxOolHIwbCeqbPptsK6rWfXbAxltx6ptXMP5VN-7xbEM1UxvmF5YSn9df2fGKKp5YUzzSZ1eRaoIJQrakD_YrUl5ltgrsinL4Gt3Z61V8DZenJ5OjUdJ2VUh8puQmscqXssysTC366zLYLA-ZKHThc6c4Eo408EisRgWP_MLi8iIFEBjKCh6cK7M3sFstqrgHzGqdx8Ir5XMuVFBF5E6npRVFrqMXaQ9Et5TGt5Lj1Pnij-lyy-amRcAQAqZBoAeDW7Nlo7lxn0He4WT-2zwG_cJ9pp87XA2-WPS3xFZxcb02pNKD9AYZVA_eNoDfzgZHMtK2e_fwB3-CJ6PJ-Zk5-37x8z08pZE6IUh-gF1EMH5ErrNx-_Ve_gdNnftd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osmotic+tablet+coatings%3A+Drying+stress%2C+mechanical+properties+and+microstructure&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Tomar%2C+Bhawana+Singh&rft.au=Tirumkudulu%2C+Mahesh+S&rft.au=Yu%2C+Weili&rft.au=Berchielli%2C+Alfred&rft.date=2022-04-05&rft.eissn=1873-3476&rft.volume=617&rft.spage=121611&rft_id=info:doi/10.1016%2Fj.ijpharm.2022.121611&rft_id=info%3Apmid%2F35231549&rft.externalDocID=35231549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon |