Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure

The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial stud...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 80; no. 6; pp. 1668 - 1674
Main Authors Wilson, J R, Mancini, D M, McCully, K, Ferraro, N, Lanoce, V, Chance, B
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 01.12.1989
Subjects
Online AccessGet full text
ISSN0009-7322
1524-4539
DOI10.1161/01.CIR.80.6.1668

Cover

Loading…
Abstract The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial studies conducted in isolated canine gracilis muscle demonstrated that 760-800-nm absorption correlated closely (r = -0.97 +/- 0.01) with venous hemoglobin O2 saturation when the muscle was stimulated to contract at 0.25-5.0 Hz. In normal subjects (n = 6) and patients with heart failure (n = 8), 760-800-nm absorption changes from the vastus lateralis muscle were monitored at rest, during progressive maximal bicycle exercise, and during thigh cuff inflation to suprasystolic pressure, an intervention designed to assess minimal hemoglobin-myoglobin oxygenation. Absorption changes were expressed relative to the full physiologic range noted from rest to thigh cuff inflation. During exercise, normal subjects exhibited an initial increase in hemoglobin-myoglobin oxygenation followed by a progressive decrease in oxygenation to 27 +/- 13% of the physiologic range at the peak exercise workload of 140 +/- 9 W. In contrast, patients exhibited an initial decrease in hemoglobin-myoglobin oxygenation with the first workload, followed by a progressive further decrease to 26 +/- 13% of the physiologic range at a peak exercise workload of 60 +/- 8 W, less than half the peak workload noted in the normal subjects. At all exercise loads, hemoglobin-myoglobin oxygenation was significantly less in the patients than in the normal subjects. These data suggest that near-infrared spectroscopy can detect impaired skeletal muscle O2 delivery in patients with heart failure. This technique could provide a valuable method of assessing muscle O2 delivery in patients, particularly before and after therapeutic interventions.
AbstractList The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial studies conducted in isolated canine gracilis muscle demonstrated that 760-800-nm absorption correlated closely (r = -0.97 +/- 0.01) with venous hemoglobin O2 saturation when the muscle was stimulated to contract at 0.25-5.0 Hz. In normal subjects (n = 6) and patients with heart failure (n = 8), 760-800-nm absorption changes from the vastus lateralis muscle were monitored at rest, during progressive maximal bicycle exercise, and during thigh cuff inflation to suprasystolic pressure, an intervention designed to assess minimal hemoglobin-myoglobin oxygenation. Absorption changes were expressed relative to the full physiologic range noted from rest to thigh cuff inflation. During exercise, normal subjects exhibited an initial increase in hemoglobin-myoglobin oxygenation followed by a progressive decrease in oxygenation to 27 +/- 13% of the physiologic range at the peak exercise workload of 140 +/- 9 W. In contrast, patients exhibited an initial decrease in hemoglobin-myoglobin oxygenation with the first workload, followed by a progressive further decrease to 26 +/- 13% of the physiologic range at a peak exercise workload of 60 +/- 8 W, less than half the peak workload noted in the normal subjects. At all exercise loads, hemoglobin-myoglobin oxygenation was significantly less in the patients than in the normal subjects. These data suggest that near-infrared spectroscopy can detect impaired skeletal muscle O2 delivery in patients with heart failure. This technique could provide a valuable method of assessing muscle O2 delivery in patients, particularly before and after therapeutic interventions.
The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial studies conducted in isolated canine gracilis muscle demonstrated that 760-800-nm absorption correlated closely (r = -0.97 +/- 0.01) with venous hemoglobin O2 saturation when the muscle was stimulated to contract at 0.25-5.0 Hz. In normal subjects (n = 6) and patients with heart failure (n = 8), 760-800-nm absorption changes from the vastus lateralis muscle were monitored at rest, during progressive maximal bicycle exercise, and during thigh cuff inflation to suprasystolic pressure, an intervention designed to assess minimal hemoglobin-myoglobin oxygenation. Absorption changes were expressed relative to the full physiologic range noted from rest to thigh cuff inflation. During exercise, normal subjects exhibited an initial increase in hemoglobin-myoglobin oxygenation followed by a progressive decrease in oxygenation to 27 +/- 13% of the physiologic range at the peak exercise workload of 140 +/- 9 W. In contrast, patients exhibited an initial decrease in hemoglobin-myoglobin oxygenation with the first workload, followed by a progressive further decrease to 26 +/- 13% of the physiologic range at a peak exercise workload of 60 +/- 8 W, less than half the peak workload noted in the normal subjects. At all exercise loads, hemoglobin-myoglobin oxygenation was significantly less in the patients than in the normal subjects. These data suggest that near-infrared spectroscopy can detect impaired skeletal muscle O2 delivery in patients with heart failure. This technique could provide a valuable method of assessing muscle O2 delivery in patients, particularly before and after therapeutic interventions.The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial studies conducted in isolated canine gracilis muscle demonstrated that 760-800-nm absorption correlated closely (r = -0.97 +/- 0.01) with venous hemoglobin O2 saturation when the muscle was stimulated to contract at 0.25-5.0 Hz. In normal subjects (n = 6) and patients with heart failure (n = 8), 760-800-nm absorption changes from the vastus lateralis muscle were monitored at rest, during progressive maximal bicycle exercise, and during thigh cuff inflation to suprasystolic pressure, an intervention designed to assess minimal hemoglobin-myoglobin oxygenation. Absorption changes were expressed relative to the full physiologic range noted from rest to thigh cuff inflation. During exercise, normal subjects exhibited an initial increase in hemoglobin-myoglobin oxygenation followed by a progressive decrease in oxygenation to 27 +/- 13% of the physiologic range at the peak exercise workload of 140 +/- 9 W. In contrast, patients exhibited an initial decrease in hemoglobin-myoglobin oxygenation with the first workload, followed by a progressive further decrease to 26 +/- 13% of the physiologic range at a peak exercise workload of 60 +/- 8 W, less than half the peak workload noted in the normal subjects. At all exercise loads, hemoglobin-myoglobin oxygenation was significantly less in the patients than in the normal subjects. These data suggest that near-infrared spectroscopy can detect impaired skeletal muscle O2 delivery in patients with heart failure. This technique could provide a valuable method of assessing muscle O2 delivery in patients, particularly before and after therapeutic interventions.
Author Wilson, J R
Ferraro, N
McCully, K
Chance, B
Lanoce, V
Mancini, D M
Author_xml – sequence: 1
  givenname: J R
  surname: Wilson
  fullname: Wilson, J R
  organization: Department of Medicine, University of Pennsylvania, Philadelphia
– sequence: 2
  givenname: D M
  surname: Mancini
  fullname: Mancini, D M
  organization: Department of Medicine, University of Pennsylvania, Philadelphia
– sequence: 3
  givenname: K
  surname: McCully
  fullname: McCully, K
  organization: Department of Medicine, University of Pennsylvania, Philadelphia
– sequence: 4
  givenname: N
  surname: Ferraro
  fullname: Ferraro, N
  organization: Department of Medicine, University of Pennsylvania, Philadelphia
– sequence: 5
  givenname: V
  surname: Lanoce
  fullname: Lanoce, V
  organization: Department of Medicine, University of Pennsylvania, Philadelphia
– sequence: 6
  givenname: B
  surname: Chance
  fullname: Chance, B
  organization: Department of Medicine, University of Pennsylvania, Philadelphia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19599629$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/2598429$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAQxUVJSTYf914CurQ3u5JlfR3L0jaBkEJJzkKWx0StV3YleUP--2izSwKBnobh_d7AvHeKjsIUAKFPlNSUCvqV0Hp9_btWpBY1FUJ9QCvKm7ZqOdNHaEUI0ZVkTXOCTlP6U1bBJD9Gxw3Xqm30Cm1vp-DD1ia_BdxDBpf9FPA04PQXRsh2xJsluRHwEnqIM8RhSTvi0ecHHMDGyoch2gg9TnNxxym5aX7CPuDZZg8hpz37UNiMB-vHJcI5-jjYMcHFYZ6h-x_f79ZX1c2vn9frbzeVY4LnSoPoeisbLSTlCuTAO2itow46RVWvZSfZAEx1AAwaSZVuLCUd77XlXUsYO0Nf9nfnOP1bIGWz8cnBONoA05KM1Ey1SpICXh7ApdtAb-boNzY-mUNQRf980G1ydiwfB-fTK0Y111q8cGTPuRJEijC8IcTsKjOEmlKZUcQIs6usWMQ7i_PZ7mrIsaT1f-MzmsedyQ
CODEN CIRCAZ
CitedBy_id crossref_primary_10_1016_j_ergon_2012_11_006
crossref_primary_10_1002_mrm_1910310303
crossref_primary_10_1097_00005768_200109000_00010
crossref_primary_10_1111_j_1748_1716_2011_02363_x
crossref_primary_10_1177_00220345990780111001
crossref_primary_10_1152_ajpheart_91520_2007
crossref_primary_10_1117_1_2805437
crossref_primary_10_1016_j_ejheart_2008_05_009
crossref_primary_10_1183_13993003_01022_2016
crossref_primary_10_1002_jor_1100150405
crossref_primary_10_1016_j_ijcard_2012_05_124
crossref_primary_10_1016_j_niox_2020_06_001
crossref_primary_10_1016_0167_5273_94_90060_4
crossref_primary_10_1366_0003702971939901
crossref_primary_10_1046_j_1365_201x_2001_00830_x
crossref_primary_10_1002_mrm_1910300616
crossref_primary_10_1016_0735_1097_91_90605_9
crossref_primary_10_1152_japplphysiol_00907_2004
crossref_primary_10_1097_00005768_200210000_00013
crossref_primary_10_1249_MSS_0000000000003238
crossref_primary_10_1249_MSS_0000000000003239
crossref_primary_10_1366_000370207781745928
crossref_primary_10_1007_s12576_019_00697_2
crossref_primary_10_1142_S1793545811001514
crossref_primary_10_1016_j_cardfail_2008_02_001
crossref_primary_10_1007_s00246_019_02118_y
crossref_primary_10_1139_apnm_2013_0347
crossref_primary_10_1161_01_CIR_94_10_2492
crossref_primary_10_1016_0735_1097_94_90858_3
crossref_primary_10_1016_0021_9290_91_90385_Z
crossref_primary_10_1002_lpor_202300752
crossref_primary_10_1016_j_rbmret_2004_02_007
crossref_primary_10_1016_j_jvs_2011_11_140
crossref_primary_10_1152_ajpregu_00290_2018
crossref_primary_10_1016_S0003_9969_99_00082_5
crossref_primary_10_1097_00005768_199901000_00015
crossref_primary_10_1080_001401300184369
crossref_primary_10_5585_23_2024_26178
crossref_primary_10_1097_01_PRS_0000095940_96294_A5
crossref_primary_10_1056_NEJM200008313430907
crossref_primary_10_1111_j_1475_097X_1995_tb00427_x
crossref_primary_10_1016_j_ergon_2009_02_004
crossref_primary_10_1155_2013_452857
crossref_primary_10_1016_0735_1097_93_90340_7
crossref_primary_10_1007_s00421_009_1125_3
crossref_primary_10_1139_h2012_036
crossref_primary_10_1152_japplphysiol_91102_2008
crossref_primary_10_1007_s10043_003_0493_x
crossref_primary_10_1152_jappl_2001_90_2_511
crossref_primary_10_7133_jca_52_103
crossref_primary_10_1097_00044067_200205000_00010
crossref_primary_10_1016_0002_9149_92_90912_I
crossref_primary_10_1002_phy2_11
crossref_primary_10_1007_s00125_008_1153_2
crossref_primary_10_1002__SICI_1097_4598_199905_22_5_621__AID_MUS11_3_0_CO_2_D
crossref_primary_10_1039_c2jm33742h
crossref_primary_10_1016_j_ergon_2008_11_002
crossref_primary_10_1016_S0735_1097_96_00556_6
crossref_primary_10_1177_2058460119850115
crossref_primary_10_1016_j_ergon_2009_02_002
crossref_primary_10_1016_j_rcl_2004_07_002
crossref_primary_10_1366_0003702991946541
crossref_primary_10_1097_00005373_199906000_00021
crossref_primary_10_1007_s00421_017_3685_y
crossref_primary_10_1097_00005768_199703000_00017
crossref_primary_10_1042_CS20040175
crossref_primary_10_1152_japplphysiol_00883_2012
crossref_primary_10_1007_s00421_008_0711_0
crossref_primary_10_1093_eurjpc_zwad239
crossref_primary_10_1016_S0002_9149_97_00672_3
crossref_primary_10_1152_jappl_2000_88_1_315
crossref_primary_10_1249_MSS_0000000000003241
crossref_primary_10_1186_cc8005
crossref_primary_10_1080_17461391_2019_1669717
crossref_primary_10_1136_bmjsem_2015_000062
crossref_primary_10_1046_j_1365_201x_1999_00548_x
crossref_primary_10_1016_0002_8703_95_90317_8
crossref_primary_10_1016_0735_1097_96_00134_9
crossref_primary_10_6000_1929_5634_2012_01_02_5
crossref_primary_10_1007_s00421_005_0008_5
crossref_primary_10_1016_j_rmed_2021_106642
crossref_primary_10_1016_j_rmed_2019_105815
crossref_primary_10_1364_OE_17_012132
crossref_primary_10_1152_ajpregu_00203_2017
crossref_primary_10_1002_adfm_200901630
crossref_primary_10_1002_aisy_202200351
crossref_primary_10_1117_1_JBO_21_9_091314
crossref_primary_10_1007_BF02077636
crossref_primary_10_1007_BF02534086
crossref_primary_10_1152_japplphysiol_00920_2005
crossref_primary_10_1016_1011_1344_92_80005_G
crossref_primary_10_1016_j_ejvs_2009_06_011
crossref_primary_10_1113_JP277580
crossref_primary_10_1016_S0300_2896_01_75075_2
crossref_primary_10_3892_etm_2018_5779
crossref_primary_10_1249_MSS_0000000000001001
crossref_primary_10_2152_jmi_64_228
crossref_primary_10_1080_10790268_2020_1754649
crossref_primary_10_1152_japplphysiol_01460_2006
crossref_primary_10_1249_MSS_0b013e3182100261
crossref_primary_10_1016_j_rhum_2006_02_021
crossref_primary_10_1177_0267659115575419
crossref_primary_10_1249_01_MSS_0000155401_81284_76
crossref_primary_10_1152_japplphysiol_00782_2009
crossref_primary_10_1366_0003702981943581
crossref_primary_10_1016_0003_9969_96_00009_X
crossref_primary_10_1088_0150_536X_28_6_006
crossref_primary_10_1152_jappl_1999_87_1_348
crossref_primary_10_1255_nirn_929
crossref_primary_10_4250_jcvi_2019_27_e31
crossref_primary_10_1007_s00421_010_1512_9
crossref_primary_10_1098_rsta_2009_0090
crossref_primary_10_1097_00007632_199911150_00008
crossref_primary_10_1016_j_resp_2010_11_009
crossref_primary_10_1016_S0033_0620_05_80018_0
crossref_primary_10_7600_jpfsm_2_203
crossref_primary_10_1016_j_jbspin_2006_02_013
crossref_primary_10_2170_physiolsci_RP001807
crossref_primary_10_1007_BF00634377
crossref_primary_10_1097_00005768_200203000_00020
crossref_primary_10_1152_ajpheart_00596_2009
crossref_primary_10_1016_j_resp_2014_02_011
crossref_primary_10_1016_j_ergon_2009_01_009
crossref_primary_10_1080_10790268_2020_1798137
crossref_primary_10_1253_jcj_62_649
crossref_primary_10_1142_S1793545811001381
crossref_primary_10_1242_jeb_052233
crossref_primary_10_1016_j_hrthm_2012_05_003
crossref_primary_10_2337_diacare_27_8_1942
crossref_primary_10_1097_HCR_0b013e3181b4ca4e
crossref_primary_10_1098_rsta_2011_0298
crossref_primary_10_1053_jcan_2001_26544
crossref_primary_10_1076_apab_107_2_159_4343
crossref_primary_10_1152_ajpregu_1999_276_6_R1682
crossref_primary_10_1016_0002_9343_93_90264_P
crossref_primary_10_1177_14799731241246802
crossref_primary_10_1253_jcj_63_97
crossref_primary_10_1146_annurev_bioeng_2_1_715
crossref_primary_10_1177_0003702815620562
crossref_primary_10_1016_j_scispo_2007_02_002
crossref_primary_10_1152_japplphysiol_01380_2010
crossref_primary_10_1366_000370202760295476
crossref_primary_10_3389_fphys_2020_00195
crossref_primary_10_1039_C6RA05123E
crossref_primary_10_1152_japplphysiol_01160_2007
crossref_primary_10_1249_MSS_0000000000000696
crossref_primary_10_1016_0007_1226_95_90024_1
crossref_primary_10_1117_1_1463048
crossref_primary_10_1152_ajpendo_00462_2016
crossref_primary_10_1016_S0003_9969_99_00059_X
crossref_primary_10_1016_S0095_5108_18_30028_9
crossref_primary_10_1249_MSS_0000000000000334
crossref_primary_10_1016_S0002_9149_99_80571_2
crossref_primary_10_2170_jjphysiol_51_599
crossref_primary_10_1152_jappl_1999_86_2_687
ContentType Journal Article
Copyright 1991 INIST-CNRS
Copyright_xml – notice: 1991 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/01.CIR.80.6.1668
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 1674
ExternalDocumentID 2598429
19599629
10_1161_01_CIR_80_6_1668
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL-01766
– fundername: NHLBI NIH HHS
  grantid: R0-1 HL-34834
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
0ZK
18M
1CY
1J1
29B
2FS
2WC
354
40H
41~
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAEJM
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
AAYOK
AAYXX
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACOAL
ACRKK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADCYY
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFCHL
AFDTB
AFEXH
AFFNX
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJJEV
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BS7
BYPQX
C1A
C45
CITATION
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FEDTE
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HVGLF
HZ~
H~9
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
M18
MVM
N4W
N9A
NEJ
N~7
N~B
N~M
O9-
OAG
OAH
OBH
OCB
OCUKA
ODA
ODMTH
OGEVE
OHH
OHT
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WHG
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
YQJ
YSK
YXB
YYM
YYP
YZZ
ZFV
ZGI
ZXP
ZY1
ZZMQN
~H1
IQODW
ACIJW
ACRZS
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OJAPA
OLW
PKN
RHF
7X8
ID FETCH-LOGICAL-c365t-9e6bda72967158e7f5be4ac1ceb818d97b73fe38bee3e271892a10b5d9a5b4033
ISSN 0009-7322
IngestDate Thu Jul 10 17:38:04 EDT 2025
Wed Feb 19 02:36:15 EST 2025
Mon Jul 21 09:18:49 EDT 2025
Tue Jul 01 02:05:56 EDT 2025
Thu Apr 24 23:05:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Human
Heart failure
Regional perfusion
Near infrared spectrometry
Cardiovascular disease
Exploration
Striated muscle
Oxygenation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-9e6bda72967158e7f5be4ac1ceb818d97b73fe38bee3e271892a10b5d9a5b4033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 2598429
PQID 79384870
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_79384870
pubmed_primary_2598429
pascalfrancis_primary_19599629
crossref_primary_10_1161_01_CIR_80_6_1668
crossref_citationtrail_10_1161_01_CIR_80_6_1668
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1989-12-01
PublicationDateYYYYMMDD 1989-12-01
PublicationDate_xml – month: 12
  year: 1989
  text: 1989-12-01
  day: 01
PublicationDecade 1980
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 1989
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
SSID ssj0006375
Score 1.7553854
Snippet The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1668
SubjectTerms Animals
Biological and medical sciences
Cardiology. Vascular system
Dogs
Exercise Test
Heart
Heart Failure - diagnosis
Heart failure, cardiogenic pulmonary edema, cardiac enlargement
Humans
Medical sciences
Middle Aged
Muscle Contraction
Muscles - blood supply
Myoglobin - metabolism
Oxygen Consumption
Oxyhemoglobins - metabolism
Regional Blood Flow - physiology
Spectrophotometry, Infrared - methods
Title Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure
URI https://www.ncbi.nlm.nih.gov/pubmed/2598429
https://www.proquest.com/docview/79384870
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGEGgSQrAxUT6GHxASmtLFcWInj1Nh2oa2B7RJe4vs2JEq1qRqkwn49Vw7ztfYEPAStUmcpD0n9r32vfcg9J5zLaji1BNJrrwwzLQn4buXg-vAEgIWtLLVPs_Z8WV4ehVdbWx8H0Qt1ZWcZj_vzCv5H1RhH-BqsmT_AdnuorADPgO-sAWEYftXGJ-budQbYSPQla501pp_628wmpg0x0W9hjZW7Ha11Ku8NpNjzeRrARz34ClWNgTdZlyaypbl0mYCunqrLvnNyF5X-7mYX7sCJF1xg_kqcwJgd-n6DOYZ-rqQp32Q4pmp9lE0ue77g3iCWe0UsLtJ2CNt9OjLfvFIiTYUq4_6aHvfxOM0GPW-jY6TY9mwKyWs0dv5vY9nxOYtTGcnX6exP2XT26cCSsuFxRycuzh0P3VcVtsdeYAeBuBgGO2LTydfujGcUR61GnzmidsFbkYObt94Cz1y1xqZNk-WYg1vWd7Io9zvv1g75uIZeuocEHzYsOk52tDFNto5LERVLn7gD9iGBNu1lm30-MxFXuygmwHXcMc1XOa45RpuuIbHXMOGP3jENTzkGp4XuOVac67lGnZce4Eujz5fzI49p9nhZZRFlZdoJpUAj41xEsWa55HUochIpiWYhirhktNc01hqTXUAhlESCOLLSCUikqFP6S7aLMpCv0SYERVlJNcZp2GYE5kQrjjnSsfQTgT-BB20f3eauYL2RlflOrWOLSOpT1KAKo39lKUGqgn62LVYNsVc_nDu3gjBvkFiKhoFyQS9ayFNoUs262yi0GW9TmHIi0MYBydot0G6a-uI8uq-A6_RVv_ivEGb1arWb8HoreSe5ecvwhOsew
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+detection+of+skeletal+muscle+underperfusion+with+near-infrared+spectroscopy+in+patients+with+heart+failure&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Wilson%2C+J+R&rft.au=Mancini%2C+D+M&rft.au=McCully%2C+K&rft.au=Ferraro%2C+N&rft.date=1989-12-01&rft.issn=0009-7322&rft.volume=80&rft.issue=6&rft.spage=1668&rft_id=info:doi/10.1161%2F01.CIR.80.6.1668&rft_id=info%3Apmid%2F2598429&rft.externalDocID=2598429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon