Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure
The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial stud...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 80; no. 6; pp. 1668 - 1674 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
01.12.1989
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-7322 1524-4539 |
DOI | 10.1161/01.CIR.80.6.1668 |
Cover
Loading…
Abstract | The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial studies conducted in isolated canine gracilis muscle demonstrated that 760-800-nm absorption correlated closely (r = -0.97 +/- 0.01) with venous hemoglobin O2 saturation when the muscle was stimulated to contract at 0.25-5.0 Hz. In normal subjects (n = 6) and patients with heart failure (n = 8), 760-800-nm absorption changes from the vastus lateralis muscle were monitored at rest, during progressive maximal bicycle exercise, and during thigh cuff inflation to suprasystolic pressure, an intervention designed to assess minimal hemoglobin-myoglobin oxygenation. Absorption changes were expressed relative to the full physiologic range noted from rest to thigh cuff inflation. During exercise, normal subjects exhibited an initial increase in hemoglobin-myoglobin oxygenation followed by a progressive decrease in oxygenation to 27 +/- 13% of the physiologic range at the peak exercise workload of 140 +/- 9 W. In contrast, patients exhibited an initial decrease in hemoglobin-myoglobin oxygenation with the first workload, followed by a progressive further decrease to 26 +/- 13% of the physiologic range at a peak exercise workload of 60 +/- 8 W, less than half the peak workload noted in the normal subjects. At all exercise loads, hemoglobin-myoglobin oxygenation was significantly less in the patients than in the normal subjects. These data suggest that near-infrared spectroscopy can detect impaired skeletal muscle O2 delivery in patients with heart failure. This technique could provide a valuable method of assessing muscle O2 delivery in patients, particularly before and after therapeutic interventions. |
---|---|
AbstractList | The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial studies conducted in isolated canine gracilis muscle demonstrated that 760-800-nm absorption correlated closely (r = -0.97 +/- 0.01) with venous hemoglobin O2 saturation when the muscle was stimulated to contract at 0.25-5.0 Hz. In normal subjects (n = 6) and patients with heart failure (n = 8), 760-800-nm absorption changes from the vastus lateralis muscle were monitored at rest, during progressive maximal bicycle exercise, and during thigh cuff inflation to suprasystolic pressure, an intervention designed to assess minimal hemoglobin-myoglobin oxygenation. Absorption changes were expressed relative to the full physiologic range noted from rest to thigh cuff inflation. During exercise, normal subjects exhibited an initial increase in hemoglobin-myoglobin oxygenation followed by a progressive decrease in oxygenation to 27 +/- 13% of the physiologic range at the peak exercise workload of 140 +/- 9 W. In contrast, patients exhibited an initial decrease in hemoglobin-myoglobin oxygenation with the first workload, followed by a progressive further decrease to 26 +/- 13% of the physiologic range at a peak exercise workload of 60 +/- 8 W, less than half the peak workload noted in the normal subjects. At all exercise loads, hemoglobin-myoglobin oxygenation was significantly less in the patients than in the normal subjects. These data suggest that near-infrared spectroscopy can detect impaired skeletal muscle O2 delivery in patients with heart failure. This technique could provide a valuable method of assessing muscle O2 delivery in patients, particularly before and after therapeutic interventions. The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial studies conducted in isolated canine gracilis muscle demonstrated that 760-800-nm absorption correlated closely (r = -0.97 +/- 0.01) with venous hemoglobin O2 saturation when the muscle was stimulated to contract at 0.25-5.0 Hz. In normal subjects (n = 6) and patients with heart failure (n = 8), 760-800-nm absorption changes from the vastus lateralis muscle were monitored at rest, during progressive maximal bicycle exercise, and during thigh cuff inflation to suprasystolic pressure, an intervention designed to assess minimal hemoglobin-myoglobin oxygenation. Absorption changes were expressed relative to the full physiologic range noted from rest to thigh cuff inflation. During exercise, normal subjects exhibited an initial increase in hemoglobin-myoglobin oxygenation followed by a progressive decrease in oxygenation to 27 +/- 13% of the physiologic range at the peak exercise workload of 140 +/- 9 W. In contrast, patients exhibited an initial decrease in hemoglobin-myoglobin oxygenation with the first workload, followed by a progressive further decrease to 26 +/- 13% of the physiologic range at a peak exercise workload of 60 +/- 8 W, less than half the peak workload noted in the normal subjects. At all exercise loads, hemoglobin-myoglobin oxygenation was significantly less in the patients than in the normal subjects. These data suggest that near-infrared spectroscopy can detect impaired skeletal muscle O2 delivery in patients with heart failure. This technique could provide a valuable method of assessing muscle O2 delivery in patients, particularly before and after therapeutic interventions.The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients with heart failure. The difference between light absorption at 760 and 800 nm was used to assess hemoglobin-myoglobin oxygenation. Initial studies conducted in isolated canine gracilis muscle demonstrated that 760-800-nm absorption correlated closely (r = -0.97 +/- 0.01) with venous hemoglobin O2 saturation when the muscle was stimulated to contract at 0.25-5.0 Hz. In normal subjects (n = 6) and patients with heart failure (n = 8), 760-800-nm absorption changes from the vastus lateralis muscle were monitored at rest, during progressive maximal bicycle exercise, and during thigh cuff inflation to suprasystolic pressure, an intervention designed to assess minimal hemoglobin-myoglobin oxygenation. Absorption changes were expressed relative to the full physiologic range noted from rest to thigh cuff inflation. During exercise, normal subjects exhibited an initial increase in hemoglobin-myoglobin oxygenation followed by a progressive decrease in oxygenation to 27 +/- 13% of the physiologic range at the peak exercise workload of 140 +/- 9 W. In contrast, patients exhibited an initial decrease in hemoglobin-myoglobin oxygenation with the first workload, followed by a progressive further decrease to 26 +/- 13% of the physiologic range at a peak exercise workload of 60 +/- 8 W, less than half the peak workload noted in the normal subjects. At all exercise loads, hemoglobin-myoglobin oxygenation was significantly less in the patients than in the normal subjects. These data suggest that near-infrared spectroscopy can detect impaired skeletal muscle O2 delivery in patients with heart failure. This technique could provide a valuable method of assessing muscle O2 delivery in patients, particularly before and after therapeutic interventions. |
Author | Wilson, J R Ferraro, N McCully, K Chance, B Lanoce, V Mancini, D M |
Author_xml | – sequence: 1 givenname: J R surname: Wilson fullname: Wilson, J R organization: Department of Medicine, University of Pennsylvania, Philadelphia – sequence: 2 givenname: D M surname: Mancini fullname: Mancini, D M organization: Department of Medicine, University of Pennsylvania, Philadelphia – sequence: 3 givenname: K surname: McCully fullname: McCully, K organization: Department of Medicine, University of Pennsylvania, Philadelphia – sequence: 4 givenname: N surname: Ferraro fullname: Ferraro, N organization: Department of Medicine, University of Pennsylvania, Philadelphia – sequence: 5 givenname: V surname: Lanoce fullname: Lanoce, V organization: Department of Medicine, University of Pennsylvania, Philadelphia – sequence: 6 givenname: B surname: Chance fullname: Chance, B organization: Department of Medicine, University of Pennsylvania, Philadelphia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19599629$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/2598429$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUVJSTYf914CurQ3u5JlfR3L0jaBkEJJzkKWx0StV3YleUP--2izSwKBnobh_d7AvHeKjsIUAKFPlNSUCvqV0Hp9_btWpBY1FUJ9QCvKm7ZqOdNHaEUI0ZVkTXOCTlP6U1bBJD9Gxw3Xqm30Cm1vp-DD1ia_BdxDBpf9FPA04PQXRsh2xJsluRHwEnqIM8RhSTvi0ecHHMDGyoch2gg9TnNxxym5aX7CPuDZZg8hpz37UNiMB-vHJcI5-jjYMcHFYZ6h-x_f79ZX1c2vn9frbzeVY4LnSoPoeisbLSTlCuTAO2itow46RVWvZSfZAEx1AAwaSZVuLCUd77XlXUsYO0Nf9nfnOP1bIGWz8cnBONoA05KM1Ey1SpICXh7ApdtAb-boNzY-mUNQRf980G1ydiwfB-fTK0Y111q8cGTPuRJEijC8IcTsKjOEmlKZUcQIs6usWMQ7i_PZ7mrIsaT1f-MzmsedyQ |
CODEN | CIRCAZ |
CitedBy_id | crossref_primary_10_1016_j_ergon_2012_11_006 crossref_primary_10_1002_mrm_1910310303 crossref_primary_10_1097_00005768_200109000_00010 crossref_primary_10_1111_j_1748_1716_2011_02363_x crossref_primary_10_1177_00220345990780111001 crossref_primary_10_1152_ajpheart_91520_2007 crossref_primary_10_1117_1_2805437 crossref_primary_10_1016_j_ejheart_2008_05_009 crossref_primary_10_1183_13993003_01022_2016 crossref_primary_10_1002_jor_1100150405 crossref_primary_10_1016_j_ijcard_2012_05_124 crossref_primary_10_1016_j_niox_2020_06_001 crossref_primary_10_1016_0167_5273_94_90060_4 crossref_primary_10_1366_0003702971939901 crossref_primary_10_1046_j_1365_201x_2001_00830_x crossref_primary_10_1002_mrm_1910300616 crossref_primary_10_1016_0735_1097_91_90605_9 crossref_primary_10_1152_japplphysiol_00907_2004 crossref_primary_10_1097_00005768_200210000_00013 crossref_primary_10_1249_MSS_0000000000003238 crossref_primary_10_1249_MSS_0000000000003239 crossref_primary_10_1366_000370207781745928 crossref_primary_10_1007_s12576_019_00697_2 crossref_primary_10_1142_S1793545811001514 crossref_primary_10_1016_j_cardfail_2008_02_001 crossref_primary_10_1007_s00246_019_02118_y crossref_primary_10_1139_apnm_2013_0347 crossref_primary_10_1161_01_CIR_94_10_2492 crossref_primary_10_1016_0735_1097_94_90858_3 crossref_primary_10_1016_0021_9290_91_90385_Z crossref_primary_10_1002_lpor_202300752 crossref_primary_10_1016_j_rbmret_2004_02_007 crossref_primary_10_1016_j_jvs_2011_11_140 crossref_primary_10_1152_ajpregu_00290_2018 crossref_primary_10_1016_S0003_9969_99_00082_5 crossref_primary_10_1097_00005768_199901000_00015 crossref_primary_10_1080_001401300184369 crossref_primary_10_5585_23_2024_26178 crossref_primary_10_1097_01_PRS_0000095940_96294_A5 crossref_primary_10_1056_NEJM200008313430907 crossref_primary_10_1111_j_1475_097X_1995_tb00427_x crossref_primary_10_1016_j_ergon_2009_02_004 crossref_primary_10_1155_2013_452857 crossref_primary_10_1016_0735_1097_93_90340_7 crossref_primary_10_1007_s00421_009_1125_3 crossref_primary_10_1139_h2012_036 crossref_primary_10_1152_japplphysiol_91102_2008 crossref_primary_10_1007_s10043_003_0493_x crossref_primary_10_1152_jappl_2001_90_2_511 crossref_primary_10_7133_jca_52_103 crossref_primary_10_1097_00044067_200205000_00010 crossref_primary_10_1016_0002_9149_92_90912_I crossref_primary_10_1002_phy2_11 crossref_primary_10_1007_s00125_008_1153_2 crossref_primary_10_1002__SICI_1097_4598_199905_22_5_621__AID_MUS11_3_0_CO_2_D crossref_primary_10_1039_c2jm33742h crossref_primary_10_1016_j_ergon_2008_11_002 crossref_primary_10_1016_S0735_1097_96_00556_6 crossref_primary_10_1177_2058460119850115 crossref_primary_10_1016_j_ergon_2009_02_002 crossref_primary_10_1016_j_rcl_2004_07_002 crossref_primary_10_1366_0003702991946541 crossref_primary_10_1097_00005373_199906000_00021 crossref_primary_10_1007_s00421_017_3685_y crossref_primary_10_1097_00005768_199703000_00017 crossref_primary_10_1042_CS20040175 crossref_primary_10_1152_japplphysiol_00883_2012 crossref_primary_10_1007_s00421_008_0711_0 crossref_primary_10_1093_eurjpc_zwad239 crossref_primary_10_1016_S0002_9149_97_00672_3 crossref_primary_10_1152_jappl_2000_88_1_315 crossref_primary_10_1249_MSS_0000000000003241 crossref_primary_10_1186_cc8005 crossref_primary_10_1080_17461391_2019_1669717 crossref_primary_10_1136_bmjsem_2015_000062 crossref_primary_10_1046_j_1365_201x_1999_00548_x crossref_primary_10_1016_0002_8703_95_90317_8 crossref_primary_10_1016_0735_1097_96_00134_9 crossref_primary_10_6000_1929_5634_2012_01_02_5 crossref_primary_10_1007_s00421_005_0008_5 crossref_primary_10_1016_j_rmed_2021_106642 crossref_primary_10_1016_j_rmed_2019_105815 crossref_primary_10_1364_OE_17_012132 crossref_primary_10_1152_ajpregu_00203_2017 crossref_primary_10_1002_adfm_200901630 crossref_primary_10_1002_aisy_202200351 crossref_primary_10_1117_1_JBO_21_9_091314 crossref_primary_10_1007_BF02077636 crossref_primary_10_1007_BF02534086 crossref_primary_10_1152_japplphysiol_00920_2005 crossref_primary_10_1016_1011_1344_92_80005_G crossref_primary_10_1016_j_ejvs_2009_06_011 crossref_primary_10_1113_JP277580 crossref_primary_10_1016_S0300_2896_01_75075_2 crossref_primary_10_3892_etm_2018_5779 crossref_primary_10_1249_MSS_0000000000001001 crossref_primary_10_2152_jmi_64_228 crossref_primary_10_1080_10790268_2020_1754649 crossref_primary_10_1152_japplphysiol_01460_2006 crossref_primary_10_1249_MSS_0b013e3182100261 crossref_primary_10_1016_j_rhum_2006_02_021 crossref_primary_10_1177_0267659115575419 crossref_primary_10_1249_01_MSS_0000155401_81284_76 crossref_primary_10_1152_japplphysiol_00782_2009 crossref_primary_10_1366_0003702981943581 crossref_primary_10_1016_0003_9969_96_00009_X crossref_primary_10_1088_0150_536X_28_6_006 crossref_primary_10_1152_jappl_1999_87_1_348 crossref_primary_10_1255_nirn_929 crossref_primary_10_4250_jcvi_2019_27_e31 crossref_primary_10_1007_s00421_010_1512_9 crossref_primary_10_1098_rsta_2009_0090 crossref_primary_10_1097_00007632_199911150_00008 crossref_primary_10_1016_j_resp_2010_11_009 crossref_primary_10_1016_S0033_0620_05_80018_0 crossref_primary_10_7600_jpfsm_2_203 crossref_primary_10_1016_j_jbspin_2006_02_013 crossref_primary_10_2170_physiolsci_RP001807 crossref_primary_10_1007_BF00634377 crossref_primary_10_1097_00005768_200203000_00020 crossref_primary_10_1152_ajpheart_00596_2009 crossref_primary_10_1016_j_resp_2014_02_011 crossref_primary_10_1016_j_ergon_2009_01_009 crossref_primary_10_1080_10790268_2020_1798137 crossref_primary_10_1253_jcj_62_649 crossref_primary_10_1142_S1793545811001381 crossref_primary_10_1242_jeb_052233 crossref_primary_10_1016_j_hrthm_2012_05_003 crossref_primary_10_2337_diacare_27_8_1942 crossref_primary_10_1097_HCR_0b013e3181b4ca4e crossref_primary_10_1098_rsta_2011_0298 crossref_primary_10_1053_jcan_2001_26544 crossref_primary_10_1076_apab_107_2_159_4343 crossref_primary_10_1152_ajpregu_1999_276_6_R1682 crossref_primary_10_1016_0002_9343_93_90264_P crossref_primary_10_1177_14799731241246802 crossref_primary_10_1253_jcj_63_97 crossref_primary_10_1146_annurev_bioeng_2_1_715 crossref_primary_10_1177_0003702815620562 crossref_primary_10_1016_j_scispo_2007_02_002 crossref_primary_10_1152_japplphysiol_01380_2010 crossref_primary_10_1366_000370202760295476 crossref_primary_10_3389_fphys_2020_00195 crossref_primary_10_1039_C6RA05123E crossref_primary_10_1152_japplphysiol_01160_2007 crossref_primary_10_1249_MSS_0000000000000696 crossref_primary_10_1016_0007_1226_95_90024_1 crossref_primary_10_1117_1_1463048 crossref_primary_10_1152_ajpendo_00462_2016 crossref_primary_10_1016_S0003_9969_99_00059_X crossref_primary_10_1016_S0095_5108_18_30028_9 crossref_primary_10_1249_MSS_0000000000000334 crossref_primary_10_1016_S0002_9149_99_80571_2 crossref_primary_10_2170_jjphysiol_51_599 crossref_primary_10_1152_jappl_1999_86_2_687 |
ContentType | Journal Article |
Copyright | 1991 INIST-CNRS |
Copyright_xml | – notice: 1991 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/01.CIR.80.6.1668 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 1674 |
ExternalDocumentID | 2598429 19599629 10_1161_01_CIR_80_6_1668 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL-01766 – fundername: NHLBI NIH HHS grantid: R0-1 HL-34834 |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 0ZK 18M 1CY 1J1 29B 2FS 2WC 354 40H 41~ 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAEJM AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO AAYOK AAYXX ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADCYY ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFBFQ AFCHL AFDTB AFEXH AFFNX AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJJEV AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BS7 BYPQX C1A C45 CITATION CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FEDTE FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HVGLF HZ~ H~9 IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B M18 MVM N4W N9A NEJ N~7 N~B N~M O9- OAG OAH OBH OCB OCUKA ODA ODMTH OGEVE OHH OHT OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WHG WOQ WOW X3V X3W X7M XXN XYM YFH YOC YQJ YSK YXB YYM YYP YZZ ZFV ZGI ZXP ZY1 ZZMQN ~H1 IQODW ACIJW ACRZS AWKKM CGR CUY CVF ECM EIF NPM OJAPA OLW PKN RHF 7X8 |
ID | FETCH-LOGICAL-c365t-9e6bda72967158e7f5be4ac1ceb818d97b73fe38bee3e271892a10b5d9a5b4033 |
ISSN | 0009-7322 |
IngestDate | Thu Jul 10 17:38:04 EDT 2025 Wed Feb 19 02:36:15 EST 2025 Mon Jul 21 09:18:49 EDT 2025 Tue Jul 01 02:05:56 EDT 2025 Thu Apr 24 23:05:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Human Heart failure Regional perfusion Near infrared spectrometry Cardiovascular disease Exploration Striated muscle Oxygenation |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-9e6bda72967158e7f5be4ac1ceb818d97b73fe38bee3e271892a10b5d9a5b4033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 2598429 |
PQID | 79384870 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_79384870 pubmed_primary_2598429 pascalfrancis_primary_19599629 crossref_primary_10_1161_01_CIR_80_6_1668 crossref_citationtrail_10_1161_01_CIR_80_6_1668 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1989-12-01 |
PublicationDateYYYYMMDD | 1989-12-01 |
PublicationDate_xml | – month: 12 year: 1989 text: 1989-12-01 day: 01 |
PublicationDecade | 1980 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 1989 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
SSID | ssj0006375 |
Score | 1.7553854 |
Snippet | The present study was undertaken to determine whether near-infrared spectroscopy can be used to noninvasively assess skeletal muscle oxygenation in patients... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1668 |
SubjectTerms | Animals Biological and medical sciences Cardiology. Vascular system Dogs Exercise Test Heart Heart Failure - diagnosis Heart failure, cardiogenic pulmonary edema, cardiac enlargement Humans Medical sciences Middle Aged Muscle Contraction Muscles - blood supply Myoglobin - metabolism Oxygen Consumption Oxyhemoglobins - metabolism Regional Blood Flow - physiology Spectrophotometry, Infrared - methods |
Title | Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure |
URI | https://www.ncbi.nlm.nih.gov/pubmed/2598429 https://www.proquest.com/docview/79384870 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGEGgSQrAxUT6GHxASmtLFcWInj1Nh2oa2B7RJe4vs2JEq1qRqkwn49Vw7ztfYEPAStUmcpD0n9r32vfcg9J5zLaji1BNJrrwwzLQn4buXg-vAEgIWtLLVPs_Z8WV4ehVdbWx8H0Qt1ZWcZj_vzCv5H1RhH-BqsmT_AdnuorADPgO-sAWEYftXGJ-budQbYSPQla501pp_628wmpg0x0W9hjZW7Ha11Ku8NpNjzeRrARz34ClWNgTdZlyaypbl0mYCunqrLvnNyF5X-7mYX7sCJF1xg_kqcwJgd-n6DOYZ-rqQp32Q4pmp9lE0ue77g3iCWe0UsLtJ2CNt9OjLfvFIiTYUq4_6aHvfxOM0GPW-jY6TY9mwKyWs0dv5vY9nxOYtTGcnX6exP2XT26cCSsuFxRycuzh0P3VcVtsdeYAeBuBgGO2LTydfujGcUR61GnzmidsFbkYObt94Cz1y1xqZNk-WYg1vWd7Io9zvv1g75uIZeuocEHzYsOk52tDFNto5LERVLn7gD9iGBNu1lm30-MxFXuygmwHXcMc1XOa45RpuuIbHXMOGP3jENTzkGp4XuOVac67lGnZce4Eujz5fzI49p9nhZZRFlZdoJpUAj41xEsWa55HUochIpiWYhirhktNc01hqTXUAhlESCOLLSCUikqFP6S7aLMpCv0SYERVlJNcZp2GYE5kQrjjnSsfQTgT-BB20f3eauYL2RlflOrWOLSOpT1KAKo39lKUGqgn62LVYNsVc_nDu3gjBvkFiKhoFyQS9ayFNoUs262yi0GW9TmHIi0MYBydot0G6a-uI8uq-A6_RVv_ivEGb1arWb8HoreSe5ecvwhOsew |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+detection+of+skeletal+muscle+underperfusion+with+near-infrared+spectroscopy+in+patients+with+heart+failure&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Wilson%2C+J+R&rft.au=Mancini%2C+D+M&rft.au=McCully%2C+K&rft.au=Ferraro%2C+N&rft.date=1989-12-01&rft.issn=0009-7322&rft.volume=80&rft.issue=6&rft.spage=1668&rft_id=info:doi/10.1161%2F01.CIR.80.6.1668&rft_id=info%3Apmid%2F2598429&rft.externalDocID=2598429 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |