Zebrafish GSDMEb Cleavage-Gated Pyroptosis Drives Septic Acute Kidney Injury In Vivo
The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway–induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the...
Saved in:
Published in | The Journal of immunology (1950) Vol. 204; no. 7; pp. 1929 - 1942 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2020
|
Online Access | Get full text |
ISSN | 0022-1767 1550-6606 1550-6606 |
DOI | 10.4049/jimmunol.1901456 |
Cover
Loading…
Abstract | The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway–induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide–staining method and reveal that the caspy2–GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies. |
---|---|
AbstractList | The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway–induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide–staining method and reveal that the caspy2–GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies. The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway-induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide-staining method and reveal that the caspy2-GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies.The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway-induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide-staining method and reveal that the caspy2-GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies. |
Author | Liu, Qin Yang, Dahai Gu, Zhaoyan Chen, Weijie Zhang, Yuanxing Wang, Zhuang Hou, Qing Liu, Zhihong Mu, Di |
Author_xml | – sequence: 1 givenname: Zhuang surname: Wang fullname: Wang, Zhuang – sequence: 2 givenname: Zhaoyan surname: Gu fullname: Gu, Zhaoyan – sequence: 3 givenname: Qing surname: Hou fullname: Hou, Qing – sequence: 4 givenname: Weijie surname: Chen fullname: Chen, Weijie – sequence: 5 givenname: Di surname: Mu fullname: Mu, Di – sequence: 6 givenname: Yuanxing surname: Zhang fullname: Zhang, Yuanxing – sequence: 7 givenname: Qin surname: Liu fullname: Liu, Qin – sequence: 8 givenname: Zhihong surname: Liu fullname: Liu, Zhihong – sequence: 9 givenname: Dahai orcidid: 0000-0001-6602-8653 surname: Yang fullname: Yang, Dahai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32111733$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kL1PwzAQRy0EglLYmZBHlsA5TpxkRAUKAgQSHwNLZDtncJXExXYq9b-nqIUBiem3vHc6vX2y3bseCTlicJpBVp3NbNcNvWtPWQUsy8UWGbE8h0QIENtkBJCmCStEsUf2Q5gBgIA02yV7PGWMFZyPyPMbKi-NDR90-nRxf6nopEW5kO-YTGXEhj4uvZtHF2ygF94uMNAnnEer6bkeItJb2_S4pDf9bPDfQ1_twh2QHSPbgIebHZOXq8vnyXVy9zC9mZzfJZqLPCaVVqtHAYqyMLlQqmwMrzKhKp2DQZ0WRgtpUmwaY0BIDsjTUislS6ObAko-Jifru3PvPgcMse5s0Ni2skc3hDrlosoynpfFCj3eoIPqsKnn3nbSL-ufEisA1oD2LgSP5hdhUH_Hrn9i15vYK0X8UbSNMlrXRy9t-7_4Bc5EhoM |
CitedBy_id | crossref_primary_10_1016_j_retram_2023_103419 crossref_primary_10_1098_rsob_220049 crossref_primary_10_1016_j_dci_2022_104404 crossref_primary_10_1016_j_freeradbiomed_2021_07_009 crossref_primary_10_1016_j_dci_2024_105139 crossref_primary_10_3389_fimmu_2021_711939 crossref_primary_10_7554_eLife_89974_3 crossref_primary_10_1016_j_dci_2021_104203 crossref_primary_10_1615_CritRevImmunol_2023051651 crossref_primary_10_3389_fimmu_2023_1065181 crossref_primary_10_1186_s12915_021_01220_z crossref_primary_10_1016_j_ymthe_2022_12_008 crossref_primary_10_1038_s41467_024_54826_6 crossref_primary_10_7554_eLife_86373 crossref_primary_10_1016_j_scitotenv_2023_165208 crossref_primary_10_1089_ars_2020_8243 crossref_primary_10_1002_aro2_100 crossref_primary_10_1007_s42995_024_00237_x crossref_primary_10_1016_j_ecoenv_2022_113881 crossref_primary_10_3389_fimmu_2023_1188023 crossref_primary_10_1016_j_celrep_2024_114324 crossref_primary_10_1016_j_biopha_2023_115183 crossref_primary_10_1152_ajpcell_00394_2020 crossref_primary_10_1016_j_celrep_2023_112414 crossref_primary_10_1038_s41419_022_04896_5 crossref_primary_10_1126_sciadv_adh4054 crossref_primary_10_1159_000531642 crossref_primary_10_1016_j_cirep_2025_200216 crossref_primary_10_1016_j_ijbiomac_2024_132476 crossref_primary_10_1080_0886022X_2025_2472987 crossref_primary_10_1016_j_bbrc_2024_151013 crossref_primary_10_1016_j_fsi_2022_10_035 crossref_primary_10_1097_SHK_0000000000001881 crossref_primary_10_3389_fimmu_2021_720877 crossref_primary_10_3390_biology10111218 crossref_primary_10_1016_j_dci_2023_105060 crossref_primary_10_1002_SMMD_20240010 crossref_primary_10_1016_j_fsi_2023_109103 crossref_primary_10_3389_fcell_2022_952015 crossref_primary_10_1038_s41467_023_41878_3 crossref_primary_10_3389_fimmu_2022_1110322 crossref_primary_10_7554_eLife_89974 crossref_primary_10_1371_journal_pbio_3002062 crossref_primary_10_3389_fphar_2021_780790 crossref_primary_10_1159_000535894 crossref_primary_10_1016_j_fsi_2023_108838 crossref_primary_10_4049_jimmunol_2300217 crossref_primary_10_4049_jimmunol_2200690 crossref_primary_10_7554_eLife_92362 crossref_primary_10_1111_jfd_13746 crossref_primary_10_1016_j_watbs_2024_100322 crossref_primary_10_1016_j_tcb_2021_03_004 crossref_primary_10_1186_s42826_021_00103_2 crossref_primary_10_3390_ijms22094389 crossref_primary_10_1038_s41419_021_03458_5 crossref_primary_10_1016_j_phrs_2020_105408 crossref_primary_10_1016_j_fsi_2022_09_041 crossref_primary_10_2174_0109298673255656231003111621 crossref_primary_10_1016_j_fsi_2022_10_017 crossref_primary_10_1007_s11655_024_3656_1 crossref_primary_10_1016_j_dci_2021_104078 crossref_primary_10_1002_imt2_181 crossref_primary_10_7554_eLife_92362_4 crossref_primary_10_1016_j_fsi_2023_108866 crossref_primary_10_4049_jimmunol_2001335 crossref_primary_10_1186_s12917_022_03395_1 crossref_primary_10_7717_peerj_16214 crossref_primary_10_1172_JCI188358 crossref_primary_10_1038_s41419_022_05066_3 crossref_primary_10_1016_j_fsi_2023_109285 crossref_primary_10_1016_j_aquaculture_2022_739041 crossref_primary_10_1155_2021_6686617 crossref_primary_10_1016_j_aquaculture_2024_741116 crossref_primary_10_3390_ijms26062589 crossref_primary_10_1016_j_aninu_2024_09_002 crossref_primary_10_3389_fimmu_2023_1114129 |
Cites_doi | 10.1111/cmi.13010 10.1038/s41419-018-1023-x 10.1177/0884533617695243 10.1016/j.bpa.2017.09.001 10.1126/science.1240248 10.1159/000477181 10.1111/imr.12287 10.5483/BMBRep.2017.50.2.011 10.3389/fmicb.2015.00373 10.1126/science.1240988 10.1038/nature22393 10.1056/NEJMra1208623 10.1073/pnas.1607769113 10.1002/wsbm.1320 10.2119/molmed.2014.00076 10.1084/jem.20172222 10.1016/j.immuni.2015.10.009 10.1016/j.immuni.2018.09.021 10.1111/cmi.12536 10.1016/j.bbcan.2019.05.001 10.1371/journal.pone.0047299 10.2119/molmed.2016.00188 10.2174/1568026617666170130112109 10.1128/IAI.00543-12 10.1038/s41467-018-04984-1 10.1038/s41467-018-03409-3 10.1038/s41418-019-0366-x 10.1007/s00441-017-2785-7 10.1038/nprot.2016.142 10.1038/nature15514 10.1097/MCC.0000000000000153 10.1038/nature15541 10.1001/jama.2013.2194 10.1016/j.fsi.2019.02.008 10.1038/cddis.2017.390 10.1093/ndt/gfx026 10.1038/nri.2017.36 10.1159/000453218 10.1038/nrd4627 10.1023/A:1009680229931 10.4049/jimmunol.1800498 10.1016/j.jcrc.2015.09.017 10.3389/fimmu.2018.00867 10.1016/j.molimm.2014.06.034 10.4049/jimmunol.1900383 10.1007/s00018-019-03060-1 10.1073/pnas.1800562115 10.1084/jem.20160027 10.1172/JCI94495 |
ContentType | Journal Article |
Copyright | Copyright © 2020 by The American Association of Immunologists, Inc. |
Copyright_xml | – notice: Copyright © 2020 by The American Association of Immunologists, Inc. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.4049/jimmunol.1901456 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 1942 |
ExternalDocumentID | 32111733 10_4049_jimmunol_1901456 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 0R~ 18M 2WC 34G 39C 53G 5GY 5RE 5VS 5WD 79B 85S AARDX AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABOCM ABPPZ ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADIPN ADNWM AENEX AETEA AFHIN AFOSN AFRAH AGORE AHMMS AHWXS AIZAD ALMA_UNASSIGNED_HOLDINGS ARBBW BAWUL BCRHZ BTFSW CITATION D0L DIK DU5 E3Z EBS EJD F5P FRP GX1 IH2 K-O KOP KQ8 L7B OCZFY OK1 OWPYF P0W P2P PQQKQ R.V RHI ROX RZQ SJN TR2 TWZ W8F WH7 WOQ X7M XSW XTH YHG NPM RHF YIN 7X8 |
ID | FETCH-LOGICAL-c365t-9cb66000787f56bb8df3946b9c50fec27fc6af2eddff06a30e328cbba8fcd7083 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Fri Jul 11 06:06:43 EDT 2025 Wed Feb 19 02:30:50 EST 2025 Tue Jul 01 05:26:30 EDT 2025 Thu Apr 24 22:52:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights Copyright © 2020 by The American Association of Immunologists, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-9cb66000787f56bb8df3946b9c50fec27fc6af2eddff06a30e328cbba8fcd7083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6602-8653 |
PMID | 32111733 |
PQID | 2369443587 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2369443587 pubmed_primary_32111733 crossref_primary_10_4049_jimmunol_1901456 crossref_citationtrail_10_4049_jimmunol_1901456 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 2020-Apr-01 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2020 |
References | Ostermann (2025030417511328400_r14) 2017; 31 Opal (2025030417511328400_r7) 2013; 309 Chen (2025030417511328400_r55) 2019 Cao (2025030417511328400_r36) 2015; 30 Lee (2025030417511328400_r35) 2017; 137 White (2025030417511328400_r56) 2016; 11 Taeb (2025030417511328400_r2) 2017; 32 Yang (2025030417511328400_r38) 2018; 115 MacRae (2025030417511328400_r22) 2015; 14 van der Poll (2025030417511328400_r1) 2017; 17 Yang (2025030417511328400_r40) 2015; 43 Jorgensen (2025030417511328400_r39) 2015; 265 Kim (2025030417511328400_r44) 2018; 49 Hagar (2025030417511328400_r12) 2013; 341 Malhotra (2025030417511328400_r13) 2017; 32 Kayagaki (2025030417511328400_r42) 2013; 341 Kang (2025030417511328400_r49) 2018 Deng (2025030417511328400_r43) 2018 Rathkey (2025030417511328400_r54) 2018 Aglietti (2025030417511328400_r11) 2016; 113 Zarbock (2025030417511328400_r16) 2014; 20 Li (2025030417511328400_r25) 2018; 201 Shi (2025030417511328400_r8) 2015; 526 Liu (2025030417511328400_r41) 2019; 76 Wu (2025030417511328400_r28) 2018 Shan (2025030417511328400_r30) 2015; 6 Oblak (2025030417511328400_r4) 2015; 63 Shum (2025030417511328400_r15) 2016; 31 Jamme (2025030417511328400_r52) 2018; 68 Martín-Sánchez (2025030417511328400_r10) 2017; 8 Vojtech (2025030417511328400_r24) 2012; 80 Boucher (2025030417511328400_r32) 2018; 215 Wang (2025030417511328400_r33) 2018; 371 Zhou (2025030417511328400_r53) 2019; 1872 Wu (2025030417511328400_r18) 2016; 40 Mcdonald (2025030417511328400_r46) 2015; 20 Chung (2025030417511328400_r17) 2012; 7 Kayagaki (2025030417511328400_r9) 2015; 526 Yang (2025030417511328400_r23) 2018; 9 Vincent (2025030417511328400_r26) 2016; 18 Jiang (2025030417511328400_r57) 2019; 203 Wang (2025030417511328400_r45) 2020; 27 Shankaran (2025030417511328400_r29) 2017 Wang (2025030417511328400_r27) 2017; 547 Rana (2025030417511328400_r51) 2001; 6 Chu (2025030417511328400_r48) 2018; 9 Wen (2025030417511328400_r31) 2019; 21 Kim (2025030417511328400_r6) 2017; 50 Zhang (2025030417511328400_r19) 2018; 9 Cheng (2025030417511328400_r50) 2017; 127 Yoganantharjah (2025030417511328400_r21) 2017; 17 Wang (2025030417511328400_r37) 2019; 87 Napier (2025030417511328400_r47) 2016; 213 Dunster (2025030417511328400_r34) 2016; 8 Zhao (2025030417511328400_r5) 2018; 9 Philip (2025030417511328400_r20) 2017; 23 Angus (2025030417511328400_r3) 2013; 369 |
References_xml | – volume: 21 start-page: e13010 year: 2019 ident: 2025030417511328400_r31 article-title: Dysregulated haemolysin promotes bacterial outer membrane vesicles-induced pyroptotic-like cell death in zebrafish publication-title: Cell. Microbiol. doi: 10.1111/cmi.13010 – volume: 9 start-page: 983 year: 2018 ident: 2025030417511328400_r19 article-title: Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury publication-title: Cell Death Dis. doi: 10.1038/s41419-018-1023-x – volume: 32 start-page: 296 year: 2017 ident: 2025030417511328400_r2 article-title: Sepsis: current definition, pathophysiology, diagnosis, and management publication-title: Nutr. Clin. Pract. doi: 10.1177/0884533617695243 – volume: 31 start-page: 305 year: 2017 ident: 2025030417511328400_r14 article-title: Pathophysiology of AKI publication-title: Best Pract. Res. Clin. Anaesthesiol. doi: 10.1016/j.bpa.2017.09.001 – volume: 341 start-page: 1246 year: 2013 ident: 2025030417511328400_r42 article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4 publication-title: Science doi: 10.1126/science.1240248 – volume: 137 start-page: 282 year: 2017 ident: 2025030417511328400_r35 article-title: Role of immune cells in acute kidney injury and repair publication-title: Nephron doi: 10.1159/000477181 – volume: 265 start-page: 130 year: 2015 ident: 2025030417511328400_r39 article-title: Pyroptotic cell death defends against intracellular pathogens publication-title: Immunol. Rev. doi: 10.1111/imr.12287 – volume: 50 start-page: 55 year: 2017 ident: 2025030417511328400_r6 article-title: Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14 publication-title: BMB Rep. doi: 10.5483/BMBRep.2017.50.2.011 – volume: 6 start-page: 373 year: 2015 ident: 2025030417511328400_r30 article-title: Immersion infection of germ-free zebrafish with Listeria monocytogenes induces transient expression of innate immune response genes publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00373 – volume: 341 start-page: 1250 year: 2013 ident: 2025030417511328400_r12 article-title: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock publication-title: Science doi: 10.1126/science.1240988 – volume: 30 start-page: 183 year: 2015 ident: 2025030417511328400_r36 article-title: Macrophages in kidney injury, inflammation, and fibrosis publication-title: Physiology (Bethesda) – volume: 547 start-page: 99 year: 2017 ident: 2025030417511328400_r27 article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin publication-title: Nature doi: 10.1038/nature22393 – volume: 369 start-page: 840 year: 2013 ident: 2025030417511328400_r3 article-title: Severe sepsis and septic shock publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1208623 – start-page: 740 volume-title: Immunity year: 2018 ident: 2025030417511328400_r43 article-title: The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis – volume: 113 start-page: 7858 year: 2016 ident: 2025030417511328400_r11 article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1607769113 – volume: 8 start-page: 87 year: 2016 ident: 2025030417511328400_r34 article-title: The macrophage and its role in inflammation and tissue repair: mathematical and systems biology approaches publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med. doi: 10.1002/wsbm.1320 – volume: 20 start-page: 639 year: 2015 ident: 2025030417511328400_r46 article-title: Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling publication-title: Mol. Med. doi: 10.2119/molmed.2014.00076 – start-page: 112 volume-title: Dev. Cell year: 2018 ident: 2025030417511328400_r28 article-title: A rapid method for directed gene knockout for screening in G0 zebrafish – volume: 215 start-page: 827 year: 2018 ident: 2025030417511328400_r32 article-title: Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity publication-title: J. Exp. Med. doi: 10.1084/jem.20172222 – volume: 43 start-page: 923 year: 2015 ident: 2025030417511328400_r40 article-title: Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock publication-title: Immunity doi: 10.1016/j.immuni.2015.10.009 – volume: 49 start-page: 582 year: 2018 ident: 2025030417511328400_r44 article-title: HMGB1: LPS delivery vehicle for caspase-11-mediated pyroptosis publication-title: Immunity doi: 10.1016/j.immuni.2018.09.021 – volume: 18 start-page: 591 year: 2016 ident: 2025030417511328400_r26 article-title: Macrophages mediate flagellin induced inflammasome activation and host defense in zebrafish publication-title: Cell. Microbiol. doi: 10.1111/cmi.12536 – volume: 1872 start-page: 1 year: 2019 ident: 2025030417511328400_r53 article-title: The role of pyroptosis in gastrointestinal cancer and immune responses to intestinal microbial infection publication-title: Biochim. Biophys. Acta Rev. Cancer doi: 10.1016/j.bbcan.2019.05.001 – volume: 7 start-page: e47299 year: 2012 ident: 2025030417511328400_r17 article-title: Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney publication-title: PLoS One doi: 10.1371/journal.pone.0047299 – start-page: eaat2738 volume-title: Sci. Immunol. year: 2018 ident: 2025030417511328400_r54 article-title: Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis – volume: 23 start-page: 134 year: 2017 ident: 2025030417511328400_r20 article-title: Development of a zebrafish sepsis model for high-throughput drug discovery publication-title: Mol. Med. doi: 10.2119/molmed.2016.00188 – volume: 17 start-page: 2041 year: 2017 ident: 2025030417511328400_r21 article-title: The use of the zebrafish model to aid in drug discovery and target validation publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026617666170130112109 – volume: 80 start-page: 2878 year: 2012 ident: 2025030417511328400_r24 article-title: Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection publication-title: Infect. Immun. doi: 10.1128/IAI.00543-12 – volume: 9 start-page: 3052 year: 2018 ident: 2025030417511328400_r23 article-title: Sensing of cytosolic LPS through caspy2 pyrin domain mediates noncanonical inflammasome activation in zebrafish publication-title: Nat. Commun. doi: 10.1038/s41467-018-04984-1 – volume: 9 start-page: 996 year: 2018 ident: 2025030417511328400_r48 article-title: The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages publication-title: Nat. Commun. doi: 10.1038/s41467-018-03409-3 – start-page: 31.9.1 volume-title: Curr. Protoc. Mol. Biol. year: 2017 ident: 2025030417511328400_r29 article-title: CRISPR/Cas9-directed gene editing for the generation of loss-of-function mutants in high-throughput zebrafish F0 screens – volume: 27 start-page: 466 year: 2020 ident: 2025030417511328400_r45 article-title: Magnesium protects against sepsis by blocking gasdermin D N-terminal-induced pyroptosis publication-title: Cell Death Differ. doi: 10.1038/s41418-019-0366-x – volume: 371 start-page: 531 year: 2018 ident: 2025030417511328400_r33 article-title: Neutrophils in tissue injury and repair publication-title: Cell Tissue Res. doi: 10.1007/s00441-017-2785-7 – volume: 11 start-page: 2432 year: 2016 ident: 2025030417511328400_r56 article-title: ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.142 – start-page: eaav5562 volume-title: Sci. Adv. year: 2019 ident: 2025030417511328400_r55 article-title: cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis – volume: 526 start-page: 660 year: 2015 ident: 2025030417511328400_r8 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature doi: 10.1038/nature15514 – volume: 68 start-page: 156 year: 2018 ident: 2025030417511328400_r52 article-title: [Acute kidney injury by acute tubular necrosis] publication-title: Rev. Prat. – volume: 20 start-page: 588 year: 2014 ident: 2025030417511328400_r16 article-title: Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies publication-title: Curr. Opin. Crit. Care doi: 10.1097/MCC.0000000000000153 – volume: 526 start-page: 666 year: 2015 ident: 2025030417511328400_r9 article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling publication-title: Nature doi: 10.1038/nature15541 – volume: 309 start-page: 1154 year: 2013 ident: 2025030417511328400_r7 article-title: Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial publication-title: JAMA doi: 10.1001/jama.2013.2194 – volume: 87 start-page: 565 year: 2019 ident: 2025030417511328400_r37 article-title: Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2019.02.008 – volume: 8 start-page: e2984 year: 2017 ident: 2025030417511328400_r10 article-title: Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1β release publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.390 – volume: 32 start-page: 814 year: 2017 ident: 2025030417511328400_r13 article-title: A risk prediction score for acute kidney injury in the intensive care unit publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfx026 – volume: 17 start-page: 407 year: 2017 ident: 2025030417511328400_r1 article-title: The immunopathology of sepsis and potential therapeutic targets publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.36 – volume: 40 start-page: 1692 year: 2016 ident: 2025030417511328400_r18 article-title: MiR-155 is involved in renal ischemia-reperfusion injury via direct targeting of FoxO3a and regulating renal tubular cell pyroptosis publication-title: Cell. Physiol. Biochem. doi: 10.1159/000453218 – volume: 14 start-page: 721 year: 2015 ident: 2025030417511328400_r22 article-title: Zebrafish as tools for drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4627 – volume: 6 start-page: 83 year: 2001 ident: 2025030417511328400_r51 article-title: Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications publication-title: Apoptosis doi: 10.1023/A:1009680229931 – volume: 201 start-page: 1946 year: 2018 ident: 2025030417511328400_r25 article-title: Characterization of an NLRP1 inflammasome from zebrafish reveals a unique sequential activation mechanism underlying inflammatory caspases in ancient vertebrates publication-title: J. Immunol. doi: 10.4049/jimmunol.1800498 – volume: 31 start-page: 82 year: 2016 ident: 2025030417511328400_r15 article-title: Recent knowledge on the pathophysiology of septic acute kidney injury: a narrative review publication-title: J. Crit. Care doi: 10.1016/j.jcrc.2015.09.017 – volume: 9 start-page: 867 year: 2018 ident: 2025030417511328400_r5 article-title: IRF3 negatively regulates toll-like receptor-mediated NF-κB signaling by targeting TRIF for degradation in teleost fish publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00867 – start-page: 97 volume-title: Cell Host Microbe year: 2018 ident: 2025030417511328400_r49 article-title: Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis – volume: 63 start-page: 134 year: 2015 ident: 2025030417511328400_r4 article-title: The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2014.06.034 – volume: 203 start-page: 1369 year: 2019 ident: 2025030417511328400_r57 article-title: Teleost gasdermin E is cleaved by caspase 1, 3, and 7 and induces pyroptosis publication-title: J. Immunol. doi: 10.4049/jimmunol.1900383 – volume: 76 start-page: 2031 year: 2019 ident: 2025030417511328400_r41 article-title: Neutrophil pyroptosis: new perspectives on sepsis publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-019-03060-1 – volume: 115 start-page: 6792 year: 2018 ident: 2025030417511328400_r38 article-title: Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1800562115 – volume: 213 start-page: 2365 year: 2016 ident: 2025030417511328400_r47 article-title: Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity publication-title: J. Exp. Med. doi: 10.1084/jem.20160027 – volume: 127 start-page: 4124 year: 2017 ident: 2025030417511328400_r50 article-title: Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury publication-title: J. Clin. Invest. doi: 10.1172/JCI94495 |
SSID | ssj0006024 |
Score | 2.5703726 |
Snippet | The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway–induced pyroptosis plays an important role in innate immunity.... The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway-induced pyroptosis plays an important role in innate immunity.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1929 |
Title | Zebrafish GSDMEb Cleavage-Gated Pyroptosis Drives Septic Acute Kidney Injury In Vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32111733 https://www.proquest.com/docview/2369443587 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGgvCAaMcpOR4AFV6VIntpPHqRsroCHQOlbtJYodW2Sakqk0k8ov4GdzHLtJVm2I8ZJUVnra5PtyfI59Lgi9FeAyRFIRT4uYeqDwmCfoSHjgiGV-GtOMp3W1zy9schx-mtFZr_e7E7VULcRQ_ro2r-R_UIUxwNVkyd4C2UYoDMBnwBeOgDAc_wnjU7Prq01NooOjvcN9MRifq_QSNIRnFsWywdflvLxYlKbmyN68ri97ZIJY5GBXmvCAz3lWgEr4WJzBg4XT4Ht-WXat1TZvzJaWMLkktmbTu3pnzO-sI5y4hefTH1XqZkMT1lPZsbRctjSclPXot7y9buySRE5Ufpar7lIE8TsRLG1qwIjb_hpD5TQqBf-U-ayrcoltOey4xTsKFAzOuDMZj2Jbe2td0Yfg2BhF7258aMyakF5TU3ttrmsiEMH3MTKSlYTESbiD7hJwOEwvjINZGyzEfBKu6s6bG7Qb3kbCzvp_uGrg3OC11NbL9CF64EDEu5ZDj1BPFVvonm1EutxC9w9diMVjNG1IhS2p8FVS4ZZU2JIKW1LhmlTYkgpbUsEJG1I9Qccf9qfjiedab3gyYHThxVIAZsZ-5JoyIaJMB3HIRCypr5UkXEuWaqKyTGufpYGvAhJJIdJIy4yDWf8UbRRloZ4hDG88gxeeMBqmISdMZCzTYDWGIJVHvu6jndXzSqSrS2_aowAkN2DUR--bb1zYmix_ufbNCoIEFKfZDUsLVVY_ExKwOARnIeJ9tG2xaaQFBEwAHgTPb_FLL9Bm-068RBuLeaVegcG6EK9rLv0BWiyVDw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zebrafish+GSDMEb+Cleavage-Gated+Pyroptosis+Drives+Septic+Acute+Kidney+Injury+In+Vivo&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Wang%2C+Zhuang&rft.au=Gu%2C+Zhaoyan&rft.au=Hou%2C+Qing&rft.au=Chen%2C+Weijie&rft.date=2020-04-01&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=204&rft.issue=7&rft.spage=1929&rft.epage=1942&rft_id=info:doi/10.4049%2Fjimmunol.1901456&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_1901456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |