Zebrafish GSDMEb Cleavage-Gated Pyroptosis Drives Septic Acute Kidney Injury In Vivo

The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway–induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 204; no. 7; pp. 1929 - 1942
Main Authors Wang, Zhuang, Gu, Zhaoyan, Hou, Qing, Chen, Weijie, Mu, Di, Zhang, Yuanxing, Liu, Qin, Liu, Zhihong, Yang, Dahai
Format Journal Article
LanguageEnglish
Published United States 01.04.2020
Online AccessGet full text
ISSN0022-1767
1550-6606
1550-6606
DOI10.4049/jimmunol.1901456

Cover

Loading…
Abstract The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway–induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide–staining method and reveal that the caspy2–GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies.
AbstractList The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway–induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide–staining method and reveal that the caspy2–GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies.
The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway-induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide-staining method and reveal that the caspy2-GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies.The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway-induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide-staining method and reveal that the caspy2-GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies.
Author Liu, Qin
Yang, Dahai
Gu, Zhaoyan
Chen, Weijie
Zhang, Yuanxing
Wang, Zhuang
Hou, Qing
Liu, Zhihong
Mu, Di
Author_xml – sequence: 1
  givenname: Zhuang
  surname: Wang
  fullname: Wang, Zhuang
– sequence: 2
  givenname: Zhaoyan
  surname: Gu
  fullname: Gu, Zhaoyan
– sequence: 3
  givenname: Qing
  surname: Hou
  fullname: Hou, Qing
– sequence: 4
  givenname: Weijie
  surname: Chen
  fullname: Chen, Weijie
– sequence: 5
  givenname: Di
  surname: Mu
  fullname: Mu, Di
– sequence: 6
  givenname: Yuanxing
  surname: Zhang
  fullname: Zhang, Yuanxing
– sequence: 7
  givenname: Qin
  surname: Liu
  fullname: Liu, Qin
– sequence: 8
  givenname: Zhihong
  surname: Liu
  fullname: Liu, Zhihong
– sequence: 9
  givenname: Dahai
  orcidid: 0000-0001-6602-8653
  surname: Yang
  fullname: Yang, Dahai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32111733$$D View this record in MEDLINE/PubMed
BookMark eNp1kL1PwzAQRy0EglLYmZBHlsA5TpxkRAUKAgQSHwNLZDtncJXExXYq9b-nqIUBiem3vHc6vX2y3bseCTlicJpBVp3NbNcNvWtPWQUsy8UWGbE8h0QIENtkBJCmCStEsUf2Q5gBgIA02yV7PGWMFZyPyPMbKi-NDR90-nRxf6nopEW5kO-YTGXEhj4uvZtHF2ygF94uMNAnnEer6bkeItJb2_S4pDf9bPDfQ1_twh2QHSPbgIebHZOXq8vnyXVy9zC9mZzfJZqLPCaVVqtHAYqyMLlQqmwMrzKhKp2DQZ0WRgtpUmwaY0BIDsjTUislS6ObAko-Jifru3PvPgcMse5s0Ni2skc3hDrlosoynpfFCj3eoIPqsKnn3nbSL-ufEisA1oD2LgSP5hdhUH_Hrn9i15vYK0X8UbSNMlrXRy9t-7_4Bc5EhoM
CitedBy_id crossref_primary_10_1016_j_retram_2023_103419
crossref_primary_10_1098_rsob_220049
crossref_primary_10_1016_j_dci_2022_104404
crossref_primary_10_1016_j_freeradbiomed_2021_07_009
crossref_primary_10_1016_j_dci_2024_105139
crossref_primary_10_3389_fimmu_2021_711939
crossref_primary_10_7554_eLife_89974_3
crossref_primary_10_1016_j_dci_2021_104203
crossref_primary_10_1615_CritRevImmunol_2023051651
crossref_primary_10_3389_fimmu_2023_1065181
crossref_primary_10_1186_s12915_021_01220_z
crossref_primary_10_1016_j_ymthe_2022_12_008
crossref_primary_10_1038_s41467_024_54826_6
crossref_primary_10_7554_eLife_86373
crossref_primary_10_1016_j_scitotenv_2023_165208
crossref_primary_10_1089_ars_2020_8243
crossref_primary_10_1002_aro2_100
crossref_primary_10_1007_s42995_024_00237_x
crossref_primary_10_1016_j_ecoenv_2022_113881
crossref_primary_10_3389_fimmu_2023_1188023
crossref_primary_10_1016_j_celrep_2024_114324
crossref_primary_10_1016_j_biopha_2023_115183
crossref_primary_10_1152_ajpcell_00394_2020
crossref_primary_10_1016_j_celrep_2023_112414
crossref_primary_10_1038_s41419_022_04896_5
crossref_primary_10_1126_sciadv_adh4054
crossref_primary_10_1159_000531642
crossref_primary_10_1016_j_cirep_2025_200216
crossref_primary_10_1016_j_ijbiomac_2024_132476
crossref_primary_10_1080_0886022X_2025_2472987
crossref_primary_10_1016_j_bbrc_2024_151013
crossref_primary_10_1016_j_fsi_2022_10_035
crossref_primary_10_1097_SHK_0000000000001881
crossref_primary_10_3389_fimmu_2021_720877
crossref_primary_10_3390_biology10111218
crossref_primary_10_1016_j_dci_2023_105060
crossref_primary_10_1002_SMMD_20240010
crossref_primary_10_1016_j_fsi_2023_109103
crossref_primary_10_3389_fcell_2022_952015
crossref_primary_10_1038_s41467_023_41878_3
crossref_primary_10_3389_fimmu_2022_1110322
crossref_primary_10_7554_eLife_89974
crossref_primary_10_1371_journal_pbio_3002062
crossref_primary_10_3389_fphar_2021_780790
crossref_primary_10_1159_000535894
crossref_primary_10_1016_j_fsi_2023_108838
crossref_primary_10_4049_jimmunol_2300217
crossref_primary_10_4049_jimmunol_2200690
crossref_primary_10_7554_eLife_92362
crossref_primary_10_1111_jfd_13746
crossref_primary_10_1016_j_watbs_2024_100322
crossref_primary_10_1016_j_tcb_2021_03_004
crossref_primary_10_1186_s42826_021_00103_2
crossref_primary_10_3390_ijms22094389
crossref_primary_10_1038_s41419_021_03458_5
crossref_primary_10_1016_j_phrs_2020_105408
crossref_primary_10_1016_j_fsi_2022_09_041
crossref_primary_10_2174_0109298673255656231003111621
crossref_primary_10_1016_j_fsi_2022_10_017
crossref_primary_10_1007_s11655_024_3656_1
crossref_primary_10_1016_j_dci_2021_104078
crossref_primary_10_1002_imt2_181
crossref_primary_10_7554_eLife_92362_4
crossref_primary_10_1016_j_fsi_2023_108866
crossref_primary_10_4049_jimmunol_2001335
crossref_primary_10_1186_s12917_022_03395_1
crossref_primary_10_7717_peerj_16214
crossref_primary_10_1172_JCI188358
crossref_primary_10_1038_s41419_022_05066_3
crossref_primary_10_1016_j_fsi_2023_109285
crossref_primary_10_1016_j_aquaculture_2022_739041
crossref_primary_10_1155_2021_6686617
crossref_primary_10_1016_j_aquaculture_2024_741116
crossref_primary_10_3390_ijms26062589
crossref_primary_10_1016_j_aninu_2024_09_002
crossref_primary_10_3389_fimmu_2023_1114129
Cites_doi 10.1111/cmi.13010
10.1038/s41419-018-1023-x
10.1177/0884533617695243
10.1016/j.bpa.2017.09.001
10.1126/science.1240248
10.1159/000477181
10.1111/imr.12287
10.5483/BMBRep.2017.50.2.011
10.3389/fmicb.2015.00373
10.1126/science.1240988
10.1038/nature22393
10.1056/NEJMra1208623
10.1073/pnas.1607769113
10.1002/wsbm.1320
10.2119/molmed.2014.00076
10.1084/jem.20172222
10.1016/j.immuni.2015.10.009
10.1016/j.immuni.2018.09.021
10.1111/cmi.12536
10.1016/j.bbcan.2019.05.001
10.1371/journal.pone.0047299
10.2119/molmed.2016.00188
10.2174/1568026617666170130112109
10.1128/IAI.00543-12
10.1038/s41467-018-04984-1
10.1038/s41467-018-03409-3
10.1038/s41418-019-0366-x
10.1007/s00441-017-2785-7
10.1038/nprot.2016.142
10.1038/nature15514
10.1097/MCC.0000000000000153
10.1038/nature15541
10.1001/jama.2013.2194
10.1016/j.fsi.2019.02.008
10.1038/cddis.2017.390
10.1093/ndt/gfx026
10.1038/nri.2017.36
10.1159/000453218
10.1038/nrd4627
10.1023/A:1009680229931
10.4049/jimmunol.1800498
10.1016/j.jcrc.2015.09.017
10.3389/fimmu.2018.00867
10.1016/j.molimm.2014.06.034
10.4049/jimmunol.1900383
10.1007/s00018-019-03060-1
10.1073/pnas.1800562115
10.1084/jem.20160027
10.1172/JCI94495
ContentType Journal Article
Copyright Copyright © 2020 by The American Association of Immunologists, Inc.
Copyright_xml – notice: Copyright © 2020 by The American Association of Immunologists, Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.4049/jimmunol.1901456
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 1942
ExternalDocumentID 32111733
10_4049_jimmunol_1901456
Genre Journal Article
GroupedDBID ---
-~X
.55
0R~
18M
2WC
34G
39C
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
AAYXX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AGORE
AHMMS
AHWXS
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CITATION
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
K-O
KOP
KQ8
L7B
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
TR2
TWZ
W8F
WH7
WOQ
X7M
XSW
XTH
YHG
NPM
RHF
YIN
7X8
ID FETCH-LOGICAL-c365t-9cb66000787f56bb8df3946b9c50fec27fc6af2eddff06a30e328cbba8fcd7083
ISSN 0022-1767
1550-6606
IngestDate Fri Jul 11 06:06:43 EDT 2025
Wed Feb 19 02:30:50 EST 2025
Tue Jul 01 05:26:30 EDT 2025
Thu Apr 24 22:52:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
Copyright © 2020 by The American Association of Immunologists, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-9cb66000787f56bb8df3946b9c50fec27fc6af2eddff06a30e328cbba8fcd7083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6602-8653
PMID 32111733
PQID 2369443587
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2369443587
pubmed_primary_32111733
crossref_primary_10_4049_jimmunol_1901456
crossref_citationtrail_10_4049_jimmunol_1901456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
2020-Apr-01
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2020
References Ostermann (2025030417511328400_r14) 2017; 31
Opal (2025030417511328400_r7) 2013; 309
Chen (2025030417511328400_r55) 2019
Cao (2025030417511328400_r36) 2015; 30
Lee (2025030417511328400_r35) 2017; 137
White (2025030417511328400_r56) 2016; 11
Taeb (2025030417511328400_r2) 2017; 32
Yang (2025030417511328400_r38) 2018; 115
MacRae (2025030417511328400_r22) 2015; 14
van der Poll (2025030417511328400_r1) 2017; 17
Yang (2025030417511328400_r40) 2015; 43
Jorgensen (2025030417511328400_r39) 2015; 265
Kim (2025030417511328400_r44) 2018; 49
Hagar (2025030417511328400_r12) 2013; 341
Malhotra (2025030417511328400_r13) 2017; 32
Kayagaki (2025030417511328400_r42) 2013; 341
Kang (2025030417511328400_r49) 2018
Deng (2025030417511328400_r43) 2018
Rathkey (2025030417511328400_r54) 2018
Aglietti (2025030417511328400_r11) 2016; 113
Zarbock (2025030417511328400_r16) 2014; 20
Li (2025030417511328400_r25) 2018; 201
Shi (2025030417511328400_r8) 2015; 526
Liu (2025030417511328400_r41) 2019; 76
Wu (2025030417511328400_r28) 2018
Shan (2025030417511328400_r30) 2015; 6
Oblak (2025030417511328400_r4) 2015; 63
Shum (2025030417511328400_r15) 2016; 31
Jamme (2025030417511328400_r52) 2018; 68
Martín-Sánchez (2025030417511328400_r10) 2017; 8
Vojtech (2025030417511328400_r24) 2012; 80
Boucher (2025030417511328400_r32) 2018; 215
Wang (2025030417511328400_r33) 2018; 371
Zhou (2025030417511328400_r53) 2019; 1872
Wu (2025030417511328400_r18) 2016; 40
Mcdonald (2025030417511328400_r46) 2015; 20
Chung (2025030417511328400_r17) 2012; 7
Kayagaki (2025030417511328400_r9) 2015; 526
Yang (2025030417511328400_r23) 2018; 9
Vincent (2025030417511328400_r26) 2016; 18
Jiang (2025030417511328400_r57) 2019; 203
Wang (2025030417511328400_r45) 2020; 27
Shankaran (2025030417511328400_r29) 2017
Wang (2025030417511328400_r27) 2017; 547
Rana (2025030417511328400_r51) 2001; 6
Chu (2025030417511328400_r48) 2018; 9
Wen (2025030417511328400_r31) 2019; 21
Kim (2025030417511328400_r6) 2017; 50
Zhang (2025030417511328400_r19) 2018; 9
Cheng (2025030417511328400_r50) 2017; 127
Yoganantharjah (2025030417511328400_r21) 2017; 17
Wang (2025030417511328400_r37) 2019; 87
Napier (2025030417511328400_r47) 2016; 213
Dunster (2025030417511328400_r34) 2016; 8
Zhao (2025030417511328400_r5) 2018; 9
Philip (2025030417511328400_r20) 2017; 23
Angus (2025030417511328400_r3) 2013; 369
References_xml – volume: 21
  start-page: e13010
  year: 2019
  ident: 2025030417511328400_r31
  article-title: Dysregulated haemolysin promotes bacterial outer membrane vesicles-induced pyroptotic-like cell death in zebrafish
  publication-title: Cell. Microbiol.
  doi: 10.1111/cmi.13010
– volume: 9
  start-page: 983
  year: 2018
  ident: 2025030417511328400_r19
  article-title: Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-1023-x
– volume: 32
  start-page: 296
  year: 2017
  ident: 2025030417511328400_r2
  article-title: Sepsis: current definition, pathophysiology, diagnosis, and management
  publication-title: Nutr. Clin. Pract.
  doi: 10.1177/0884533617695243
– volume: 31
  start-page: 305
  year: 2017
  ident: 2025030417511328400_r14
  article-title: Pathophysiology of AKI
  publication-title: Best Pract. Res. Clin. Anaesthesiol.
  doi: 10.1016/j.bpa.2017.09.001
– volume: 341
  start-page: 1246
  year: 2013
  ident: 2025030417511328400_r42
  article-title: Noncanonical inflammasome activation by intracellular LPS independent of TLR4
  publication-title: Science
  doi: 10.1126/science.1240248
– volume: 137
  start-page: 282
  year: 2017
  ident: 2025030417511328400_r35
  article-title: Role of immune cells in acute kidney injury and repair
  publication-title: Nephron
  doi: 10.1159/000477181
– volume: 265
  start-page: 130
  year: 2015
  ident: 2025030417511328400_r39
  article-title: Pyroptotic cell death defends against intracellular pathogens
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12287
– volume: 50
  start-page: 55
  year: 2017
  ident: 2025030417511328400_r6
  article-title: Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2017.50.2.011
– volume: 6
  start-page: 373
  year: 2015
  ident: 2025030417511328400_r30
  article-title: Immersion infection of germ-free zebrafish with Listeria monocytogenes induces transient expression of innate immune response genes
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00373
– volume: 341
  start-page: 1250
  year: 2013
  ident: 2025030417511328400_r12
  article-title: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock
  publication-title: Science
  doi: 10.1126/science.1240988
– volume: 30
  start-page: 183
  year: 2015
  ident: 2025030417511328400_r36
  article-title: Macrophages in kidney injury, inflammation, and fibrosis
  publication-title: Physiology (Bethesda)
– volume: 547
  start-page: 99
  year: 2017
  ident: 2025030417511328400_r27
  article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin
  publication-title: Nature
  doi: 10.1038/nature22393
– volume: 369
  start-page: 840
  year: 2013
  ident: 2025030417511328400_r3
  article-title: Severe sepsis and septic shock
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1208623
– start-page: 740
  volume-title: Immunity
  year: 2018
  ident: 2025030417511328400_r43
  article-title: The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis
– volume: 113
  start-page: 7858
  year: 2016
  ident: 2025030417511328400_r11
  article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1607769113
– volume: 8
  start-page: 87
  year: 2016
  ident: 2025030417511328400_r34
  article-title: The macrophage and its role in inflammation and tissue repair: mathematical and systems biology approaches
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med.
  doi: 10.1002/wsbm.1320
– volume: 20
  start-page: 639
  year: 2015
  ident: 2025030417511328400_r46
  article-title: Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling
  publication-title: Mol. Med.
  doi: 10.2119/molmed.2014.00076
– start-page: 112
  volume-title: Dev. Cell
  year: 2018
  ident: 2025030417511328400_r28
  article-title: A rapid method for directed gene knockout for screening in G0 zebrafish
– volume: 215
  start-page: 827
  year: 2018
  ident: 2025030417511328400_r32
  article-title: Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20172222
– volume: 43
  start-page: 923
  year: 2015
  ident: 2025030417511328400_r40
  article-title: Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.10.009
– volume: 49
  start-page: 582
  year: 2018
  ident: 2025030417511328400_r44
  article-title: HMGB1: LPS delivery vehicle for caspase-11-mediated pyroptosis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.09.021
– volume: 18
  start-page: 591
  year: 2016
  ident: 2025030417511328400_r26
  article-title: Macrophages mediate flagellin induced inflammasome activation and host defense in zebrafish
  publication-title: Cell. Microbiol.
  doi: 10.1111/cmi.12536
– volume: 1872
  start-page: 1
  year: 2019
  ident: 2025030417511328400_r53
  article-title: The role of pyroptosis in gastrointestinal cancer and immune responses to intestinal microbial infection
  publication-title: Biochim. Biophys. Acta Rev. Cancer
  doi: 10.1016/j.bbcan.2019.05.001
– volume: 7
  start-page: e47299
  year: 2012
  ident: 2025030417511328400_r17
  article-title: Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047299
– start-page: eaat2738
  volume-title: Sci. Immunol.
  year: 2018
  ident: 2025030417511328400_r54
  article-title: Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis
– volume: 23
  start-page: 134
  year: 2017
  ident: 2025030417511328400_r20
  article-title: Development of a zebrafish sepsis model for high-throughput drug discovery
  publication-title: Mol. Med.
  doi: 10.2119/molmed.2016.00188
– volume: 17
  start-page: 2041
  year: 2017
  ident: 2025030417511328400_r21
  article-title: The use of the zebrafish model to aid in drug discovery and target validation
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026617666170130112109
– volume: 80
  start-page: 2878
  year: 2012
  ident: 2025030417511328400_r24
  article-title: Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00543-12
– volume: 9
  start-page: 3052
  year: 2018
  ident: 2025030417511328400_r23
  article-title: Sensing of cytosolic LPS through caspy2 pyrin domain mediates noncanonical inflammasome activation in zebrafish
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04984-1
– volume: 9
  start-page: 996
  year: 2018
  ident: 2025030417511328400_r48
  article-title: The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03409-3
– start-page: 31.9.1
  volume-title: Curr. Protoc. Mol. Biol.
  year: 2017
  ident: 2025030417511328400_r29
  article-title: CRISPR/Cas9-directed gene editing for the generation of loss-of-function mutants in high-throughput zebrafish F0 screens
– volume: 27
  start-page: 466
  year: 2020
  ident: 2025030417511328400_r45
  article-title: Magnesium protects against sepsis by blocking gasdermin D N-terminal-induced pyroptosis
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-019-0366-x
– volume: 371
  start-page: 531
  year: 2018
  ident: 2025030417511328400_r33
  article-title: Neutrophils in tissue injury and repair
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-017-2785-7
– volume: 11
  start-page: 2432
  year: 2016
  ident: 2025030417511328400_r56
  article-title: ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.142
– start-page: eaav5562
  volume-title: Sci. Adv.
  year: 2019
  ident: 2025030417511328400_r55
  article-title: cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis
– volume: 526
  start-page: 660
  year: 2015
  ident: 2025030417511328400_r8
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
  doi: 10.1038/nature15514
– volume: 68
  start-page: 156
  year: 2018
  ident: 2025030417511328400_r52
  article-title: [Acute kidney injury by acute tubular necrosis]
  publication-title: Rev. Prat.
– volume: 20
  start-page: 588
  year: 2014
  ident: 2025030417511328400_r16
  article-title: Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies
  publication-title: Curr. Opin. Crit. Care
  doi: 10.1097/MCC.0000000000000153
– volume: 526
  start-page: 666
  year: 2015
  ident: 2025030417511328400_r9
  article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
  publication-title: Nature
  doi: 10.1038/nature15541
– volume: 309
  start-page: 1154
  year: 2013
  ident: 2025030417511328400_r7
  article-title: Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial
  publication-title: JAMA
  doi: 10.1001/jama.2013.2194
– volume: 87
  start-page: 565
  year: 2019
  ident: 2025030417511328400_r37
  article-title: Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae
  publication-title: Fish Shellfish Immunol.
  doi: 10.1016/j.fsi.2019.02.008
– volume: 8
  start-page: e2984
  year: 2017
  ident: 2025030417511328400_r10
  article-title: Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1β release
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.390
– volume: 32
  start-page: 814
  year: 2017
  ident: 2025030417511328400_r13
  article-title: A risk prediction score for acute kidney injury in the intensive care unit
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfx026
– volume: 17
  start-page: 407
  year: 2017
  ident: 2025030417511328400_r1
  article-title: The immunopathology of sepsis and potential therapeutic targets
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.36
– volume: 40
  start-page: 1692
  year: 2016
  ident: 2025030417511328400_r18
  article-title: MiR-155 is involved in renal ischemia-reperfusion injury via direct targeting of FoxO3a and regulating renal tubular cell pyroptosis
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000453218
– volume: 14
  start-page: 721
  year: 2015
  ident: 2025030417511328400_r22
  article-title: Zebrafish as tools for drug discovery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4627
– volume: 6
  start-page: 83
  year: 2001
  ident: 2025030417511328400_r51
  article-title: Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications
  publication-title: Apoptosis
  doi: 10.1023/A:1009680229931
– volume: 201
  start-page: 1946
  year: 2018
  ident: 2025030417511328400_r25
  article-title: Characterization of an NLRP1 inflammasome from zebrafish reveals a unique sequential activation mechanism underlying inflammatory caspases in ancient vertebrates
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1800498
– volume: 31
  start-page: 82
  year: 2016
  ident: 2025030417511328400_r15
  article-title: Recent knowledge on the pathophysiology of septic acute kidney injury: a narrative review
  publication-title: J. Crit. Care
  doi: 10.1016/j.jcrc.2015.09.017
– volume: 9
  start-page: 867
  year: 2018
  ident: 2025030417511328400_r5
  article-title: IRF3 negatively regulates toll-like receptor-mediated NF-κB signaling by targeting TRIF for degradation in teleost fish
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00867
– start-page: 97
  volume-title: Cell Host Microbe
  year: 2018
  ident: 2025030417511328400_r49
  article-title: Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis
– volume: 63
  start-page: 134
  year: 2015
  ident: 2025030417511328400_r4
  article-title: The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2014.06.034
– volume: 203
  start-page: 1369
  year: 2019
  ident: 2025030417511328400_r57
  article-title: Teleost gasdermin E is cleaved by caspase 1, 3, and 7 and induces pyroptosis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1900383
– volume: 76
  start-page: 2031
  year: 2019
  ident: 2025030417511328400_r41
  article-title: Neutrophil pyroptosis: new perspectives on sepsis
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-019-03060-1
– volume: 115
  start-page: 6792
  year: 2018
  ident: 2025030417511328400_r38
  article-title: Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1800562115
– volume: 213
  start-page: 2365
  year: 2016
  ident: 2025030417511328400_r47
  article-title: Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160027
– volume: 127
  start-page: 4124
  year: 2017
  ident: 2025030417511328400_r50
  article-title: Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI94495
SSID ssj0006024
Score 2.5703726
Snippet The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway–induced pyroptosis plays an important role in innate immunity....
The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway-induced pyroptosis plays an important role in innate immunity....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1929
Title Zebrafish GSDMEb Cleavage-Gated Pyroptosis Drives Septic Acute Kidney Injury In Vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/32111733
https://www.proquest.com/docview/2369443587
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGgvCAaMcpOR4AFV6VIntpPHqRsroCHQOlbtJYodW2Sakqk0k8ov4GdzHLtJVm2I8ZJUVnra5PtyfI59Lgi9FeAyRFIRT4uYeqDwmCfoSHjgiGV-GtOMp3W1zy9schx-mtFZr_e7E7VULcRQ_ro2r-R_UIUxwNVkyd4C2UYoDMBnwBeOgDAc_wnjU7Prq01NooOjvcN9MRifq_QSNIRnFsWywdflvLxYlKbmyN68ri97ZIJY5GBXmvCAz3lWgEr4WJzBg4XT4Ht-WXat1TZvzJaWMLkktmbTu3pnzO-sI5y4hefTH1XqZkMT1lPZsbRctjSclPXot7y9buySRE5Ufpar7lIE8TsRLG1qwIjb_hpD5TQqBf-U-ayrcoltOey4xTsKFAzOuDMZj2Jbe2td0Yfg2BhF7258aMyakF5TU3ttrmsiEMH3MTKSlYTESbiD7hJwOEwvjINZGyzEfBKu6s6bG7Qb3kbCzvp_uGrg3OC11NbL9CF64EDEu5ZDj1BPFVvonm1EutxC9w9diMVjNG1IhS2p8FVS4ZZU2JIKW1LhmlTYkgpbUsEJG1I9Qccf9qfjiedab3gyYHThxVIAZsZ-5JoyIaJMB3HIRCypr5UkXEuWaqKyTGufpYGvAhJJIdJIy4yDWf8UbRRloZ4hDG88gxeeMBqmISdMZCzTYDWGIJVHvu6jndXzSqSrS2_aowAkN2DUR--bb1zYmix_ufbNCoIEFKfZDUsLVVY_ExKwOARnIeJ9tG2xaaQFBEwAHgTPb_FLL9Bm-068RBuLeaVegcG6EK9rLv0BWiyVDw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zebrafish+GSDMEb+Cleavage-Gated+Pyroptosis+Drives+Septic+Acute+Kidney+Injury+In+Vivo&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Wang%2C+Zhuang&rft.au=Gu%2C+Zhaoyan&rft.au=Hou%2C+Qing&rft.au=Chen%2C+Weijie&rft.date=2020-04-01&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=204&rft.issue=7&rft.spage=1929&rft.epage=1942&rft_id=info:doi/10.4049%2Fjimmunol.1901456&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_1901456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon