Construction of mechanically robust superamphiphobic surfaces on fiber using large particles
Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily achieved by minimizing the solid–liquid contact area. Over the past few decades, researchers have primarily focused on using physical deposi...
Saved in:
Published in | Frontiers of materials science Vol. 16; no. 4; p. 220618 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily achieved by minimizing the solid–liquid contact area. Over the past few decades, researchers have primarily focused on using physical deposition methods to construct superamphiphobic surfaces using fine-sized nanoparticles (< 100 nm). However, porous hollow SiO 2 particles (PH-SiO 2), which are typically large spheres, have a highly hierarchical structure and can provide lower solid–liquid contact fractions than those provided by fine-sized particles. In this study, we used PH-SiO 2 as building blocks and combined them with poly (dimethylsiloxane) to construct a mechanically robust coating on fiber by spray-coating. After chemical vapor deposition treatment, the coating exhibited excellent superamphiphobicity and could repel various liquids, covering a wide range of surface tensions (27.4–72.0 mN·m −1). |
---|---|
AbstractList | Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily achieved by minimizing the solid-liquid contact area. Over the past few decades, researchers have primarily focused on using physical deposition methods to construct superamphiphobic surfaces using fine-sized nanoparticles (< 100 nm). However, porous hollow SiO
2
particles (PH-SiO
2
), which are typically large spheres, have a highly hierarchical structure and can provide lower solid-liquid contact fractions than those provided by fine-sized particles. In this study, we used PH-SiO
2
as building blocks and combined them with poly (dimethylsiloxane) to construct a mechanically robust coating on fiber by spray-coating. After chemical vapor deposition treatment, the coating exhibited excellent superamphiphobicity and could repel various liquids, covering a wide range of surface tensions (27.4–72.0 mN·m
−1
). Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily achieved by minimizing the solid–liquid contact area. Over the past few decades, researchers have primarily focused on using physical deposition methods to construct superamphiphobic surfaces using fine-sized nanoparticles (< 100 nm). However, porous hollow SiO 2 particles (PH-SiO 2), which are typically large spheres, have a highly hierarchical structure and can provide lower solid–liquid contact fractions than those provided by fine-sized particles. In this study, we used PH-SiO 2 as building blocks and combined them with poly (dimethylsiloxane) to construct a mechanically robust coating on fiber by spray-coating. After chemical vapor deposition treatment, the coating exhibited excellent superamphiphobicity and could repel various liquids, covering a wide range of surface tensions (27.4–72.0 mN·m −1). Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily achieved by minimizing the solid-liquid contact area. Over the past few decades, researchers have primarily focused on using physical deposition methods to construct superamphiphobic surfaces using fine-sized nanoparticles (< 100 nm). However, porous hollow SiO2 particles (PH-SiO2), which are typically large spheres, have a highly hierarchical structure and can provide lower solid-liquid contact fractions than those provided by fine-sized particles. In this study, we used PH-SiO2 as building blocks and combined them with poly (dimethylsiloxane) to construct a mechanically robust coating on fiber by spray-coating. After chemical vapor deposition treatment, the coating exhibited excellent superamphiphobicity and could repel various liquids, covering a wide range of surface tensions (27.4–72.0 mN·m−1). |
ArticleNumber | 220618 |
Author | LV, Chang WANG, Tao WANG, Jinyi TIAN, Qirong ZHANG, Zhicheng WANG, Sheng LIU, Rongfei |
Author_xml | – sequence: 1 givenname: Chang surname: LV fullname: LV, Chang organization: School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China – sequence: 2 givenname: Jinyi surname: WANG fullname: WANG, Jinyi organization: School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China – sequence: 3 givenname: Qirong surname: TIAN fullname: TIAN, Qirong organization: School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China – sequence: 4 givenname: Zhicheng surname: ZHANG fullname: ZHANG, Zhicheng organization: School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China – sequence: 5 givenname: Tao surname: WANG fullname: WANG, Tao organization: School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China – sequence: 6 givenname: Rongfei surname: LIU fullname: LIU, Rongfei organization: Zhejiang Kangjiesi New Material Technology Co., LTD., Zhuji 311800, China – sequence: 7 givenname: Sheng surname: WANG fullname: WANG, Sheng email: wangsheng@zstu.edu.cn organization: School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China |
BookMark | eNp9kE1LJDEQhoMoOH78AG8Nnlvz0el0jjKouyDsZRc8CCGdqUxn6Om0le6D_94MLQp7mFwqFPXUWzwX5HSIAxByw-gdo1TdJ8YUrUvKeUlr1pTVCVlxqmXu1M3p91--npPrlHY0P8mkrtiKvK3jkCac3RTiUERf7MF1dgjO9v1HgbGd01SkeQS0-7ELYxfb4HIDvXWQisz40AIWcwrDtugtbqEYLU7B9ZCuyJm3fYLrr3pJ_j09_l3_Kl_-PP9eP7yUTtRyKrX1rXQSWuobpZhoOefaNlqrynHXbKSo_EbYltXMKe0bCU7Rym20FlZazcQluV32jhjfZ0iT2cUZhxxpuOKiqYSgNE-xZcphTAnBmxHD3uKHYdQcPJrFo8kezcGjqTKj_mNcmOzB1YQ29EdJvpAppwxbwJ-bjkHNAnVh2wHCZkRIyXjMeQHwGPoJRLOcQg |
CitedBy_id | crossref_primary_10_1021_acsanm_3c04210 |
Cites_doi | 10.1002/smll.202000779 10.1002/admi.201901782 10.1002/adma.201905449 10.1021/acs.langmuir.8b03088 10.1126/science.1207115 10.1002/adem.201300561 10.1021/acsnano.0c02211 10.1021/acsami.9b08947 10.1021/acsami.6b06772 10.1038/s41563-019-0440-2 10.1002/ppap.201100124 10.1002/adma.201606869 10.1557/mrs2008.161 10.1021/acsami.8b21331 10.1038/432036a 10.1021/acsnano.6b08348 10.1021/acsnano.1c00158 10.1016/0021-9797(68)90272-5 10.1002/adma.200601946 10.1038/s41586-020-2331-8 10.1021/am5000432 10.1007/s40843-022-2001-7 10.1002/adma.201908008 10.1002/adma.200290020 10.1021/am503441x 10.1002/adma.200802502 10.1002/adma.202107901 10.1021/acs.langmuir.6b00248 10.1021/ja310517s 10.1021/acsami.6b03961 10.1021/acsami.6b08487 10.1021/acsnano.9b08211 10.1126/science.1148326 10.1021/acsami.1c04256 10.1021/acsnano.7b08121 10.1002/admi.201900550 10.1021/acsnano.6b06463 10.1021/acs.langmuir.7b03986 10.1021/jacs.9b13286 10.1007/s40843-021-1743-7 10.1038/s41563-018-0178-2 10.1002/adma.202005039 10.1002/adma.202101855 10.1021/acsami.0c11398 10.1002/adfm.201706867 10.1021/acsami.1c00517 10.1021/acsnano.6b06715 10.1021/la103877r 10.1039/C4CC04998E 10.1073/pnas.0804872105 10.1002/anie.202008621 10.1007/s004250050096 10.1038/am.2014.34 10.1016/j.plantsci.2007.03.005 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2022, Higher Education Press Higher Education Press 2022 Higher Education Press 2022. |
Copyright_xml | – notice: Copyright reserved, 2022, Higher Education Press – notice: Higher Education Press 2022 – notice: Higher Education Press 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11706-022-0618-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2095-0268 |
ExternalDocumentID | 10_1007_s11706_022_0618_4 10.1007/s11706-022-0618-4 |
GroupedDBID | -58 -5G -BR -EM -~C .VR 06C 06D 0R~ 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 95- 95. 95~ 96X AAAVM AABHQ AAEIZ AAFGU AAIAL AAJKR AANZL AAPBV AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABXPI ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DNIVK EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HZ~ IJ- IPNFZ IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NQJWS NU0 O9- O9J P4S P9N PF0 PT4 QOR R89 R9I ROL RSV S16 S3B SAP SCL SCM SHX SISQX SNE SNX SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z85 ZMTXR ~A9 AACDK AAJBT AASML AATNV AAYZH ABAKF ABJNI ABTKH ABWNU ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AESKC AEVLU AFBBN AGQEE AGRTI AIGIU AMXSW AOCGG DDRTE DPUIP IKXTQ IWAJR NPVJJ SJYHP SNPRN SOHCF -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION Q-- U1G U5L ABRTQ |
ID | FETCH-LOGICAL-c365t-9afb5c5eb0f87713b2229a89974c2c8d534fd3ab161c79f85ec704cd993a5a913 |
IEDL.DBID | U2A |
ISSN | 2095-025X |
IngestDate | Fri Jul 25 10:57:38 EDT 2025 Tue Jul 01 02:09:54 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Fri Feb 21 02:43:26 EST 2025 Thu Nov 03 23:32:43 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | SiO robustness superamphiphobicity solid-liquid contact area hierarchical structure spray-coating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-9afb5c5eb0f87713b2229a89974c2c8d534fd3ab161c79f85ec704cd993a5a913 |
Notes | Document accepted on :2022-08-14 superamphiphobicity hierarchical structure solid–liquid contact area robustness Document received on :2022-07-02 SiO 2 spray-coating ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2723843300 |
PQPubID | 2044428 |
ParticipantIDs | proquest_journals_2723843300 crossref_primary_10_1007_s11706_022_0618_4 crossref_citationtrail_10_1007_s11706_022_0618_4 springer_journals_10_1007_s11706_022_0618_4 higheredpress_frontiers_10_1007_s11706_022_0618_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of materials science |
PublicationTitleAbbrev | Front. Mater. Sci |
PublicationYear | 2022 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Gao, Jiang (CR6) 2004; 432 Kota, Kwon, Tuteja (CR51) 2014; 6 Ellinas, Pujari, Dragatogiannis (CR31) 2014; 6 Guo, Liu (CR2) 2007; 172 Ji, Zheng, Wei (CR49) 2022; 65 Pan, Guo, Björnmalm (CR36) 2018; 17 Stöber, Fink, Bohn (CR48) 1968; 26 Zhou, Liu, Liu (CR38) 2022; 34 Gnanappa, Papageorgiou, Gogolides (CR32) 2012; 9 Grynyov, Bormashenko, Whyman (CR35) 2016; 32 Wong, Liu, Nasiri (CR28) 2017; 11 Hegner, Wong, Vollmer (CR16) 2021; 33 Cheng, Jiao, Sun (CR19) 2021; 15 Tuteja, Choi, Mckinley (CR52) 2008; 33 Wang, Cai, Wu (CR41) 2019; 11 Hu, Duan, Xu (CR17) 2020; 142 Wang, Lv, Ji (CR45) 2020; 12 Wu, Zhang, Zhang (CR14) 2020; 32 Pan, Kota, Mabry (CR39) 2013; 135 Dong, Zhang, Li (CR7) 2020; 16 Gao, Yan, Yao (CR8) 2007; 19 Wang, Sun, Hokkanen (CR25) 2020; 582 Cui, Wang, Bi (CR15) 2020; 7 Cao, Jin, Peng (CR5) 2017; 29 Feng, Li, Li (CR3) 2002; 14 Bielinski, Boban, He (CR26) 2017; 11 Teisala, Butt (CR23) 2019; 35 Liu, Li, Hou (CR43) 2017; 11 Sun, Wang, Li (CR12) 2019; 18 Starostin, Valtsifer, Strelnikov (CR34) 2014; 16 Lian, Xu, Wang (CR21) 2018; 34 Barthlott, Neinhuis (CR1) 1997; 202 Peng, Yang, Tian (CR33) 2014; 6 Yuan, Wu, Yu (CR10) 2016; 8 Chen, Guo, Liu (CR11) 2016; 8 Chu, Singh, Yong (CR30) 2019; 6 Chang, Martin, Du (CR4) 2020; 59 Zhang, Jiang, Gao (CR22) 2018; 12 Tuteja, Choi, Ma (CR24) 2007; 318 Dai, Gao, Sun (CR13) 2019; 31 Liu, Ye, Sun (CR46) 2020; 32 Choi, Tuteja, Chhatre (CR54) 2009; 21 Wong, Corrales, Naga (CR9) 2020; 14 Wei, Xu, Wei (CR50) 2022; 65 Schlaich, Cuellar Camacho, Yu (CR40) 2016; 8 Tuteja, Choi, Mabry (CR53) 2008; 105 Ahn, Kim, Jeon (CR20) 2020; 14 Li, Wang, Tan (CR29) 2019; 11 Wang, Jia, Lv (CR27) 2021; 13 Li, Huang, Cheng (CR18) 2021; 13 Gong, Xie, Li (CR47) 2014; 50 Li, Wang, Huang (CR37) 2018; 28 Jin, Kettunen, Laiho (CR42) 2011; 27 Deng, Mammen, Butt (CR44) 2012; 335 R Grynyov (618_CR35) 2016; 32 W Barthlott (618_CR1) 1997; 202 W S Y Wong (618_CR28) 2017; 11 M Liu (618_CR43) 2017; 11 H Dai (618_CR13) 2019; 31 B Hu (618_CR17) 2020; 142 X Gao (618_CR6) 2004; 432 A Starostin (618_CR34) 2014; 16 X Q Cheng (618_CR19) 2021; 15 C Schlaich (618_CR40) 2016; 8 H Jin (618_CR42) 2011; 27 T Wang (618_CR45) 2020; 12 R Yuan (618_CR10) 2016; 8 S Peng (618_CR33) 2014; 6 X Gao (618_CR8) 2007; 19 F Li (618_CR37) 2018; 28 S Pan (618_CR39) 2013; 135 T Wang (618_CR41) 2019; 11 A Tuteja (618_CR52) 2008; 33 S Pan (618_CR36) 2018; 17 A Tuteja (618_CR53) 2008; 105 K Ellinas (618_CR31) 2014; 6 Y Li (618_CR18) 2021; 13 D Wu (618_CR14) 2020; 32 W S Y Wong (618_CR9) 2020; 14 X Li (618_CR29) 2019; 11 J J Chang (618_CR4) 2020; 59 S Zhang (618_CR22) 2018; 12 A K Gnanappa (618_CR32) 2012; 9 E Ahn (618_CR20) 2020; 14 Z Guo (618_CR2) 2007; 172 K I Hegner (618_CR16) 2021; 33 H Teisala (618_CR23) 2019; 35 J Liu (618_CR46) 2020; 32 L Chen (618_CR11) 2016; 8 X Zhou (618_CR38) 2022; 34 Y Gong (618_CR47) 2014; 50 S Dong (618_CR7) 2020; 16 D Wang (618_CR25) 2020; 582 M Cao (618_CR5) 2017; 29 Z Lian (618_CR21) 2018; 34 W Stöber (618_CR48) 1968; 26 L Ji (618_CR49) 2022; 65 T Wang (618_CR27) 2021; 13 L Feng (618_CR3) 2002; 14 Q Sun (618_CR12) 2019; 18 D Chu (618_CR30) 2019; 6 Y Wei (618_CR50) 2022; 65 W Choi (618_CR54) 2009; 21 A Tuteja (618_CR24) 2007; 318 A R Bielinski (618_CR26) 2017; 11 X Deng (618_CR44) 2012; 335 H R Cui (618_CR15) 2020; 7 A K Kota (618_CR51) 2014; 6 |
References_xml | – volume: 16 start-page: 2000779 issue: 19 year: 2020 ident: CR7 article-title: Springtail-inspired superamphiphobic ordered nanohoodoo arrays with quasi-doubly reentrant structures publication-title: Small doi: 10.1002/smll.202000779 – volume: 7 start-page: 1901782 issue: 7 year: 2020 end-page: 1901790 ident: CR15 article-title: Biocompatible janus membrane with double self-healing ability for intelligent anticorrosion publication-title: Advanced Materials Interfaces doi: 10.1002/admi.201901782 – volume: 31 start-page: 1905449 issue: 43 year: 2019 ident: CR13 article-title: Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface publication-title: Advanced Materials doi: 10.1002/adma.201905449 – volume: 35 start-page: 10689 issue: 33 year: 2019 end-page: 10703 ident: CR23 article-title: Hierarchical structures for superhydrophobic and superoleophobic surfaces publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03088 – volume: 335 start-page: 67 issue: 6064 year: 2012 end-page: 70 ident: CR44 article-title: Candle soot as a template for a transparent robust superamphiphobic coating publication-title: Science doi: 10.1126/science.1207115 – volume: 16 start-page: 1127 issue: 9 year: 2014 end-page: 1132 ident: CR34 article-title: Robust technique allowing the manufacture of superoleophobic (omniphobic) metallic surfaces publication-title: Advanced Engineering Materials doi: 10.1002/adem.201300561 – volume: 14 start-page: 6173 issue: 5 year: 2020 end-page: 6180 ident: CR20 article-title: A4 paper chemistry: synthesis of a versatile and chemically modifiable cellulose membrane publication-title: ACS Nano doi: 10.1021/acsnano.0c02211 – volume: 11 start-page: 29458 issue: 32 year: 2019 end-page: 29465 ident: CR29 article-title: Designing transparent micro/nano re-entrant-coordinated superamphiphobic surfaces with ultralow solid/liquid adhesion publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b08947 – volume: 8 start-page: 27188 issue: 40 year: 2016 end-page: 27198 ident: CR11 article-title: Biomimetic multi-functional superamphiphobic FOTS-TiO particles beyond lotus leaf publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b06772 – volume: 18 start-page: 936 issue: 9 year: 2019 end-page: 941 ident: CR12 article-title: Surface charge printing for programmed droplet transport publication-title: Nature Materials doi: 10.1038/s41563-019-0440-2 – volume: 9 start-page: 304 issue: 3 year: 2012 end-page: 315 ident: CR32 article-title: Hierarchical, plasma nanotextured, robust superamphiphobic polymeric surfaces structurally stabilized through a wetting-drying cycle publication-title: Plasma Processes and Polymers doi: 10.1002/ppap.201100124 – volume: 29 start-page: 1606869 issue: 23 year: 2017 ident: CR5 article-title: Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia publication-title: Advanced Materials doi: 10.1002/adma.201606869 – volume: 33 start-page: 752 issue: 8 year: 2008 end-page: 758 ident: CR52 article-title: Design parameters for superhydrophobicity and superoleophobicity publication-title: MRS Bulletin doi: 10.1557/mrs2008.161 – volume: 11 start-page: 11106 issue: 12 year: 2019 end-page: 11111 ident: CR41 article-title: Applicable superamphiphobic Ni/Cu surface with high liquid repellency enabled by the electrochemical-deposited dual-scale structure publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.8b21331 – volume: 432 start-page: 36 issue: 7013 year: 2004 ident: CR6 article-title: Water-repellent legs of water striders publication-title: Nature doi: 10.1038/432036a – volume: 11 start-page: 1113 issue: 1 year: 2017 end-page: 1119 ident: CR43 article-title: Inorganic adhesives for robust superwetting surfaces publication-title: ACS Nano doi: 10.1021/acsnano.6b08348 – volume: 15 start-page: 3500 issue: 2 year: 2021 end-page: 3508 ident: CR19 article-title: Constructing scalable superhydrophobic membranes for ultrafast water-oil separation publication-title: ACS Nano doi: 10.1021/acsnano.1c00158 – volume: 26 start-page: 62 issue: 1 year: 1968 end-page: 69 ident: CR48 article-title: Controlled growth of monodisperse silica spheres in the micron size range publication-title: Journal of Colloid and Interface Science doi: 10.1016/0021-9797(68)90272-5 – volume: 19 start-page: 2213 issue: 17 year: 2007 end-page: 2217 ident: CR8 article-title: The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography publication-title: Advanced Materials doi: 10.1002/adma.200601946 – volume: 582 start-page: 55 issue: 7810 year: 2020 end-page: 59 ident: CR25 article-title: Design of robust superhydrophobic surfaces publication-title: Nature doi: 10.1038/s41586-020-2331-8 – volume: 6 start-page: 6510 issue: 9 year: 2014 end-page: 6524 ident: CR31 article-title: Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am5000432 – volume: 65 start-page: 2675 issue: 4 year: 2022 end-page: 2684 ident: CR50 article-title: Temperature-controlled synthesis of heterostructured Ru-Ru P nanoparticles embedded in carbon nanofibers for highly efficient hydrogen production publication-title: Science China Materials doi: 10.1007/s40843-022-2001-7 – volume: 32 start-page: 1908008 issue: 11 year: 2020 ident: CR46 article-title: Elastic superhydrophobic and photocatalytic active films used as blood repellent dressing publication-title: Advanced Materials doi: 10.1002/adma.201908008 – volume: 14 start-page: 1857 issue: 24 year: 2002 end-page: 1860 ident: CR3 article-title: Super-hydrophobic surfaces: from natural to artificial publication-title: Advanced Materials doi: 10.1002/adma.200290020 – volume: 6 start-page: 15188 issue: 17 year: 2014 end-page: 15197 ident: CR33 article-title: Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am503441x – volume: 21 start-page: 2190 issue: 21 year: 2009 end-page: 2195 ident: CR54 article-title: Fabrics with tunable oleophobicity publication-title: Advanced Materials doi: 10.1002/adma.200802502 – volume: 34 start-page: 2107901 issue: 10 year: 2022 ident: CR38 article-title: Fabrication of stretchable superamphiphobic surfaces with deformation-induced rearrangeable structures publication-title: Advanced Materials doi: 10.1002/adma.202107901 – volume: 32 start-page: 4134 issue: 17 year: 2016 end-page: 4140 ident: CR35 article-title: Superoleophobic surfaces obtained via hierarchical metallic meshes publication-title: Langmuir doi: 10.1021/acs.langmuir.6b00248 – volume: 135 start-page: 578 issue: 2 year: 2013 end-page: 581 ident: CR39 article-title: Superomniphobic surfaces for effective chemical shielding publication-title: Journal of the American Chemical Society doi: 10.1021/ja310517s – volume: 8 start-page: 12481 issue: 19 year: 2016 end-page: 12493 ident: CR10 article-title: Superamphiphobic and electroactive nanocomposite toward self-cleaning, antiwear, and anticorrosion coatings publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b03961 – volume: 8 start-page: 29117 issue: 42 year: 2016 end-page: 29127 ident: CR40 article-title: Surface-independent hierarchical coatings with superamphiphobic properties publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b08487 – volume: 14 start-page: 3836 issue: 4 year: 2020 end-page: 3846 ident: CR9 article-title: Microdroplet contaminants: when and why superamphiphobic surfaces are not self-cleaning publication-title: ACS Nano doi: 10.1021/acsnano.9b08211 – volume: 318 start-page: 1618 issue: 5856 year: 2007 end-page: 1622 ident: CR24 article-title: Designing superoleophobic surfaces publication-title: Science doi: 10.1126/science.1148326 – volume: 13 start-page: 27557 issue: 23 year: 2021 end-page: 27566 ident: CR27 article-title: Multifunctional textiles based on three-dimensional hierarchically structured TiO nanowires publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c04256 – volume: 12 start-page: 795 issue: 1 year: 2018 end-page: 803 ident: CR22 article-title: Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation publication-title: ACS Nano doi: 10.1021/acsnano.7b08121 – volume: 6 start-page: 1900550 issue: 14 year: 2019 end-page: 1900558 ident: CR30 article-title: Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser bessel beam on PTFE publication-title: Advanced Materials Interfaces doi: 10.1002/admi.201900550 – volume: 11 start-page: 478 issue: 1 year: 2017 end-page: 489 ident: CR26 article-title: Rational design of hyperbranched nanowire systems for tunable superomniphobic surfaces enabled by atomic layer deposition publication-title: ACS Nano doi: 10.1021/acsnano.6b06463 – volume: 34 start-page: 2981 issue: 9 year: 2018 end-page: 2988 ident: CR21 article-title: Nanosecond laser-induced underwater superoleophobic and underoil superhydrophobic mesh for oil/water separation publication-title: Langmuir doi: 10.1021/acs.langmuir.7b03986 – volume: 142 start-page: 6111 issue: 13 year: 2020 end-page: 6116 ident: CR17 article-title: Ultrafast self-propelled directional liquid transport on the pyramid-structured fibers with concave curved surfaces publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.9b13286 – volume: 65 start-page: 431 issue: 2 year: 2022 end-page: 441 ident: CR49 article-title: Temperature-controlled fabrication of Co—Fe-based nanoframes for efficient oxygen evolution publication-title: Science China Materials doi: 10.1007/s40843-021-1743-7 – volume: 17 start-page: 1040 issue: 11 year: 2018 end-page: 1047 ident: CR36 article-title: Coatings super-repellent to ultralow surface tension liquids publication-title: Nature Materials doi: 10.1038/s41563-018-0178-2 – volume: 32 start-page: 2005039 issue: 48 year: 2020 ident: CR14 article-title: High-performance unidirectional manipulation of microdroplets by horizontal vibration on femtosecond laser-induced slant microwall arrays publication-title: Advanced Materials doi: 10.1002/adma.202005039 – volume: 33 start-page: 2101855 issue: 39 year: 2021 ident: CR16 article-title: Ultrafast bubble bursting by superamphiphobic coatings publication-title: Advanced Materials doi: 10.1002/adma.202101855 – volume: 12 start-page: 49155 issue: 43 year: 2020 end-page: 49164 ident: CR45 article-title: Designing re-entrant geometry: construction of a superamphiphobic surface with large-sized particles publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.0c11398 – volume: 28 start-page: 1706867 issue: 20 year: 2018 end-page: 1706873 ident: CR37 article-title: Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil—water separation publication-title: Advanced Functional Materials doi: 10.1002/adfm.201706867 – volume: 13 start-page: 15857 issue: 13 year: 2021 end-page: 15865 ident: CR18 article-title: Enhanced movement of two-component droplets on a wedge-shaped Ag/Cu surface by a wettability gradient publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c00517 – volume: 11 start-page: 587 issue: 1 year: 2017 end-page: 596 ident: CR28 article-title: Omnidirectional self-assembly of transparent superoleophobic nanotextures publication-title: ACS Nano doi: 10.1021/acsnano.6b06715 – volume: 27 start-page: 1930 issue: 5 year: 2011 end-page: 1934 ident: CR42 article-title: Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil publication-title: Langmuir doi: 10.1021/la103877r – volume: 50 start-page: 12633 issue: 84 year: 2014 end-page: 12636 ident: CR47 article-title: Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant publication-title: Chemical Communications doi: 10.1039/C4CC04998E – volume: 105 start-page: 18200 issue: 47 year: 2008 end-page: 18205 ident: CR53 article-title: Robust omniphobic surfaces publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0804872105 – volume: 59 start-page: 16346 issue: 38 year: 2020 end-page: 16351 ident: CR4 article-title: Heat-free biomimetic metal molding on soft substrates publication-title: Angewandte Chemie International Edition in English doi: 10.1002/anie.202008621 – volume: 202 start-page: 1 issue: 1 year: 1997 end-page: 8 ident: CR1 article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces publication-title: Planta doi: 10.1007/s004250050096 – volume: 6 start-page: e109 issue: 7 year: 2014 ident: CR51 article-title: The design and applications of superomniphobic surfaces publication-title: NPG Asia Materials doi: 10.1038/am.2014.34 – volume: 172 start-page: 1103 issue: 6 year: 2007 end-page: 1112 ident: CR2 article-title: Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure publication-title: Plant Science doi: 10.1016/j.plantsci.2007.03.005 – volume: 8 start-page: 12481 issue: 19 year: 2016 ident: 618_CR10 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b03961 – volume: 32 start-page: 2005039 issue: 48 year: 2020 ident: 618_CR14 publication-title: Advanced Materials doi: 10.1002/adma.202005039 – volume: 6 start-page: 15188 issue: 17 year: 2014 ident: 618_CR33 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am503441x – volume: 105 start-page: 18200 issue: 47 year: 2008 ident: 618_CR53 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0804872105 – volume: 35 start-page: 10689 issue: 33 year: 2019 ident: 618_CR23 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03088 – volume: 318 start-page: 1618 issue: 5856 year: 2007 ident: 618_CR24 publication-title: Science doi: 10.1126/science.1148326 – volume: 135 start-page: 578 issue: 2 year: 2013 ident: 618_CR39 publication-title: Journal of the American Chemical Society doi: 10.1021/ja310517s – volume: 65 start-page: 431 issue: 2 year: 2022 ident: 618_CR49 publication-title: Science China Materials doi: 10.1007/s40843-021-1743-7 – volume: 172 start-page: 1103 issue: 6 year: 2007 ident: 618_CR2 publication-title: Plant Science doi: 10.1016/j.plantsci.2007.03.005 – volume: 50 start-page: 12633 issue: 84 year: 2014 ident: 618_CR47 publication-title: Chemical Communications doi: 10.1039/C4CC04998E – volume: 8 start-page: 27188 issue: 40 year: 2016 ident: 618_CR11 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b06772 – volume: 432 start-page: 36 issue: 7013 year: 2004 ident: 618_CR6 publication-title: Nature doi: 10.1038/432036a – volume: 14 start-page: 1857 issue: 24 year: 2002 ident: 618_CR3 publication-title: Advanced Materials doi: 10.1002/adma.200290020 – volume: 13 start-page: 27557 issue: 23 year: 2021 ident: 618_CR27 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c04256 – volume: 12 start-page: 49155 issue: 43 year: 2020 ident: 618_CR45 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.0c11398 – volume: 59 start-page: 16346 issue: 38 year: 2020 ident: 618_CR4 publication-title: Angewandte Chemie International Edition in English doi: 10.1002/anie.202008621 – volume: 11 start-page: 478 issue: 1 year: 2017 ident: 618_CR26 publication-title: ACS Nano doi: 10.1021/acsnano.6b06463 – volume: 582 start-page: 55 issue: 7810 year: 2020 ident: 618_CR25 publication-title: Nature doi: 10.1038/s41586-020-2331-8 – volume: 13 start-page: 15857 issue: 13 year: 2021 ident: 618_CR18 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c00517 – volume: 16 start-page: 2000779 issue: 19 year: 2020 ident: 618_CR7 publication-title: Small doi: 10.1002/smll.202000779 – volume: 26 start-page: 62 issue: 1 year: 1968 ident: 618_CR48 publication-title: Journal of Colloid and Interface Science doi: 10.1016/0021-9797(68)90272-5 – volume: 29 start-page: 1606869 issue: 23 year: 2017 ident: 618_CR5 publication-title: Advanced Materials doi: 10.1002/adma.201606869 – volume: 32 start-page: 4134 issue: 17 year: 2016 ident: 618_CR35 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b00248 – volume: 9 start-page: 304 issue: 3 year: 2012 ident: 618_CR32 publication-title: Plasma Processes and Polymers doi: 10.1002/ppap.201100124 – volume: 7 start-page: 1901782 issue: 7 year: 2020 ident: 618_CR15 publication-title: Advanced Materials Interfaces doi: 10.1002/admi.201901782 – volume: 34 start-page: 2981 issue: 9 year: 2018 ident: 618_CR21 publication-title: Langmuir doi: 10.1021/acs.langmuir.7b03986 – volume: 11 start-page: 587 issue: 1 year: 2017 ident: 618_CR28 publication-title: ACS Nano doi: 10.1021/acsnano.6b06715 – volume: 33 start-page: 2101855 issue: 39 year: 2021 ident: 618_CR16 publication-title: Advanced Materials doi: 10.1002/adma.202101855 – volume: 34 start-page: 2107901 issue: 10 year: 2022 ident: 618_CR38 publication-title: Advanced Materials doi: 10.1002/adma.202107901 – volume: 335 start-page: 67 issue: 6064 year: 2012 ident: 618_CR44 publication-title: Science doi: 10.1126/science.1207115 – volume: 11 start-page: 29458 issue: 32 year: 2019 ident: 618_CR29 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b08947 – volume: 11 start-page: 11106 issue: 12 year: 2019 ident: 618_CR41 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.8b21331 – volume: 202 start-page: 1 issue: 1 year: 1997 ident: 618_CR1 publication-title: Planta doi: 10.1007/s004250050096 – volume: 12 start-page: 795 issue: 1 year: 2018 ident: 618_CR22 publication-title: ACS Nano doi: 10.1021/acsnano.7b08121 – volume: 15 start-page: 3500 issue: 2 year: 2021 ident: 618_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.1c00158 – volume: 19 start-page: 2213 issue: 17 year: 2007 ident: 618_CR8 publication-title: Advanced Materials doi: 10.1002/adma.200601946 – volume: 65 start-page: 2675 issue: 4 year: 2022 ident: 618_CR50 publication-title: Science China Materials doi: 10.1007/s40843-022-2001-7 – volume: 32 start-page: 1908008 issue: 11 year: 2020 ident: 618_CR46 publication-title: Advanced Materials doi: 10.1002/adma.201908008 – volume: 21 start-page: 2190 issue: 21 year: 2009 ident: 618_CR54 publication-title: Advanced Materials doi: 10.1002/adma.200802502 – volume: 14 start-page: 3836 issue: 4 year: 2020 ident: 618_CR9 publication-title: ACS Nano doi: 10.1021/acsnano.9b08211 – volume: 28 start-page: 1706867 issue: 20 year: 2018 ident: 618_CR37 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201706867 – volume: 14 start-page: 6173 issue: 5 year: 2020 ident: 618_CR20 publication-title: ACS Nano doi: 10.1021/acsnano.0c02211 – volume: 27 start-page: 1930 issue: 5 year: 2011 ident: 618_CR42 publication-title: Langmuir doi: 10.1021/la103877r – volume: 31 start-page: 1905449 issue: 43 year: 2019 ident: 618_CR13 publication-title: Advanced Materials doi: 10.1002/adma.201905449 – volume: 142 start-page: 6111 issue: 13 year: 2020 ident: 618_CR17 publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.9b13286 – volume: 6 start-page: 6510 issue: 9 year: 2014 ident: 618_CR31 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am5000432 – volume: 18 start-page: 936 issue: 9 year: 2019 ident: 618_CR12 publication-title: Nature Materials doi: 10.1038/s41563-019-0440-2 – volume: 6 start-page: 1900550 issue: 14 year: 2019 ident: 618_CR30 publication-title: Advanced Materials Interfaces doi: 10.1002/admi.201900550 – volume: 8 start-page: 29117 issue: 42 year: 2016 ident: 618_CR40 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b08487 – volume: 11 start-page: 1113 issue: 1 year: 2017 ident: 618_CR43 publication-title: ACS Nano doi: 10.1021/acsnano.6b08348 – volume: 6 start-page: e109 issue: 7 year: 2014 ident: 618_CR51 publication-title: NPG Asia Materials doi: 10.1038/am.2014.34 – volume: 16 start-page: 1127 issue: 9 year: 2014 ident: 618_CR34 publication-title: Advanced Engineering Materials doi: 10.1002/adem.201300561 – volume: 33 start-page: 752 issue: 8 year: 2008 ident: 618_CR52 publication-title: MRS Bulletin doi: 10.1557/mrs2008.161 – volume: 17 start-page: 1040 issue: 11 year: 2018 ident: 618_CR36 publication-title: Nature Materials doi: 10.1038/s41563-018-0178-2 |
SSID | ssj0000515941 |
Score | 2.2535906 |
Snippet | Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily... |
SourceID | proquest crossref springer higheredpress |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 220618 |
SubjectTerms | Chemical vapor deposition Coating hierarchical structure Materials Science Nanoparticles Polydimethylsiloxane Research Article Robustness Silicon dioxide SiO 2 solid–liquid contact area spray-coating Structural hierarchy superamphiphobicity |
Title | Construction of mechanically robust superamphiphobic surfaces on fiber using large particles |
URI | https://journal.hep.com.cn/foms/EN/10.1007/s11706-022-0618-4 https://link.springer.com/article/10.1007/s11706-022-0618-4 https://www.proquest.com/docview/2723843300 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXhQRn1itJQdPSmAfyT6ORVqLoicLFYSQZBMr1O7Sx8F_b2a7aa1oQdjTbpLDfNnNzM438yF0JWiaQTaOZKGICbXhGpEmoMRPsiSKdCKFB8XJj09Rr0_vB2xQ1XFPHdvdpSTLL_Wq2A06vRBgn9szKCF0G9UZhO52E_eD9vLHCoiWpKViZeCV1cds4LKZv62ydh7tDUtyhc5KEuqa0_kjT1oeP90DtF_5jbi9APoQbenxEdr91k3wGL2C-KZrB4tzgz80lPUCCqNPPMnlfDrD03mhJ8JC-F4Mc_mu7I2JAVoWtnMM0EcwUOHf8Ago4rhwxLkT1O92nm97pBJPICqM2IykwkimmJaeSWIbiUoQ7hY2uoqpClSSsZAai4-0Hp-KU5MwrWKPqsz6K4KJ1A9PUW2cj_UZwio2ngh8Q7XWVAZw-cpkfpRZ50wzv4E8Z0Kuqs7iIHAx4queyGB1bq3OweqcNtD1ckqxaKuxabC_hgs30NsBlMI3zWk67Hj1Vk55AAprNAw9r4FuHJ6rx38udv6v0RdoJ4D9VXJemqhmgdeX1nOZyRaqt-9eHjqtcsd-AQpK5jY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD2qM8RlR1B48aZrso93HkRgJKnCChINJ03ZbIUHYsHDw39tZdkGMkpjsabftYWZ2O9355vsQuhM0TqAaRxJfhITa4xqRxqPEjZIoCHQkhQPNye1O0OzRlz7rF33cWYl2L0uS-Zd61ewGTC8E0Od2D4oI3UY7NheIAMfV8-rLHysgWhLnipWek3cfs35ZzfxtlbX96GCQgyt0koNQ15LOH3XSfPtpHKHDIm_E9YWjj9GWHp-g_W9sgqfoDcQ3SzpYPDH4Q0NbL3hh9ImnEznPZjibp3oqrAuH6WAih8remBqAZWE7xwB8BAMU_h2PACKO0xI4d4Z6jafuY5MU4glE-QGbkVgYyRTT0jFRaE-iEoS7hT1dhVR5KkqYT431j7QZnwpjEzGtQoeqxOYrgonY9c9RZTwZ6wuEVWgc4bmGaq2p9OBylUncILHJmWZuFTmlCbkqmMVB4GLEV5zIYHVurc7B6pxW0f1ySrqg1dg02F3zCzfA7QBK4Zvm1Erf8eKtzLgHCmvU9x2nih5Kf64e_7nY5b9G36LdZrfd4q3nzusV2vMg1nL8Sw1VbBDoa5vFzORNHrVf0DHnlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gigiPrE-9-BJWcxjN4-jqKU-8WChB2HZpwq1CW168N-7kybWihaEnJLdPcxMsrOZb74PoWNBUw3VOKJDERPqjmtE2oASP9FJFJlECg-ak-8fonaH3nRZt9I5HdZo97okOe5pAJamfnGWa3s2aXwD1hcCSHS3HyWEzqMF9zX2Iaw7wfnXTxYQMElL9crAKzuRWbeubP62ytTetPJaAi2MLgGpUwnoj5ppuRW11tBqlUPi87HT19Gc6W-g5W_MgpvoGYQ4a2pYnFn8bqDFFzzS-8CDTI6GBR6OcjMQzp1v-Wsm35S7MbAA0cJujgUoCQZY_AvuAVwc5zWIbgt1WldPF21SCSkQFUasIKmwkilmpGeT2J1KJYh4C3fSiqkKVKJZSK3zlXTZn4pTmzCjYo8q7XIXwUTqh9uo0c_6ZgdhFVtPBL6lxhgqA7h8ZbUfaZeoGeY3kVebkKuKZRzELnp8wo8MVufO6hyszmkTnXxNyccUG7MG-1N-4RZ4HkA1fNac_dp3vHpDhzwAtTUahp7XRKe1PyeP_1xs91-jj9Di42WL310_3O6hpQBCrYTC7KOGiwFz4BKaQh6WQfsJN2Dr0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+mechanically+robust+superamphiphobic+surfaces+on+fiber+using+large+particles&rft.jtitle=Frontiers+of+materials+science&rft.au=Lv%2C+Chang&rft.au=Wang%2C+Jinyi&rft.au=Tian%2C+Qirong&rft.au=Zhang%2C+Zhicheng&rft.date=2022-12-01&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=16&rft.issue=4&rft_id=info:doi/10.1007%2Fs11706-022-0618-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11706_022_0618_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon |