DMET: Dynamic Mask-Enhanced Transformer for Generalizable Deep Image Denoising
Different types of noise are inevitably introduced by devices during image acquisition and transmission processes. Therefore, image denoising remains a crucial challenge in computer vision. Deep learning, especially recent Transformer-based architectures, has demonstrated remarkable performance for...
Saved in:
Published in | Mathematics (Basel) Vol. 13; no. 13; p. 2167 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different types of noise are inevitably introduced by devices during image acquisition and transmission processes. Therefore, image denoising remains a crucial challenge in computer vision. Deep learning, especially recent Transformer-based architectures, has demonstrated remarkable performance for image denoising tasks. However, due to its data-driven nature, deep learning can easily overfit the training data, leading to a lack of generalization ability. In order to address this issue, we present a novel Dynamic Mask-Enhanced Transformer (DMET) to improve the generalization capacity of denoising networks. Specifically, a texture-guided adaptive masking mechanism is introduced to simulate possible noise in practical applications. Then, we apply a masked hierarchical attention block to mitigate information loss and leverage global statistics, which combines shifted window multi-head self-attention with channel attention. Additionally, an attention mask is applied during training to reduce discrepancies between training and testing. Extensive experiments demonstrate that our approach achieves better generalization performance than state-of-the-art deep learning models and can be directly applied to real-world scenarios. |
---|---|
AbstractList | Different types of noise are inevitably introduced by devices during image acquisition and transmission processes. Therefore, image denoising remains a crucial challenge in computer vision. Deep learning, especially recent Transformer-based architectures, has demonstrated remarkable performance for image denoising tasks. However, due to its data-driven nature, deep learning can easily overfit the training data, leading to a lack of generalization ability. In order to address this issue, we present a novel Dynamic Mask-Enhanced Transformer (DMET) to improve the generalization capacity of denoising networks. Specifically, a texture-guided adaptive masking mechanism is introduced to simulate possible noise in practical applications. Then, we apply a masked hierarchical attention block to mitigate information loss and leverage global statistics, which combines shifted window multi-head self-attention with channel attention. Additionally, an attention mask is applied during training to reduce discrepancies between training and testing. Extensive experiments demonstrate that our approach achieves better generalization performance than state-of-the-art deep learning models and can be directly applied to real-world scenarios. |
Audience | Academic |
Author | Li, Anqi Jiang, Donghua Wang, Yuan-Gen Zhu, Tong Su, Wenkang |
Author_xml | – sequence: 1 givenname: Tong orcidid: 0000-0002-3082-7848 surname: Zhu fullname: Zhu, Tong – sequence: 2 givenname: Anqi surname: Li fullname: Li, Anqi – sequence: 3 givenname: Yuan-Gen orcidid: 0000-0003-3010-4196 surname: Wang fullname: Wang, Yuan-Gen – sequence: 4 givenname: Wenkang orcidid: 0000-0002-5043-2552 surname: Su fullname: Su, Wenkang – sequence: 5 givenname: Donghua surname: Jiang fullname: Jiang, Donghua |
BookMark | eNpNUU1PGzEQtRBIpJQbP2ClXrt0_b3uLSKBRoJyCWdr7LUTp1k7tZcD_fU1pKoyc5jRzJunp3mf0HlM0SF0g7tbSlX3bYRpiymmBAt5hmaEENnKujg_6S_RdSm7robCtGdqhn4unpbr783iLcIYbPME5Ve7jFuI1g3NOkMsPuXR5aaW5sFFl2Ef_oDZu2bh3KFZjbB5b2MKJcTNZ3ThYV_c9b96hV7ul-u7H-3j88Pqbv7YWir41PZUSt4JX1V4xYwxgg-EKktrEgm9oWB5zwwTChj1HvfSSOa89wR7bgW9Qqsj75Bgpw85jJDfdIKgPwYpbzTkKdi908ayjoOikhPMBkKUNU6CJRwLOwzcVq4vR65DTr9fXZn0Lr3mWOVrWuGYUyL6iro9ojZQSUP0acpgaw6uPq5a4UOdz3smuVCMs3rw9XhgcyolO_9fJu70u2P61DH6F5JZiK0 |
Cites_doi | 10.1109/CVPR42600.2020.00583 10.1109/CVPR.2019.01129 10.1109/CVPR52729.2023.00169 10.1609/aaai.v38i7.28604 10.1109/CVPR46437.2021.01454 10.1016/j.neucom.2024.127799 10.1109/CVPRW.2018.00113 10.1109/CVPR52688.2022.00591 10.1109/CVPR52688.2022.00564 10.1109/CVPR42600.2020.00283 10.1109/TIP.2007.901238 10.1109/CVPR.2016.278 10.1109/CVPR.2018.00745 10.1109/CVPR52733.2024.02454 10.1109/CVPR52688.2022.01553 10.1109/CVPR42600.2020.00196 10.1109/CVPR.2015.7299156 10.1111/cgf.14454 10.1109/CVPR.2018.00333 10.1109/ICCVW54120.2021.00210 10.1109/CVPR.2019.00621 10.1007/978-3-030-01252-6_1 10.1007/978-3-030-01234-2_1 10.1109/TSMC.2024.3429345 10.1109/CVPRW.2017.151 10.1109/CVPR.2019.00223 10.1109/CVPR.2014.366 10.1088/1402-4896/ad7075 10.1109/TPAMI.2016.2596743 10.1109/TIP.2017.2662206 10.1109/CVPR52688.2022.00943 10.1109/CVPRW63382.2024.00306 10.1109/CVPR.2018.00182 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math13132167 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_bc405a9375214d229cbe7ac2516cdd5c A847569454 10_3390_math13132167 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c365t-8377506f913f94bbb65d239c3c3c27a8b3ac584b469a43ff187b74efff21f5c63 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:29:36 EDT 2025 Fri Jul 18 09:50:55 EDT 2025 Tue Jul 15 03:50:29 EDT 2025 Thu Jul 10 07:34:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-8377506f913f94bbb65d239c3c3c27a8b3ac584b469a43ff187b74efff21f5c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3010-4196 0000-0002-3082-7848 0000-0002-5043-2552 |
OpenAccessLink | https://www.proquest.com/docview/3229153268?pq-origsite=%requestingapplication% |
PQID | 3229153268 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bc405a9375214d229cbe7ac2516cdd5c proquest_journals_3229153268 gale_infotracacademiconefile_A847569454 crossref_primary_10_3390_math13132167 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhang (ref_8) 2017; 26 Hu (ref_31) 2018; 31 Vincent (ref_35) 2010; 11 Chen (ref_21) 2022; 35 Chen (ref_37) 2016; 39 ref_14 ref_36 ref_13 ref_12 ref_11 ref_10 ref_32 Dabov (ref_16) 2007; 16 ref_30 Firmino (ref_46) 2022; 41 ref_19 ref_18 ref_17 ref_39 ref_38 ref_15 Ponnambalam (ref_28) 2024; 99 Brown (ref_34) 2020; 33 ref_25 ref_24 ref_23 ref_45 ref_22 ref_44 ref_43 ref_20 ref_42 ref_41 ref_40 ref_1 ref_3 ref_2 Radford (ref_33) 2019; 1 ref_29 Hu (ref_4) 2024; 592 ref_27 ref_26 ref_9 Tian (ref_5) 2024; 54 ref_7 ref_6 |
References_xml | – ident: ref_22 doi: 10.1109/CVPR42600.2020.00583 – ident: ref_6 doi: 10.1109/CVPR.2019.01129 – ident: ref_12 doi: 10.1109/CVPR52729.2023.00169 – ident: ref_32 – ident: ref_3 doi: 10.1609/aaai.v38i7.28604 – ident: ref_27 doi: 10.1109/CVPR46437.2021.01454 – volume: 11 start-page: 3371 year: 2010 ident: ref_35 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 592 start-page: 127799 year: 2024 ident: ref_4 article-title: Efficient image denoising with heterogeneous kernel-based CNN publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127799 – ident: ref_11 doi: 10.1109/CVPRW.2018.00113 – volume: 1 start-page: 9 year: 2019 ident: ref_33 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – ident: ref_45 doi: 10.1109/CVPR52688.2022.00591 – ident: ref_23 doi: 10.1109/CVPR52688.2022.00564 – ident: ref_40 – ident: ref_44 – ident: ref_7 doi: 10.1109/CVPR42600.2020.00283 – volume: 16 start-page: 2080 year: 2007 ident: ref_16 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – ident: ref_36 doi: 10.1109/CVPR.2016.278 – ident: ref_29 doi: 10.1109/CVPR.2018.00745 – ident: ref_1 doi: 10.1109/CVPR52733.2024.02454 – ident: ref_38 doi: 10.1109/CVPR52688.2022.01553 – ident: ref_26 doi: 10.1109/CVPR42600.2020.00196 – ident: ref_42 doi: 10.1109/CVPR.2015.7299156 – volume: 41 start-page: 1 year: 2022 ident: ref_46 article-title: Progressive denoising of Monte Carlo rendered images publication-title: Comput. Graph. Forum doi: 10.1111/cgf.14454 – ident: ref_9 doi: 10.1109/CVPR.2018.00333 – ident: ref_24 doi: 10.1109/ICCVW54120.2021.00210 – ident: ref_18 doi: 10.1109/CVPR.2019.00621 – volume: 33 start-page: 1877 year: 2020 ident: ref_34 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_17 doi: 10.1007/978-3-030-01252-6_1 – ident: ref_30 doi: 10.1007/978-3-030-01234-2_1 – volume: 54 start-page: 6621 year: 2024 ident: ref_5 article-title: Heterogeneous window transformer for image denoising publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2024.3429345 – ident: ref_41 doi: 10.1109/CVPRW.2017.151 – ident: ref_25 doi: 10.1109/CVPR.2019.00223 – ident: ref_14 doi: 10.1109/CVPR.2014.366 – ident: ref_15 – volume: 99 start-page: 105239 year: 2024 ident: ref_28 article-title: A robust color image encryption scheme with complex whirl wind spiral chaotic system and quadrant-wise pixel permutation publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad7075 – ident: ref_13 – volume: 39 start-page: 1256 year: 2016 ident: ref_37 article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2596743 – volume: 26 start-page: 3142 year: 2017 ident: ref_8 article-title: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2662206 – ident: ref_19 – ident: ref_43 – ident: ref_39 doi: 10.1109/CVPR52688.2022.00943 – ident: ref_2 doi: 10.1109/CVPRW63382.2024.00306 – ident: ref_10 doi: 10.1109/CVPR.2018.00182 – ident: ref_20 – volume: 35 start-page: 25478 year: 2022 ident: ref_21 article-title: Cross aggregation transformer for image restoration publication-title: Adv. Neural Inf. Process. Syst. – volume: 31 start-page: 9423 year: 2018 ident: ref_31 article-title: Gather-excite: Exploiting feature context in convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0000913849 |
Score | 2.296106 |
Snippet | Different types of noise are inevitably introduced by devices during image acquisition and transmission processes. Therefore, image denoising remains a crucial... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2167 |
SubjectTerms | Attention channel attention Computational linguistics Computer vision Datasets Deep learning Electric transformers Image acquisition image denoising Language processing Machine vision masked training Natural language interfaces Neural networks Noise Noise reduction Regularization methods Semantics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkAcQU1SS2I7NVmirgpROrdTNsh1bRUBateH_c3bS0gWxoAyJogzOnX3vnXN5h9AtAZrgtOKRF1_zotomUoAqEfXJhVZUCec39PMxG03J64zOdlp9-ZqwWh64NlxXG6AUCkAUcIYUSSKMtpkyAMvMFAU1PvoC5u0kUyEGizjlRNSV7ink9V3gf_PY6xTGoaX8DwYFqf7fAnJAmeEROmzoIe7VwzpGe7Y8QQf5Vlt1fYrG_XwwecT9upU8ztX6PRqU8_AlH082PNSuMJxwoyrtS7c-LO5bu8QvnxBC4LJcvPl9gjM0HQ4mz6Oo6YoQmZTRKoKMElCeOXhDJ4jWmtEiSYVJ4UgyxXWqDLAKDXmvIqlzMc90RqxzLokdNSw9R61yUdoLhDU1znDLHwogUgrMnGScCcMdYa5QMWmju42d5LIWv5CQNHh7yl17ttGTN-L2GS9ZHW6AI2XjSPmXI9vo3rtA-oVVrZRRzf8BMFQvUSV7gKOUCZhObdTZeEk2K24tITAJiN4J45f_MZortJ_4Tr-hMLeDWtXqy14D_aj0TZhp3-Ir1tA priority: 102 providerName: Directory of Open Access Journals |
Title | DMET: Dynamic Mask-Enhanced Transformer for Generalizable Deep Image Denoising |
URI | https://www.proquest.com/docview/3229153268 https://doaj.org/article/bc405a9375214d229cbe7ac2516cdd5c |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCb6uKyHYX0MTdcFOmzYyWhtS7Lcy5AsydoCCYoiBXoTJFlqirZOlmT_v6SjpL1s8MGG7YNNUuRHmv4I8I0jTAjWqITI14hU2yUGo0oiKLmwRpgyUEF_OJKXd_z6XtzHgtsitlWufWLjqKupoxr5GRpeiaszk-rn7E9CU6Po62ocobENu-iCFSZfu93-6OZ2U2Uh1kvFy1XHe475_RniwElKfIVpM1r-LRY1lP3_csxNtBl8go8RJrLOSq_7sOXrA9gbbjhWF4cw6g374wvWW42UZ0OzeEr69aT5os_Gazzq5wx3LLJLUwvXs2c972fs6gVdCR7W00eqFxzB3aA__nWZxOkIiculWCaYWWK0lwHfMJTcWitFleWly3HLCqNsbhyiC4v5r-F5CKkqbMF9CCFLg3Ay_ww79bT2x8CscMEpr84rBFTmXJisULJ0KnAZKpPyFnxfy0nPViQYGpMHkqd-L88WdEmIm3uIuro5MZ0_6LgStHWIEQ2iIgQOvEKtOusL4xBnSVdVwrXgB6lA0wJbzo0z8T8BfFSiqtIdjKdClmhWLThda0nHlbfQb3Zy8v_LX-BDRrN8m9bbU9hZzv_6rwgwlrYN22rwux1tqd2k6a9eo9Ew |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tywE4IJ6isIAPrDhF28SPOEgILbSlZTc9daW9GduxWQSkpS1C_Cl-IzN5dLnAbZVDojiKovGM55vJ-BuAFwJhQnRWJ0S-RqTaPrHoVRJJwYWz0haREvrlXE3PxIdzeb4Hv_u9MFRW2a-JzUJdLT3lyI9Q8Qq0zkzpN6vvCXWNor-rfQuNVi1Owq-fGLJtXs9GOL-HWTYZL95Nk66rQOK5ktsEIzL0kioWKY-FcM4pWWW88ByPLLfacevRKzuMG63gMaY6d7kIMcYsjdIrju-9BtcF5wVZlJ683-V0iGNTi6Ktr8fx4RGizouU2BHTppH9pedrGgT8yw00vm1yB253oJQdt1p0F_ZCfQ9ulTtG1819mI_K8eIVG7UN7FlpN1-ScX3R1A-wRY9-w5rhiXVc1lQw9jWwUQgrNvuGCxde1svPlJ14AGdXIrWHsF8v6_AImJM-eh30sEL4ZofSZrlWhddRqFjZVAzgsJeTWbWUGwZDFZKn-VueA3hLQtw9Q0TZzY3l-pPp7M44j4jUIgZDmCIq1CHvQm49ojrlq0r6AbykKTBkztu19bbblYCfSsRY5hi9t1QFKvEADvpZMp2db8ylVj7-__BzuDFdlKfmdDY_eQI3M-oi3BT9HsD-dv0jPEVos3XPGn1i8PGqFfgPbAIK3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDzVQIE9UHGyEj92vYuEUIsTNZREFUql3pbd9S5FtE5IghB_jV_HjB8pF7hVPtiyLcua_Xbnm_H4G4BXGdKEYI2MSHyNRLVdZNCrRJyCC2u4UYES-tOZOD7LPpzz8x343f0LQ2WV3ZpYL9TlwlGOfIDAUzg7EyEHoS2LOC3G75bfI-ogRV9au3YaDURO_K-fGL6t304KHOuDJBmP5u-Po7bDQORSwTcRRmfoMUVQcRpUZq0VvExS5VLcktxImxqHHtpiDGmyNIRY5jbPfAghiQN3IsXn3oLdHKOiYQ92j0az00_bDA8pbspMNdX2aaqGA-SgFzFpJcZ1W_trP1i3C_iXU6g93fg-3GspKjtsMPUAdnz1EO5Ot_qu60cwK6aj-RtWNO3s2dSsv0Wj6qKuJmDzjgv7FcMda5WtqXzs0rPC-yWbXOEyhofV4ivlKh7D2Y3Y7Qn0qkXl94BZ7oKTXg5LJHNmyE2SS6GcDJkIpYmzPhx0dtLLRoBDY-BC9tR_27MPR2TE7T0km12fWKy-6HYWauuQnxpkZEhashIR5azPjUOOJ1xZcteH1zQEmib3ZmWcaf9RwFclmSx9iL6cC4WQ7sN-N0q6nfVrfY3Rp_-__BJuI3j1x8ns5BncSailcF0BvA-9zeqHf448Z2NftIBi8PmmMfwHKOkQbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMET%3A+Dynamic+Mask-Enhanced+Transformer+for+Generalizable+Deep+Image+Denoising&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhu%2C+Tong&rft.au=Li%2C+Anqi&rft.au=Wang%2C+Yuan-Gen&rft.au=Su%2C+Wenkang&rft.date=2025-07-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=13&rft.issue=13&rft.spage=2167&rft_id=info:doi/10.3390%2Fmath13132167&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math13132167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |