DMET: Dynamic Mask-Enhanced Transformer for Generalizable Deep Image Denoising

Different types of noise are inevitably introduced by devices during image acquisition and transmission processes. Therefore, image denoising remains a crucial challenge in computer vision. Deep learning, especially recent Transformer-based architectures, has demonstrated remarkable performance for...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 13; no. 13; p. 2167
Main Authors Zhu, Tong, Li, Anqi, Wang, Yuan-Gen, Su, Wenkang, Jiang, Donghua
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different types of noise are inevitably introduced by devices during image acquisition and transmission processes. Therefore, image denoising remains a crucial challenge in computer vision. Deep learning, especially recent Transformer-based architectures, has demonstrated remarkable performance for image denoising tasks. However, due to its data-driven nature, deep learning can easily overfit the training data, leading to a lack of generalization ability. In order to address this issue, we present a novel Dynamic Mask-Enhanced Transformer (DMET) to improve the generalization capacity of denoising networks. Specifically, a texture-guided adaptive masking mechanism is introduced to simulate possible noise in practical applications. Then, we apply a masked hierarchical attention block to mitigate information loss and leverage global statistics, which combines shifted window multi-head self-attention with channel attention. Additionally, an attention mask is applied during training to reduce discrepancies between training and testing. Extensive experiments demonstrate that our approach achieves better generalization performance than state-of-the-art deep learning models and can be directly applied to real-world scenarios.
AbstractList Different types of noise are inevitably introduced by devices during image acquisition and transmission processes. Therefore, image denoising remains a crucial challenge in computer vision. Deep learning, especially recent Transformer-based architectures, has demonstrated remarkable performance for image denoising tasks. However, due to its data-driven nature, deep learning can easily overfit the training data, leading to a lack of generalization ability. In order to address this issue, we present a novel Dynamic Mask-Enhanced Transformer (DMET) to improve the generalization capacity of denoising networks. Specifically, a texture-guided adaptive masking mechanism is introduced to simulate possible noise in practical applications. Then, we apply a masked hierarchical attention block to mitigate information loss and leverage global statistics, which combines shifted window multi-head self-attention with channel attention. Additionally, an attention mask is applied during training to reduce discrepancies between training and testing. Extensive experiments demonstrate that our approach achieves better generalization performance than state-of-the-art deep learning models and can be directly applied to real-world scenarios.
Audience Academic
Author Li, Anqi
Jiang, Donghua
Wang, Yuan-Gen
Zhu, Tong
Su, Wenkang
Author_xml – sequence: 1
  givenname: Tong
  orcidid: 0000-0002-3082-7848
  surname: Zhu
  fullname: Zhu, Tong
– sequence: 2
  givenname: Anqi
  surname: Li
  fullname: Li, Anqi
– sequence: 3
  givenname: Yuan-Gen
  orcidid: 0000-0003-3010-4196
  surname: Wang
  fullname: Wang, Yuan-Gen
– sequence: 4
  givenname: Wenkang
  orcidid: 0000-0002-5043-2552
  surname: Su
  fullname: Su, Wenkang
– sequence: 5
  givenname: Donghua
  surname: Jiang
  fullname: Jiang, Donghua
BookMark eNpNUU1PGzEQtRBIpJQbP2ClXrt0_b3uLSKBRoJyCWdr7LUTp1k7tZcD_fU1pKoyc5jRzJunp3mf0HlM0SF0g7tbSlX3bYRpiymmBAt5hmaEENnKujg_6S_RdSm7robCtGdqhn4unpbr783iLcIYbPME5Ve7jFuI1g3NOkMsPuXR5aaW5sFFl2Ef_oDZu2bh3KFZjbB5b2MKJcTNZ3ThYV_c9b96hV7ul-u7H-3j88Pqbv7YWir41PZUSt4JX1V4xYwxgg-EKktrEgm9oWB5zwwTChj1HvfSSOa89wR7bgW9Qqsj75Bgpw85jJDfdIKgPwYpbzTkKdi908ayjoOikhPMBkKUNU6CJRwLOwzcVq4vR65DTr9fXZn0Lr3mWOVrWuGYUyL6iro9ojZQSUP0acpgaw6uPq5a4UOdz3smuVCMs3rw9XhgcyolO_9fJu70u2P61DH6F5JZiK0
Cites_doi 10.1109/CVPR42600.2020.00583
10.1109/CVPR.2019.01129
10.1109/CVPR52729.2023.00169
10.1609/aaai.v38i7.28604
10.1109/CVPR46437.2021.01454
10.1016/j.neucom.2024.127799
10.1109/CVPRW.2018.00113
10.1109/CVPR52688.2022.00591
10.1109/CVPR52688.2022.00564
10.1109/CVPR42600.2020.00283
10.1109/TIP.2007.901238
10.1109/CVPR.2016.278
10.1109/CVPR.2018.00745
10.1109/CVPR52733.2024.02454
10.1109/CVPR52688.2022.01553
10.1109/CVPR42600.2020.00196
10.1109/CVPR.2015.7299156
10.1111/cgf.14454
10.1109/CVPR.2018.00333
10.1109/ICCVW54120.2021.00210
10.1109/CVPR.2019.00621
10.1007/978-3-030-01252-6_1
10.1007/978-3-030-01234-2_1
10.1109/TSMC.2024.3429345
10.1109/CVPRW.2017.151
10.1109/CVPR.2019.00223
10.1109/CVPR.2014.366
10.1088/1402-4896/ad7075
10.1109/TPAMI.2016.2596743
10.1109/TIP.2017.2662206
10.1109/CVPR52688.2022.00943
10.1109/CVPRW63382.2024.00306
10.1109/CVPR.2018.00182
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math13132167
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_bc405a9375214d229cbe7ac2516cdd5c
A847569454
10_3390_math13132167
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c365t-8377506f913f94bbb65d239c3c3c27a8b3ac584b469a43ff187b74efff21f5c63
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Wed Aug 27 01:29:36 EDT 2025
Fri Jul 18 09:50:55 EDT 2025
Tue Jul 15 03:50:29 EDT 2025
Thu Jul 10 07:34:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-8377506f913f94bbb65d239c3c3c27a8b3ac584b469a43ff187b74efff21f5c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3010-4196
0000-0002-3082-7848
0000-0002-5043-2552
OpenAccessLink https://www.proquest.com/docview/3229153268?pq-origsite=%requestingapplication%
PQID 3229153268
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_bc405a9375214d229cbe7ac2516cdd5c
proquest_journals_3229153268
gale_infotracacademiconefile_A847569454
crossref_primary_10_3390_math13132167
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_8) 2017; 26
Hu (ref_31) 2018; 31
Vincent (ref_35) 2010; 11
Chen (ref_21) 2022; 35
Chen (ref_37) 2016; 39
ref_14
ref_36
ref_13
ref_12
ref_11
ref_10
ref_32
Dabov (ref_16) 2007; 16
ref_30
Firmino (ref_46) 2022; 41
ref_19
ref_18
ref_17
ref_39
ref_38
ref_15
Ponnambalam (ref_28) 2024; 99
Brown (ref_34) 2020; 33
ref_25
ref_24
ref_23
ref_45
ref_22
ref_44
ref_43
ref_20
ref_42
ref_41
ref_40
ref_1
ref_3
ref_2
Radford (ref_33) 2019; 1
ref_29
Hu (ref_4) 2024; 592
ref_27
ref_26
ref_9
Tian (ref_5) 2024; 54
ref_7
ref_6
References_xml – ident: ref_22
  doi: 10.1109/CVPR42600.2020.00583
– ident: ref_6
  doi: 10.1109/CVPR.2019.01129
– ident: ref_12
  doi: 10.1109/CVPR52729.2023.00169
– ident: ref_32
– ident: ref_3
  doi: 10.1609/aaai.v38i7.28604
– ident: ref_27
  doi: 10.1109/CVPR46437.2021.01454
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_35
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 592
  start-page: 127799
  year: 2024
  ident: ref_4
  article-title: Efficient image denoising with heterogeneous kernel-based CNN
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127799
– ident: ref_11
  doi: 10.1109/CVPRW.2018.00113
– volume: 1
  start-page: 9
  year: 2019
  ident: ref_33
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAI Blog
– ident: ref_45
  doi: 10.1109/CVPR52688.2022.00591
– ident: ref_23
  doi: 10.1109/CVPR52688.2022.00564
– ident: ref_40
– ident: ref_44
– ident: ref_7
  doi: 10.1109/CVPR42600.2020.00283
– volume: 16
  start-page: 2080
  year: 2007
  ident: ref_16
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– ident: ref_36
  doi: 10.1109/CVPR.2016.278
– ident: ref_29
  doi: 10.1109/CVPR.2018.00745
– ident: ref_1
  doi: 10.1109/CVPR52733.2024.02454
– ident: ref_38
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref_26
  doi: 10.1109/CVPR42600.2020.00196
– ident: ref_42
  doi: 10.1109/CVPR.2015.7299156
– volume: 41
  start-page: 1
  year: 2022
  ident: ref_46
  article-title: Progressive denoising of Monte Carlo rendered images
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.14454
– ident: ref_9
  doi: 10.1109/CVPR.2018.00333
– ident: ref_24
  doi: 10.1109/ICCVW54120.2021.00210
– ident: ref_18
  doi: 10.1109/CVPR.2019.00621
– volume: 33
  start-page: 1877
  year: 2020
  ident: ref_34
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_17
  doi: 10.1007/978-3-030-01252-6_1
– ident: ref_30
  doi: 10.1007/978-3-030-01234-2_1
– volume: 54
  start-page: 6621
  year: 2024
  ident: ref_5
  article-title: Heterogeneous window transformer for image denoising
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2024.3429345
– ident: ref_41
  doi: 10.1109/CVPRW.2017.151
– ident: ref_25
  doi: 10.1109/CVPR.2019.00223
– ident: ref_14
  doi: 10.1109/CVPR.2014.366
– ident: ref_15
– volume: 99
  start-page: 105239
  year: 2024
  ident: ref_28
  article-title: A robust color image encryption scheme with complex whirl wind spiral chaotic system and quadrant-wise pixel permutation
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad7075
– ident: ref_13
– volume: 39
  start-page: 1256
  year: 2016
  ident: ref_37
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2596743
– volume: 26
  start-page: 3142
  year: 2017
  ident: ref_8
  article-title: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– ident: ref_19
– ident: ref_43
– ident: ref_39
  doi: 10.1109/CVPR52688.2022.00943
– ident: ref_2
  doi: 10.1109/CVPRW63382.2024.00306
– ident: ref_10
  doi: 10.1109/CVPR.2018.00182
– ident: ref_20
– volume: 35
  start-page: 25478
  year: 2022
  ident: ref_21
  article-title: Cross aggregation transformer for image restoration
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 9423
  year: 2018
  ident: ref_31
  article-title: Gather-excite: Exploiting feature context in convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0000913849
Score 2.296106
Snippet Different types of noise are inevitably introduced by devices during image acquisition and transmission processes. Therefore, image denoising remains a crucial...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2167
SubjectTerms Attention
channel attention
Computational linguistics
Computer vision
Datasets
Deep learning
Electric transformers
Image acquisition
image denoising
Language processing
Machine vision
masked training
Natural language interfaces
Neural networks
Noise
Noise reduction
Regularization methods
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6JQkAcQU1SS2I7NVmirgpROrdTNsh1bRUBateH_c3bS0gWxoAyJogzOnX3vnXN5h9AtAZrgtOKRF1_zotomUoAqEfXJhVZUCec39PMxG03J64zOdlp9-ZqwWh64NlxXG6AUCkAUcIYUSSKMtpkyAMvMFAU1PvoC5u0kUyEGizjlRNSV7ink9V3gf_PY6xTGoaX8DwYFqf7fAnJAmeEROmzoIe7VwzpGe7Y8QQf5Vlt1fYrG_XwwecT9upU8ztX6PRqU8_AlH082PNSuMJxwoyrtS7c-LO5bu8QvnxBC4LJcvPl9gjM0HQ4mz6Oo6YoQmZTRKoKMElCeOXhDJ4jWmtEiSYVJ4UgyxXWqDLAKDXmvIqlzMc90RqxzLokdNSw9R61yUdoLhDU1znDLHwogUgrMnGScCcMdYa5QMWmju42d5LIWv5CQNHh7yl17ttGTN-L2GS9ZHW6AI2XjSPmXI9vo3rtA-oVVrZRRzf8BMFQvUSV7gKOUCZhObdTZeEk2K24tITAJiN4J45f_MZortJ_4Tr-hMLeDWtXqy14D_aj0TZhp3-Ir1tA
  priority: 102
  providerName: Directory of Open Access Journals
Title DMET: Dynamic Mask-Enhanced Transformer for Generalizable Deep Image Denoising
URI https://www.proquest.com/docview/3229153268
https://doaj.org/article/bc405a9375214d229cbe7ac2516cdd5c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCb6uKyHYX0MTdcFOmzYyWhtS7Lcy5AsydoCCYoiBXoTJFlqirZOlmT_v6SjpL1s8MGG7YNNUuRHmv4I8I0jTAjWqITI14hU2yUGo0oiKLmwRpgyUEF_OJKXd_z6XtzHgtsitlWufWLjqKupoxr5GRpeiaszk-rn7E9CU6Po62ocobENu-iCFSZfu93-6OZ2U2Uh1kvFy1XHe475_RniwElKfIVpM1r-LRY1lP3_csxNtBl8go8RJrLOSq_7sOXrA9gbbjhWF4cw6g374wvWW42UZ0OzeEr69aT5os_Gazzq5wx3LLJLUwvXs2c972fs6gVdCR7W00eqFxzB3aA__nWZxOkIiculWCaYWWK0lwHfMJTcWitFleWly3HLCqNsbhyiC4v5r-F5CKkqbMF9CCFLg3Ay_ww79bT2x8CscMEpr84rBFTmXJisULJ0KnAZKpPyFnxfy0nPViQYGpMHkqd-L88WdEmIm3uIuro5MZ0_6LgStHWIEQ2iIgQOvEKtOusL4xBnSVdVwrXgB6lA0wJbzo0z8T8BfFSiqtIdjKdClmhWLThda0nHlbfQb3Zy8v_LX-BDRrN8m9bbU9hZzv_6rwgwlrYN22rwux1tqd2k6a9eo9Ew
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tywE4IJ6isIAPrDhF28SPOEgILbSlZTc9daW9GduxWQSkpS1C_Cl-IzN5dLnAbZVDojiKovGM55vJ-BuAFwJhQnRWJ0S-RqTaPrHoVRJJwYWz0haREvrlXE3PxIdzeb4Hv_u9MFRW2a-JzUJdLT3lyI9Q8Qq0zkzpN6vvCXWNor-rfQuNVi1Owq-fGLJtXs9GOL-HWTYZL95Nk66rQOK5ktsEIzL0kioWKY-FcM4pWWW88ByPLLfacevRKzuMG63gMaY6d7kIMcYsjdIrju-9BtcF5wVZlJ683-V0iGNTi6Ktr8fx4RGizouU2BHTppH9pedrGgT8yw00vm1yB253oJQdt1p0F_ZCfQ9ulTtG1819mI_K8eIVG7UN7FlpN1-ScX3R1A-wRY9-w5rhiXVc1lQw9jWwUQgrNvuGCxde1svPlJ14AGdXIrWHsF8v6_AImJM-eh30sEL4ZofSZrlWhddRqFjZVAzgsJeTWbWUGwZDFZKn-VueA3hLQtw9Q0TZzY3l-pPp7M44j4jUIgZDmCIq1CHvQm49ojrlq0r6AbykKTBkztu19bbblYCfSsRY5hi9t1QFKvEADvpZMp2db8ylVj7-__BzuDFdlKfmdDY_eQI3M-oi3BT9HsD-dv0jPEVos3XPGn1i8PGqFfgPbAIK3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDzVQIE9UHGyEj92vYuEUIsTNZREFUql3pbd9S5FtE5IghB_jV_HjB8pF7hVPtiyLcua_Xbnm_H4G4BXGdKEYI2MSHyNRLVdZNCrRJyCC2u4UYES-tOZOD7LPpzz8x343f0LQ2WV3ZpYL9TlwlGOfIDAUzg7EyEHoS2LOC3G75bfI-ogRV9au3YaDURO_K-fGL6t304KHOuDJBmP5u-Po7bDQORSwTcRRmfoMUVQcRpUZq0VvExS5VLcktxImxqHHtpiDGmyNIRY5jbPfAghiQN3IsXn3oLdHKOiYQ92j0az00_bDA8pbspMNdX2aaqGA-SgFzFpJcZ1W_trP1i3C_iXU6g93fg-3GspKjtsMPUAdnz1EO5Ot_qu60cwK6aj-RtWNO3s2dSsv0Wj6qKuJmDzjgv7FcMda5WtqXzs0rPC-yWbXOEyhofV4ivlKh7D2Y3Y7Qn0qkXl94BZ7oKTXg5LJHNmyE2SS6GcDJkIpYmzPhx0dtLLRoBDY-BC9tR_27MPR2TE7T0km12fWKy-6HYWauuQnxpkZEhashIR5azPjUOOJ1xZcteH1zQEmib3ZmWcaf9RwFclmSx9iL6cC4WQ7sN-N0q6nfVrfY3Rp_-__BJuI3j1x8ns5BncSailcF0BvA-9zeqHf448Z2NftIBi8PmmMfwHKOkQbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMET%3A+Dynamic+Mask-Enhanced+Transformer+for+Generalizable+Deep+Image+Denoising&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhu%2C+Tong&rft.au=Li%2C+Anqi&rft.au=Wang%2C+Yuan-Gen&rft.au=Su%2C+Wenkang&rft.date=2025-07-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=13&rft.issue=13&rft.spage=2167&rft_id=info:doi/10.3390%2Fmath13132167&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math13132167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon