Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD
In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest c...
Saved in:
Published in | Applied physics letters Vol. 112; no. 6 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
05.02.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | In order to understand the influence of dislocations on doping and compensation in
Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on
different templates on sapphire and low dislocation density single crystalline AlN. AlGaN
grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for
any doping concentration due to low threading dislocation related compensation and reduced
self-compensation. The onset of self-compensation, i.e., the “knee behavior” in
conductivity, was found to depend only on the chemical potential of silicon, strongly
indicating the cation vacancy complex with Si as the source of self-compensation. However,
the magnitude of self-compensation was found to increase with an increase in dislocation
density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity
over the entire doping range. |
---|---|
AbstractList | In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the “knee behavior” in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range. In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the “knee behavior” in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range. |
Author | Reddy, Pramod Bryan, Zachary Collazo, Ramon Washiyama, Shun Bobea, Milena Mita, Seiji Sarkar, Biplab Breckenridge, M. Hayden Guo, Qiang Tweedie, James Sitar, Zlatko Gaddy, Benjamin Irving, Douglas Bryan, Isaac |
Author_xml | – sequence: 1 givenname: Isaac surname: Bryan fullname: Bryan, Isaac organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 2 givenname: Zachary surname: Bryan fullname: Bryan, Zachary organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 3 givenname: Shun surname: Washiyama fullname: Washiyama, Shun organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 4 givenname: Pramod surname: Reddy fullname: Reddy, Pramod organization: Adroit Materials, Inc – sequence: 5 givenname: Benjamin surname: Gaddy fullname: Gaddy, Benjamin organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 6 givenname: Biplab surname: Sarkar fullname: Sarkar, Biplab organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 7 givenname: M. Hayden surname: Breckenridge fullname: Breckenridge, M. Hayden organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 8 givenname: Qiang surname: Guo fullname: Guo, Qiang organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 9 givenname: Milena surname: Bobea fullname: Bobea, Milena organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 10 givenname: James surname: Tweedie fullname: Tweedie, James organization: Adroit Materials, Inc – sequence: 11 givenname: Seiji surname: Mita fullname: Mita, Seiji organization: Adroit Materials, Inc – sequence: 12 givenname: Douglas surname: Irving fullname: Irving, Douglas organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 13 givenname: Ramon surname: Collazo fullname: Collazo, Ramon organization: Department of Materials Science and Engineering, North Carolina State University – sequence: 14 givenname: Zlatko surname: Sitar fullname: Sitar, Zlatko organization: 2Adroit Materials, Inc., 2054 Kildaire Farm Rd., Cary, North Carolina 27518, USA |
BookMark | eNqdkEFLAzEQhYNUsK0e_Ae5Kmw7s9nt7h5Lq1Wo7UU9eFnSbNJGtsmSLJb-e2NbEcSTMDAM73sD7_VIx1gjCblGGCCM2BAHKSAWeXJGughZFjHEvEO6AMCiUZHiBel5_x7ONGasS96mttFmTbmpqLDbRhrPW20N1YaO68hpsQl7xhd07ezO0KD4wNeSCrf3La-Duji4PW-ajXaSrvb0aTl5nV6Sc8VrL69Ou09e7u-eJw_RfDl7nIznkWCjtI3yuFhxJfIUZZwIEee8AEhSwSRTCrIqTtIsDErGQ0KVAGQgY0CmYo5VkrA-GR7_Cme9d1KVQreHEK3jui4Ryq9qSixP1QTHzS9H4_SWu_2f7O2R9d9f_wd_WPcDlk2l2CfrAn9m |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1063_5_0253813 crossref_primary_10_1088_1361_6641_ab2782 crossref_primary_10_1063_5_0146439 crossref_primary_10_1093_oxfmat_itac004 crossref_primary_10_35848_1882_0786_ac53e2 crossref_primary_10_1021_acsami_3c15303 crossref_primary_10_1063_1_5124936 crossref_primary_10_1088_1674_4926_40_12_121801 crossref_primary_10_1557_s43578_021_00377_1 crossref_primary_10_1088_1361_6641_ac3710 crossref_primary_10_2139_ssrn_3946395 crossref_primary_10_1063_5_0202750 crossref_primary_10_1088_1361_6641_ac27e7 crossref_primary_10_1016_j_jcrysgro_2021_126245 crossref_primary_10_3390_cryst11081006 crossref_primary_10_1063_1_5132953 crossref_primary_10_1063_5_0031468 crossref_primary_10_1364_OE_436153 crossref_primary_10_7567_1347_4065_ab112a crossref_primary_10_1088_1361_6463_aba64c crossref_primary_10_35848_1347_4065_acb898 crossref_primary_10_1063_5_0041305 crossref_primary_10_1063_5_0139970 crossref_primary_10_1063_5_0159641 crossref_primary_10_1007_s41779_023_00911_w crossref_primary_10_1063_1_5124828 crossref_primary_10_1016_j_actamat_2022_117625 crossref_primary_10_1063_5_0197761 crossref_primary_10_1016_j_jallcom_2023_172488 crossref_primary_10_1063_5_0210143 crossref_primary_10_3390_photonics8070267 crossref_primary_10_1063_1_5141825 crossref_primary_10_3390_cryst13030524 crossref_primary_10_1063_5_0082348 crossref_primary_10_1016_j_mssp_2022_107002 crossref_primary_10_1088_1361_6528_ac0930 crossref_primary_10_1063_5_0030825 crossref_primary_10_1039_D2CE00362G crossref_primary_10_1002_pssr_202400002 crossref_primary_10_1038_s41377_022_00756_1 crossref_primary_10_1016_j_jcrysgro_2020_125730 crossref_primary_10_1002_aelm_202300840 crossref_primary_10_1016_j_mssp_2020_105270 crossref_primary_10_1016_j_matlet_2024_136671 crossref_primary_10_1016_j_diamond_2023_110013 crossref_primary_10_1016_j_micrna_2022_207301 crossref_primary_10_35848_1882_0786_ac60c7 crossref_primary_10_1063_5_0082992 crossref_primary_10_7567_1347_4065_ab0f13 crossref_primary_10_1063_5_0086314 crossref_primary_10_1063_1_5140995 crossref_primary_10_1116_1_5129803 crossref_primary_10_1063_5_0231960 crossref_primary_10_3390_cryst8070279 crossref_primary_10_1063_5_0037079 crossref_primary_10_35848_1882_0786_ad85c0 crossref_primary_10_35848_1347_4065_aca196 crossref_primary_10_1002_pssr_202300055 crossref_primary_10_1063_5_0071791 crossref_primary_10_1088_1361_6641_ac3638 crossref_primary_10_3390_nano12223937 crossref_primary_10_35848_1347_4065_ac10f2 crossref_primary_10_35848_1882_0786_ad5e5a crossref_primary_10_1063_5_0002891 crossref_primary_10_1116_6_0003225 crossref_primary_10_1557_mrc_2019_106 crossref_primary_10_1557_s43578_021_00443_8 crossref_primary_10_1103_PhysRevMaterials_3_054604 crossref_primary_10_35848_1347_4065_ac46b1 crossref_primary_10_1063_5_0059037 crossref_primary_10_1088_1361_6641_acca9d crossref_primary_10_35848_1882_0786_acdcde crossref_primary_10_1063_5_0183772 crossref_primary_10_1002_pssa_202000406 crossref_primary_10_1063_1_5063933 crossref_primary_10_1109_JQE_2018_2870439 crossref_primary_10_1016_j_spmi_2021_107141 crossref_primary_10_1063_5_0156691 crossref_primary_10_1088_1361_6463_abaf7b crossref_primary_10_1063_5_0008362 crossref_primary_10_1116_1_5050501 crossref_primary_10_35848_1882_0786_ad15f4 crossref_primary_10_1063_5_0167294 crossref_primary_10_1002_pssa_202300897 crossref_primary_10_1007_s11664_021_08890_z crossref_primary_10_1109_JSEN_2024_3418585 crossref_primary_10_1016_j_fmre_2021_11_005 crossref_primary_10_1063_1_5022794 crossref_primary_10_35848_1347_4065_acc2ca crossref_primary_10_1002_pssr_202100619 crossref_primary_10_1016_j_jcrysgro_2019_125241 crossref_primary_10_1063_5_0252149 crossref_primary_10_35848_1882_0786_ac0fb6 crossref_primary_10_1088_1674_4926_45_2_021501 crossref_primary_10_1002_pssa_202200390 crossref_primary_10_1038_s42005_021_00742_w crossref_primary_10_3390_cryst12121812 crossref_primary_10_1063_1_5144080 crossref_primary_10_7567_1882_0786_ab1ab8 crossref_primary_10_1063_5_0049412 crossref_primary_10_1063_5_0042857 crossref_primary_10_35848_1347_4065_ac47aa crossref_primary_10_1063_1_5129387 crossref_primary_10_1063_5_0041127 crossref_primary_10_1063_5_0066652 crossref_primary_10_1063_5_0180912 crossref_primary_10_1021_acs_cgd_4c00685 crossref_primary_10_1063_5_0124589 crossref_primary_10_1063_5_0055409 crossref_primary_10_1063_1_5138127 crossref_primary_10_1063_5_0019863 |
Cites_doi | 10.1002/1521-396X(200111)188:1<117::AID-PSSA117>3.0.CO;2-X 10.1063/1.4803689 10.7567/APEX.9.025501 10.1063/1.4972468 10.1103/PhysRevB.89.035204 10.1143/JJAP.44.7250 10.1002/pssc.201000964 10.7567/JJAP.56.100302 10.1103/PhysRevLett.110.087404 10.1063/1.3457149 10.1143/APEX.4.052101 10.1063/1.2952027 10.1143/APEX.4.082101 10.1002/pssc.201100424 10.1063/1.1595133 10.1143/APEX.4.092101 10.1063/1.2747546 10.1063/1.3492841 10.1143/JJAP.33.2453 10.1016/j.jcrysgro.2005.10.074 10.1109/LPT.2013.2293611 10.1063/1.4962017 10.1149/1.2134385 10.1063/1.1508420 10.1038/nphoton.2008.135 10.1063/1.4874735 10.1063/1.4878657 10.7567/APEX.6.092103 10.1109/LED.2015.2478907 10.1063/1.4964442 10.1063/1.4917540 10.1016/S0022-0248(02)01348-9 10.1149/1.3560527 10.1063/1.3467522 10.7567/APEX.8.061003 10.1016/j.jcrysgro.2005.11.047 10.1038/nature04760 10.1063/1.4807906 10.1063/1.4967397 10.1103/PhysRevB.90.235203 10.1002/pssa.200880961 10.1080/01418619808221225 10.1016/j.jcrysgro.2009.10.008 10.1109/LED.2015.2404309 10.1063/1.4833247 |
ContentType | Journal Article |
Copyright | Author(s) |
Copyright_xml | – notice: Author(s) |
DBID | AAYXX CITATION |
DOI | 10.1063/1.5011984 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_5011984 apl |
GrantInformation_xml | – fundername: DOD | USAF | AFMC | Air Force Office of Scientific Research grantid: FA9550-17-1-0225 funderid: http://dx.doi.org/10.13039/100000181 – fundername: National Science Foundation grantid: DMR-1508191; ECCS-1508854; ECCS-1610992; ECCS-1653383 funderid: http://dx.doi.org/10.13039/100000001 – fundername: DOD | United States Army | RDECOM | Army Research Office grantid: W911NF-15-2-0068; W911NF-16-C-0101 funderid: http://dx.doi.org/10.13039/100000183 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION |
ID | FETCH-LOGICAL-c365t-829bafc851e24cc28a90045c3e3ff07d24574571e3a106f40070e2013f2a1d443 |
ISSN | 0003-6951 |
IngestDate | Thu Apr 24 23:07:12 EDT 2025 Tue Jul 01 01:15:58 EDT 2025 Fri Jun 21 00:15:00 EDT 2024 Sun Jul 14 10:37:36 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 0003-6951/2018/112(6)/062102/5/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-829bafc851e24cc28a90045c3e3ff07d24574571e3a106f40070e2013f2a1d443 |
ORCID | 0000-0002-8556-1178 0000-0001-5127-4173 0000-0003-0074-0626 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1063_1_5011984 scitation_primary_10_1063_1_5011984 crossref_citationtrail_10_1063_1_5011984 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180205 2018-02-05 |
PublicationDateYYYYMMDD | 2018-02-05 |
PublicationDate_xml | – month: 02 year: 2018 text: 20180205 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | Applied physics letters |
PublicationYear | 2018 |
References | Yun, Reshchikov, He, King, Morkoç, Novak, Wei (c6) 2002 Kneissl, Yang, Teepe, Knollenberg, Schmidt, Kiesel, Johnson, Schujman, Schowalter (c13) 2007 Iwaya, Terao, Sano, Takanami, Ukai, Nakamura, Kamiyama, Amano, Akasaki (c11) 2001 Zhang, Hu, Lunev, Deng, Bilenko, Katona, Shur, Gaska, Khan (c15) 2005 Taniyasu, Kasu, Makimoto (c16) 2006 Wunderer, Chua, Northrup, Yang, Johnson, Kneissl, Garrett, Shen, Wraback, Moody, Craft, Schlesser, Dalmau, Sitar (c17) 2012 Lyons, Janotti, de Walle (c37) 2010 Collazo, Mita, Xie, Rice, Tweedie, Dalmau, Sitar (c24) 2011 Chu, Kelm (c3) 1975 Wunderer, Chua, Yang, Northrup, Johnson, Garrett, Shen, Wraback (c18) 2011 Kinoshita, Obata, Nagashima, Yanagi, Moody, Mita, Inoue, Kumagai, Koukitu, Sitar (c12) 2013 Lu, Collazo, Dalmau, Durkaya, Dietz, Raghothamachar, Dudley, Sitar (c28) 2009 Kaess, Reddy, Alden, Klump, Hernandez-Balderrama, Franke, Kirste, Hoffmann, Collazo, Sitar (c41) 2016 Hirayama, Fujikawa, Noguchi, Norimatsu, Takano, Tsubaki, Kamata (c10) 2009 Gaddy, Bryan, Bryan, Xie, Dalmau, Moody, Kumagai, Nagashima, Kubota, Kinoshita, Koukitu, Kirste, Sitar, Collazo, Irving (c45) 2014 Yoshida, Yamashita, Kuwabara, Kan (c20) 2008 Bryan, Bryan, Xie, Mita, Sitar, Collazo (c2) 2015 Rice, Collazo, Tweedie, Dalmau, Mita, Xie, Sitar (c29) 2010 Lyons, Janotti, Van de Walle (c43) 2014 Tweedie, Collazo, Rice, Xie, Mita, Dalmau, Sitar (c32) 2010 Ban, Yamamoto, Takeda, Ide, Iwaya, Takeuchi, Kamiyama, Akasaki, Amano (c1) 2011 Grandusky, Gibb, Mendrick, Moe, Wraback, Schowalter (c9) 2011 Guo, Yoshida (c4) 1994 Zhu, Song, Qi, Hu, Nomoto, Yan, Cao, Johnson, Kohn, Jena, Xing (c7) 2015 Cantu, Wu, Waltereit, Keller, Romanov, Mishra, DenBaars, Speck (c21) 2003 Haidet, Sarkar, Reddy, Bryan, Bryan, Kirste, Collazo, Sitar (c33) 2017 Ohta, Kaneda, Horikiri, Narita, Yoshida, Mishima, Nakamura (c5) 2015 Zhuang, Herro, Schlesser, Sitar (c23) 2006 Reddy, Hoffmann, Kaess, Bryan, Bryan, Bobea, Klump, Tweedie, Kirste, Mita, Gerhold, Collazo, Sitar (c44) 2016 Chichibu, Miyake, Ishikawa, Tashiro, Ohtomo, Furusawa, Hazu, Hiramatsu, Uedono (c38) 2013 Demchenko, Diallo, Reshchikov (c40) 2013 Dalmau, Moody, Schlesser, Mita, Xie, Feneberg, Neuschl, Thonke, Collazo, Rice, Tweedie, Sitar (c22) 2011 Kyle, Kaun, Burke, Wu, Wu, Speck (c34) 2014 Kinoshita, Nagashima, Obata, Takashima, Yamamoto, Togashi, Kumagai, Schlesser, Collazo, Koukitu, Sitar (c8) 2015 Kaess, Mita, Xie, Reddy, Klump, Hernandez-Balderrama, Washiyama, Franke, Kirste, Hoffmann, Collazo, Sitar (c39) 2016 Koleske, Wickenden, Henry, Twigg (c42) 2002 Xie, Mita, Bryan, Guo, Hussey, Moody, Schlesser, Kirste, Gerhold, Collazo, Sitar (c19) 2013 Mehnke, Trinh, Pingel, Wernicke, Janzén, Son, Kneissl (c26) 2016 Reshchikov, Demchenko, Usikov, Helava, Makarov (c36) 2014 Miyake, Nishio, Suzuki, Hiramatsu, Fukuyama, Kaur, Kuwano (c30) 2016 Mehnke, Wernicke, Pingel, Kuhn, Reich, Kueller, Knauer, Lapeyrade, Weyers, Kneissl (c25) 2013 Mita, Collazo, Rice, Dalmau, Sitar (c35) 2008 Martens, Mehnke, Kuhn, Reich, Kueller, Knauer, Netzel, Hartmann, Wollweber, Rass, Wernicke, Bickermann, Weyers, Kneissl (c14) 2014 Metzger, Höpler, Born, Ambacher, Stutzmann, Stömmer, Schuster, Göbel, Christiansen, Albrecht, Strunk (c31) 1998 Herro, Zhuang, Schlesser, Collazo, Sitar (c27) 2006 (2023061715423355100_c12) 2013; 6 (2023061715423355100_c34) 2014; 115 (2023061715423355100_c11) 2001; 188 (2023061715423355100_c26) 2016; 120 (2023061715423355100_c36) 2014; 90 (2023061715423355100_c8) 2015; 8 (2023061715423355100_c28) 2009; 312 (2023061715423355100_c43) 2014; 89 (2023061715423355100_c5) 2015; 36 (2023061715423355100_c7) 2015; 36 (2023061715423355100_c16) 2006; 441 (2023061715423355100_c24) 2011; 8 (2023061715423355100_c38) 2013; 113 (2023061715423355100_c40) 2013; 110 (2023061715423355100_c45) 2014; 104 (2023061715423355100_c17) 2012; 9 (2023061715423355100_c4) 1994; 33 (2023061715423355100_c14) 2014; 26 (2023061715423355100_c18) 2011; 4 (2023061715423355100_c42) 2002; 242 (2023061715423355100_c3) 1975; 122 (2023061715423355100_c6) 2002; 92 (2023061715423355100_c29) 2010; 108 (2023061715423355100_c41) 2016; 120 (2023061715423355100_c32) 2010; 108 (2023061715423355100_c33) 2017; 56 (2023061715423355100_c27) 2006; 286 (2023061715423355100_c31) 1998; 77 (2023061715423355100_c25) 2013; 103 (2023061715423355100_c2) 2015; 106 (2023061715423355100_c20) 2008; 2 (2023061715423355100_c35) 2008; 104 (2023061715423355100_c37) 2010; 97 (2023061715423355100_c21) 2003; 83 (2023061715423355100_c22) 2011; 158 (2023061715423355100_c30) 2016; 9 (2023061715423355100_c39) 2016; 120 (2023061715423355100_c15) 2005; 44 (2023061715423355100_c13) 2007; 101 (2023061715423355100_c44) 2016; 120 (2023061715423355100_c10) 2009; 206 (2023061715423355100_c23) 2006; 287 (2023061715423355100_c19) 2013; 102 (2023061715423355100_c1) 2011; 4 (2023061715423355100_c9) 2011; 4 |
References_xml | – start-page: 035204 year: 2014 ident: c43 publication-title: Phys. Rev. B – start-page: 235705 year: 2016 ident: c41 publication-title: J. Appl. Phys. – start-page: 995 year: 1975 ident: c3 publication-title: J. Electrochem. Soc. – start-page: 7250 year: 2005 ident: c15 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 061003 year: 2015 ident: c8 publication-title: Appl. Phys. Express – start-page: 152108 year: 2010 ident: c37 publication-title: Appl. Phys. Lett. – start-page: 551 year: 2008 ident: c20 publication-title: Nat. Photonics – start-page: 1013 year: 1998 ident: c31 publication-title: Philos. Mag. A – start-page: 193702 year: 2014 ident: c34 publication-title: J. Appl. Phys. – start-page: 013521 year: 2008 ident: c35 publication-title: J. Appl. Phys. – start-page: 092103 year: 2013 ident: c12 publication-title: Appl. Phys. Express – start-page: 123103 year: 2007 ident: c13 publication-title: J. Appl. Phys. – start-page: 212109 year: 2013 ident: c25 publication-title: Appl. Phys. Lett. – start-page: 372 year: 2006 ident: c23 publication-title: J. Cryst. Growth – start-page: 1176 year: 2009 ident: c10 publication-title: Phys. Status Solidi A – start-page: 117 year: 2001 ident: c11 publication-title: Phys. Status Solidi A – start-page: 2031 year: 2011 ident: c24 publication-title: Phys. Status Solidi C – start-page: 205 year: 2006 ident: c27 publication-title: J. Cryst. Growth – start-page: 092101 year: 2011 ident: c18 publication-title: Appl. Phys. Express – start-page: 052101 year: 2011 ident: c1 publication-title: Appl. Phys. Express – start-page: 213506 year: 2013 ident: c38 publication-title: J. Appl. Phys. – start-page: 1180 year: 2015 ident: c5 publication-title: IEEE Electron Device Lett. – start-page: 375 year: 2015 ident: c7 publication-title: IEEE Electron Device Lett. – start-page: 171102 year: 2013 ident: c19 publication-title: Appl. Phys. Lett. – start-page: 025501 year: 2016 ident: c30 publication-title: Appl. Phys. Express – start-page: 142107 year: 2015 ident: c2 publication-title: Appl. Phys. Lett. – start-page: 58 year: 2009 ident: c28 publication-title: J. Cryst. Growth – start-page: 235203 year: 2014 ident: c36 publication-title: Phys. Rev. B – start-page: 105701 year: 2016 ident: c39 publication-title: J. Appl. Phys. – start-page: 202106 year: 2014 ident: c45 publication-title: Appl. Phys. Lett. – start-page: 325 year: 2006 ident: c16 publication-title: Nature – start-page: 043510 year: 2010 ident: c29 publication-title: J. Appl. Phys. – start-page: 043526 year: 2010 ident: c32 publication-title: J. Appl. Phys. – start-page: 145702 year: 2016 ident: c26 publication-title: J. Appl. Phys. – start-page: 4837 year: 2002 ident: c6 publication-title: J. Appl. Phys. – start-page: 822 year: 2012 ident: c17 publication-title: Phys. Status Solidi C – start-page: 2453 year: 1994 ident: c4 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 342 year: 2014 ident: c14 publication-title: IEEE Photonics Technol. Lett. – start-page: H530 year: 2011 ident: c22 publication-title: J. Electrochem. Soc. – start-page: 674 year: 2003 ident: c21 publication-title: Appl. Phys. Lett. – start-page: 082101 year: 2011 ident: c9 publication-title: Appl. Phys. Express – start-page: 100302 year: 2017 ident: c33 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 087404 year: 2013 ident: c40 publication-title: Phys. Rev. Lett. – start-page: 55 year: 2002 ident: c42 publication-title: J. Cryst. Growth – start-page: 185704 year: 2016 ident: c44 publication-title: J. Appl. Phys. – volume: 188 start-page: 117 year: 2001 ident: 2023061715423355100_c11 publication-title: Phys. Status Solidi A doi: 10.1002/1521-396X(200111)188:1<117::AID-PSSA117>3.0.CO;2-X – volume: 102 start-page: 171102 year: 2013 ident: 2023061715423355100_c19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4803689 – volume: 9 start-page: 025501 year: 2016 ident: 2023061715423355100_c30 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.025501 – volume: 120 start-page: 235705 year: 2016 ident: 2023061715423355100_c41 publication-title: J. Appl. Phys. doi: 10.1063/1.4972468 – volume: 89 start-page: 035204 year: 2014 ident: 2023061715423355100_c43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.035204 – volume: 44 start-page: 7250 year: 2005 ident: 2023061715423355100_c15 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.1143/JJAP.44.7250 – volume: 8 start-page: 2031 year: 2011 ident: 2023061715423355100_c24 publication-title: Phys. Status Solidi C doi: 10.1002/pssc.201000964 – volume: 56 start-page: 100302 year: 2017 ident: 2023061715423355100_c33 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.56.100302 – volume: 110 start-page: 087404 year: 2013 ident: 2023061715423355100_c40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.087404 – volume: 108 start-page: 043526 year: 2010 ident: 2023061715423355100_c32 publication-title: J. Appl. Phys. doi: 10.1063/1.3457149 – volume: 4 start-page: 052101 year: 2011 ident: 2023061715423355100_c1 publication-title: Appl. Phys. Express doi: 10.1143/APEX.4.052101 – volume: 104 start-page: 013521 year: 2008 ident: 2023061715423355100_c35 publication-title: J. Appl. Phys. doi: 10.1063/1.2952027 – volume: 4 start-page: 082101 year: 2011 ident: 2023061715423355100_c9 publication-title: Appl. Phys. Express doi: 10.1143/APEX.4.082101 – volume: 9 start-page: 822 year: 2012 ident: 2023061715423355100_c17 publication-title: Phys. Status Solidi C doi: 10.1002/pssc.201100424 – volume: 83 start-page: 674 year: 2003 ident: 2023061715423355100_c21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1595133 – volume: 4 start-page: 092101 year: 2011 ident: 2023061715423355100_c18 publication-title: Appl. Phys. Express doi: 10.1143/APEX.4.092101 – volume: 101 start-page: 123103 year: 2007 ident: 2023061715423355100_c13 publication-title: J. Appl. Phys. doi: 10.1063/1.2747546 – volume: 97 start-page: 152108 year: 2010 ident: 2023061715423355100_c37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3492841 – volume: 33 start-page: 2453 year: 1994 ident: 2023061715423355100_c4 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.1143/JJAP.33.2453 – volume: 286 start-page: 205 year: 2006 ident: 2023061715423355100_c27 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.10.074 – volume: 26 start-page: 342 year: 2014 ident: 2023061715423355100_c14 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2013.2293611 – volume: 120 start-page: 105701 year: 2016 ident: 2023061715423355100_c39 publication-title: J. Appl. Phys. doi: 10.1063/1.4962017 – volume: 122 start-page: 995 year: 1975 ident: 2023061715423355100_c3 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2134385 – volume: 92 start-page: 4837 year: 2002 ident: 2023061715423355100_c6 publication-title: J. Appl. Phys. doi: 10.1063/1.1508420 – volume: 2 start-page: 551 year: 2008 ident: 2023061715423355100_c20 publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.135 – volume: 115 start-page: 193702 year: 2014 ident: 2023061715423355100_c34 publication-title: J. Appl. Phys. doi: 10.1063/1.4874735 – volume: 104 start-page: 202106 year: 2014 ident: 2023061715423355100_c45 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4878657 – volume: 6 start-page: 092103 year: 2013 ident: 2023061715423355100_c12 publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.092103 – volume: 36 start-page: 1180 year: 2015 ident: 2023061715423355100_c5 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2015.2478907 – volume: 120 start-page: 145702 year: 2016 ident: 2023061715423355100_c26 publication-title: J. Appl. Phys. doi: 10.1063/1.4964442 – volume: 106 start-page: 142107 year: 2015 ident: 2023061715423355100_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4917540 – volume: 242 start-page: 55 year: 2002 ident: 2023061715423355100_c42 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(02)01348-9 – volume: 158 start-page: H530 year: 2011 ident: 2023061715423355100_c22 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3560527 – volume: 108 start-page: 043510 year: 2010 ident: 2023061715423355100_c29 publication-title: J. Appl. Phys. doi: 10.1063/1.3467522 – volume: 8 start-page: 061003 year: 2015 ident: 2023061715423355100_c8 publication-title: Appl. Phys. Express doi: 10.7567/APEX.8.061003 – volume: 287 start-page: 372 year: 2006 ident: 2023061715423355100_c23 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.11.047 – volume: 441 start-page: 325 year: 2006 ident: 2023061715423355100_c16 publication-title: Nature doi: 10.1038/nature04760 – volume: 113 start-page: 213506 year: 2013 ident: 2023061715423355100_c38 publication-title: J. Appl. Phys. doi: 10.1063/1.4807906 – volume: 120 start-page: 185704 year: 2016 ident: 2023061715423355100_c44 publication-title: J. Appl. Phys. doi: 10.1063/1.4967397 – volume: 90 start-page: 235203 year: 2014 ident: 2023061715423355100_c36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.235203 – volume: 206 start-page: 1176 year: 2009 ident: 2023061715423355100_c10 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.200880961 – volume: 77 start-page: 1013 year: 1998 ident: 2023061715423355100_c31 publication-title: Philos. Mag. A doi: 10.1080/01418619808221225 – volume: 312 start-page: 58 year: 2009 ident: 2023061715423355100_c28 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.10.008 – volume: 36 start-page: 375 year: 2015 ident: 2023061715423355100_c7 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2015.2404309 – volume: 103 start-page: 212109 year: 2013 ident: 2023061715423355100_c25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4833247 |
SSID | ssj0005233 |
Score | 2.56803 |
Snippet | In order to understand the influence of dislocations on doping and compensation in
Al-rich AlGaN, thin films were grown by metal organic chemical vapor... In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor... |
SourceID | crossref scitation |
SourceType | Enrichment Source Index Database Publisher |
Title | Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD |
URI | http://dx.doi.org/10.1063/1.5011984 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFB40RdQH0apYbwzqgxC2ZndmZ7OPoVGrmFhoK6Uvy9zWFLbpspsK8dd75pZsNQ-tEDZhdnZI5hsO3zk53zkIvaNJrFTJB1GeZjqiVLAop5JFQpRDoBuaSVvEdTJl-8f060l6ElrCe3XJQuzK3xt1Jf-DKowBrkYlewNkV4vCAHwGfOEKCMP1WhiPndrJS9Nq8Eh5yF0cVRFYuBm8f-bT_k_jbJv_BUxkoNJ92Sxbo4IcVVP7dMvr2kSpDRmdfN_7Me5y1kBUXRCk7VdWAbQOrzdLF0T90nIu_xk95UbY1Qnct7OzJT-3nPVwdrkWomnl7P1Bw89dA_sQjYiHNoE5vWJhScRyX0RWO6M6yEws1NvZYHXjpHO82EZrDvTJBBZ2U1OYznWS-6s4Nq-r22grARch6aGt0Xjy7bCT4ENI6JdovlGoK8XIh9WSV9jIXSAdLv-hQzGOHqIH3jfAIwf0I3RLz7fR_U7FyG1058CB8BidOvAxwIe74OOzOfbgYws-tuBjuOPAxx58uDu1TwfwsVhiC_4TdPzp49HefuQbZUSSsHQRDZNc8FICedYJlTIZ8txQdUk0KctBphKaZvCKNeHw80tqajxpQI-UCY8VpeQp6s0v5voZwuBdpjRXcSxyTQeaCUaVkpxSJUmWkXgHvQ8bVoTdMs1MqsJmMzBSxIXf2x30ZjW1dqVTNk16u9r1G876ddGsZxS1Kp9fa60X6N764L5EvUVzqV8BsVyI1_4E_QEuD3Y5 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doping+and+compensation+in+Al-rich+AlGaN+grown+on+single+crystal+AlN+and+sapphire+by+MOCVD&rft.jtitle=Applied+physics+letters&rft.au=Bryan%2C+Isaac&rft.au=Bryan%2C+Zachary&rft.au=Washiyama%2C+Shun&rft.au=Reddy%2C+Pramod&rft.date=2018-02-05&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=112&rft.issue=6&rft_id=info:doi/10.1063%2F1.5011984&rft.externalDocID=apl |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |