Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD

In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest c...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 112; no. 6
Main Authors Bryan, Isaac, Bryan, Zachary, Washiyama, Shun, Reddy, Pramod, Gaddy, Benjamin, Sarkar, Biplab, Breckenridge, M. Hayden, Guo, Qiang, Bobea, Milena, Tweedie, James, Mita, Seiji, Irving, Douglas, Collazo, Ramon, Sitar, Zlatko
Format Journal Article
LanguageEnglish
Published 05.02.2018
Online AccessGet full text

Cover

Loading…
Abstract In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the “knee behavior” in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.
AbstractList In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the “knee behavior” in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.
In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the “knee behavior” in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.
Author Reddy, Pramod
Bryan, Zachary
Collazo, Ramon
Washiyama, Shun
Bobea, Milena
Mita, Seiji
Sarkar, Biplab
Breckenridge, M. Hayden
Guo, Qiang
Tweedie, James
Sitar, Zlatko
Gaddy, Benjamin
Irving, Douglas
Bryan, Isaac
Author_xml – sequence: 1
  givenname: Isaac
  surname: Bryan
  fullname: Bryan, Isaac
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 2
  givenname: Zachary
  surname: Bryan
  fullname: Bryan, Zachary
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 3
  givenname: Shun
  surname: Washiyama
  fullname: Washiyama, Shun
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 4
  givenname: Pramod
  surname: Reddy
  fullname: Reddy, Pramod
  organization: Adroit Materials, Inc
– sequence: 5
  givenname: Benjamin
  surname: Gaddy
  fullname: Gaddy, Benjamin
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 6
  givenname: Biplab
  surname: Sarkar
  fullname: Sarkar, Biplab
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 7
  givenname: M. Hayden
  surname: Breckenridge
  fullname: Breckenridge, M. Hayden
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 8
  givenname: Qiang
  surname: Guo
  fullname: Guo, Qiang
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 9
  givenname: Milena
  surname: Bobea
  fullname: Bobea, Milena
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 10
  givenname: James
  surname: Tweedie
  fullname: Tweedie, James
  organization: Adroit Materials, Inc
– sequence: 11
  givenname: Seiji
  surname: Mita
  fullname: Mita, Seiji
  organization: Adroit Materials, Inc
– sequence: 12
  givenname: Douglas
  surname: Irving
  fullname: Irving, Douglas
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 13
  givenname: Ramon
  surname: Collazo
  fullname: Collazo, Ramon
  organization: Department of Materials Science and Engineering, North Carolina State University
– sequence: 14
  givenname: Zlatko
  surname: Sitar
  fullname: Sitar, Zlatko
  organization: 2Adroit Materials, Inc., 2054 Kildaire Farm Rd., Cary, North Carolina 27518, USA
BookMark eNqdkEFLAzEQhYNUsK0e_Ae5Kmw7s9nt7h5Lq1Wo7UU9eFnSbNJGtsmSLJb-e2NbEcSTMDAM73sD7_VIx1gjCblGGCCM2BAHKSAWeXJGughZFjHEvEO6AMCiUZHiBel5_x7ONGasS96mttFmTbmpqLDbRhrPW20N1YaO68hpsQl7xhd07ezO0KD4wNeSCrf3La-Duji4PW-ajXaSrvb0aTl5nV6Sc8VrL69Ou09e7u-eJw_RfDl7nIznkWCjtI3yuFhxJfIUZZwIEee8AEhSwSRTCrIqTtIsDErGQ0KVAGQgY0CmYo5VkrA-GR7_Cme9d1KVQreHEK3jui4Ryq9qSixP1QTHzS9H4_SWu_2f7O2R9d9f_wd_WPcDlk2l2CfrAn9m
CODEN APPLAB
CitedBy_id crossref_primary_10_1063_5_0253813
crossref_primary_10_1088_1361_6641_ab2782
crossref_primary_10_1063_5_0146439
crossref_primary_10_1093_oxfmat_itac004
crossref_primary_10_35848_1882_0786_ac53e2
crossref_primary_10_1021_acsami_3c15303
crossref_primary_10_1063_1_5124936
crossref_primary_10_1088_1674_4926_40_12_121801
crossref_primary_10_1557_s43578_021_00377_1
crossref_primary_10_1088_1361_6641_ac3710
crossref_primary_10_2139_ssrn_3946395
crossref_primary_10_1063_5_0202750
crossref_primary_10_1088_1361_6641_ac27e7
crossref_primary_10_1016_j_jcrysgro_2021_126245
crossref_primary_10_3390_cryst11081006
crossref_primary_10_1063_1_5132953
crossref_primary_10_1063_5_0031468
crossref_primary_10_1364_OE_436153
crossref_primary_10_7567_1347_4065_ab112a
crossref_primary_10_1088_1361_6463_aba64c
crossref_primary_10_35848_1347_4065_acb898
crossref_primary_10_1063_5_0041305
crossref_primary_10_1063_5_0139970
crossref_primary_10_1063_5_0159641
crossref_primary_10_1007_s41779_023_00911_w
crossref_primary_10_1063_1_5124828
crossref_primary_10_1016_j_actamat_2022_117625
crossref_primary_10_1063_5_0197761
crossref_primary_10_1016_j_jallcom_2023_172488
crossref_primary_10_1063_5_0210143
crossref_primary_10_3390_photonics8070267
crossref_primary_10_1063_1_5141825
crossref_primary_10_3390_cryst13030524
crossref_primary_10_1063_5_0082348
crossref_primary_10_1016_j_mssp_2022_107002
crossref_primary_10_1088_1361_6528_ac0930
crossref_primary_10_1063_5_0030825
crossref_primary_10_1039_D2CE00362G
crossref_primary_10_1002_pssr_202400002
crossref_primary_10_1038_s41377_022_00756_1
crossref_primary_10_1016_j_jcrysgro_2020_125730
crossref_primary_10_1002_aelm_202300840
crossref_primary_10_1016_j_mssp_2020_105270
crossref_primary_10_1016_j_matlet_2024_136671
crossref_primary_10_1016_j_diamond_2023_110013
crossref_primary_10_1016_j_micrna_2022_207301
crossref_primary_10_35848_1882_0786_ac60c7
crossref_primary_10_1063_5_0082992
crossref_primary_10_7567_1347_4065_ab0f13
crossref_primary_10_1063_5_0086314
crossref_primary_10_1063_1_5140995
crossref_primary_10_1116_1_5129803
crossref_primary_10_1063_5_0231960
crossref_primary_10_3390_cryst8070279
crossref_primary_10_1063_5_0037079
crossref_primary_10_35848_1882_0786_ad85c0
crossref_primary_10_35848_1347_4065_aca196
crossref_primary_10_1002_pssr_202300055
crossref_primary_10_1063_5_0071791
crossref_primary_10_1088_1361_6641_ac3638
crossref_primary_10_3390_nano12223937
crossref_primary_10_35848_1347_4065_ac10f2
crossref_primary_10_35848_1882_0786_ad5e5a
crossref_primary_10_1063_5_0002891
crossref_primary_10_1116_6_0003225
crossref_primary_10_1557_mrc_2019_106
crossref_primary_10_1557_s43578_021_00443_8
crossref_primary_10_1103_PhysRevMaterials_3_054604
crossref_primary_10_35848_1347_4065_ac46b1
crossref_primary_10_1063_5_0059037
crossref_primary_10_1088_1361_6641_acca9d
crossref_primary_10_35848_1882_0786_acdcde
crossref_primary_10_1063_5_0183772
crossref_primary_10_1002_pssa_202000406
crossref_primary_10_1063_1_5063933
crossref_primary_10_1109_JQE_2018_2870439
crossref_primary_10_1016_j_spmi_2021_107141
crossref_primary_10_1063_5_0156691
crossref_primary_10_1088_1361_6463_abaf7b
crossref_primary_10_1063_5_0008362
crossref_primary_10_1116_1_5050501
crossref_primary_10_35848_1882_0786_ad15f4
crossref_primary_10_1063_5_0167294
crossref_primary_10_1002_pssa_202300897
crossref_primary_10_1007_s11664_021_08890_z
crossref_primary_10_1109_JSEN_2024_3418585
crossref_primary_10_1016_j_fmre_2021_11_005
crossref_primary_10_1063_1_5022794
crossref_primary_10_35848_1347_4065_acc2ca
crossref_primary_10_1002_pssr_202100619
crossref_primary_10_1016_j_jcrysgro_2019_125241
crossref_primary_10_1063_5_0252149
crossref_primary_10_35848_1882_0786_ac0fb6
crossref_primary_10_1088_1674_4926_45_2_021501
crossref_primary_10_1002_pssa_202200390
crossref_primary_10_1038_s42005_021_00742_w
crossref_primary_10_3390_cryst12121812
crossref_primary_10_1063_1_5144080
crossref_primary_10_7567_1882_0786_ab1ab8
crossref_primary_10_1063_5_0049412
crossref_primary_10_1063_5_0042857
crossref_primary_10_35848_1347_4065_ac47aa
crossref_primary_10_1063_1_5129387
crossref_primary_10_1063_5_0041127
crossref_primary_10_1063_5_0066652
crossref_primary_10_1063_5_0180912
crossref_primary_10_1021_acs_cgd_4c00685
crossref_primary_10_1063_5_0124589
crossref_primary_10_1063_5_0055409
crossref_primary_10_1063_1_5138127
crossref_primary_10_1063_5_0019863
Cites_doi 10.1002/1521-396X(200111)188:1<117::AID-PSSA117>3.0.CO;2-X
10.1063/1.4803689
10.7567/APEX.9.025501
10.1063/1.4972468
10.1103/PhysRevB.89.035204
10.1143/JJAP.44.7250
10.1002/pssc.201000964
10.7567/JJAP.56.100302
10.1103/PhysRevLett.110.087404
10.1063/1.3457149
10.1143/APEX.4.052101
10.1063/1.2952027
10.1143/APEX.4.082101
10.1002/pssc.201100424
10.1063/1.1595133
10.1143/APEX.4.092101
10.1063/1.2747546
10.1063/1.3492841
10.1143/JJAP.33.2453
10.1016/j.jcrysgro.2005.10.074
10.1109/LPT.2013.2293611
10.1063/1.4962017
10.1149/1.2134385
10.1063/1.1508420
10.1038/nphoton.2008.135
10.1063/1.4874735
10.1063/1.4878657
10.7567/APEX.6.092103
10.1109/LED.2015.2478907
10.1063/1.4964442
10.1063/1.4917540
10.1016/S0022-0248(02)01348-9
10.1149/1.3560527
10.1063/1.3467522
10.7567/APEX.8.061003
10.1016/j.jcrysgro.2005.11.047
10.1038/nature04760
10.1063/1.4807906
10.1063/1.4967397
10.1103/PhysRevB.90.235203
10.1002/pssa.200880961
10.1080/01418619808221225
10.1016/j.jcrysgro.2009.10.008
10.1109/LED.2015.2404309
10.1063/1.4833247
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AAYXX
CITATION
DOI 10.1063/1.5011984
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_5011984
apl
GrantInformation_xml – fundername: DOD | USAF | AFMC | Air Force Office of Scientific Research
  grantid: FA9550-17-1-0225
  funderid: http://dx.doi.org/10.13039/100000181
– fundername: National Science Foundation
  grantid: DMR-1508191; ECCS-1508854; ECCS-1610992; ECCS-1653383
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: DOD | United States Army | RDECOM | Army Research Office
  grantid: W911NF-15-2-0068; W911NF-16-C-0101
  funderid: http://dx.doi.org/10.13039/100000183
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
ID FETCH-LOGICAL-c365t-829bafc851e24cc28a90045c3e3ff07d24574571e3a106f40070e2013f2a1d443
ISSN 0003-6951
IngestDate Thu Apr 24 23:07:12 EDT 2025
Tue Jul 01 01:15:58 EDT 2025
Fri Jun 21 00:15:00 EDT 2024
Sun Jul 14 10:37:36 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 0003-6951/2018/112(6)/062102/5/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-829bafc851e24cc28a90045c3e3ff07d24574571e3a106f40070e2013f2a1d443
ORCID 0000-0002-8556-1178
0000-0001-5127-4173
0000-0003-0074-0626
PageCount 5
ParticipantIDs crossref_primary_10_1063_1_5011984
scitation_primary_10_1063_1_5011984
crossref_citationtrail_10_1063_1_5011984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180205
2018-02-05
PublicationDateYYYYMMDD 2018-02-05
PublicationDate_xml – month: 02
  year: 2018
  text: 20180205
  day: 05
PublicationDecade 2010
PublicationTitle Applied physics letters
PublicationYear 2018
References Yun, Reshchikov, He, King, Morkoç, Novak, Wei (c6) 2002
Kneissl, Yang, Teepe, Knollenberg, Schmidt, Kiesel, Johnson, Schujman, Schowalter (c13) 2007
Iwaya, Terao, Sano, Takanami, Ukai, Nakamura, Kamiyama, Amano, Akasaki (c11) 2001
Zhang, Hu, Lunev, Deng, Bilenko, Katona, Shur, Gaska, Khan (c15) 2005
Taniyasu, Kasu, Makimoto (c16) 2006
Wunderer, Chua, Northrup, Yang, Johnson, Kneissl, Garrett, Shen, Wraback, Moody, Craft, Schlesser, Dalmau, Sitar (c17) 2012
Lyons, Janotti, de Walle (c37) 2010
Collazo, Mita, Xie, Rice, Tweedie, Dalmau, Sitar (c24) 2011
Chu, Kelm (c3) 1975
Wunderer, Chua, Yang, Northrup, Johnson, Garrett, Shen, Wraback (c18) 2011
Kinoshita, Obata, Nagashima, Yanagi, Moody, Mita, Inoue, Kumagai, Koukitu, Sitar (c12) 2013
Lu, Collazo, Dalmau, Durkaya, Dietz, Raghothamachar, Dudley, Sitar (c28) 2009
Kaess, Reddy, Alden, Klump, Hernandez-Balderrama, Franke, Kirste, Hoffmann, Collazo, Sitar (c41) 2016
Hirayama, Fujikawa, Noguchi, Norimatsu, Takano, Tsubaki, Kamata (c10) 2009
Gaddy, Bryan, Bryan, Xie, Dalmau, Moody, Kumagai, Nagashima, Kubota, Kinoshita, Koukitu, Kirste, Sitar, Collazo, Irving (c45) 2014
Yoshida, Yamashita, Kuwabara, Kan (c20) 2008
Bryan, Bryan, Xie, Mita, Sitar, Collazo (c2) 2015
Rice, Collazo, Tweedie, Dalmau, Mita, Xie, Sitar (c29) 2010
Lyons, Janotti, Van de Walle (c43) 2014
Tweedie, Collazo, Rice, Xie, Mita, Dalmau, Sitar (c32) 2010
Ban, Yamamoto, Takeda, Ide, Iwaya, Takeuchi, Kamiyama, Akasaki, Amano (c1) 2011
Grandusky, Gibb, Mendrick, Moe, Wraback, Schowalter (c9) 2011
Guo, Yoshida (c4) 1994
Zhu, Song, Qi, Hu, Nomoto, Yan, Cao, Johnson, Kohn, Jena, Xing (c7) 2015
Cantu, Wu, Waltereit, Keller, Romanov, Mishra, DenBaars, Speck (c21) 2003
Haidet, Sarkar, Reddy, Bryan, Bryan, Kirste, Collazo, Sitar (c33) 2017
Ohta, Kaneda, Horikiri, Narita, Yoshida, Mishima, Nakamura (c5) 2015
Zhuang, Herro, Schlesser, Sitar (c23) 2006
Reddy, Hoffmann, Kaess, Bryan, Bryan, Bobea, Klump, Tweedie, Kirste, Mita, Gerhold, Collazo, Sitar (c44) 2016
Chichibu, Miyake, Ishikawa, Tashiro, Ohtomo, Furusawa, Hazu, Hiramatsu, Uedono (c38) 2013
Demchenko, Diallo, Reshchikov (c40) 2013
Dalmau, Moody, Schlesser, Mita, Xie, Feneberg, Neuschl, Thonke, Collazo, Rice, Tweedie, Sitar (c22) 2011
Kyle, Kaun, Burke, Wu, Wu, Speck (c34) 2014
Kinoshita, Nagashima, Obata, Takashima, Yamamoto, Togashi, Kumagai, Schlesser, Collazo, Koukitu, Sitar (c8) 2015
Kaess, Mita, Xie, Reddy, Klump, Hernandez-Balderrama, Washiyama, Franke, Kirste, Hoffmann, Collazo, Sitar (c39) 2016
Koleske, Wickenden, Henry, Twigg (c42) 2002
Xie, Mita, Bryan, Guo, Hussey, Moody, Schlesser, Kirste, Gerhold, Collazo, Sitar (c19) 2013
Mehnke, Trinh, Pingel, Wernicke, Janzén, Son, Kneissl (c26) 2016
Reshchikov, Demchenko, Usikov, Helava, Makarov (c36) 2014
Miyake, Nishio, Suzuki, Hiramatsu, Fukuyama, Kaur, Kuwano (c30) 2016
Mehnke, Wernicke, Pingel, Kuhn, Reich, Kueller, Knauer, Lapeyrade, Weyers, Kneissl (c25) 2013
Mita, Collazo, Rice, Dalmau, Sitar (c35) 2008
Martens, Mehnke, Kuhn, Reich, Kueller, Knauer, Netzel, Hartmann, Wollweber, Rass, Wernicke, Bickermann, Weyers, Kneissl (c14) 2014
Metzger, Höpler, Born, Ambacher, Stutzmann, Stömmer, Schuster, Göbel, Christiansen, Albrecht, Strunk (c31) 1998
Herro, Zhuang, Schlesser, Collazo, Sitar (c27) 2006
(2023061715423355100_c12) 2013; 6
(2023061715423355100_c34) 2014; 115
(2023061715423355100_c11) 2001; 188
(2023061715423355100_c26) 2016; 120
(2023061715423355100_c36) 2014; 90
(2023061715423355100_c8) 2015; 8
(2023061715423355100_c28) 2009; 312
(2023061715423355100_c43) 2014; 89
(2023061715423355100_c5) 2015; 36
(2023061715423355100_c7) 2015; 36
(2023061715423355100_c16) 2006; 441
(2023061715423355100_c24) 2011; 8
(2023061715423355100_c38) 2013; 113
(2023061715423355100_c40) 2013; 110
(2023061715423355100_c45) 2014; 104
(2023061715423355100_c17) 2012; 9
(2023061715423355100_c4) 1994; 33
(2023061715423355100_c14) 2014; 26
(2023061715423355100_c18) 2011; 4
(2023061715423355100_c42) 2002; 242
(2023061715423355100_c3) 1975; 122
(2023061715423355100_c6) 2002; 92
(2023061715423355100_c29) 2010; 108
(2023061715423355100_c41) 2016; 120
(2023061715423355100_c32) 2010; 108
(2023061715423355100_c33) 2017; 56
(2023061715423355100_c27) 2006; 286
(2023061715423355100_c31) 1998; 77
(2023061715423355100_c25) 2013; 103
(2023061715423355100_c2) 2015; 106
(2023061715423355100_c20) 2008; 2
(2023061715423355100_c35) 2008; 104
(2023061715423355100_c37) 2010; 97
(2023061715423355100_c21) 2003; 83
(2023061715423355100_c22) 2011; 158
(2023061715423355100_c30) 2016; 9
(2023061715423355100_c39) 2016; 120
(2023061715423355100_c15) 2005; 44
(2023061715423355100_c13) 2007; 101
(2023061715423355100_c44) 2016; 120
(2023061715423355100_c10) 2009; 206
(2023061715423355100_c23) 2006; 287
(2023061715423355100_c19) 2013; 102
(2023061715423355100_c1) 2011; 4
(2023061715423355100_c9) 2011; 4
References_xml – start-page: 035204
  year: 2014
  ident: c43
  publication-title: Phys. Rev. B
– start-page: 235705
  year: 2016
  ident: c41
  publication-title: J. Appl. Phys.
– start-page: 995
  year: 1975
  ident: c3
  publication-title: J. Electrochem. Soc.
– start-page: 7250
  year: 2005
  ident: c15
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 061003
  year: 2015
  ident: c8
  publication-title: Appl. Phys. Express
– start-page: 152108
  year: 2010
  ident: c37
  publication-title: Appl. Phys. Lett.
– start-page: 551
  year: 2008
  ident: c20
  publication-title: Nat. Photonics
– start-page: 1013
  year: 1998
  ident: c31
  publication-title: Philos. Mag. A
– start-page: 193702
  year: 2014
  ident: c34
  publication-title: J. Appl. Phys.
– start-page: 013521
  year: 2008
  ident: c35
  publication-title: J. Appl. Phys.
– start-page: 092103
  year: 2013
  ident: c12
  publication-title: Appl. Phys. Express
– start-page: 123103
  year: 2007
  ident: c13
  publication-title: J. Appl. Phys.
– start-page: 212109
  year: 2013
  ident: c25
  publication-title: Appl. Phys. Lett.
– start-page: 372
  year: 2006
  ident: c23
  publication-title: J. Cryst. Growth
– start-page: 1176
  year: 2009
  ident: c10
  publication-title: Phys. Status Solidi A
– start-page: 117
  year: 2001
  ident: c11
  publication-title: Phys. Status Solidi A
– start-page: 2031
  year: 2011
  ident: c24
  publication-title: Phys. Status Solidi C
– start-page: 205
  year: 2006
  ident: c27
  publication-title: J. Cryst. Growth
– start-page: 092101
  year: 2011
  ident: c18
  publication-title: Appl. Phys. Express
– start-page: 052101
  year: 2011
  ident: c1
  publication-title: Appl. Phys. Express
– start-page: 213506
  year: 2013
  ident: c38
  publication-title: J. Appl. Phys.
– start-page: 1180
  year: 2015
  ident: c5
  publication-title: IEEE Electron Device Lett.
– start-page: 375
  year: 2015
  ident: c7
  publication-title: IEEE Electron Device Lett.
– start-page: 171102
  year: 2013
  ident: c19
  publication-title: Appl. Phys. Lett.
– start-page: 025501
  year: 2016
  ident: c30
  publication-title: Appl. Phys. Express
– start-page: 142107
  year: 2015
  ident: c2
  publication-title: Appl. Phys. Lett.
– start-page: 58
  year: 2009
  ident: c28
  publication-title: J. Cryst. Growth
– start-page: 235203
  year: 2014
  ident: c36
  publication-title: Phys. Rev. B
– start-page: 105701
  year: 2016
  ident: c39
  publication-title: J. Appl. Phys.
– start-page: 202106
  year: 2014
  ident: c45
  publication-title: Appl. Phys. Lett.
– start-page: 325
  year: 2006
  ident: c16
  publication-title: Nature
– start-page: 043510
  year: 2010
  ident: c29
  publication-title: J. Appl. Phys.
– start-page: 043526
  year: 2010
  ident: c32
  publication-title: J. Appl. Phys.
– start-page: 145702
  year: 2016
  ident: c26
  publication-title: J. Appl. Phys.
– start-page: 4837
  year: 2002
  ident: c6
  publication-title: J. Appl. Phys.
– start-page: 822
  year: 2012
  ident: c17
  publication-title: Phys. Status Solidi C
– start-page: 2453
  year: 1994
  ident: c4
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 342
  year: 2014
  ident: c14
  publication-title: IEEE Photonics Technol. Lett.
– start-page: H530
  year: 2011
  ident: c22
  publication-title: J. Electrochem. Soc.
– start-page: 674
  year: 2003
  ident: c21
  publication-title: Appl. Phys. Lett.
– start-page: 082101
  year: 2011
  ident: c9
  publication-title: Appl. Phys. Express
– start-page: 100302
  year: 2017
  ident: c33
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 087404
  year: 2013
  ident: c40
  publication-title: Phys. Rev. Lett.
– start-page: 55
  year: 2002
  ident: c42
  publication-title: J. Cryst. Growth
– start-page: 185704
  year: 2016
  ident: c44
  publication-title: J. Appl. Phys.
– volume: 188
  start-page: 117
  year: 2001
  ident: 2023061715423355100_c11
  publication-title: Phys. Status Solidi A
  doi: 10.1002/1521-396X(200111)188:1<117::AID-PSSA117>3.0.CO;2-X
– volume: 102
  start-page: 171102
  year: 2013
  ident: 2023061715423355100_c19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4803689
– volume: 9
  start-page: 025501
  year: 2016
  ident: 2023061715423355100_c30
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.9.025501
– volume: 120
  start-page: 235705
  year: 2016
  ident: 2023061715423355100_c41
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4972468
– volume: 89
  start-page: 035204
  year: 2014
  ident: 2023061715423355100_c43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.035204
– volume: 44
  start-page: 7250
  year: 2005
  ident: 2023061715423355100_c15
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.44.7250
– volume: 8
  start-page: 2031
  year: 2011
  ident: 2023061715423355100_c24
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.201000964
– volume: 56
  start-page: 100302
  year: 2017
  ident: 2023061715423355100_c33
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.7567/JJAP.56.100302
– volume: 110
  start-page: 087404
  year: 2013
  ident: 2023061715423355100_c40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.087404
– volume: 108
  start-page: 043526
  year: 2010
  ident: 2023061715423355100_c32
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3457149
– volume: 4
  start-page: 052101
  year: 2011
  ident: 2023061715423355100_c1
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.4.052101
– volume: 104
  start-page: 013521
  year: 2008
  ident: 2023061715423355100_c35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2952027
– volume: 4
  start-page: 082101
  year: 2011
  ident: 2023061715423355100_c9
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.4.082101
– volume: 9
  start-page: 822
  year: 2012
  ident: 2023061715423355100_c17
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.201100424
– volume: 83
  start-page: 674
  year: 2003
  ident: 2023061715423355100_c21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1595133
– volume: 4
  start-page: 092101
  year: 2011
  ident: 2023061715423355100_c18
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.4.092101
– volume: 101
  start-page: 123103
  year: 2007
  ident: 2023061715423355100_c13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2747546
– volume: 97
  start-page: 152108
  year: 2010
  ident: 2023061715423355100_c37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3492841
– volume: 33
  start-page: 2453
  year: 1994
  ident: 2023061715423355100_c4
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.33.2453
– volume: 286
  start-page: 205
  year: 2006
  ident: 2023061715423355100_c27
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.10.074
– volume: 26
  start-page: 342
  year: 2014
  ident: 2023061715423355100_c14
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2013.2293611
– volume: 120
  start-page: 105701
  year: 2016
  ident: 2023061715423355100_c39
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4962017
– volume: 122
  start-page: 995
  year: 1975
  ident: 2023061715423355100_c3
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2134385
– volume: 92
  start-page: 4837
  year: 2002
  ident: 2023061715423355100_c6
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1508420
– volume: 2
  start-page: 551
  year: 2008
  ident: 2023061715423355100_c20
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2008.135
– volume: 115
  start-page: 193702
  year: 2014
  ident: 2023061715423355100_c34
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4874735
– volume: 104
  start-page: 202106
  year: 2014
  ident: 2023061715423355100_c45
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4878657
– volume: 6
  start-page: 092103
  year: 2013
  ident: 2023061715423355100_c12
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.092103
– volume: 36
  start-page: 1180
  year: 2015
  ident: 2023061715423355100_c5
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2478907
– volume: 120
  start-page: 145702
  year: 2016
  ident: 2023061715423355100_c26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4964442
– volume: 106
  start-page: 142107
  year: 2015
  ident: 2023061715423355100_c2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4917540
– volume: 242
  start-page: 55
  year: 2002
  ident: 2023061715423355100_c42
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(02)01348-9
– volume: 158
  start-page: H530
  year: 2011
  ident: 2023061715423355100_c22
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3560527
– volume: 108
  start-page: 043510
  year: 2010
  ident: 2023061715423355100_c29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3467522
– volume: 8
  start-page: 061003
  year: 2015
  ident: 2023061715423355100_c8
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.8.061003
– volume: 287
  start-page: 372
  year: 2006
  ident: 2023061715423355100_c23
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.11.047
– volume: 441
  start-page: 325
  year: 2006
  ident: 2023061715423355100_c16
  publication-title: Nature
  doi: 10.1038/nature04760
– volume: 113
  start-page: 213506
  year: 2013
  ident: 2023061715423355100_c38
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4807906
– volume: 120
  start-page: 185704
  year: 2016
  ident: 2023061715423355100_c44
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4967397
– volume: 90
  start-page: 235203
  year: 2014
  ident: 2023061715423355100_c36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.235203
– volume: 206
  start-page: 1176
  year: 2009
  ident: 2023061715423355100_c10
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.200880961
– volume: 77
  start-page: 1013
  year: 1998
  ident: 2023061715423355100_c31
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619808221225
– volume: 312
  start-page: 58
  year: 2009
  ident: 2023061715423355100_c28
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.10.008
– volume: 36
  start-page: 375
  year: 2015
  ident: 2023061715423355100_c7
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2404309
– volume: 103
  start-page: 212109
  year: 2013
  ident: 2023061715423355100_c25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4833247
SSID ssj0005233
Score 2.56803
Snippet In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor...
In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor...
SourceID crossref
scitation
SourceType Enrichment Source
Index Database
Publisher
Title Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD
URI http://dx.doi.org/10.1063/1.5011984
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFB40RdQH0apYbwzqgxC2ZndmZ7OPoVGrmFhoK6Uvy9zWFLbpspsK8dd75pZsNQ-tEDZhdnZI5hsO3zk53zkIvaNJrFTJB1GeZjqiVLAop5JFQpRDoBuaSVvEdTJl-8f060l6ElrCe3XJQuzK3xt1Jf-DKowBrkYlewNkV4vCAHwGfOEKCMP1WhiPndrJS9Nq8Eh5yF0cVRFYuBm8f-bT_k_jbJv_BUxkoNJ92Sxbo4IcVVP7dMvr2kSpDRmdfN_7Me5y1kBUXRCk7VdWAbQOrzdLF0T90nIu_xk95UbY1Qnct7OzJT-3nPVwdrkWomnl7P1Bw89dA_sQjYiHNoE5vWJhScRyX0RWO6M6yEws1NvZYHXjpHO82EZrDvTJBBZ2U1OYznWS-6s4Nq-r22grARch6aGt0Xjy7bCT4ENI6JdovlGoK8XIh9WSV9jIXSAdLv-hQzGOHqIH3jfAIwf0I3RLz7fR_U7FyG1058CB8BidOvAxwIe74OOzOfbgYws-tuBjuOPAxx58uDu1TwfwsVhiC_4TdPzp49HefuQbZUSSsHQRDZNc8FICedYJlTIZ8txQdUk0KctBphKaZvCKNeHw80tqajxpQI-UCY8VpeQp6s0v5voZwuBdpjRXcSxyTQeaCUaVkpxSJUmWkXgHvQ8bVoTdMs1MqsJmMzBSxIXf2x30ZjW1dqVTNk16u9r1G876ddGsZxS1Kp9fa60X6N764L5EvUVzqV8BsVyI1_4E_QEuD3Y5
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doping+and+compensation+in+Al-rich+AlGaN+grown+on+single+crystal+AlN+and+sapphire+by+MOCVD&rft.jtitle=Applied+physics+letters&rft.au=Bryan%2C+Isaac&rft.au=Bryan%2C+Zachary&rft.au=Washiyama%2C+Shun&rft.au=Reddy%2C+Pramod&rft.date=2018-02-05&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=112&rft.issue=6&rft_id=info:doi/10.1063%2F1.5011984&rft.externalDocID=apl
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon