Spatial Proximity Relations-Driven Semantic Representation for Geospatial Entity Categories
Unsupervised representation learning can train deep learning models to formally express the semantic connotations of objects in the case of unlabeled data, which can effectively realize the expression of the semantics of geospatial entity categories in application scenarios lacking expert knowledge...
Saved in:
Published in | ISPRS international journal of geo-information Vol. 14; no. 6; p. 233 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2220-9964 2220-9964 |
DOI | 10.3390/ijgi14060233 |
Cover
Loading…
Abstract | Unsupervised representation learning can train deep learning models to formally express the semantic connotations of objects in the case of unlabeled data, which can effectively realize the expression of the semantics of geospatial entity categories in application scenarios lacking expert knowledge and help achieve the deep fusion of geospatial data. In this paper, a method for the semantic representation of the geospatial entity categories (denoted as feature embedding) is presented, taking advantage of the characteristic that regions with similar distributions of geospatial entity categories also have a certain level of similarity. To construct the entity category embedding, a spatial proximity graph of entities and an adjacency matrix of entity categories are created using a large number of geospatial entities obtained from OSM (OpenStreetMap). The cosine similarity algorithm is then employed to measure the similarity between these embeddings. Comparison experiments are then conducted by comparing the similarity results from the standard model. The results show that the results of this model are basically consistent with the standard model (Pearson correlation coefficient = 0.7487), which verifies the effectiveness of the feature embedding extracted by this model. Based on this, this paper applies the feature embedding to the regional similarity task, which verifies the feasibility of using the model in the downstream task. It provides a new idea for realizing the formal expression of the unsupervised entity category semantics. |
---|---|
AbstractList | Unsupervised representation learning can train deep learning models to formally express the semantic connotations of objects in the case of unlabeled data, which can effectively realize the expression of the semantics of geospatial entity categories in application scenarios lacking expert knowledge and help achieve the deep fusion of geospatial data. In this paper, a method for the semantic representation of the geospatial entity categories (denoted as feature embedding) is presented, taking advantage of the characteristic that regions with similar distributions of geospatial entity categories also have a certain level of similarity. To construct the entity category embedding, a spatial proximity graph of entities and an adjacency matrix of entity categories are created using a large number of geospatial entities obtained from OSM (OpenStreetMap). The cosine similarity algorithm is then employed to measure the similarity between these embeddings. Comparison experiments are then conducted by comparing the similarity results from the standard model. The results show that the results of this model are basically consistent with the standard model (Pearson correlation coefficient = 0.7487), which verifies the effectiveness of the feature embedding extracted by this model. Based on this, this paper applies the feature embedding to the regional similarity task, which verifies the feasibility of using the model in the downstream task. It provides a new idea for realizing the formal expression of the unsupervised entity category semantics. |
Audience | Academic |
Author | Yu, Zhonghai Cai, Rongfeng Gao, Lingling Wang, Hong Li, Xin Tan, Yongbin |
Author_xml | – sequence: 1 givenname: Yongbin orcidid: 0000-0002-8888-9347 surname: Tan fullname: Tan, Yongbin – sequence: 2 givenname: Hong surname: Wang fullname: Wang, Hong – sequence: 3 givenname: Rongfeng orcidid: 0009-0005-0247-7544 surname: Cai fullname: Cai, Rongfeng – sequence: 4 givenname: Lingling surname: Gao fullname: Gao, Lingling – sequence: 5 givenname: Zhonghai orcidid: 0000-0003-1831-924X surname: Yu fullname: Yu, Zhonghai – sequence: 6 givenname: Xin surname: Li fullname: Li, Xin |
BookMark | eNpNUV1LXDEUDMVCrfWtP-BCX3v13Hxt8ihbawVBqfXJh3CSe7Jk2b3ZJlep_77RFTEhJMyZGYbMZ3Yw5YkY-zrAiRAWTtN6lQYJGrgQH9gh5xx6a7U8ePf-xI5rXUNbdhBGwiG7v93hnHDT3ZT8L23T_NT9pk2D8lT7HyU90tTd0hanOYU22RWqNM0v8y7m0l1Qrq8O543T5EucaZVLovqFfYy4qXT8eh-xu5_nf5a_-qvri8vl2VUfhFZzv1ioqINRRqAEjwPXkmTQPFrDJQWvDBpUXsbBez5yQjRax4hSeAEWrThil3vfMePa7UraYnlyGZN7AXJZOSwt_4YcwDg-H7IepFmMfqG0NMoOYK01PjSvb3uvXcl_H6jObp0fytTiO8F5-2djYWiskz1rhc00TTHPBUPbI21TaL3E1PAzI5VWGiQ0wfe9IJRca6H4FnMA91yfe1-f-A-Q3I8Z |
Cites_doi | 10.1162/coli.2006.32.1.13 10.1109/TPAMI.2013.50 10.1145/3038912.3052601 10.1145/2939672.2939754 10.24963/ijcai.2021/206 10.1145/2806416.2806512 10.1111/gean.12423 10.1145/2939672.2939753 10.3390/ijgi6110321 10.1109/MLSP.2016.7738886 10.1109/ICCV.2017.71 10.1609/aaai.v28i1.8870 10.1109/TKDE.2016.2610428 10.1016/j.micpro.2020.103526 10.1145/2623330.2623732 10.1007/s11004-022-10036-8 10.1080/19475683.2022.2026467 10.1145/592642.592645 10.1145/361219.361220 10.1145/1645953.1646025 10.1093/jamia/ocz200 10.1080/19475683.2018.1534890 10.1002/j.1538-7305.1950.tb00463.x 10.1145/2736277.2741093 10.1609/aaai.v29i1.9491 10.1109/TBDATA.2018.2850013 10.1162/089976603321780317 10.24963/ijcai.2024/231 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/ijgi14060233 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) Natural Science Collection (ProQuest) Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Visual Arts |
EISSN | 2220-9964 |
ExternalDocumentID | oai_doaj_org_article_00dd00dde9b0487db7564859109998bc A845656040 10_3390_ijgi14060233 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c365t-775f6c8583a40ba1264e4c62f9824ecb58a8a5b4f1bb2d2eaa866ffa43b309a93 |
IEDL.DBID | DOA |
ISSN | 2220-9964 |
IngestDate | Wed Aug 27 01:30:37 EDT 2025 Wed Jul 23 11:40:46 EDT 2025 Tue Jul 01 05:43:54 EDT 2025 Tue Aug 05 12:00:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-775f6c8583a40ba1264e4c62f9824ecb58a8a5b4f1bb2d2eaa866ffa43b309a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8888-9347 0009-0005-0247-7544 0000-0003-1831-924X |
OpenAccessLink | https://doaj.org/article/00dd00dde9b0487db7564859109998bc |
PQID | 3223908901 |
PQPubID | 2032387 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_00dd00dde9b0487db7564859109998bc proquest_journals_3223908901 gale_infotracacademiconefile_A845656040 crossref_primary_10_3390_ijgi14060233 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | ISPRS international journal of geo-information |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhu (ref_26) 2018; 24 ref_14 Li (ref_10) 2009; 34 Wang (ref_5) 2021; 80 ref_52 ref_19 ref_18 ref_17 ref_16 ref_15 Wu (ref_35) 2020; 27 Bengio (ref_13) 2013; 35 ref_21 Yongbin (ref_8) 2023; 52 Tu (ref_40) 1998; 43 Zhang (ref_12) 2018; 6 ref_27 Dhyani (ref_28) 2002; 34 Hamming (ref_29) 1950; 29 Xu (ref_31) 2021; 23 Wang (ref_49) 2020; 12 Tan (ref_11) 2013; 42 ref_36 ref_34 ref_33 Budanitsky (ref_51) 2006; 32 Li (ref_9) 2008; 37 Zhu (ref_23) 2020; 22 ref_30 Song (ref_24) 2023; 55 ref_39 ref_38 ref_37 Wang (ref_50) 2015; 38 Yan (ref_22) 2018; 25 Zhu (ref_25) 2022; 28 Salton (ref_32) 1975; 18 Li (ref_4) 2018; 35 ref_47 ref_46 Belkin (ref_20) 2003; 15 ref_45 ref_44 ref_43 ref_42 ref_41 ref_1 Ling (ref_3) 2023; 52 Zhu (ref_7) 2016; 29 ref_48 Zhao (ref_2) 2020; 45 Zhao (ref_6) 2016; 35 |
References_xml | – volume: 35 start-page: 58 year: 2016 ident: ref_6 article-title: The semantic relevancy computation model on essential features of geospatial data publication-title: Geogr. Res – volume: 32 start-page: 13 year: 2006 ident: ref_51 article-title: Evaluating wordnet-based measures of lexical semantic relatedness publication-title: Comput. Linguist. doi: 10.1162/coli.2006.32.1.13 – volume: 35 start-page: 1798 year: 2013 ident: ref_13 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – ident: ref_43 doi: 10.1145/3038912.3052601 – ident: ref_16 doi: 10.1145/2939672.2939754 – volume: 52 start-page: 843 year: 2023 ident: ref_8 article-title: A dynamic weighted model for semantic similarity measurement between geographic feature categories publication-title: Acta Geod. Cartogr. Sin. – ident: ref_48 doi: 10.24963/ijcai.2021/206 – ident: ref_39 – ident: ref_42 – ident: ref_1 – volume: 43 start-page: 1681 year: 1998 ident: ref_40 article-title: Network representation learning: An overview publication-title: Sci. Sin. Informationis – volume: 22 start-page: 673 year: 2020 ident: ref_23 article-title: Geographic similarity: Third law of geography? publication-title: J. Geo-Inf. Sci. – ident: ref_19 doi: 10.1145/2806416.2806512 – volume: 34 start-page: 12 year: 2009 ident: ref_10 article-title: Semantic similarities calculative modeling for geospatial entity classes based on ontology publication-title: Sci. Surv. Mapp. – ident: ref_27 doi: 10.1111/gean.12423 – ident: ref_52 – ident: ref_17 doi: 10.1145/2939672.2939753 – volume: 12 start-page: 1 year: 2020 ident: ref_49 article-title: On representation learning for road networks publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – ident: ref_46 doi: 10.3390/ijgi6110321 – ident: ref_41 – ident: ref_45 – volume: 52 start-page: 478 year: 2023 ident: ref_3 article-title: Semantic-driven construction of geographic entity association network and knowledge service publication-title: Acta Geod. Cartogr. Sin. – ident: ref_34 doi: 10.1109/MLSP.2016.7738886 – ident: ref_33 doi: 10.1109/ICCV.2017.71 – ident: ref_37 doi: 10.1609/aaai.v28i1.8870 – volume: 29 start-page: 72 year: 2016 ident: ref_7 article-title: Computing semantic similarity of concepts in knowledge graphs publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2610428 – volume: 37 start-page: 230 year: 2008 ident: ref_9 article-title: Semantic analyses of the fundamental geographic Information based on formal ontology—Exemplifying hydrological category publication-title: Acta Geod. Cartogr. Sin. – ident: ref_30 – volume: 80 start-page: 103526 year: 2021 ident: ref_5 article-title: A hybrid semantic similarity measurement for geospatial entities publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103526 – ident: ref_14 doi: 10.1145/2623330.2623732 – volume: 55 start-page: 295 year: 2023 ident: ref_24 article-title: Geographically optimal similarity publication-title: Math. Geosci. doi: 10.1007/s11004-022-10036-8 – volume: 28 start-page: 57 year: 2022 ident: ref_25 article-title: How is the Third Law of Geography different? publication-title: Ann. GIS doi: 10.1080/19475683.2022.2026467 – volume: 23 start-page: 1372 year: 2021 ident: ref_31 article-title: Word embedding-based method for entity category alignment of geographic knowledge base publication-title: Inf. Sci. – volume: 34 start-page: 469 year: 2002 ident: ref_28 article-title: A survey of web metrics publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/592642.592645 – volume: 38 start-page: 191 year: 2015 ident: ref_50 article-title: Application study on basic geographic elements in big data environment publication-title: Geomat. Spat. Inf. Technol. – volume: 35 start-page: 15 year: 2018 ident: ref_4 article-title: Ontology concept update method based on semantic similarity publication-title: Comput. Appl. Softw. – volume: 18 start-page: 613 year: 1975 ident: ref_32 article-title: A vector space model for automatic indexing publication-title: Commun. ACM doi: 10.1145/361219.361220 – ident: ref_21 – ident: ref_44 doi: 10.1145/1645953.1646025 – volume: 27 start-page: 457 year: 2020 ident: ref_35 article-title: Deep learning in clinical natural language processing: A methodical review publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocz200 – volume: 24 start-page: 225 year: 2018 ident: ref_26 article-title: Spatial prediction based on third law of geography publication-title: Ann. GIS doi: 10.1080/19475683.2018.1534890 – volume: 29 start-page: 147 year: 1950 ident: ref_29 article-title: Error detecting and error correcting codes publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1950.tb00463.x – ident: ref_18 doi: 10.1145/2736277.2741093 – volume: 45 start-page: 728 year: 2020 ident: ref_2 article-title: Geographical entity-oriented semantic similarity measurement method and its application in road matching publication-title: Geomat. Inf. Sci. Wuhan Univ. – volume: 42 start-page: 782 year: 2013 ident: ref_11 article-title: Semantic similarity measurement model between fundamental geographic information concepts based on ontological property publication-title: Acta Geod. Cartogr. Sin. – ident: ref_15 – ident: ref_38 doi: 10.1609/aaai.v29i1.9491 – ident: ref_36 – volume: 25 start-page: 18 year: 2018 ident: ref_22 article-title: The representation and application of spatial neighborhood publication-title: J. Spatio-Temporal Inf. – volume: 6 start-page: 3 year: 2018 ident: ref_12 article-title: Network representation learning: A survey publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2018.2850013 – volume: 15 start-page: 1373 year: 2003 ident: ref_20 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. doi: 10.1162/089976603321780317 – ident: ref_47 doi: 10.24963/ijcai.2024/231 |
RelatedPersons | Wang Hong |
RelatedPersons_xml | – fullname: Wang Hong |
SSID | ssj0000913840 |
Score | 2.3263443 |
Snippet | Unsupervised representation learning can train deep learning models to formally express the semantic connotations of objects in the case of unlabeled data,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 233 |
SubjectTerms | Algorithms Analysis Categories Classification Computational linguistics Correlation coefficient Correlation coefficients Deep learning Digital mapping Embedding formal representation of semantics Geography Geospatial data geospatial entity category graph representation learning Graph representations Language Language processing Natural language interfaces Natural language processing Ontology Representations Semantics Similarity Spatial data Subject specialists Unsupervised learning Wang Hong |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB21cKAcqpYPdelS5dCKU4QTO17nVLGwCFUqQm1BSBws27HpIrFZkkVi_31nst6lHNpDLok1imbG4ze25w3A54wxK9CTUhUES0XIRWoc9ynj3hUhd1XoyJ6_n8uzS_HturiOG25tvFa5jIldoK5qR3vkh-h4nM6oWPZ1-pBS1yg6XY0tNF7DOoZghcnX-nB0fvFjtctCrJeYwixuvHMUcDi-ux1jUiFxreIv1qKOsv9fgblbbU7fwdsIE5OjhV3fwys_2YKN2LH893wLNq_G7eNiRLsNN9RZGD0puWjqJypZmierW27pSUMRLfnp71GLY4dfps81R5MEUWuCgtsoYUR1u_PkmBgkasqjd-DydPTr-CyNbRNSx2UxQ7xcBOlUobgRzJoMIY8XTuahVLnwzhbKKFNYETJr8yr3xigpQzCCW85KU_JdWJvUE_8BEjuwBvGTUJlAi5Y4nokB96qUFUp1sgdflgrU0wU7hsasghSt_1Z0D4ak3dUY4rTuXtTNrY5TRDNWVfT40mJYGVR2UEhB9HoEYpV1PTgg22iaebPGOBMLCPBXicNKH6kOnWJU6kF_aT4dp2Srnx1o7_-fP8KbnJr8dlstfVibNY9-H5HHzH6K7vUHYzvZCA priority: 102 providerName: ProQuest |
Title | Spatial Proximity Relations-Driven Semantic Representation for Geospatial Entity Categories |
URI | https://www.proquest.com/docview/3223908901 https://doaj.org/article/00dd00dde9b0487db7564859109998bc |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB6V9AAcEOWhhke0hyJOK7xrr-M9JpAUVSpCQFAkDpbttWkqNYnykJp_35ndBdID6qWHvexaljUznvlm7fkG4EvCmBVoSbEKgsUipCI2jvuYce-ykLoilGTP32_k9UB8G2bDtVZfdCesogeuBHfBWFHQ43OLxtYubDuTgkjXCNoo68j7YsxbS6ZKH5wnHFOX6qY7x7z-YvTzeYTJhMQYxf-KQSVV_3sOuYwy_V3YqeFh1KmW9Qk--PEebNadyn-s9mD7cTRfViPm-_BEHYXRgqLb2eQ3lSqtotfbbfHVjDxZdO9_ofRGDr9M32qNxhGi1Qgnntcz9KhedxVdEnPEhPLnAxj0ew-X13HdLiF2XGYLxMlZkE5lihvBrEkQ6njhZBpylQrvbKaMMpkVIbE2LVJvjJIyBCO45Sw3OT-Exngy9p8hsm1rEDcJlQjUZI7jmWhzr3JZ4KxONuHsRYB6WrFiaMwmSNB6XdBN6JJ0X8cQl3X5AjWsaw3rf2m4CeekG007bjEzztSFA7hU4q7SHVWiUvRGTTh5UZ-ut-Jco8fidLjJkqP_sZpj2EqpBXD5I-YEGovZ0p8iLlnYFmyo_tcWfOz2bm7vWqVB_gGbxOId |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VA4ICgglhbwgYpTVCd2vM4BodJ22dKHkGhRJQ7Gdpx2kdhsk61g_xS_kZk8tnCAWw-5xJYVzXyeh-P5BuBVzLmTiKRIF5JHskhkZL0IERfBp0Xi86Ihez4-UeMz-eE8PV-BX30tDF2r7G1iY6jz0tMZ-TYCT9A_Kh6_nV1F1DWK_q72LTRaWByGxQ9M2eo3B3uo360kGe2f7o6jrqtA5IVK5xhOpoXyOtXCSu5sjBFBkF4lRaYTGbxLtdU2dbKInUvyJFirlSoKK4UTPLNEvoQm_44UIqMdpUfvl2c6xLGJCVN7vx7H-fbk28UEUxiFnlH85fmaBgH_cgONbxs9gPtdUMp2WhQ9hJUwXYe1rj_65WId7n2e1NftjPoRfKE-xohb9rEqf1KB1IIt79RFexXZT_YpfEedTTyOzG4qnKYMY2SGC9fdCvtUJbxgu8RXUVLW_hjObkWcT2B1Wk7DU2Bu6CxGa1LHEvGT4XwuhyLoTOW4qlcD2OoFaGYtF4fBHIYEbf4U9ADekXSXc4hBu3lRVhem25CG8zynJ2QOjdgwd8NUSSLzo5BZOz-A16QbQ_t8Xllvu3IF_FRizDI7uomF0QYOYLNXn-kMQG1u4Prs_8MvYW18enxkjg5ODjfgbkLthZtDnk1YnVfX4TnGPHP3ogEag6-3jezfjbsVIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqcTjgKCACBTYAxWnVbxrr9d7QKhtErUUoggoqsRha3vtEiSSsJsK8tf4dczsI4UD3HrYy9qyrJnP87DnAfAiYswIRFKovGCh8LEIteUuZNzZxMe28HWx53cTeXQq3pwlZ1vwq8uFobDKTibWgrpYWLojHyDwOL1RsWjg27CI6XD8evk9pA5S9NLatdNoIHLi1j_QfateHQ-R13txPB59PDwK2w4DoeUyWaFpmXhpVaK4FszoCK0DJ6yMfaZi4axJlFY6McJHxsRF7LRWUnqvBTecZZoKMaH4307RK2I92D4YTabvNzc8VHET3acm2p7j5gezrxczdGgk6kn-lx6s2wX8SynUmm58F-60Jmqw32DqHmy5-Q7cbLulf1nvwO1Ps-qymVHdh8_U1RhRHEzLxU9Kl1oHmwi7cFiSNA0-uG_IwZnFkeVVvtM8QIs5wIWrdoUR5Qyvg0OqXrEgH_4BnF4LQR9Cb76Yu0cQmNRotN2EigSiKcP5TKTcqUwWuKqVfdjrCJgvm8ocOXo0ROj8T0L34YCou5lD9bTrH4vyIm-PZ85YUdDnMoMiLS1MmkhBpf3IgFbG9uEl8SanU78qtdVt8gJulepn5fuqtoxRIvZht2Nf3oqDKr8C7-P_Dz-HG4jq_O3x5OQJ3Iqp13B947MLvVV56Z6iAbQyz1qkBXB-3eD-Dd9MGrU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Proximity+Relations-Driven+Semantic+Representation+for+Geospatial+Entity+Categories&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Tan%2C+Yongbin&rft.au=Wang%2C+Hong&rft.au=Cai%2C+Rongfeng&rft.au=Gao%2C+Lingling&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=14&rft.issue=6&rft_id=info:doi/10.3390%2Fijgi14060233&rft.externalDocID=A845656040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |