Spatial Proximity Relations-Driven Semantic Representation for Geospatial Entity Categories

Unsupervised representation learning can train deep learning models to formally express the semantic connotations of objects in the case of unlabeled data, which can effectively realize the expression of the semantics of geospatial entity categories in application scenarios lacking expert knowledge...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 14; no. 6; p. 233
Main Authors Tan, Yongbin, Wang, Hong, Cai, Rongfeng, Gao, Lingling, Yu, Zhonghai, Li, Xin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text
ISSN2220-9964
2220-9964
DOI10.3390/ijgi14060233

Cover

Loading…
Abstract Unsupervised representation learning can train deep learning models to formally express the semantic connotations of objects in the case of unlabeled data, which can effectively realize the expression of the semantics of geospatial entity categories in application scenarios lacking expert knowledge and help achieve the deep fusion of geospatial data. In this paper, a method for the semantic representation of the geospatial entity categories (denoted as feature embedding) is presented, taking advantage of the characteristic that regions with similar distributions of geospatial entity categories also have a certain level of similarity. To construct the entity category embedding, a spatial proximity graph of entities and an adjacency matrix of entity categories are created using a large number of geospatial entities obtained from OSM (OpenStreetMap). The cosine similarity algorithm is then employed to measure the similarity between these embeddings. Comparison experiments are then conducted by comparing the similarity results from the standard model. The results show that the results of this model are basically consistent with the standard model (Pearson correlation coefficient = 0.7487), which verifies the effectiveness of the feature embedding extracted by this model. Based on this, this paper applies the feature embedding to the regional similarity task, which verifies the feasibility of using the model in the downstream task. It provides a new idea for realizing the formal expression of the unsupervised entity category semantics.
AbstractList Unsupervised representation learning can train deep learning models to formally express the semantic connotations of objects in the case of unlabeled data, which can effectively realize the expression of the semantics of geospatial entity categories in application scenarios lacking expert knowledge and help achieve the deep fusion of geospatial data. In this paper, a method for the semantic representation of the geospatial entity categories (denoted as feature embedding) is presented, taking advantage of the characteristic that regions with similar distributions of geospatial entity categories also have a certain level of similarity. To construct the entity category embedding, a spatial proximity graph of entities and an adjacency matrix of entity categories are created using a large number of geospatial entities obtained from OSM (OpenStreetMap). The cosine similarity algorithm is then employed to measure the similarity between these embeddings. Comparison experiments are then conducted by comparing the similarity results from the standard model. The results show that the results of this model are basically consistent with the standard model (Pearson correlation coefficient = 0.7487), which verifies the effectiveness of the feature embedding extracted by this model. Based on this, this paper applies the feature embedding to the regional similarity task, which verifies the feasibility of using the model in the downstream task. It provides a new idea for realizing the formal expression of the unsupervised entity category semantics.
Audience Academic
Author Yu, Zhonghai
Cai, Rongfeng
Gao, Lingling
Wang, Hong
Li, Xin
Tan, Yongbin
Author_xml – sequence: 1
  givenname: Yongbin
  orcidid: 0000-0002-8888-9347
  surname: Tan
  fullname: Tan, Yongbin
– sequence: 2
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
– sequence: 3
  givenname: Rongfeng
  orcidid: 0009-0005-0247-7544
  surname: Cai
  fullname: Cai, Rongfeng
– sequence: 4
  givenname: Lingling
  surname: Gao
  fullname: Gao, Lingling
– sequence: 5
  givenname: Zhonghai
  orcidid: 0000-0003-1831-924X
  surname: Yu
  fullname: Yu, Zhonghai
– sequence: 6
  givenname: Xin
  surname: Li
  fullname: Li, Xin
BookMark eNpNUV1LXDEUDMVCrfWtP-BCX3v13Hxt8ihbawVBqfXJh3CSe7Jk2b3ZJlep_77RFTEhJMyZGYbMZ3Yw5YkY-zrAiRAWTtN6lQYJGrgQH9gh5xx6a7U8ePf-xI5rXUNbdhBGwiG7v93hnHDT3ZT8L23T_NT9pk2D8lT7HyU90tTd0hanOYU22RWqNM0v8y7m0l1Qrq8O543T5EucaZVLovqFfYy4qXT8eh-xu5_nf5a_-qvri8vl2VUfhFZzv1ioqINRRqAEjwPXkmTQPFrDJQWvDBpUXsbBez5yQjRax4hSeAEWrThil3vfMePa7UraYnlyGZN7AXJZOSwt_4YcwDg-H7IepFmMfqG0NMoOYK01PjSvb3uvXcl_H6jObp0fytTiO8F5-2djYWiskz1rhc00TTHPBUPbI21TaL3E1PAzI5VWGiQ0wfe9IJRca6H4FnMA91yfe1-f-A-Q3I8Z
Cites_doi 10.1162/coli.2006.32.1.13
10.1109/TPAMI.2013.50
10.1145/3038912.3052601
10.1145/2939672.2939754
10.24963/ijcai.2021/206
10.1145/2806416.2806512
10.1111/gean.12423
10.1145/2939672.2939753
10.3390/ijgi6110321
10.1109/MLSP.2016.7738886
10.1109/ICCV.2017.71
10.1609/aaai.v28i1.8870
10.1109/TKDE.2016.2610428
10.1016/j.micpro.2020.103526
10.1145/2623330.2623732
10.1007/s11004-022-10036-8
10.1080/19475683.2022.2026467
10.1145/592642.592645
10.1145/361219.361220
10.1145/1645953.1646025
10.1093/jamia/ocz200
10.1080/19475683.2018.1534890
10.1002/j.1538-7305.1950.tb00463.x
10.1145/2736277.2741093
10.1609/aaai.v29i1.9491
10.1109/TBDATA.2018.2850013
10.1162/089976603321780317
10.24963/ijcai.2024/231
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/ijgi14060233
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_00dd00dde9b0487db7564859109998bc
A845656040
10_3390_ijgi14060233
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c365t-775f6c8583a40ba1264e4c62f9824ecb58a8a5b4f1bb2d2eaa866ffa43b309a93
IEDL.DBID DOA
ISSN 2220-9964
IngestDate Wed Aug 27 01:30:37 EDT 2025
Wed Jul 23 11:40:46 EDT 2025
Tue Jul 01 05:43:54 EDT 2025
Tue Aug 05 12:00:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-775f6c8583a40ba1264e4c62f9824ecb58a8a5b4f1bb2d2eaa866ffa43b309a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8888-9347
0009-0005-0247-7544
0000-0003-1831-924X
OpenAccessLink https://doaj.org/article/00dd00dde9b0487db7564859109998bc
PQID 3223908901
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_00dd00dde9b0487db7564859109998bc
proquest_journals_3223908901
gale_infotracacademiconefile_A845656040
crossref_primary_10_3390_ijgi14060233
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhu (ref_26) 2018; 24
ref_14
Li (ref_10) 2009; 34
Wang (ref_5) 2021; 80
ref_52
ref_19
ref_18
ref_17
ref_16
ref_15
Wu (ref_35) 2020; 27
Bengio (ref_13) 2013; 35
ref_21
Yongbin (ref_8) 2023; 52
Tu (ref_40) 1998; 43
Zhang (ref_12) 2018; 6
ref_27
Dhyani (ref_28) 2002; 34
Hamming (ref_29) 1950; 29
Xu (ref_31) 2021; 23
Wang (ref_49) 2020; 12
Tan (ref_11) 2013; 42
ref_36
ref_34
ref_33
Budanitsky (ref_51) 2006; 32
Li (ref_9) 2008; 37
Zhu (ref_23) 2020; 22
ref_30
Song (ref_24) 2023; 55
ref_39
ref_38
ref_37
Wang (ref_50) 2015; 38
Yan (ref_22) 2018; 25
Zhu (ref_25) 2022; 28
Salton (ref_32) 1975; 18
Li (ref_4) 2018; 35
ref_47
ref_46
Belkin (ref_20) 2003; 15
ref_45
ref_44
ref_43
ref_42
ref_41
ref_1
Ling (ref_3) 2023; 52
Zhu (ref_7) 2016; 29
ref_48
Zhao (ref_2) 2020; 45
Zhao (ref_6) 2016; 35
References_xml – volume: 35
  start-page: 58
  year: 2016
  ident: ref_6
  article-title: The semantic relevancy computation model on essential features of geospatial data
  publication-title: Geogr. Res
– volume: 32
  start-page: 13
  year: 2006
  ident: ref_51
  article-title: Evaluating wordnet-based measures of lexical semantic relatedness
  publication-title: Comput. Linguist.
  doi: 10.1162/coli.2006.32.1.13
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_13
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– ident: ref_43
  doi: 10.1145/3038912.3052601
– ident: ref_16
  doi: 10.1145/2939672.2939754
– volume: 52
  start-page: 843
  year: 2023
  ident: ref_8
  article-title: A dynamic weighted model for semantic similarity measurement between geographic feature categories
  publication-title: Acta Geod. Cartogr. Sin.
– ident: ref_48
  doi: 10.24963/ijcai.2021/206
– ident: ref_39
– ident: ref_42
– ident: ref_1
– volume: 43
  start-page: 1681
  year: 1998
  ident: ref_40
  article-title: Network representation learning: An overview
  publication-title: Sci. Sin. Informationis
– volume: 22
  start-page: 673
  year: 2020
  ident: ref_23
  article-title: Geographic similarity: Third law of geography?
  publication-title: J. Geo-Inf. Sci.
– ident: ref_19
  doi: 10.1145/2806416.2806512
– volume: 34
  start-page: 12
  year: 2009
  ident: ref_10
  article-title: Semantic similarities calculative modeling for geospatial entity classes based on ontology
  publication-title: Sci. Surv. Mapp.
– ident: ref_27
  doi: 10.1111/gean.12423
– ident: ref_52
– ident: ref_17
  doi: 10.1145/2939672.2939753
– volume: 12
  start-page: 1
  year: 2020
  ident: ref_49
  article-title: On representation learning for road networks
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– ident: ref_46
  doi: 10.3390/ijgi6110321
– ident: ref_41
– ident: ref_45
– volume: 52
  start-page: 478
  year: 2023
  ident: ref_3
  article-title: Semantic-driven construction of geographic entity association network and knowledge service
  publication-title: Acta Geod. Cartogr. Sin.
– ident: ref_34
  doi: 10.1109/MLSP.2016.7738886
– ident: ref_33
  doi: 10.1109/ICCV.2017.71
– ident: ref_37
  doi: 10.1609/aaai.v28i1.8870
– volume: 29
  start-page: 72
  year: 2016
  ident: ref_7
  article-title: Computing semantic similarity of concepts in knowledge graphs
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2610428
– volume: 37
  start-page: 230
  year: 2008
  ident: ref_9
  article-title: Semantic analyses of the fundamental geographic Information based on formal ontology—Exemplifying hydrological category
  publication-title: Acta Geod. Cartogr. Sin.
– ident: ref_30
– volume: 80
  start-page: 103526
  year: 2021
  ident: ref_5
  article-title: A hybrid semantic similarity measurement for geospatial entities
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2020.103526
– ident: ref_14
  doi: 10.1145/2623330.2623732
– volume: 55
  start-page: 295
  year: 2023
  ident: ref_24
  article-title: Geographically optimal similarity
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-022-10036-8
– volume: 28
  start-page: 57
  year: 2022
  ident: ref_25
  article-title: How is the Third Law of Geography different?
  publication-title: Ann. GIS
  doi: 10.1080/19475683.2022.2026467
– volume: 23
  start-page: 1372
  year: 2021
  ident: ref_31
  article-title: Word embedding-based method for entity category alignment of geographic knowledge base
  publication-title: Inf. Sci.
– volume: 34
  start-page: 469
  year: 2002
  ident: ref_28
  article-title: A survey of web metrics
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/592642.592645
– volume: 38
  start-page: 191
  year: 2015
  ident: ref_50
  article-title: Application study on basic geographic elements in big data environment
  publication-title: Geomat. Spat. Inf. Technol.
– volume: 35
  start-page: 15
  year: 2018
  ident: ref_4
  article-title: Ontology concept update method based on semantic similarity
  publication-title: Comput. Appl. Softw.
– volume: 18
  start-page: 613
  year: 1975
  ident: ref_32
  article-title: A vector space model for automatic indexing
  publication-title: Commun. ACM
  doi: 10.1145/361219.361220
– ident: ref_21
– ident: ref_44
  doi: 10.1145/1645953.1646025
– volume: 27
  start-page: 457
  year: 2020
  ident: ref_35
  article-title: Deep learning in clinical natural language processing: A methodical review
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocz200
– volume: 24
  start-page: 225
  year: 2018
  ident: ref_26
  article-title: Spatial prediction based on third law of geography
  publication-title: Ann. GIS
  doi: 10.1080/19475683.2018.1534890
– volume: 29
  start-page: 147
  year: 1950
  ident: ref_29
  article-title: Error detecting and error correcting codes
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1950.tb00463.x
– ident: ref_18
  doi: 10.1145/2736277.2741093
– volume: 45
  start-page: 728
  year: 2020
  ident: ref_2
  article-title: Geographical entity-oriented semantic similarity measurement method and its application in road matching
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
– volume: 42
  start-page: 782
  year: 2013
  ident: ref_11
  article-title: Semantic similarity measurement model between fundamental geographic information concepts based on ontological property
  publication-title: Acta Geod. Cartogr. Sin.
– ident: ref_15
– ident: ref_38
  doi: 10.1609/aaai.v29i1.9491
– ident: ref_36
– volume: 25
  start-page: 18
  year: 2018
  ident: ref_22
  article-title: The representation and application of spatial neighborhood
  publication-title: J. Spatio-Temporal Inf.
– volume: 6
  start-page: 3
  year: 2018
  ident: ref_12
  article-title: Network representation learning: A survey
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2018.2850013
– volume: 15
  start-page: 1373
  year: 2003
  ident: ref_20
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780317
– ident: ref_47
  doi: 10.24963/ijcai.2024/231
RelatedPersons Wang Hong
RelatedPersons_xml – fullname: Wang Hong
SSID ssj0000913840
Score 2.3263443
Snippet Unsupervised representation learning can train deep learning models to formally express the semantic connotations of objects in the case of unlabeled data,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 233
SubjectTerms Algorithms
Analysis
Categories
Classification
Computational linguistics
Correlation coefficient
Correlation coefficients
Deep learning
Digital mapping
Embedding
formal representation of semantics
Geography
Geospatial data
geospatial entity category
graph representation learning
Graph representations
Language
Language processing
Natural language interfaces
Natural language processing
Ontology
Representations
Semantics
Similarity
Spatial data
Subject specialists
Unsupervised learning
Wang Hong
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB21cKAcqpYPdelS5dCKU4QTO17nVLGwCFUqQm1BSBws27HpIrFZkkVi_31nst6lHNpDLok1imbG4ze25w3A54wxK9CTUhUES0XIRWoc9ynj3hUhd1XoyJ6_n8uzS_HturiOG25tvFa5jIldoK5qR3vkh-h4nM6oWPZ1-pBS1yg6XY0tNF7DOoZghcnX-nB0fvFjtctCrJeYwixuvHMUcDi-ux1jUiFxreIv1qKOsv9fgblbbU7fwdsIE5OjhV3fwys_2YKN2LH893wLNq_G7eNiRLsNN9RZGD0puWjqJypZmierW27pSUMRLfnp71GLY4dfps81R5MEUWuCgtsoYUR1u_PkmBgkasqjd-DydPTr-CyNbRNSx2UxQ7xcBOlUobgRzJoMIY8XTuahVLnwzhbKKFNYETJr8yr3xigpQzCCW85KU_JdWJvUE_8BEjuwBvGTUJlAi5Y4nokB96qUFUp1sgdflgrU0wU7hsasghSt_1Z0D4ak3dUY4rTuXtTNrY5TRDNWVfT40mJYGVR2UEhB9HoEYpV1PTgg22iaebPGOBMLCPBXicNKH6kOnWJU6kF_aT4dp2Srnx1o7_-fP8KbnJr8dlstfVibNY9-H5HHzH6K7vUHYzvZCA
  priority: 102
  providerName: ProQuest
Title Spatial Proximity Relations-Driven Semantic Representation for Geospatial Entity Categories
URI https://www.proquest.com/docview/3223908901
https://doaj.org/article/00dd00dde9b0487db7564859109998bc
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB6V9AAcEOWhhke0hyJOK7xrr-M9JpAUVSpCQFAkDpbttWkqNYnykJp_35ndBdID6qWHvexaljUznvlm7fkG4EvCmBVoSbEKgsUipCI2jvuYce-ykLoilGTP32_k9UB8G2bDtVZfdCesogeuBHfBWFHQ43OLxtYubDuTgkjXCNoo68j7YsxbS6ZKH5wnHFOX6qY7x7z-YvTzeYTJhMQYxf-KQSVV_3sOuYwy_V3YqeFh1KmW9Qk--PEebNadyn-s9mD7cTRfViPm-_BEHYXRgqLb2eQ3lSqtotfbbfHVjDxZdO9_ofRGDr9M32qNxhGi1Qgnntcz9KhedxVdEnPEhPLnAxj0ew-X13HdLiF2XGYLxMlZkE5lihvBrEkQ6njhZBpylQrvbKaMMpkVIbE2LVJvjJIyBCO45Sw3OT-Exngy9p8hsm1rEDcJlQjUZI7jmWhzr3JZ4KxONuHsRYB6WrFiaMwmSNB6XdBN6JJ0X8cQl3X5AjWsaw3rf2m4CeekG007bjEzztSFA7hU4q7SHVWiUvRGTTh5UZ-ut-Jco8fidLjJkqP_sZpj2EqpBXD5I-YEGovZ0p8iLlnYFmyo_tcWfOz2bm7vWqVB_gGbxOId
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VA4ICgglhbwgYpTVCd2vM4BodJ22dKHkGhRJQ7Gdpx2kdhsk61g_xS_kZk8tnCAWw-5xJYVzXyeh-P5BuBVzLmTiKRIF5JHskhkZL0IERfBp0Xi86Ihez4-UeMz-eE8PV-BX30tDF2r7G1iY6jz0tMZ-TYCT9A_Kh6_nV1F1DWK_q72LTRaWByGxQ9M2eo3B3uo360kGe2f7o6jrqtA5IVK5xhOpoXyOtXCSu5sjBFBkF4lRaYTGbxLtdU2dbKInUvyJFirlSoKK4UTPLNEvoQm_44UIqMdpUfvl2c6xLGJCVN7vx7H-fbk28UEUxiFnlH85fmaBgH_cgONbxs9gPtdUMp2WhQ9hJUwXYe1rj_65WId7n2e1NftjPoRfKE-xohb9rEqf1KB1IIt79RFexXZT_YpfEedTTyOzG4qnKYMY2SGC9fdCvtUJbxgu8RXUVLW_hjObkWcT2B1Wk7DU2Bu6CxGa1LHEvGT4XwuhyLoTOW4qlcD2OoFaGYtF4fBHIYEbf4U9ADekXSXc4hBu3lRVhem25CG8zynJ2QOjdgwd8NUSSLzo5BZOz-A16QbQ_t8Xllvu3IF_FRizDI7uomF0QYOYLNXn-kMQG1u4Prs_8MvYW18enxkjg5ODjfgbkLthZtDnk1YnVfX4TnGPHP3ogEag6-3jezfjbsVIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqcTjgKCACBTYAxWnVbxrr9d7QKhtErUUoggoqsRha3vtEiSSsJsK8tf4dczsI4UD3HrYy9qyrJnP87DnAfAiYswIRFKovGCh8LEIteUuZNzZxMe28HWx53cTeXQq3pwlZ1vwq8uFobDKTibWgrpYWLojHyDwOL1RsWjg27CI6XD8evk9pA5S9NLatdNoIHLi1j_QfateHQ-R13txPB59PDwK2w4DoeUyWaFpmXhpVaK4FszoCK0DJ6yMfaZi4axJlFY6McJHxsRF7LRWUnqvBTecZZoKMaH4307RK2I92D4YTabvNzc8VHET3acm2p7j5gezrxczdGgk6kn-lx6s2wX8SynUmm58F-60Jmqw32DqHmy5-Q7cbLulf1nvwO1Ps-qymVHdh8_U1RhRHEzLxU9Kl1oHmwi7cFiSNA0-uG_IwZnFkeVVvtM8QIs5wIWrdoUR5Qyvg0OqXrEgH_4BnF4LQR9Cb76Yu0cQmNRotN2EigSiKcP5TKTcqUwWuKqVfdjrCJgvm8ocOXo0ROj8T0L34YCou5lD9bTrH4vyIm-PZ85YUdDnMoMiLS1MmkhBpf3IgFbG9uEl8SanU78qtdVt8gJulepn5fuqtoxRIvZht2Nf3oqDKr8C7-P_Dz-HG4jq_O3x5OQJ3Iqp13B947MLvVV56Z6iAbQyz1qkBXB-3eD-Dd9MGrU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Proximity+Relations-Driven+Semantic+Representation+for+Geospatial+Entity+Categories&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Tan%2C+Yongbin&rft.au=Wang%2C+Hong&rft.au=Cai%2C+Rongfeng&rft.au=Gao%2C+Lingling&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=14&rft.issue=6&rft_id=info:doi/10.3390%2Fijgi14060233&rft.externalDocID=A845656040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon