High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure
In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other...
Saved in:
Published in | Frontiers of materials science Vol. 16; no. 1; p. 220586 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other similar fiber strain sensor systems without double percolated structure, the CNT/TPU@SBS sensor achieves a lower percolation threshold (0.38 wt.%) and higher electrical conductivity. The conductivity of 1%-CNT/TPU@SBS (4.12×10 −3 S·m −1) is two orders of magnitude higher than that of 1%-CNT/TPU (3.17×10 −5 S·m −1) at the same CNT loading of 1 wt.%. Due to double percolated structure, the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range (0.2%-100%) and an ultra-high sensitivity (maximum gauge factor (GF) is 32411 at 100% strain). Besides, the 1%-CNT/TPU@SBS sensor shows a high linearity ( R 2 = 0.97) at 0%-20% strain, relatively fast response time (214 ms), and stability (500 loading/unloading cycles). The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array, showing broad application prospects in wearable electronics. |
---|---|
AbstractList | In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other similar fiber strain sensor systems without double percolated structure, the CNT/TPU@SBS sensor achieves a lower percolation threshold (0.38 wt.%) and higher electrical conductivity. The conductivity of 1%-CNT/TPU@SBS (4.12×10
−3
S·m
−1
) is two orders of magnitude higher than that of 1%-CNT/TPU (3.17×10
−5
S·m
−1
) at the same CNT loading of 1 wt.%. Due to double percolated structure, the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range (0.2%–100%) and an ultra-high sensitivity (maximum gauge factor (GF) is 32411 at 100% strain). Besides, the 1%-CNT/TPU@SBS sensor shows a high linearity (
R
2
= 0.97) at 0%–20% strain, relatively fast response time (214 ms), and stability (500 loading/unloading cycles). The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array, showing broad application prospects in wearable electronics. In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other similar fiber strain sensor systems without double percolated structure, the CNT/TPU@SBS sensor achieves a lower percolation threshold (0.38 wt.%) and higher electrical conductivity. The conductivity of 1%-CNT/TPU@SBS (4.12×10−3 S·m−1) is two orders of magnitude higher than that of 1%-CNT/TPU (3.17×10−5 S·m−1) at the same CNT loading of 1 wt.%. Due to double percolated structure, the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range (0.2%–100%) and an ultra-high sensitivity (maximum gauge factor (GF) is 32411 at 100% strain). Besides, the 1%-CNT/TPU@SBS sensor shows a high linearity (R2 = 0.97) at 0%–20% strain, relatively fast response time (214 ms), and stability (500 loading/unloading cycles). The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array, showing broad application prospects in wearable electronics. In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other similar fiber strain sensor systems without double percolated structure, the CNT/TPU@SBS sensor achieves a lower percolation threshold (0.38 wt.%) and higher electrical conductivity. The conductivity of 1%-CNT/TPU@SBS (4.12×10 −3 S·m −1) is two orders of magnitude higher than that of 1%-CNT/TPU (3.17×10 −5 S·m −1) at the same CNT loading of 1 wt.%. Due to double percolated structure, the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range (0.2%-100%) and an ultra-high sensitivity (maximum gauge factor (GF) is 32411 at 100% strain). Besides, the 1%-CNT/TPU@SBS sensor shows a high linearity ( R 2 = 0.97) at 0%-20% strain, relatively fast response time (214 ms), and stability (500 loading/unloading cycles). The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array, showing broad application prospects in wearable electronics. |
ArticleNumber | 220586 |
Author | WANG, Ping ZHANG, Jie LI, Yuntao WANG, Menghan LIU, Libing ZHAO, Chunxia XIANG, Dong LI, Hui CHEN, Xiaoyu LI, Zhenyu WU, Yuanpeng |
Author_xml | – sequence: 1 givenname: Dong surname: XIANG fullname: XIANG, Dong email: dxiang01@hotmail.com (D.X.) organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China – sequence: 2 givenname: Libing surname: LIU fullname: LIU, Libing organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China – sequence: 3 givenname: Xiaoyu surname: CHEN fullname: CHEN, Xiaoyu organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China – sequence: 4 givenname: Yuanpeng surname: WU fullname: WU, Yuanpeng organization: The Center of Functional Materials for Working Fluids of Oil and Gas Field, Southwest Petroleum University, Chengdu 610500, China – sequence: 5 givenname: Menghan surname: WANG fullname: WANG, Menghan organization: College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China – sequence: 6 givenname: Jie surname: ZHANG fullname: ZHANG, Jie organization: School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China – sequence: 7 givenname: Chunxia surname: ZHAO fullname: ZHAO, Chunxia organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China – sequence: 8 givenname: Hui surname: LI fullname: LI, Hui organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China – sequence: 9 givenname: Zhenyu surname: LI fullname: LI, Zhenyu organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China – sequence: 10 givenname: Ping surname: WANG fullname: WANG, Ping organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China – sequence: 11 givenname: Yuntao surname: LI fullname: LI, Yuntao email: yuntaoli@swpu.edu.cn (Y.L.) organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China |
BookMark | eNp9kc1q3TAQhUVJIWmaB8hO0LUbSbZsedcS2iQQ6KaF7oQsj2IFX8kdyZT7FH3lyLg_0MXVRsNwvjnDnDfkLMQAhFxz9p4z1t0kzjvWVkyIiknVVuoVuRCsl6XTqrO_tfx-Tq5SemblSS77hl-QX_f-aaoWQBfxYIIF6vwASFNG4wNNEFJEGh21BocYaDAh5nWAmzwBHuIym5S9pUucjytCnkyADykfEQLQYc1m9Fv1p_PT54kaOsZ1mIEWVxtnk2Hc7Faby4S35LUzc4Kr3_8l-fb509fb--rxy93D7cfHytatzFXbSDnyTjZMGGh6UTsFI9StqmEQAEo6Y7k0drRNLwfhOLT10AulWuVc37H6krzb5y4Yf6yQsn6OK4ZiqUVbi77rZC2LqttVFmNKCE5bn032MWznmTVnegtA7wHoEoDeAtCqkPw_ckF_MHg8yYidSUUbngD_7XQKUjs0lSABYVwQUtIOy44e8BT6AuNEsHU |
CitedBy_id | crossref_primary_10_1007_s10443_022_10084_7 crossref_primary_10_1016_j_compositesa_2022_107113 crossref_primary_10_1021_acsapm_3c00718 crossref_primary_10_20517_microstructures_2024_56 crossref_primary_10_1002_app_53371 crossref_primary_10_1002_admi_202300842 crossref_primary_10_1007_s11665_024_09210_2 crossref_primary_10_1021_acs_chemrev_3c00823 crossref_primary_10_1021_acsami_4c07163 crossref_primary_10_3390_s24154793 crossref_primary_10_1016_j_arabjc_2023_104594 crossref_primary_10_3390_ma16155329 crossref_primary_10_1002_pen_26198 crossref_primary_10_1016_j_jallcom_2024_173547 crossref_primary_10_1016_j_sna_2024_115287 crossref_primary_10_1016_j_jsamd_2023_100554 crossref_primary_10_1016_j_tws_2024_111660 crossref_primary_10_1016_j_ijoes_2023_100236 crossref_primary_10_1016_j_cej_2024_149299 crossref_primary_10_1016_j_sna_2024_115105 crossref_primary_10_1016_j_colsurfa_2022_130605 crossref_primary_10_1016_j_sna_2023_114831 |
Cites_doi | 10.1016/j.compscitech.2017.11.003 10.1016/j.carbon.2018.08.028 10.1021/am500651v 10.1021/acsami.9b23083 10.1016/j.cej.2019.05.045 10.1080/01457632.2012.646922 10.1007/s10853-013-7269-x 10.1016/j.cej.2020.124805 10.1021/acsami.6b06984 10.1039/C8TC02702A 10.1016/j.compositesa.2019.105730 10.1016/j.nanoen.2021.105954 10.1016/j.polymer.2015.10.027 10.1039/C9TC02486G 10.1016/j.compscitech.2019.04.017 10.1016/j.compscitech.2013.11.018 10.1016/j.compositesa.2018.06.009 10.1016/j.compositesb.2019.107250 10.1002/mame.201900492 10.1016/j.eurpolymj.2018.01.016 10.1002/adma.201907495 10.1016/j.cej.2019.122778 10.1021/acsami.1c03615 10.1016/j.cej.2019.03.223 10.1021/acsnano.9b09533 10.1002/mame.201900525 10.1016/j.compscitech.2020.108437 10.1021/acsami.0c22823 10.1016/j.compscitech.2020.108571 10.1016/j.polymer.2018.11.007 10.1002/adfm.201400379 10.1021/nl404801t 10.1016/j.compscitech.2016.12.014 10.1002/adfm.201705551 10.1016/j.polymer.2011.12.019 10.1002/adfm.201601995 10.1016/j.cej.2019.01.014 10.1002/adfm.201500628 10.1016/j.carbon.2017.10.034 10.1021/am301230q 10.1007/s10853-020-05394-9 10.1016/j.compscitech.2020.108038 10.1016/j.carbon.2020.07.042 10.1039/C7TC04959E 10.1007/s40820-021-00615-5 10.1016/j.compositesb.2019.107580 10.1021/acsami.1c00879 |
ContentType | Journal Article |
Copyright | Copyright reserved, 2022, Higher Education Press Higher Education Press 2022 Higher Education Press 2022. |
Copyright_xml | – notice: Copyright reserved, 2022, Higher Education Press – notice: Higher Education Press 2022 – notice: Higher Education Press 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11706-022-0586-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2095-0268 |
ExternalDocumentID | 10_1007_s11706_022_0586_8 10.1007/s11706-022-0586-8 |
GroupedDBID | -58 -5G -BR -EM -~C .VR 06C 06D 0R~ 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P4S P9N PF0 PT4 QOR R89 R9I ROL RSV S16 S3B SAP SCL SCM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z85 ZMTXR ~A9 AACDK AAJBT AASML AAYZH ABAKF ACDTI ACPIV AEFQL AFBBN AGRTI AIGIU SJYHP -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION Q-- U1G U5L ABRTQ |
ID | FETCH-LOGICAL-c365t-6455d175402ae4923f8ede3683eb2ee85fac15acdc495b2f1e63b928868ff9703 |
IEDL.DBID | U2A |
ISSN | 2095-025X |
IngestDate | Fri Jul 25 11:14:14 EDT 2025 Tue Jul 01 02:09:54 EDT 2025 Thu Apr 24 22:53:42 EDT 2025 Fri Feb 21 02:43:26 EST 2025 Tue Feb 27 04:43:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | nanocomposite fiber carbon nanotube double percolated structure strain sensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-6455d175402ae4923f8ede3683eb2ee85fac15acdc495b2f1e63b928868ff9703 |
Notes | Document received on :2021-10-07 fiber carbon nanotube strain sensor nanocomposite double percolated structure Document accepted on :2021-12-20 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2632977535 |
PQPubID | 2044428 |
ParticipantIDs | proquest_journals_2632977535 crossref_citationtrail_10_1007_s11706_022_0586_8 crossref_primary_10_1007_s11706_022_0586_8 springer_journals_10_1007_s11706_022_0586_8 higheredpress_frontiers_10_1007_s11706_022_0586_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of materials science |
PublicationTitleAbbrev | Front. Mater. Sci |
PublicationYear | 2022 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Yang, Zhao, Cheng (CR21) 2021; 13 Wang, Wang, Yang (CR47) 2014; 24 Lan, Jiang, Yao (CR10) 2021; 84 Gao, Li, Huang (CR15) 2019; 373 Li, Luo, Huang (CR26) 2020; 181 Liu, Yang, Nie (CR35) 2018; 154 Ma, Wei, Li (CR43) 2021; 203 Ma, Lee, Choi (CR22) 2014; 14 Chen, Li, Tan (CR20) 2019; 177 Wang, Xiang, Harkin-Jones (CR2) 2019; 304 Qi, Zhou, Ou (CR23) 2020; 170 Cai, Li, Chen (CR34) 2020; 393 Zheng, Li, Li (CR13) 2017; 139 Yu, Wang, Xiang (CR19) 2019; 62 Xiang, Zhang, Harkin-Jones (CR12) 2020; 129 Yang, Zhai, Song (CR29) 2020; 32 Chen, Wang, Guo (CR16) 2020; 12 Zhang, Xiang, Zhu (CR38) 2020; 200 Xiang, Wang, Tang (CR44) 2018; 158 Lee, Shin, Lee (CR11) 2015; 25 Singh, Chand, Kanagaraj (CR39) 2012; 33 Yu, Wang, Xiang (CR18) 2018; 140 Choi, Jang, Oh (CR14) 2019; 7 Bizhani, Nayyeri, Katbab (CR36) 2018; 100 Wang, Chen, Lin (CR28) 2019; 362 Zhang, Wang, Wang (CR8) 2016; 8 Li, Zhou, Zheng (CR24) 2018; 6 Chen, Yang, Huang (CR46) 2015; 79 Xiang, Zhang, Li (CR48) 2019; 176 Yue, Jia, Wang (CR31) 2020; 189 He, Wu, Zhou (CR3) 2021; 13 Gao, Wang, Guo (CR17) 2020; 381 Bao, Xu, Pang (CR45) 2013; 48 Zhang, Liu, Lee (CR4) 2021; 13 Wu, Han, Zhang (CR5) 2016; 26 Hu, Huang, Zhang (CR30) 2021; 13 Gao, Guo, Cao (CR25) 2020; 14 Chen, Xiang, Wang (CR6) 2018; 112 Socher, Krause, Müller (CR40) 2012; 53 Chen, Li, Xiang (CR32) 2020; 305 Mao, Zhu, Jiang (CR37) 2012; 4 Cai, Chen, Li (CR33) 2019; 370 Zhang, Deng, Zhang (CR42) 2014; 6 Wang, Jia, Zhou (CR7) 2018; 6 Ji, Deng, Yan (CR41) 2014; 92 Wang, Zhang, Liu (CR1) 2018; 28 Wang, Hao, Huang (CR9) 2018; 126 Xu, Xie, Huang (CR27) 2021; 56 Y Chen (586_CR46) 2015; 79 H Zhang (586_CR4) 2021; 13 Y Zheng (586_CR13) 2017; 139 G Chen (586_CR16) 2020; 12 Q Chen (586_CR32) 2020; 305 R Socher (586_CR40) 2012; 53 Q Chen (586_CR6) 2018; 112 M Ji (586_CR41) 2014; 92 D Xiang (586_CR12) 2020; 129 D Xiang (586_CR44) 2018; 158 L Lan (586_CR10) 2021; 84 R Ma (586_CR22) 2014; 14 Y Gao (586_CR25) 2020; 14 Z Ma (586_CR43) 2021; 203 D Xiang (586_CR48) 2019; 176 Y Wang (586_CR47) 2014; 24 K Qi (586_CR23) 2020; 170 S Yu (586_CR19) 2019; 62 W Liu (586_CR35) 2018; 154 S Yu (586_CR18) 2018; 140 N Singh (586_CR39) 2012; 33 M Zhang (586_CR8) 2016; 8 T Wang (586_CR1) 2018; 28 Y F Chen (586_CR20) 2019; 177 S Zhang (586_CR42) 2014; 6 X Wu (586_CR5) 2016; 26 J Gao (586_CR17) 2020; 381 Y Hu (586_CR30) 2021; 13 Y Wang (586_CR7) 2018; 6 X Zhang (586_CR38) 2020; 200 Y He (586_CR3) 2021; 13 Y Yang (586_CR21) 2021; 13 Y Wang (586_CR9) 2018; 126 G Choi (586_CR14) 2019; 7 L Wang (586_CR28) 2019; 362 C Mao (586_CR37) 2012; 4 Y Bao (586_CR45) 2013; 48 B Li (586_CR26) 2020; 181 Z Yang (586_CR29) 2020; 32 X Yue (586_CR31) 2020; 189 Y Xu (586_CR27) 2021; 56 L Wang (586_CR2) 2019; 304 H Bizhani (586_CR36) 2018; 100 J H Cai (586_CR34) 2020; 393 J H Cai (586_CR33) 2019; 370 J Gao (586_CR15) 2019; 373 Y Li (586_CR24) 2018; 6 S Lee (586_CR11) 2015; 25 |
References_xml | – volume: 154 start-page: 45 year: 2018 end-page: 52 ident: CR35 article-title: Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2017.11.003 – volume: 140 start-page: 1 year: 2018 end-page: 9 ident: CR18 article-title: Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure publication-title: Carbon doi: 10.1016/j.carbon.2018.08.028 – volume: 6 start-page: 6835 issue: 9 year: 2014 end-page: 6844 ident: CR42 article-title: Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am500651v – volume: 12 start-page: 6112 issue: 5 year: 2020 end-page: 6118 ident: CR16 article-title: Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b23083 – volume: 373 start-page: 298 year: 2019 end-page: 306 ident: CR15 article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO /graphene-decorated electrospun nanofibers for human motion monitoring publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.05.045 – volume: 33 start-page: 821 issue: 9 year: 2012 end-page: 827 ident: CR39 article-title: Investigation of thermal conductivity and viscosity of carbon nanotubes-ethylene glycol nanofluids publication-title: Heat Transfer Engineering doi: 10.1080/01457632.2012.646922 – volume: 48 start-page: 4892 issue: 14 year: 2013 end-page: 4898 ident: CR45 article-title: Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures publication-title: Journal of Materials Science doi: 10.1007/s10853-013-7269-x – volume: 393 start-page: 124805 year: 2020 ident: CR34 article-title: Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermoexpandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.124805 – volume: 8 start-page: 20894 issue: 32 year: 2016 end-page: 20899 ident: CR8 article-title: Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b06984 – volume: 6 start-page: 8160 issue: 30 year: 2018 end-page: 8170 ident: CR7 article-title: Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C8TC02702A – volume: 129 start-page: 105730 year: 2020 ident: CR12 article-title: Synergistic effects of hybrid conductive nanofillers on the performance of 3D printed highly elastic strain sensors publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2019.105730 – volume: 84 start-page: 105954 year: 2021 ident: CR10 article-title: A stretchable and conductive fiber for multifunctional sensing and energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105954 – volume: 79 start-page: 159 year: 2015 end-page: 170 ident: CR46 article-title: Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing publication-title: Polymer doi: 10.1016/j.polymer.2015.10.027 – volume: 7 start-page: 9504 issue: 31 year: 2019 end-page: 9512 ident: CR14 article-title: A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C9TC02486G – volume: 177 start-page: 41 year: 2019 end-page: 48 ident: CR20 article-title: Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2019.04.017 – volume: 92 start-page: 16 year: 2014 end-page: 26 ident: CR41 article-title: Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: an effective method for tunable resistivity-strain sensing behavior publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2013.11.018 – volume: 112 start-page: 186 year: 2018 end-page: 196 ident: CR6 article-title: Facile fabrication and performance of robust polymer/carbon nanotube coated spandex fibers for strain sensing publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2018.06.009 – volume: 176 start-page: 107250 year: 2019 ident: CR48 article-title: Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2019.107250 – volume: 304 start-page: 1900492 issue: 12 year: 2019 ident: CR2 article-title: A flexible and multipurpose piezoresistive strain sensor based on carbonized phenol formaldehyde foam for human motion monitoring publication-title: Macromolecular Materials and Engineering doi: 10.1002/mame.201900492 – volume: 100 start-page: 209 year: 2018 end-page: 218 ident: CR36 article-title: Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2018.01.016 – volume: 32 start-page: 1907495 issue: 10 year: 2020 ident: CR29 article-title: Conductive and elastic 3D helical fibers for use in washable and wearable electronics publication-title: Advanced Materials doi: 10.1002/adma.201907495 – volume: 381 start-page: 122778 year: 2020 ident: CR17 article-title: Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122778 – volume: 13 start-page: 23905 issue: 20 year: 2021 end-page: 23914 ident: CR30 article-title: Ultrasensitive and wearable carbon hybrid fiber devices as robust intelligent sensors publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c03615 – volume: 370 start-page: 176 year: 2019 end-page: 184 ident: CR33 article-title: Asymmetric deformation in poly (ethylene-co-1-octene)/multi-walled carbon nanotube composites with glass micro-beads for highly piezoresistive sensitivity publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.03.223 – volume: 14 start-page: 3442 issue: 3 year: 2020 end-page: 3450 ident: CR25 article-title: Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor publication-title: ACS Nano doi: 10.1021/acsnano.9b09533 – volume: 305 start-page: 1900525 issue: 2 year: 2020 ident: CR32 article-title: Enhanced strain sensing performance of polymer/carbon nanotube-coated spandex fibers via noncovalent interactions publication-title: Macromolecular Materials and Engineering doi: 10.1002/mame.201900525 – volume: 200 start-page: 108437 year: 2020 ident: CR38 article-title: Flexible and high-performance piezoresistive strain sensors based on carbon nanoparticles@polyurethane sponges publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2020.108437 – volume: 13 start-page: 15572 issue: 13 year: 2021 end-page: 15583 ident: CR3 article-title: Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.0c22823 – volume: 203 start-page: 108571 year: 2021 ident: CR43 article-title: Lightweight, flexible and highly sensitive segregated microcellular nanocomposite piezoresistive sensors for human motion detection publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2020.108571 – volume: 158 start-page: 308 year: 2018 end-page: 319 ident: CR44 article-title: Damage self-sensing behavior of carbon nanofiller reinforced polymer composites with different conductive network structures publication-title: Polymer doi: 10.1016/j.polymer.2018.11.007 – volume: 24 start-page: 4666 issue: 29 year: 2014 end-page: 4670 ident: CR47 article-title: Wearable and highly sensitive graphene strain sensors for human motion monitoring publication-title: Advanced Functional Materials doi: 10.1002/adfm.201400379 – volume: 14 start-page: 1944 issue: 4 year: 2014 end-page: 1951 ident: CR22 article-title: Knitted fabrics made from highly conductive stretchable fibers publication-title: Nano Letters doi: 10.1021/nl404801t – volume: 139 start-page: 64 year: 2017 end-page: 73 ident: CR13 article-title: The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2016.12.014 – volume: 28 start-page: 1705551 issue: 7 year: 2018 ident: CR1 article-title: A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing publication-title: Advanced Functional Materials doi: 10.1002/adfm.201705551 – volume: 53 start-page: 495 issue: 2 year: 2012 end-page: 504 ident: CR40 article-title: The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites publication-title: Polymer doi: 10.1016/j.polymer.2011.12.019 – volume: 26 start-page: 6246 issue: 34 year: 2016 end-page: 6256 ident: CR5 article-title: Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing publication-title: Advanced Functional Materials doi: 10.1002/adfm.201601995 – volume: 362 start-page: 89 year: 2019 end-page: 98 ident: CR28 article-title: Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.01.014 – volume: 25 start-page: 3114 issue: 21 year: 2015 end-page: 3121 ident: CR11 article-title: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics publication-title: Advanced Functional Materials doi: 10.1002/adfm.201500628 – volume: 126 start-page: 360 year: 2018 end-page: 371 ident: CR9 article-title: Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring publication-title: Carbon doi: 10.1016/j.carbon.2017.10.034 – volume: 4 start-page: 5281 issue: 10 year: 2012 end-page: 5286 ident: CR37 article-title: Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am301230q – volume: 62 start-page: 995 issue: 7 year: 2019 end-page: 1004 ident: CR19 article-title: 1-D polymer ternary composites: understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors publication-title: Science China: Materials – volume: 56 start-page: 2296 issue: 3 year: 2021 end-page: 2310 ident: CR27 article-title: Encapsulated core-sheath carbon nanotube-graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor publication-title: Journal of Materials Science doi: 10.1007/s10853-020-05394-9 – volume: 189 start-page: 108038 issue: 35 year: 2020 ident: CR31 article-title: Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2020.108038 – volume: 170 start-page: 464 year: 2020 end-page: 476 ident: CR23 article-title: Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor publication-title: Carbon doi: 10.1016/j.carbon.2020.07.042 – volume: 6 start-page: 2258 issue: 9 year: 2018 end-page: 2269 ident: CR24 article-title: Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C7TC04959E – volume: 13 start-page: 122 issue: 1 year: 2021 ident: CR4 article-title: Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors publication-title: Nano-Micro Letters doi: 10.1007/s40820-021-00615-5 – volume: 181 start-page: 107580 year: 2020 ident: CR26 article-title: A highly stretchable, superhydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2019.107580 – volume: 13 start-page: 14599 issue: 12 year: 2021 end-page: 14611 ident: CR21 article-title: Stretchable and healable conductive elastomer based on PEDOT:PSS/natural rubber for self-powered temperature and strain sensing publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c00879 – volume: 170 start-page: 464 year: 2020 ident: 586_CR23 publication-title: Carbon doi: 10.1016/j.carbon.2020.07.042 – volume: 53 start-page: 495 issue: 2 year: 2012 ident: 586_CR40 publication-title: Polymer doi: 10.1016/j.polymer.2011.12.019 – volume: 203 start-page: 108571 year: 2021 ident: 586_CR43 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2020.108571 – volume: 370 start-page: 176 year: 2019 ident: 586_CR33 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.03.223 – volume: 26 start-page: 6246 issue: 34 year: 2016 ident: 586_CR5 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201601995 – volume: 304 start-page: 1900492 issue: 12 year: 2019 ident: 586_CR2 publication-title: Macromolecular Materials and Engineering doi: 10.1002/mame.201900492 – volume: 33 start-page: 821 issue: 9 year: 2012 ident: 586_CR39 publication-title: Heat Transfer Engineering doi: 10.1080/01457632.2012.646922 – volume: 4 start-page: 5281 issue: 10 year: 2012 ident: 586_CR37 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am301230q – volume: 56 start-page: 2296 issue: 3 year: 2021 ident: 586_CR27 publication-title: Journal of Materials Science doi: 10.1007/s10853-020-05394-9 – volume: 24 start-page: 4666 issue: 29 year: 2014 ident: 586_CR47 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201400379 – volume: 139 start-page: 64 year: 2017 ident: 586_CR13 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2016.12.014 – volume: 14 start-page: 1944 issue: 4 year: 2014 ident: 586_CR22 publication-title: Nano Letters doi: 10.1021/nl404801t – volume: 62 start-page: 995 issue: 7 year: 2019 ident: 586_CR19 publication-title: Science China: Materials – volume: 177 start-page: 41 year: 2019 ident: 586_CR20 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2019.04.017 – volume: 181 start-page: 107580 year: 2020 ident: 586_CR26 publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2019.107580 – volume: 112 start-page: 186 year: 2018 ident: 586_CR6 publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2018.06.009 – volume: 126 start-page: 360 year: 2018 ident: 586_CR9 publication-title: Carbon doi: 10.1016/j.carbon.2017.10.034 – volume: 7 start-page: 9504 issue: 31 year: 2019 ident: 586_CR14 publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C9TC02486G – volume: 92 start-page: 16 year: 2014 ident: 586_CR41 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2013.11.018 – volume: 6 start-page: 8160 issue: 30 year: 2018 ident: 586_CR7 publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C8TC02702A – volume: 6 start-page: 6835 issue: 9 year: 2014 ident: 586_CR42 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am500651v – volume: 373 start-page: 298 year: 2019 ident: 586_CR15 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.05.045 – volume: 381 start-page: 122778 year: 2020 ident: 586_CR17 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122778 – volume: 13 start-page: 23905 issue: 20 year: 2021 ident: 586_CR30 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c03615 – volume: 189 start-page: 108038 issue: 35 year: 2020 ident: 586_CR31 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2020.108038 – volume: 100 start-page: 209 year: 2018 ident: 586_CR36 publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2018.01.016 – volume: 48 start-page: 4892 issue: 14 year: 2013 ident: 586_CR45 publication-title: Journal of Materials Science doi: 10.1007/s10853-013-7269-x – volume: 28 start-page: 1705551 issue: 7 year: 2018 ident: 586_CR1 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201705551 – volume: 158 start-page: 308 year: 2018 ident: 586_CR44 publication-title: Polymer doi: 10.1016/j.polymer.2018.11.007 – volume: 79 start-page: 159 year: 2015 ident: 586_CR46 publication-title: Polymer doi: 10.1016/j.polymer.2015.10.027 – volume: 129 start-page: 105730 year: 2020 ident: 586_CR12 publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2019.105730 – volume: 13 start-page: 122 issue: 1 year: 2021 ident: 586_CR4 publication-title: Nano-Micro Letters doi: 10.1007/s40820-021-00615-5 – volume: 12 start-page: 6112 issue: 5 year: 2020 ident: 586_CR16 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b23083 – volume: 14 start-page: 3442 issue: 3 year: 2020 ident: 586_CR25 publication-title: ACS Nano doi: 10.1021/acsnano.9b09533 – volume: 393 start-page: 124805 year: 2020 ident: 586_CR34 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.124805 – volume: 154 start-page: 45 year: 2018 ident: 586_CR35 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2017.11.003 – volume: 176 start-page: 107250 year: 2019 ident: 586_CR48 publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2019.107250 – volume: 8 start-page: 20894 issue: 32 year: 2016 ident: 586_CR8 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b06984 – volume: 305 start-page: 1900525 issue: 2 year: 2020 ident: 586_CR32 publication-title: Macromolecular Materials and Engineering doi: 10.1002/mame.201900525 – volume: 84 start-page: 105954 year: 2021 ident: 586_CR10 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105954 – volume: 25 start-page: 3114 issue: 21 year: 2015 ident: 586_CR11 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201500628 – volume: 13 start-page: 14599 issue: 12 year: 2021 ident: 586_CR21 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c00879 – volume: 140 start-page: 1 year: 2018 ident: 586_CR18 publication-title: Carbon doi: 10.1016/j.carbon.2018.08.028 – volume: 362 start-page: 89 year: 2019 ident: 586_CR28 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.01.014 – volume: 13 start-page: 15572 issue: 13 year: 2021 ident: 586_CR3 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.0c22823 – volume: 32 start-page: 1907495 issue: 10 year: 2020 ident: 586_CR29 publication-title: Advanced Materials doi: 10.1002/adma.201907495 – volume: 200 start-page: 108437 year: 2020 ident: 586_CR38 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2020.108437 – volume: 6 start-page: 2258 issue: 9 year: 2018 ident: 586_CR24 publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C7TC04959E |
SSID | ssj0000515941 |
Score | 2.373945 |
Snippet | In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube... |
SourceID | proquest crossref springer higheredpress |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 220586 |
SubjectTerms | Butadiene carbon nanotube Carbon nanotubes double percolated structure Electrical resistivity fiber Load distribution (forces) Materials Science nanocomposite Percolation Polyurethane resins Research Article Response time Sensor arrays Sensors strain sensor Styrenes Urethane thermoplastic elastomers |
Title | High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure |
URI | https://journal.hep.com.cn/foms/EN/10.1007/s11706-022-0586-8 https://link.springer.com/article/10.1007/s11706-022-0586-8 https://www.proquest.com/docview/2632977535 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b9swECUae2kQBOkX6sQJOHRqQdQSRYbeYgRJgwTtVAPuJPDjiA6uZFj20F-Rv5w7Worjog3QVSIpgHci35Hv3jH2QckiSko_k15pUeAOIKx0IxER-vtgfcw8JSd__aZvpsXtTM3aPO6mY7t3V5Jppd4mu5HSiyD2-UgZLcwe6ysM3YnHNc0njwcrVLRknCpW5qOUfaxm3W3m30bZ2Y8OfiZyBYREQt0BnX_ck6bt5_qIHba4kU82hn7FXkD1mu0_URN8w-6JsyEW20wAHokOwptUBoI3GLDWS15H7u3S1RWvbFWv1g4-Ewb8VS8QR-PgfFHPf6-XQEfqcNHQIXUF3K1XiRsGvHtCB7jc8lCv3Rw4fhU9CnFr4BtFWhzhLZteX32_vBFtvQXhpVYroQulAsIJDCktkHBbNBBAaiMx_AYwKlqfKeuDx6jK5TEDLd04N0abGMe4dLxjvaqu4D3jMkRpx5BFS_r0AWxh86CjtbmyWX7uBmzUzXrpWzFymox5uZVRJkOVaKiSDFWaAfv42GWxUeJ4rnG2Y8oykhwEFRd_rs-wM3fZ_shNSXL2CJGVVAP2qXOB7et_Dnb8X61P2Ms8uSRx24ash4aCUwQ7K3fG-pMvP-6uzpKTPwDpPvqS |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQBCFU-x0IIPcAFZbOw4eA9IVC3Vlj5OXWlvwY-xeliS1WZXVX9FfwR_lBlv0mURVOLQa-I4UWZsf2N_8w1jb7XKo6L0M-V1IXJcAYRVri8iQn8frI-Zp-Tkk9NiOMq_jfV4g_3scmES2707kkwz9SrZjZReBLHP-9oUwrRMyiO4vMA4rfl8uI9GfSflwdezvaFoSwkIrwo9F0WudcCVEqMlC6RJFg0EUIVRGFkCGB2tz7T1wWPA4GTMoFBuII0pTIwDHBXY7x12F7GHoaEzkrvXGzlUJGWQKmTKfsp21uPu9PRvX722_j08T2QOCIn0ugZy_ziXTcvdwSO21eJUvrt0rMdsA6on7MFv6oVP2RVxRMR0lXnAI9FPeJPKTvAGA-R6xuvIvZ25uuKVrer5wsFHwpw_6iniduycT-vJ5WIGtIUPXxraFK-Au8U8cdGAd1dow5hbHuqFmwDHt6IHI04OfKmAiz08Y6NbMcpztlnVFbxgXIWo7ACyaEkPP4DNrQxFtFZqm8lPrsf63V8vfSt-Tj9jUq5km8lQJRqqJEOVpsfeXz8yXSp_3NQ4WzNlGUl-goqZ3_TMdmfusp04mpLk8xGSa6V77EPnAqvb_-zs5X-1fsPuDc9Ojsvjw9OjV-y-TO5JvLpttolGgx0EWnP3Ojk6Z99ve2T9AsErNhI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAIVfxVLBTwAS6gaDd2HLyHSq1aVi2FigMr7S34ZywOSxJtskJ9Ch6FV2TGm3RZBJU49JrEk8gzjmfG33zD2EslsyCp_Ew6lScZ7gCJkXaUBHT9nTcupI6Kkz-e5yfT7P1MzbbYz74WJqLd-yPJVU0DsTSV7bD2YbgufCPWl4SQ6COl80R3qMozuPiOMVuzf3qMCn4lxOTd56OTpGsrkDiZqzbJM6U87poYORkgfrKgwYPMtcQoE0CrYFyqjPMOgwcrQgq5tGOhda5DGOMKQbk32M2Mio9xAU3F4WVShxqmjGO3TDGKlc9q1p-k_u2rN_bCu18jsAN8BMBuOLx_nNHGrW9yj-10Pis_XBnZfbYF5QN25zcmw4fsB-FFknpdhcADQVF4E1tQ8AaD5WrBq8CdWdiq5KUpq3ZpYUj-57eqRh8ehfO6ml8sF0DpfDhoKEFeArfLNuLSgPdXKHnMDffV0s6B41vRmtFn9nzFhosSHrHptShll22XVQmPGZc-SDOGNBjixvdgMiN8HowRyqTirR2wUT_rheuI0Gky5sWawpkUVaCiClJUoQfs9eWQesUCctXD6YYqi0BUFNTY_Koxe726i-4n0hREpY_uuZJqwN70JrC-_U9hT_7r6Rfs1qfjSfHh9PzsKbstonUSxG6PbaPO4Bn6XK19Hu2csy_XvbB-AWrLOkU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+fiber+strain+sensor+of+carbon+nanotube%2Fthermoplastic+polyurethane%40styrene+butadiene+styrene+with+a+double+percolated+structure&rft.jtitle=Frontiers+of+materials+science&rft.au=Dong%2C+Xiang&rft.au=Liu%2C+Libing&rft.au=Chen%2C+Xiaoyu&rft.au=Wu+Yuanpeng&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1007%2Fs11706-022-0586-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon |