High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure

In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of materials science Vol. 16; no. 1; p. 220586
Main Authors XIANG, Dong, LIU, Libing, CHEN, Xiaoyu, WU, Yuanpeng, WANG, Menghan, ZHANG, Jie, ZHAO, Chunxia, LI, Hui, LI, Zhenyu, WANG, Ping, LI, Yuntao
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other similar fiber strain sensor systems without double percolated structure, the CNT/TPU@SBS sensor achieves a lower percolation threshold (0.38 wt.%) and higher electrical conductivity. The conductivity of 1%-CNT/TPU@SBS (4.12×10 −3 S·m −1) is two orders of magnitude higher than that of 1%-CNT/TPU (3.17×10 −5 S·m −1) at the same CNT loading of 1 wt.%. Due to double percolated structure, the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range (0.2%-100%) and an ultra-high sensitivity (maximum gauge factor (GF) is 32411 at 100% strain). Besides, the 1%-CNT/TPU@SBS sensor shows a high linearity ( R 2 = 0.97) at 0%-20% strain, relatively fast response time (214 ms), and stability (500 loading/unloading cycles). The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array, showing broad application prospects in wearable electronics.
AbstractList In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other similar fiber strain sensor systems without double percolated structure, the CNT/TPU@SBS sensor achieves a lower percolation threshold (0.38 wt.%) and higher electrical conductivity. The conductivity of 1%-CNT/TPU@SBS (4.12×10 −3 S·m −1 ) is two orders of magnitude higher than that of 1%-CNT/TPU (3.17×10 −5 S·m −1 ) at the same CNT loading of 1 wt.%. Due to double percolated structure, the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range (0.2%–100%) and an ultra-high sensitivity (maximum gauge factor (GF) is 32411 at 100% strain). Besides, the 1%-CNT/TPU@SBS sensor shows a high linearity ( R 2 = 0.97) at 0%–20% strain, relatively fast response time (214 ms), and stability (500 loading/unloading cycles). The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array, showing broad application prospects in wearable electronics.
In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other similar fiber strain sensor systems without double percolated structure, the CNT/TPU@SBS sensor achieves a lower percolation threshold (0.38 wt.%) and higher electrical conductivity. The conductivity of 1%-CNT/TPU@SBS (4.12×10−3 S·m−1) is two orders of magnitude higher than that of 1%-CNT/TPU (3.17×10−5 S·m−1) at the same CNT loading of 1 wt.%. Due to double percolated structure, the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range (0.2%–100%) and an ultra-high sensitivity (maximum gauge factor (GF) is 32411 at 100% strain). Besides, the 1%-CNT/TPU@SBS sensor shows a high linearity (R2 = 0.97) at 0%–20% strain, relatively fast response time (214 ms), and stability (500 loading/unloading cycles). The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array, showing broad application prospects in wearable electronics.
In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube (CNT)/thermoplastic polyurethane (TPU) continuous phase and styrene butadiene styrene (SBS) phase, incompatible with TPU (CNT/TPU@SBS). Compared with other similar fiber strain sensor systems without double percolated structure, the CNT/TPU@SBS sensor achieves a lower percolation threshold (0.38 wt.%) and higher electrical conductivity. The conductivity of 1%-CNT/TPU@SBS (4.12×10 −3 S·m −1) is two orders of magnitude higher than that of 1%-CNT/TPU (3.17×10 −5 S·m −1) at the same CNT loading of 1 wt.%. Due to double percolated structure, the 1%-CNT/TPU@SBS sensor exhibits a wide strain detection range (0.2%-100%) and an ultra-high sensitivity (maximum gauge factor (GF) is 32411 at 100% strain). Besides, the 1%-CNT/TPU@SBS sensor shows a high linearity ( R 2 = 0.97) at 0%-20% strain, relatively fast response time (214 ms), and stability (500 loading/unloading cycles). The designed sensor can efficiently monitor physiological signals and movements and identify load distribution after being woven into a sensor array, showing broad application prospects in wearable electronics.
ArticleNumber 220586
Author WANG, Ping
ZHANG, Jie
LI, Yuntao
WANG, Menghan
LIU, Libing
ZHAO, Chunxia
XIANG, Dong
LI, Hui
CHEN, Xiaoyu
LI, Zhenyu
WU, Yuanpeng
Author_xml – sequence: 1
  givenname: Dong
  surname: XIANG
  fullname: XIANG, Dong
  email: dxiang01@hotmail.com (D.X.)
  organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
– sequence: 2
  givenname: Libing
  surname: LIU
  fullname: LIU, Libing
  organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
– sequence: 3
  givenname: Xiaoyu
  surname: CHEN
  fullname: CHEN, Xiaoyu
  organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
– sequence: 4
  givenname: Yuanpeng
  surname: WU
  fullname: WU, Yuanpeng
  organization: The Center of Functional Materials for Working Fluids of Oil and Gas Field, Southwest Petroleum University, Chengdu 610500, China
– sequence: 5
  givenname: Menghan
  surname: WANG
  fullname: WANG, Menghan
  organization: College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
– sequence: 6
  givenname: Jie
  surname: ZHANG
  fullname: ZHANG, Jie
  organization: School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
– sequence: 7
  givenname: Chunxia
  surname: ZHAO
  fullname: ZHAO, Chunxia
  organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
– sequence: 8
  givenname: Hui
  surname: LI
  fullname: LI, Hui
  organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
– sequence: 9
  givenname: Zhenyu
  surname: LI
  fullname: LI, Zhenyu
  organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
– sequence: 10
  givenname: Ping
  surname: WANG
  fullname: WANG, Ping
  organization: School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
– sequence: 11
  givenname: Yuntao
  surname: LI
  fullname: LI, Yuntao
  email: yuntaoli@swpu.edu.cn (Y.L.)
  organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
BookMark eNp9kc1q3TAQhUVJIWmaB8hO0LUbSbZsedcS2iQQ6KaF7oQsj2IFX8kdyZT7FH3lyLg_0MXVRsNwvjnDnDfkLMQAhFxz9p4z1t0kzjvWVkyIiknVVuoVuRCsl6XTqrO_tfx-Tq5SemblSS77hl-QX_f-aaoWQBfxYIIF6vwASFNG4wNNEFJEGh21BocYaDAh5nWAmzwBHuIym5S9pUucjytCnkyADykfEQLQYc1m9Fv1p_PT54kaOsZ1mIEWVxtnk2Hc7Faby4S35LUzc4Kr3_8l-fb509fb--rxy93D7cfHytatzFXbSDnyTjZMGGh6UTsFI9StqmEQAEo6Y7k0drRNLwfhOLT10AulWuVc37H6krzb5y4Yf6yQsn6OK4ZiqUVbi77rZC2LqttVFmNKCE5bn032MWznmTVnegtA7wHoEoDeAtCqkPw_ckF_MHg8yYidSUUbngD_7XQKUjs0lSABYVwQUtIOy44e8BT6AuNEsHU
CitedBy_id crossref_primary_10_1007_s10443_022_10084_7
crossref_primary_10_1016_j_compositesa_2022_107113
crossref_primary_10_1021_acsapm_3c00718
crossref_primary_10_20517_microstructures_2024_56
crossref_primary_10_1002_app_53371
crossref_primary_10_1002_admi_202300842
crossref_primary_10_1007_s11665_024_09210_2
crossref_primary_10_1021_acs_chemrev_3c00823
crossref_primary_10_1021_acsami_4c07163
crossref_primary_10_3390_s24154793
crossref_primary_10_1016_j_arabjc_2023_104594
crossref_primary_10_3390_ma16155329
crossref_primary_10_1002_pen_26198
crossref_primary_10_1016_j_jallcom_2024_173547
crossref_primary_10_1016_j_sna_2024_115287
crossref_primary_10_1016_j_jsamd_2023_100554
crossref_primary_10_1016_j_tws_2024_111660
crossref_primary_10_1016_j_ijoes_2023_100236
crossref_primary_10_1016_j_cej_2024_149299
crossref_primary_10_1016_j_sna_2024_115105
crossref_primary_10_1016_j_colsurfa_2022_130605
crossref_primary_10_1016_j_sna_2023_114831
Cites_doi 10.1016/j.compscitech.2017.11.003
10.1016/j.carbon.2018.08.028
10.1021/am500651v
10.1021/acsami.9b23083
10.1016/j.cej.2019.05.045
10.1080/01457632.2012.646922
10.1007/s10853-013-7269-x
10.1016/j.cej.2020.124805
10.1021/acsami.6b06984
10.1039/C8TC02702A
10.1016/j.compositesa.2019.105730
10.1016/j.nanoen.2021.105954
10.1016/j.polymer.2015.10.027
10.1039/C9TC02486G
10.1016/j.compscitech.2019.04.017
10.1016/j.compscitech.2013.11.018
10.1016/j.compositesa.2018.06.009
10.1016/j.compositesb.2019.107250
10.1002/mame.201900492
10.1016/j.eurpolymj.2018.01.016
10.1002/adma.201907495
10.1016/j.cej.2019.122778
10.1021/acsami.1c03615
10.1016/j.cej.2019.03.223
10.1021/acsnano.9b09533
10.1002/mame.201900525
10.1016/j.compscitech.2020.108437
10.1021/acsami.0c22823
10.1016/j.compscitech.2020.108571
10.1016/j.polymer.2018.11.007
10.1002/adfm.201400379
10.1021/nl404801t
10.1016/j.compscitech.2016.12.014
10.1002/adfm.201705551
10.1016/j.polymer.2011.12.019
10.1002/adfm.201601995
10.1016/j.cej.2019.01.014
10.1002/adfm.201500628
10.1016/j.carbon.2017.10.034
10.1021/am301230q
10.1007/s10853-020-05394-9
10.1016/j.compscitech.2020.108038
10.1016/j.carbon.2020.07.042
10.1039/C7TC04959E
10.1007/s40820-021-00615-5
10.1016/j.compositesb.2019.107580
10.1021/acsami.1c00879
ContentType Journal Article
Copyright Copyright reserved, 2022, Higher Education Press
Higher Education Press 2022
Higher Education Press 2022.
Copyright_xml – notice: Copyright reserved, 2022, Higher Education Press
– notice: Higher Education Press 2022
– notice: Higher Education Press 2022.
DBID AAYXX
CITATION
DOI 10.1007/s11706-022-0586-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2095-0268
ExternalDocumentID 10_1007_s11706_022_0586_8
10.1007/s11706-022-0586-8
GroupedDBID -58
-5G
-BR
-EM
-~C
.VR
06C
06D
0R~
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40E
5VS
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9N
PF0
PT4
QOR
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z85
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AFBBN
AGRTI
AIGIU
SJYHP
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
Q--
U1G
U5L
ABRTQ
ID FETCH-LOGICAL-c365t-6455d175402ae4923f8ede3683eb2ee85fac15acdc495b2f1e63b928868ff9703
IEDL.DBID U2A
ISSN 2095-025X
IngestDate Fri Jul 25 11:14:14 EDT 2025
Tue Jul 01 02:09:54 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
Fri Feb 21 02:43:26 EST 2025
Tue Feb 27 04:43:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nanocomposite
fiber
carbon nanotube
double percolated structure
strain sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-6455d175402ae4923f8ede3683eb2ee85fac15acdc495b2f1e63b928868ff9703
Notes Document received on :2021-10-07
fiber
carbon nanotube
strain sensor
nanocomposite
double percolated structure
Document accepted on :2021-12-20
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2632977535
PQPubID 2044428
ParticipantIDs proquest_journals_2632977535
crossref_citationtrail_10_1007_s11706_022_0586_8
crossref_primary_10_1007_s11706_022_0586_8
springer_journals_10_1007_s11706_022_0586_8
higheredpress_frontiers_10_1007_s11706_022_0586_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of materials science
PublicationTitleAbbrev Front. Mater. Sci
PublicationYear 2022
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Yang, Zhao, Cheng (CR21) 2021; 13
Wang, Wang, Yang (CR47) 2014; 24
Lan, Jiang, Yao (CR10) 2021; 84
Gao, Li, Huang (CR15) 2019; 373
Li, Luo, Huang (CR26) 2020; 181
Liu, Yang, Nie (CR35) 2018; 154
Ma, Wei, Li (CR43) 2021; 203
Ma, Lee, Choi (CR22) 2014; 14
Chen, Li, Tan (CR20) 2019; 177
Wang, Xiang, Harkin-Jones (CR2) 2019; 304
Qi, Zhou, Ou (CR23) 2020; 170
Cai, Li, Chen (CR34) 2020; 393
Zheng, Li, Li (CR13) 2017; 139
Yu, Wang, Xiang (CR19) 2019; 62
Xiang, Zhang, Harkin-Jones (CR12) 2020; 129
Yang, Zhai, Song (CR29) 2020; 32
Chen, Wang, Guo (CR16) 2020; 12
Zhang, Xiang, Zhu (CR38) 2020; 200
Xiang, Wang, Tang (CR44) 2018; 158
Lee, Shin, Lee (CR11) 2015; 25
Singh, Chand, Kanagaraj (CR39) 2012; 33
Yu, Wang, Xiang (CR18) 2018; 140
Choi, Jang, Oh (CR14) 2019; 7
Bizhani, Nayyeri, Katbab (CR36) 2018; 100
Wang, Chen, Lin (CR28) 2019; 362
Zhang, Wang, Wang (CR8) 2016; 8
Li, Zhou, Zheng (CR24) 2018; 6
Chen, Yang, Huang (CR46) 2015; 79
Xiang, Zhang, Li (CR48) 2019; 176
Yue, Jia, Wang (CR31) 2020; 189
He, Wu, Zhou (CR3) 2021; 13
Gao, Wang, Guo (CR17) 2020; 381
Bao, Xu, Pang (CR45) 2013; 48
Zhang, Liu, Lee (CR4) 2021; 13
Wu, Han, Zhang (CR5) 2016; 26
Hu, Huang, Zhang (CR30) 2021; 13
Gao, Guo, Cao (CR25) 2020; 14
Chen, Xiang, Wang (CR6) 2018; 112
Socher, Krause, Müller (CR40) 2012; 53
Chen, Li, Xiang (CR32) 2020; 305
Mao, Zhu, Jiang (CR37) 2012; 4
Cai, Chen, Li (CR33) 2019; 370
Zhang, Deng, Zhang (CR42) 2014; 6
Wang, Jia, Zhou (CR7) 2018; 6
Ji, Deng, Yan (CR41) 2014; 92
Wang, Zhang, Liu (CR1) 2018; 28
Wang, Hao, Huang (CR9) 2018; 126
Xu, Xie, Huang (CR27) 2021; 56
Y Chen (586_CR46) 2015; 79
H Zhang (586_CR4) 2021; 13
Y Zheng (586_CR13) 2017; 139
G Chen (586_CR16) 2020; 12
Q Chen (586_CR32) 2020; 305
R Socher (586_CR40) 2012; 53
Q Chen (586_CR6) 2018; 112
M Ji (586_CR41) 2014; 92
D Xiang (586_CR12) 2020; 129
D Xiang (586_CR44) 2018; 158
L Lan (586_CR10) 2021; 84
R Ma (586_CR22) 2014; 14
Y Gao (586_CR25) 2020; 14
Z Ma (586_CR43) 2021; 203
D Xiang (586_CR48) 2019; 176
Y Wang (586_CR47) 2014; 24
K Qi (586_CR23) 2020; 170
S Yu (586_CR19) 2019; 62
W Liu (586_CR35) 2018; 154
S Yu (586_CR18) 2018; 140
N Singh (586_CR39) 2012; 33
M Zhang (586_CR8) 2016; 8
T Wang (586_CR1) 2018; 28
Y F Chen (586_CR20) 2019; 177
S Zhang (586_CR42) 2014; 6
X Wu (586_CR5) 2016; 26
J Gao (586_CR17) 2020; 381
Y Hu (586_CR30) 2021; 13
Y Wang (586_CR7) 2018; 6
X Zhang (586_CR38) 2020; 200
Y He (586_CR3) 2021; 13
Y Yang (586_CR21) 2021; 13
Y Wang (586_CR9) 2018; 126
G Choi (586_CR14) 2019; 7
L Wang (586_CR28) 2019; 362
C Mao (586_CR37) 2012; 4
Y Bao (586_CR45) 2013; 48
B Li (586_CR26) 2020; 181
Z Yang (586_CR29) 2020; 32
X Yue (586_CR31) 2020; 189
Y Xu (586_CR27) 2021; 56
L Wang (586_CR2) 2019; 304
H Bizhani (586_CR36) 2018; 100
J H Cai (586_CR34) 2020; 393
J H Cai (586_CR33) 2019; 370
J Gao (586_CR15) 2019; 373
Y Li (586_CR24) 2018; 6
S Lee (586_CR11) 2015; 25
References_xml – volume: 154
  start-page: 45
  year: 2018
  end-page: 52
  ident: CR35
  article-title: Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2017.11.003
– volume: 140
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR18
  article-title: Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.08.028
– volume: 6
  start-page: 6835
  issue: 9
  year: 2014
  end-page: 6844
  ident: CR42
  article-title: Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/am500651v
– volume: 12
  start-page: 6112
  issue: 5
  year: 2020
  end-page: 6118
  ident: CR16
  article-title: Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b23083
– volume: 373
  start-page: 298
  year: 2019
  end-page: 306
  ident: CR15
  article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO /graphene-decorated electrospun nanofibers for human motion monitoring
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.05.045
– volume: 33
  start-page: 821
  issue: 9
  year: 2012
  end-page: 827
  ident: CR39
  article-title: Investigation of thermal conductivity and viscosity of carbon nanotubes-ethylene glycol nanofluids
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457632.2012.646922
– volume: 48
  start-page: 4892
  issue: 14
  year: 2013
  end-page: 4898
  ident: CR45
  article-title: Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-013-7269-x
– volume: 393
  start-page: 124805
  year: 2020
  ident: CR34
  article-title: Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermoexpandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.124805
– volume: 8
  start-page: 20894
  issue: 32
  year: 2016
  end-page: 20899
  ident: CR8
  article-title: Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.6b06984
– volume: 6
  start-page: 8160
  issue: 30
  year: 2018
  end-page: 8170
  ident: CR7
  article-title: Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C8TC02702A
– volume: 129
  start-page: 105730
  year: 2020
  ident: CR12
  article-title: Synergistic effects of hybrid conductive nanofillers on the performance of 3D printed highly elastic strain sensors
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2019.105730
– volume: 84
  start-page: 105954
  year: 2021
  ident: CR10
  article-title: A stretchable and conductive fiber for multifunctional sensing and energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105954
– volume: 79
  start-page: 159
  year: 2015
  end-page: 170
  ident: CR46
  article-title: Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.10.027
– volume: 7
  start-page: 9504
  issue: 31
  year: 2019
  end-page: 9512
  ident: CR14
  article-title: A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C9TC02486G
– volume: 177
  start-page: 41
  year: 2019
  end-page: 48
  ident: CR20
  article-title: Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2019.04.017
– volume: 92
  start-page: 16
  year: 2014
  end-page: 26
  ident: CR41
  article-title: Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: an effective method for tunable resistivity-strain sensing behavior
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2013.11.018
– volume: 112
  start-page: 186
  year: 2018
  end-page: 196
  ident: CR6
  article-title: Facile fabrication and performance of robust polymer/carbon nanotube coated spandex fibers for strain sensing
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2018.06.009
– volume: 176
  start-page: 107250
  year: 2019
  ident: CR48
  article-title: Enhanced performance of 3D printed highly elastic strain sensors of carbon nanotube/thermoplastic polyurethane nanocomposites via non-covalent interactions
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2019.107250
– volume: 304
  start-page: 1900492
  issue: 12
  year: 2019
  ident: CR2
  article-title: A flexible and multipurpose piezoresistive strain sensor based on carbonized phenol formaldehyde foam for human motion monitoring
  publication-title: Macromolecular Materials and Engineering
  doi: 10.1002/mame.201900492
– volume: 100
  start-page: 209
  year: 2018
  end-page: 218
  ident: CR36
  article-title: Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2018.01.016
– volume: 32
  start-page: 1907495
  issue: 10
  year: 2020
  ident: CR29
  article-title: Conductive and elastic 3D helical fibers for use in washable and wearable electronics
  publication-title: Advanced Materials
  doi: 10.1002/adma.201907495
– volume: 381
  start-page: 122778
  year: 2020
  ident: CR17
  article-title: Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.122778
– volume: 13
  start-page: 23905
  issue: 20
  year: 2021
  end-page: 23914
  ident: CR30
  article-title: Ultrasensitive and wearable carbon hybrid fiber devices as robust intelligent sensors
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c03615
– volume: 370
  start-page: 176
  year: 2019
  end-page: 184
  ident: CR33
  article-title: Asymmetric deformation in poly (ethylene-co-1-octene)/multi-walled carbon nanotube composites with glass micro-beads for highly piezoresistive sensitivity
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.03.223
– volume: 14
  start-page: 3442
  issue: 3
  year: 2020
  end-page: 3450
  ident: CR25
  article-title: Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09533
– volume: 305
  start-page: 1900525
  issue: 2
  year: 2020
  ident: CR32
  article-title: Enhanced strain sensing performance of polymer/carbon nanotube-coated spandex fibers via noncovalent interactions
  publication-title: Macromolecular Materials and Engineering
  doi: 10.1002/mame.201900525
– volume: 200
  start-page: 108437
  year: 2020
  ident: CR38
  article-title: Flexible and high-performance piezoresistive strain sensors based on carbon nanoparticles@polyurethane sponges
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2020.108437
– volume: 13
  start-page: 15572
  issue: 13
  year: 2021
  end-page: 15583
  ident: CR3
  article-title: Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.0c22823
– volume: 203
  start-page: 108571
  year: 2021
  ident: CR43
  article-title: Lightweight, flexible and highly sensitive segregated microcellular nanocomposite piezoresistive sensors for human motion detection
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2020.108571
– volume: 158
  start-page: 308
  year: 2018
  end-page: 319
  ident: CR44
  article-title: Damage self-sensing behavior of carbon nanofiller reinforced polymer composites with different conductive network structures
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.11.007
– volume: 24
  start-page: 4666
  issue: 29
  year: 2014
  end-page: 4670
  ident: CR47
  article-title: Wearable and highly sensitive graphene strain sensors for human motion monitoring
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201400379
– volume: 14
  start-page: 1944
  issue: 4
  year: 2014
  end-page: 1951
  ident: CR22
  article-title: Knitted fabrics made from highly conductive stretchable fibers
  publication-title: Nano Letters
  doi: 10.1021/nl404801t
– volume: 139
  start-page: 64
  year: 2017
  end-page: 73
  ident: CR13
  article-title: The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2016.12.014
– volume: 28
  start-page: 1705551
  issue: 7
  year: 2018
  ident: CR1
  article-title: A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201705551
– volume: 53
  start-page: 495
  issue: 2
  year: 2012
  end-page: 504
  ident: CR40
  article-title: The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.12.019
– volume: 26
  start-page: 6246
  issue: 34
  year: 2016
  end-page: 6256
  ident: CR5
  article-title: Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201601995
– volume: 362
  start-page: 89
  year: 2019
  end-page: 98
  ident: CR28
  article-title: Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.01.014
– volume: 25
  start-page: 3114
  issue: 21
  year: 2015
  end-page: 3121
  ident: CR11
  article-title: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201500628
– volume: 126
  start-page: 360
  year: 2018
  end-page: 371
  ident: CR9
  article-title: Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.10.034
– volume: 4
  start-page: 5281
  issue: 10
  year: 2012
  end-page: 5286
  ident: CR37
  article-title: Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/am301230q
– volume: 62
  start-page: 995
  issue: 7
  year: 2019
  end-page: 1004
  ident: CR19
  article-title: 1-D polymer ternary composites: understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors
  publication-title: Science China: Materials
– volume: 56
  start-page: 2296
  issue: 3
  year: 2021
  end-page: 2310
  ident: CR27
  article-title: Encapsulated core-sheath carbon nanotube-graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-020-05394-9
– volume: 189
  start-page: 108038
  issue: 35
  year: 2020
  ident: CR31
  article-title: Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2020.108038
– volume: 170
  start-page: 464
  year: 2020
  end-page: 476
  ident: CR23
  article-title: Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.07.042
– volume: 6
  start-page: 2258
  issue: 9
  year: 2018
  end-page: 2269
  ident: CR24
  article-title: Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C7TC04959E
– volume: 13
  start-page: 122
  issue: 1
  year: 2021
  ident: CR4
  article-title: Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-021-00615-5
– volume: 181
  start-page: 107580
  year: 2020
  ident: CR26
  article-title: A highly stretchable, superhydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2019.107580
– volume: 13
  start-page: 14599
  issue: 12
  year: 2021
  end-page: 14611
  ident: CR21
  article-title: Stretchable and healable conductive elastomer based on PEDOT:PSS/natural rubber for self-powered temperature and strain sensing
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c00879
– volume: 170
  start-page: 464
  year: 2020
  ident: 586_CR23
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.07.042
– volume: 53
  start-page: 495
  issue: 2
  year: 2012
  ident: 586_CR40
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.12.019
– volume: 203
  start-page: 108571
  year: 2021
  ident: 586_CR43
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2020.108571
– volume: 370
  start-page: 176
  year: 2019
  ident: 586_CR33
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.03.223
– volume: 26
  start-page: 6246
  issue: 34
  year: 2016
  ident: 586_CR5
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201601995
– volume: 304
  start-page: 1900492
  issue: 12
  year: 2019
  ident: 586_CR2
  publication-title: Macromolecular Materials and Engineering
  doi: 10.1002/mame.201900492
– volume: 33
  start-page: 821
  issue: 9
  year: 2012
  ident: 586_CR39
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457632.2012.646922
– volume: 4
  start-page: 5281
  issue: 10
  year: 2012
  ident: 586_CR37
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/am301230q
– volume: 56
  start-page: 2296
  issue: 3
  year: 2021
  ident: 586_CR27
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-020-05394-9
– volume: 24
  start-page: 4666
  issue: 29
  year: 2014
  ident: 586_CR47
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201400379
– volume: 139
  start-page: 64
  year: 2017
  ident: 586_CR13
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2016.12.014
– volume: 14
  start-page: 1944
  issue: 4
  year: 2014
  ident: 586_CR22
  publication-title: Nano Letters
  doi: 10.1021/nl404801t
– volume: 62
  start-page: 995
  issue: 7
  year: 2019
  ident: 586_CR19
  publication-title: Science China: Materials
– volume: 177
  start-page: 41
  year: 2019
  ident: 586_CR20
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2019.04.017
– volume: 181
  start-page: 107580
  year: 2020
  ident: 586_CR26
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2019.107580
– volume: 112
  start-page: 186
  year: 2018
  ident: 586_CR6
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2018.06.009
– volume: 126
  start-page: 360
  year: 2018
  ident: 586_CR9
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.10.034
– volume: 7
  start-page: 9504
  issue: 31
  year: 2019
  ident: 586_CR14
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C9TC02486G
– volume: 92
  start-page: 16
  year: 2014
  ident: 586_CR41
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2013.11.018
– volume: 6
  start-page: 8160
  issue: 30
  year: 2018
  ident: 586_CR7
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C8TC02702A
– volume: 6
  start-page: 6835
  issue: 9
  year: 2014
  ident: 586_CR42
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/am500651v
– volume: 373
  start-page: 298
  year: 2019
  ident: 586_CR15
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.05.045
– volume: 381
  start-page: 122778
  year: 2020
  ident: 586_CR17
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.122778
– volume: 13
  start-page: 23905
  issue: 20
  year: 2021
  ident: 586_CR30
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c03615
– volume: 189
  start-page: 108038
  issue: 35
  year: 2020
  ident: 586_CR31
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2020.108038
– volume: 100
  start-page: 209
  year: 2018
  ident: 586_CR36
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2018.01.016
– volume: 48
  start-page: 4892
  issue: 14
  year: 2013
  ident: 586_CR45
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-013-7269-x
– volume: 28
  start-page: 1705551
  issue: 7
  year: 2018
  ident: 586_CR1
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201705551
– volume: 158
  start-page: 308
  year: 2018
  ident: 586_CR44
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.11.007
– volume: 79
  start-page: 159
  year: 2015
  ident: 586_CR46
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.10.027
– volume: 129
  start-page: 105730
  year: 2020
  ident: 586_CR12
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2019.105730
– volume: 13
  start-page: 122
  issue: 1
  year: 2021
  ident: 586_CR4
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-021-00615-5
– volume: 12
  start-page: 6112
  issue: 5
  year: 2020
  ident: 586_CR16
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b23083
– volume: 14
  start-page: 3442
  issue: 3
  year: 2020
  ident: 586_CR25
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09533
– volume: 393
  start-page: 124805
  year: 2020
  ident: 586_CR34
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.124805
– volume: 154
  start-page: 45
  year: 2018
  ident: 586_CR35
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2017.11.003
– volume: 176
  start-page: 107250
  year: 2019
  ident: 586_CR48
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2019.107250
– volume: 8
  start-page: 20894
  issue: 32
  year: 2016
  ident: 586_CR8
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.6b06984
– volume: 305
  start-page: 1900525
  issue: 2
  year: 2020
  ident: 586_CR32
  publication-title: Macromolecular Materials and Engineering
  doi: 10.1002/mame.201900525
– volume: 84
  start-page: 105954
  year: 2021
  ident: 586_CR10
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105954
– volume: 25
  start-page: 3114
  issue: 21
  year: 2015
  ident: 586_CR11
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201500628
– volume: 13
  start-page: 14599
  issue: 12
  year: 2021
  ident: 586_CR21
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c00879
– volume: 140
  start-page: 1
  year: 2018
  ident: 586_CR18
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.08.028
– volume: 362
  start-page: 89
  year: 2019
  ident: 586_CR28
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2019.01.014
– volume: 13
  start-page: 15572
  issue: 13
  year: 2021
  ident: 586_CR3
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.0c22823
– volume: 32
  start-page: 1907495
  issue: 10
  year: 2020
  ident: 586_CR29
  publication-title: Advanced Materials
  doi: 10.1002/adma.201907495
– volume: 200
  start-page: 108437
  year: 2020
  ident: 586_CR38
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2020.108437
– volume: 6
  start-page: 2258
  issue: 9
  year: 2018
  ident: 586_CR24
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C7TC04959E
SSID ssj0000515941
Score 2.373945
Snippet In this work, a high-performance fiber strain sensor is fabricated by constructing a double percolated structure, consisting of carbon nanotube...
SourceID proquest
crossref
springer
higheredpress
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 220586
SubjectTerms Butadiene
carbon nanotube
Carbon nanotubes
double percolated structure
Electrical resistivity
fiber
Load distribution (forces)
Materials Science
nanocomposite
Percolation
Polyurethane resins
Research Article
Response time
Sensor arrays
Sensors
strain sensor
Styrenes
Urethane thermoplastic elastomers
Title High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure
URI https://journal.hep.com.cn/foms/EN/10.1007/s11706-022-0586-8
https://link.springer.com/article/10.1007/s11706-022-0586-8
https://www.proquest.com/docview/2632977535
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b9swECUae2kQBOkX6sQJOHRqQdQSRYbeYgRJgwTtVAPuJPDjiA6uZFj20F-Rv5w7Worjog3QVSIpgHci35Hv3jH2QckiSko_k15pUeAOIKx0IxER-vtgfcw8JSd__aZvpsXtTM3aPO6mY7t3V5Jppd4mu5HSiyD2-UgZLcwe6ysM3YnHNc0njwcrVLRknCpW5qOUfaxm3W3m30bZ2Y8OfiZyBYREQt0BnX_ck6bt5_qIHba4kU82hn7FXkD1mu0_URN8w-6JsyEW20wAHokOwptUBoI3GLDWS15H7u3S1RWvbFWv1g4-Ewb8VS8QR-PgfFHPf6-XQEfqcNHQIXUF3K1XiRsGvHtCB7jc8lCv3Rw4fhU9CnFr4BtFWhzhLZteX32_vBFtvQXhpVYroQulAsIJDCktkHBbNBBAaiMx_AYwKlqfKeuDx6jK5TEDLd04N0abGMe4dLxjvaqu4D3jMkRpx5BFS_r0AWxh86CjtbmyWX7uBmzUzXrpWzFymox5uZVRJkOVaKiSDFWaAfv42GWxUeJ4rnG2Y8oykhwEFRd_rs-wM3fZ_shNSXL2CJGVVAP2qXOB7et_Dnb8X61P2Ms8uSRx24ash4aCUwQ7K3fG-pMvP-6uzpKTPwDpPvqS
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQBCFU-x0IIPcAFZbOw4eA9IVC3Vlj5OXWlvwY-xeliS1WZXVX9FfwR_lBlv0mURVOLQa-I4UWZsf2N_8w1jb7XKo6L0M-V1IXJcAYRVri8iQn8frI-Zp-Tkk9NiOMq_jfV4g_3scmES2707kkwz9SrZjZReBLHP-9oUwrRMyiO4vMA4rfl8uI9GfSflwdezvaFoSwkIrwo9F0WudcCVEqMlC6RJFg0EUIVRGFkCGB2tz7T1wWPA4GTMoFBuII0pTIwDHBXY7x12F7GHoaEzkrvXGzlUJGWQKmTKfsp21uPu9PRvX722_j08T2QOCIn0ugZy_ziXTcvdwSO21eJUvrt0rMdsA6on7MFv6oVP2RVxRMR0lXnAI9FPeJPKTvAGA-R6xuvIvZ25uuKVrer5wsFHwpw_6iniduycT-vJ5WIGtIUPXxraFK-Au8U8cdGAd1dow5hbHuqFmwDHt6IHI04OfKmAiz08Y6NbMcpztlnVFbxgXIWo7ACyaEkPP4DNrQxFtFZqm8lPrsf63V8vfSt-Tj9jUq5km8lQJRqqJEOVpsfeXz8yXSp_3NQ4WzNlGUl-goqZ3_TMdmfusp04mpLk8xGSa6V77EPnAqvb_-zs5X-1fsPuDc9Ojsvjw9OjV-y-TO5JvLpttolGgx0EWnP3Ojk6Z99ve2T9AsErNhI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAIVfxVLBTwAS6gaDd2HLyHSq1aVi2FigMr7S34ZywOSxJtskJ9Ch6FV2TGm3RZBJU49JrEk8gzjmfG33zD2EslsyCp_Ew6lScZ7gCJkXaUBHT9nTcupI6Kkz-e5yfT7P1MzbbYz74WJqLd-yPJVU0DsTSV7bD2YbgufCPWl4SQ6COl80R3qMozuPiOMVuzf3qMCn4lxOTd56OTpGsrkDiZqzbJM6U87poYORkgfrKgwYPMtcQoE0CrYFyqjPMOgwcrQgq5tGOhda5DGOMKQbk32M2Mio9xAU3F4WVShxqmjGO3TDGKlc9q1p-k_u2rN_bCu18jsAN8BMBuOLx_nNHGrW9yj-10Pis_XBnZfbYF5QN25zcmw4fsB-FFknpdhcADQVF4E1tQ8AaD5WrBq8CdWdiq5KUpq3ZpYUj-57eqRh8ehfO6ml8sF0DpfDhoKEFeArfLNuLSgPdXKHnMDffV0s6B41vRmtFn9nzFhosSHrHptShll22XVQmPGZc-SDOGNBjixvdgMiN8HowRyqTirR2wUT_rheuI0Gky5sWawpkUVaCiClJUoQfs9eWQesUCctXD6YYqi0BUFNTY_Koxe726i-4n0hREpY_uuZJqwN70JrC-_U9hT_7r6Rfs1qfjSfHh9PzsKbstonUSxG6PbaPO4Bn6XK19Hu2csy_XvbB-AWrLOkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+fiber+strain+sensor+of+carbon+nanotube%2Fthermoplastic+polyurethane%40styrene+butadiene+styrene+with+a+double+percolated+structure&rft.jtitle=Frontiers+of+materials+science&rft.au=Dong%2C+Xiang&rft.au=Liu%2C+Libing&rft.au=Chen%2C+Xiaoyu&rft.au=Wu+Yuanpeng&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1007%2Fs11706-022-0586-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon