Poly(vinyl alcohol) /Alginate nanofibrous mats containing Malva Sylvestris extract: Synthesis, characterization, in vitro and in vivo assessments for burn wound applications

The schematic diagram depicts the comprehensive approach employed in the electrospinning technique to fabricate nanofibrous mats. These mats are subject to in vitro and in vivo investigations, highlighting their potential in the context of wound dressing applications. [Display omitted] An important...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 654; p. 123928
Main Authors Akbarpour, Ali, Rahimnejad, Mostafa, Sadeghi-Aghbash, Mona, Feizi, Farideh
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.04.2024
Subjects
Online AccessGet full text
ISSN0378-5173
1873-3476
1873-3476
DOI10.1016/j.ijpharm.2024.123928

Cover

Loading…
Abstract The schematic diagram depicts the comprehensive approach employed in the electrospinning technique to fabricate nanofibrous mats. These mats are subject to in vitro and in vivo investigations, highlighting their potential in the context of wound dressing applications. [Display omitted] An important part of wound healing is providing effective wound care, coupled with preventing wound infection, which slows or disrupts healing. There are currently many herbal plants that have historical supernatural properties that show remarkable wound healing abilities. These herbal extracts have shown promising results when applied to electrospun nanofibrous mats platforms for wound healing. Accordingly, Malva Sylvestris extract (MS) was electrospun into polyvinyl alcohol/alginate nanofibrous mats (PVA/ALG). Field Emission Scanning Electron Microscopy (FESEM) demonstrated that the fiber diameter ranged from approximately 100–200 nm in nanofibrous mats, with a uniform appearance without beads. MS extract was detected in nanofibrous mats by Fourier Transform Infrared Spectroscopy (FTIR). A major benefit of incorporating MS extract into PVA/ALG nanofibrous mats is that their alterations have resulted in enhanced mechanical characteristics. The nanofibrous mats containing MS extracts showed significantly increased antibacterial efficacy against Gram-positive and Gram-negative bacteria. Based on the findings from in vivo experiments, the PVA/ALG/MS1 (M2) dressing demonstrated a wound closure rate of 93–94 % within 21 days of treatment in rats, indicating its significant potential for use as a wound dressing agent in the treatment of burn injuries. The combination of PVA, ALG, and MS1 in this nanofibrous mats exhibited beneficial properties, including biocompatibility, suitable mechanical strength, and the ability to promote cellular proliferation and angiogenesis, further validating its effectiveness as a wound healing dressing.
AbstractList The schematic diagram depicts the comprehensive approach employed in the electrospinning technique to fabricate nanofibrous mats. These mats are subject to in vitro and in vivo investigations, highlighting their potential in the context of wound dressing applications. [Display omitted] An important part of wound healing is providing effective wound care, coupled with preventing wound infection, which slows or disrupts healing. There are currently many herbal plants that have historical supernatural properties that show remarkable wound healing abilities. These herbal extracts have shown promising results when applied to electrospun nanofibrous mats platforms for wound healing. Accordingly, Malva Sylvestris extract (MS) was electrospun into polyvinyl alcohol/alginate nanofibrous mats (PVA/ALG). Field Emission Scanning Electron Microscopy (FESEM) demonstrated that the fiber diameter ranged from approximately 100–200 nm in nanofibrous mats, with a uniform appearance without beads. MS extract was detected in nanofibrous mats by Fourier Transform Infrared Spectroscopy (FTIR). A major benefit of incorporating MS extract into PVA/ALG nanofibrous mats is that their alterations have resulted in enhanced mechanical characteristics. The nanofibrous mats containing MS extracts showed significantly increased antibacterial efficacy against Gram-positive and Gram-negative bacteria. Based on the findings from in vivo experiments, the PVA/ALG/MS1 (M2) dressing demonstrated a wound closure rate of 93–94 % within 21 days of treatment in rats, indicating its significant potential for use as a wound dressing agent in the treatment of burn injuries. The combination of PVA, ALG, and MS1 in this nanofibrous mats exhibited beneficial properties, including biocompatibility, suitable mechanical strength, and the ability to promote cellular proliferation and angiogenesis, further validating its effectiveness as a wound healing dressing.
An important part of wound healing is providing effective wound care, coupled with preventing wound infection, which slows or disrupts healing. There are currently many herbal plants that have historical supernatural properties that show remarkable wound healing abilities. These herbal extracts have shown promising results when applied to electrospun nanofibrous mats platforms for wound healing. Accordingly, Malva Sylvestris extract (MS) was electrospun into polyvinyl alcohol/alginate nanofibrous mats (PVA/ALG). Field Emission Scanning Electron Microscopy (FESEM) demonstrated that the fiber diameter ranged from approximately 100-200 nm in nanofibrous mats, with a uniform appearance without beads. MS extract was detected in nanofibrous mats by Fourier Transform Infrared Spectroscopy (FTIR). A major benefit of incorporating MS extract into PVA/ALG nanofibrous mats is that their alterations have resulted in enhanced mechanical characteristics. The nanofibrous mats containing MS extracts showed significantly increased antibacterial efficacy against Gram-positive and Gram-negative bacteria. Based on the findings from in vivo experiments, the PVA/ALG/MS1 (M2) dressing demonstrated a wound closure rate of 93-94 % within 21 days of treatment in rats, indicating its significant potential for use as a wound dressing agent in the treatment of burn injuries. The combination of PVA, ALG, and MS1 in this nanofibrous mats exhibited beneficial properties, including biocompatibility, suitable mechanical strength, and the ability to promote cellular proliferation and angiogenesis, further validating its effectiveness as a wound healing dressing.
An important part of wound healing is providing effective wound care, coupled with preventing wound infection, which slows or disrupts healing. There are currently many herbal plants that have historical supernatural properties that show remarkable wound healing abilities. These herbal extracts have shown promising results when applied to electrospun nanofibrous mats platforms for wound healing. Accordingly, Malva Sylvestris extract (MS) was electrospun into polyvinyl alcohol/alginate nanofibrous mats (PVA/ALG). Field Emission Scanning Electron Microscopy (FESEM) demonstrated that the fiber diameter ranged from approximately 100-200 nm in nanofibrous mats, with a uniform appearance without beads. MS extract was detected in nanofibrous mats by Fourier Transform Infrared Spectroscopy (FTIR). A major benefit of incorporating MS extract into PVA/ALG nanofibrous mats is that their alterations have resulted in enhanced mechanical characteristics. The nanofibrous mats containing MS extracts showed significantly increased antibacterial efficacy against Gram-positive and Gram-negative bacteria. Based on the findings from in vivo experiments, the PVA/ALG/MS1 (M2) dressing demonstrated a wound closure rate of 93-94 % within 21 days of treatment in rats, indicating its significant potential for use as a wound dressing agent in the treatment of burn injuries. The combination of PVA, ALG, and MS1 in this nanofibrous mats exhibited beneficial properties, including biocompatibility, suitable mechanical strength, and the ability to promote cellular proliferation and angiogenesis, further validating its effectiveness as a wound healing dressing.An important part of wound healing is providing effective wound care, coupled with preventing wound infection, which slows or disrupts healing. There are currently many herbal plants that have historical supernatural properties that show remarkable wound healing abilities. These herbal extracts have shown promising results when applied to electrospun nanofibrous mats platforms for wound healing. Accordingly, Malva Sylvestris extract (MS) was electrospun into polyvinyl alcohol/alginate nanofibrous mats (PVA/ALG). Field Emission Scanning Electron Microscopy (FESEM) demonstrated that the fiber diameter ranged from approximately 100-200 nm in nanofibrous mats, with a uniform appearance without beads. MS extract was detected in nanofibrous mats by Fourier Transform Infrared Spectroscopy (FTIR). A major benefit of incorporating MS extract into PVA/ALG nanofibrous mats is that their alterations have resulted in enhanced mechanical characteristics. The nanofibrous mats containing MS extracts showed significantly increased antibacterial efficacy against Gram-positive and Gram-negative bacteria. Based on the findings from in vivo experiments, the PVA/ALG/MS1 (M2) dressing demonstrated a wound closure rate of 93-94 % within 21 days of treatment in rats, indicating its significant potential for use as a wound dressing agent in the treatment of burn injuries. The combination of PVA, ALG, and MS1 in this nanofibrous mats exhibited beneficial properties, including biocompatibility, suitable mechanical strength, and the ability to promote cellular proliferation and angiogenesis, further validating its effectiveness as a wound healing dressing.
ArticleNumber 123928
Author Rahimnejad, Mostafa
Sadeghi-Aghbash, Mona
Feizi, Farideh
Akbarpour, Ali
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-7981-7587
  surname: Akbarpour
  fullname: Akbarpour, Ali
  email: aliakbarpour12@yahoo.com
  organization: Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
– sequence: 2
  givenname: Mostafa
  orcidid: 0000-0002-3582-5876
  surname: Rahimnejad
  fullname: Rahimnejad, Mostafa
  email: rahimnejad@nit.ac.ir
  organization: Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
– sequence: 3
  givenname: Mona
  surname: Sadeghi-Aghbash
  fullname: Sadeghi-Aghbash, Mona
  email: mona70101@gmail.com
  organization: Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
– sequence: 4
  givenname: Farideh
  surname: Feizi
  fullname: Feizi, Farideh
  email: faridehfeizi@yahoo.com
  organization: Medicine School, Babol University of Medical Sciences, Babol, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38401874$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1u1DAQhS1URLeFRwD5skjN1o7zCxeoqviTikACrq2J43Rn5dhb2wks78Q74jYLF9z0yuPRd8aec07IkXVWE_KcszVnvLrYrnG724Af1znLizXPRZs3j8iKN7XIRFFXR2TFRN1kJa_FMTkJYcsYq3IunpBj0RQsgcWK_P7izP5sRrs3FIxyG2de0otLc4MWoqYWrBuw824KdIQYqHI2Alq0N_QTmBno172ZdYgeA9U_owcVX6WejRsdMJxTlb6YetrjL4jo7DlFS2eM3lGw_XKZUx2CDmHUNj0xOE-7yVv6w00Jgd3OoLoXh6fk8QAm6GeH85R8f_f229WH7Prz-49Xl9eZElUZs0pUtYCyqKFsVD-IvspFxzqVN6IXbBAAUDM-5K1oa827ri8HzcuhafjQ9k2y8pScLXN33t1OaT05YlDaGLA6WSGTssirRLYJfXFAp27Uvdx5HMHv5V-LE1AugPIuBK-Hfwhn8i5KuZWHKOVdlHKJMule_6dTGO9tSC6jeVD9ZlHrZNOM2sugUFule_RaRdk7fGDCHxJMwdc
CitedBy_id crossref_primary_10_1016_j_ijpharm_2024_124765
crossref_primary_10_1016_j_mtbio_2024_101309
crossref_primary_10_1016_j_ijbiomac_2024_133996
Cites_doi 10.1016/S0040-6090(97)00340-4
10.1021/acsomega.2c00912
10.1016/j.reactfunctpolym.2022.105440
10.3390/molecules22071191
10.1016/j.carbpol.2013.10.070
10.1016/j.progpolymsci.2019.01.002
10.1016/j.arabjc.2014.07.005
10.1021/acsabm.2c00254
10.1002/term.3119
10.1038/s41570-021-00323-z
10.1007/s13770-017-0075-9
10.1016/j.molliq.2022.118519
10.2174/1389201021666200506073534
10.2174/1389201022666211015115753
10.1002/jps.21210
10.1016/j.actbio.2019.05.046
10.1016/j.msec.2015.11.024
10.1016/j.polymer.2009.04.047
10.1016/j.ijbiomac.2018.04.003
10.1016/j.colsurfa.2015.01.022
10.1016/j.carbpol.2011.09.094
10.1016/j.biomaterials.2014.05.019
10.1016/j.biomaterials.2005.02.012
10.1177/15280837221121977
10.1016/j.actbio.2011.10.004
10.1016/j.saa.2005.08.025
10.1016/j.jddst.2021.102945
10.1021/acs.jafc.7b01393
10.1016/j.bea.2021.100015
10.1016/j.msec.2014.11.063
10.1186/s12906-015-0621-8
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024. Published by Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024. Published by Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ijpharm.2024.123928
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-3476
ExternalDocumentID 38401874
10_1016_j_ijpharm_2024_123928
S0378517324001625
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSP
SSZ
T5K
TEORI
~02
~G-
.GJ
29J
3O-
53G
5VS
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMT
HVGLF
HZ~
M34
M41
R2-
SPT
SSH
WUQ
ZXP
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c365t-63673a547a58cdf3d623b0bc283d30f3aaa701f29397e1bbd5fe15f881f9d8123
IEDL.DBID .~1
ISSN 0378-5173
1873-3476
IngestDate Mon Jul 21 11:39:06 EDT 2025
Mon Jul 21 06:06:11 EDT 2025
Thu Apr 24 22:50:27 EDT 2025
Tue Jul 01 01:19:27 EDT 2025
Sat Apr 13 16:38:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrospinning
Alginate - Wound healing - Malva Sylvestris extract
Language English
License Copyright © 2024. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-63673a547a58cdf3d623b0bc283d30f3aaa701f29397e1bbd5fe15f881f9d8123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3582-5876
0000-0002-7981-7587
PMID 38401874
PQID 2934268129
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2934268129
pubmed_primary_38401874
crossref_primary_10_1016_j_ijpharm_2024_123928
crossref_citationtrail_10_1016_j_ijpharm_2024_123928
elsevier_sciencedirect_doi_10_1016_j_ijpharm_2024_123928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-10
PublicationDateYYYYMMDD 2024-04-10
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of pharmaceutics
PublicationTitleAlternate Int J Pharm
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hsieh, Tsai, Wang, Chang, Hsieh (b0060) 2005; 26
Unnithan, Gnanasekaran, Sathishkumar, Lee, Kim (b0175) 2014; 102
Abdal-Hay, Hussein, Casettari, Khalil, Hamdy (b0005) 2016; 60
Otsuka, Hatakeyama, Shikamura, Otsuka, Ito (b0105) 2015; 25
Boateng, Matthews, Stevens, Eccleston (b0030) 2008; 97
Contardi, Ayyoub, Summa, Kossyvaki, Fadda, Liessi, Armirotti, Fragouli, Bertorelli, Athanassiou (b0035) 2022; 5
Yen, Hou, Yang, Tang, Li, Huang, Huang, Lee, Fu, Hsieh (b0185) 2015; 15
Amer, Mohammed, Hussein, Ali, Khalil (b0020) 2022; 7
Sadeghi Aqbash, Rahimnejad (b0125) 2017; 27
Sadeghi-Aghbash, Rahimnejad, Pourali (b0140) 2020; 21
Agarwal, Tan, Onesto, Law, Agrawal, Pal, Lim, Sharifi, Moghaddam, Maiti (b0010) 2021; 2
Kamoun, Chen, Eldin, Kenawy (b0065) 2015; 8
Sadeghi, Rahimnejad, Adeli, Feizi (b0130) 2022
Sadeghi-Aghbash, Rahimnejad, Adeli, Feizi (b0145) 2022; 181
Song, Rane, Christman (b0160) 2012; 8
Kumar, Rajendran, Houreld, Abrahamse (b0075) 2018; 115
Law, Liau, Saim, Yang, Idrus (b0080) 2017; 14
Mutlu-Ingok, Karbancioglu-Guler (b0095) 2017; 22
Guo, Dong, Liang, Li (b0050) 2021; 5
Shojaee, Navaee, Jalili-Firoozinezhad, Faturechi, Majidi, Bonakdar (b0155) 2015; 48
Azarmi, Ashjaran, Nourbakhsh, Talebian (b0025) 2022; 52
Wolpert, Hellwig (b0180) 2006; 64
Fatehi, Abbasi (b0045) 2020; 14
Yoon, Hsiao, Chu (b0190) 2009; 50
Hernandez-Gordillo, Chmielewski (b0055) 2014; 35
Raja, Balamurugan, Selvakumar, Vasanth (b0120) 2022; 67
Sadeghi-Aghbash, Rahimnejad, Adeli, Feizi (b0150) 2024; 129400
Rafienia, Saberi, Poorazizi (b0115) 2017; 4
Ding, Zhang, Li, Li, Xiao, Xiao, Yang, Zhuang, Chen (b0040) 2019; 90
Mahura, Bahadur, Naidoo, Ramjugernath (b0090) 2022; 350
Sadeghi-Aghbash, Rahimnejad (b0135) 2022; 23
Amalraj, Gopi, Thomas, Haponiuk (b0015) 2018
Nasiri, Hosseinimehr, Azadbakht, Akbari, Enayati-Fard, Azizi, Azadbakht (b0100) 2015; 4
Liao, Unnithan, Joshi, Tiwari, Hong, Park, Kim (b0085) 2015; 469
Primeau, Vautey, Langlet (b0110) 1997; 310
Kelly, Francovich, Julmi, Safranski, Guldberg, Maier, Gall (b0070) 2019; 94
Torres-Giner, Wilkanowicz, Melendez-Rodriguez, Lagaron (b0170) 2017; 65
Soumya, Sajesh, Jayakumar, Nair, Chennazhi (b0165) 2012; 87
Sadeghi-Aghbash (10.1016/j.ijpharm.2024.123928_b0150) 2024; 129400
Wolpert (10.1016/j.ijpharm.2024.123928_b0180) 2006; 64
Mutlu-Ingok (10.1016/j.ijpharm.2024.123928_b0095) 2017; 22
Soumya (10.1016/j.ijpharm.2024.123928_b0165) 2012; 87
Shojaee (10.1016/j.ijpharm.2024.123928_b0155) 2015; 48
Primeau (10.1016/j.ijpharm.2024.123928_b0110) 1997; 310
Azarmi (10.1016/j.ijpharm.2024.123928_b0025) 2022; 52
Ding (10.1016/j.ijpharm.2024.123928_b0040) 2019; 90
Torres-Giner (10.1016/j.ijpharm.2024.123928_b0170) 2017; 65
Boateng (10.1016/j.ijpharm.2024.123928_b0030) 2008; 97
Mahura (10.1016/j.ijpharm.2024.123928_b0090) 2022; 350
Kelly (10.1016/j.ijpharm.2024.123928_b0070) 2019; 94
Yen (10.1016/j.ijpharm.2024.123928_b0185) 2015; 15
Amalraj (10.1016/j.ijpharm.2024.123928_b0015) 2018
Sadeghi (10.1016/j.ijpharm.2024.123928_b0130) 2022
Law (10.1016/j.ijpharm.2024.123928_b0080) 2017; 14
Kamoun (10.1016/j.ijpharm.2024.123928_b0065) 2015; 8
Sadeghi-Aghbash (10.1016/j.ijpharm.2024.123928_b0145) 2022; 181
Unnithan (10.1016/j.ijpharm.2024.123928_b0175) 2014; 102
Agarwal (10.1016/j.ijpharm.2024.123928_b0010) 2021; 2
Otsuka (10.1016/j.ijpharm.2024.123928_b0105) 2015; 25
Song (10.1016/j.ijpharm.2024.123928_b0160) 2012; 8
Sadeghi-Aghbash (10.1016/j.ijpharm.2024.123928_b0140) 2020; 21
Sadeghi Aqbash (10.1016/j.ijpharm.2024.123928_b0125) 2017; 27
Yoon (10.1016/j.ijpharm.2024.123928_b0190) 2009; 50
Sadeghi-Aghbash (10.1016/j.ijpharm.2024.123928_b0135) 2022; 23
Nasiri (10.1016/j.ijpharm.2024.123928_b0100) 2015; 4
Hsieh (10.1016/j.ijpharm.2024.123928_b0060) 2005; 26
Contardi (10.1016/j.ijpharm.2024.123928_b0035) 2022; 5
Abdal-Hay (10.1016/j.ijpharm.2024.123928_b0005) 2016; 60
Kumar (10.1016/j.ijpharm.2024.123928_b0075) 2018; 115
Rafienia (10.1016/j.ijpharm.2024.123928_b0115) 2017; 4
Guo (10.1016/j.ijpharm.2024.123928_b0050) 2021; 5
Fatehi (10.1016/j.ijpharm.2024.123928_b0045) 2020; 14
Amer (10.1016/j.ijpharm.2024.123928_b0020) 2022; 7
Liao (10.1016/j.ijpharm.2024.123928_b0085) 2015; 469
Raja (10.1016/j.ijpharm.2024.123928_b0120) 2022; 67
Hernandez-Gordillo (10.1016/j.ijpharm.2024.123928_b0055) 2014; 35
References_xml – volume: 48
  start-page: 158
  year: 2015
  end-page: 164
  ident: b0155
  article-title: Fabrication and characterization of ovalbumin films for wound dressing applications
  publication-title: Mater. Sci. Eng. C
– volume: 64
  start-page: 987
  year: 2006
  end-page: 1001
  ident: b0180
  article-title: Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm− 1
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 14
  start-page: 699
  year: 2017
  end-page: 718
  ident: b0080
  article-title: Electrospun collagen nanofibers and their applications in skin tissue engineering
  publication-title: Tissue Engineering and Regenerative Medicine
– volume: 350
  year: 2022
  ident: b0090
  article-title: Probing the ion-dipole interactions between the imidazolium-based ionic liquids and polyethylene glycol 200 using excess thermodynamic and spectroscopy studies
  publication-title: J. Mol. Liq.
– volume: 4
  start-page: 134
  year: 2015
  ident: b0100
  article-title: The healing effect of Arnebia euchroma ointment versus silver sulfadiazine on burn wounds in rat
  publication-title: World Journal of Plastic Surgery
– volume: 90
  start-page: 1
  year: 2019
  end-page: 34
  ident: b0040
  article-title: Electrospun polymer biomaterials
  publication-title: Prog. Polym. Sci.
– volume: 26
  start-page: 5617
  year: 2005
  end-page: 5623
  ident: b0060
  article-title: Preparation of γ-PGA/chitosan composite tissue engineering matrices
  publication-title: Biomaterials
– volume: 7
  start-page: 20683
  year: 2022
  end-page: 20695
  ident: b0020
  article-title: Development of lepidium sativum Extracts/PVA electrospun nanofibers as wound healing dressing
  publication-title: ACS Omega
– volume: 22
  start-page: 1191
  year: 2017
  ident: b0095
  article-title: Cardamom, cumin, and dill weed essential oils: chemical compositions, antimicrobial activities, and mechanisms of action against Campylobacter spp
  publication-title: Molecules
– year: 2018
  ident: b0015
  article-title: Cellulose nanomaterials in biomedical, food, and nutraceutical applications: a review
– volume: 52
  year: 2022
  ident: b0025
  article-title: Plant extract delivery and antibacterial properties of nano bacterial cellulose in the presence of dendrimer, chitosan, and herbal materials
  publication-title: J. Ind. Text.
– volume: 4
  year: 2017
  ident: b0115
  article-title: A novel fabrication of PVA/Alginate-Bioglass electrospun for biomedical engineering application
  publication-title: Nanomedicine Journal
– volume: 14
  start-page: 1527
  year: 2020
  end-page: 1548
  ident: b0045
  article-title: Medicinal plants used in wound dressings made of electrospun nanofibers
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 5
  start-page: 2880
  year: 2022
  end-page: 2893
  ident: b0035
  article-title: Self-Adhesive and Antioxidant Poly (vinylpyrrolidone)/Alginate-Based bilayer films loaded with malva sylvestris extracts as potential skin dressings
  publication-title: ACS Applied Bio Materials
– volume: 310
  start-page: 47
  year: 1997
  end-page: 56
  ident: b0110
  article-title: The effect of thermal annealing on aerosol-gel deposited SiO2 films: a FTIR deconvolution study
  publication-title: Thin Solid Films
– volume: 50
  start-page: 2893
  year: 2009
  end-page: 2899
  ident: b0190
  article-title: Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation processes
  publication-title: Polymer
– volume: 65
  start-page: 4439
  year: 2017
  end-page: 4448
  ident: b0170
  article-title: Nanoencapsulation of Aloe vera in synthetic and naturally occurring polymers by electrohydrodynamic processing of interest in food technology and bioactive packaging
  publication-title: J. Agric. Food Chem.
– volume: 60
  start-page: 143
  year: 2016
  end-page: 150
  ident: b0005
  article-title: Fabrication of novel high performance ductile poly (lactic acid) nanofiber scaffold coated with poly (vinyl alcohol) for tissue engineering applications
  publication-title: Mater. Sci. Eng. C
– volume: 25
  start-page: 143
  year: 2015
  end-page: 156
  ident: b0105
  article-title: Therapeutic effects of transdermal systems containing zinc-related materials on thermal burn rats
  publication-title: Biomed. Mater. Eng.
– volume: 15
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0185
  article-title: Concentration effects of grape seed extracts in anti-oral cancer cells involving differential apoptosis, oxidative stress, and DNA damage
  publication-title: BMC Complement. Altern. Med.
– volume: 21
  start-page: 1232
  year: 2020
  end-page: 1241
  ident: b0140
  article-title: Bio-Mediated synthesis and characterization of zinc phosphate nanoparticles using enterobacter aerogenes cells for antibacterial and anti-corrosion applications
  publication-title: Curr. Pharm. Biotechnol.
– volume: 87
  start-page: 1787
  year: 2012
  end-page: 1795
  ident: b0165
  article-title: Development of a phytochemical scaffold for bone tissue engineering using Cissus quadrangularis extract
  publication-title: Carbohydr. Polym.
– volume: 102
  start-page: 884
  year: 2014
  end-page: 892
  ident: b0175
  article-title: Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing
  publication-title: Carbohydr. Polym.
– volume: 94
  start-page: 610
  year: 2019
  end-page: 626
  ident: b0070
  article-title: Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering
  publication-title: Acta Biomater.
– volume: 181
  year: 2022
  ident: b0145
  article-title: Fabrication and development of PVA/Alginate nanofibrous mats containing Arnebia Euchroma extract as a burn wound dressing
  publication-title: React. Funct. Polym.
– volume: 67
  year: 2022
  ident: b0120
  article-title: Striga angustifolia mediated synthesis of silver nanoparticles: Anti-microbial, antioxidant and anti-proliferative activity in apoptotic p53 signalling pathway
  publication-title: J. Drug Delivery Sci. Technol.
– volume: 8
  start-page: 1
  year: 2015
  end-page: 14
  ident: b0065
  article-title: Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers
  publication-title: Arab. J. Chem.
– volume: 27
  start-page: 39
  year: 2017
  end-page: 48
  ident: b0125
  article-title: Effect of zinc phosphate nanoparticles in combination with glass ionomer cements on streptococcus mutans
  publication-title: Journal of Mazandaran University of Medical Sciences
– volume: 115
  start-page: 165
  year: 2018
  end-page: 175
  ident: b0075
  article-title: Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications
  publication-title: Int. J. Biol. Macromol.
– volume: 2
  year: 2021
  ident: b0010
  article-title: Engineered herbal scaffolds for tissue repair and regeneration: recent trends and technologies
  publication-title: Biomedical Engineering Advances
– volume: 23
  start-page: 1228
  year: 2022
  end-page: 1244
  ident: b0135
  article-title: Zinc phosphate nanoparticles: a review on physical, chemical, and biological synthesis and their applications
  publication-title: Curr. Pharm. Biotechnol.
– volume: 97
  start-page: 2892
  year: 2008
  end-page: 2923
  ident: b0030
  article-title: Wound healing dressings and drug delivery systems: a review
  publication-title: J. Pharm. Sci.
– volume: 469
  start-page: 194
  year: 2015
  end-page: 201
  ident: b0085
  article-title: Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 5
  start-page: 773
  year: 2021
  end-page: 791
  ident: b0050
  article-title: Haemostatic materials for wound healing applications
  publication-title: Nat. Rev. Chem.
– volume: 35
  start-page: 7363
  year: 2014
  end-page: 7373
  ident: b0055
  article-title: Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds
  publication-title: Biomaterials
– volume: 129400
  year: 2024
  ident: b0150
  article-title: Catecholamines polymerization crosslinking for alginate-based burn wound dressings developed with ciprofloxacin and zinc oxide interactions
  publication-title: Int. J. Biol. Macromol.
– start-page: 1
  year: 2022
  end-page: 15
  ident: b0130
  article-title: Matrix–drug interactions for the development of ph-sensitive alginate-based nanofibers as an advanced wound dressing
  publication-title: J. Polym. Environ.
– volume: 8
  start-page: 41
  year: 2012
  end-page: 50
  ident: b0160
  article-title: Antibacterial and cell-adhesive polypeptide and poly (ethylene glycol) hydrogel as a potential scaffold for wound healing
  publication-title: Acta Biomater.
– volume: 310
  start-page: 47
  issue: 1–2
  year: 1997
  ident: 10.1016/j.ijpharm.2024.123928_b0110
  article-title: The effect of thermal annealing on aerosol-gel deposited SiO2 films: a FTIR deconvolution study
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00340-4
– volume: 7
  start-page: 20683
  issue: 24
  year: 2022
  ident: 10.1016/j.ijpharm.2024.123928_b0020
  article-title: Development of lepidium sativum Extracts/PVA electrospun nanofibers as wound healing dressing
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c00912
– volume: 181
  year: 2022
  ident: 10.1016/j.ijpharm.2024.123928_b0145
  article-title: Fabrication and development of PVA/Alginate nanofibrous mats containing Arnebia Euchroma extract as a burn wound dressing
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2022.105440
– volume: 22
  start-page: 1191
  issue: 7
  year: 2017
  ident: 10.1016/j.ijpharm.2024.123928_b0095
  article-title: Cardamom, cumin, and dill weed essential oils: chemical compositions, antimicrobial activities, and mechanisms of action against Campylobacter spp
  publication-title: Molecules
  doi: 10.3390/molecules22071191
– volume: 102
  start-page: 884
  year: 2014
  ident: 10.1016/j.ijpharm.2024.123928_b0175
  article-title: Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.10.070
– volume: 90
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijpharm.2024.123928_b0040
  article-title: Electrospun polymer biomaterials
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.01.002
– volume: 8
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.ijpharm.2024.123928_b0065
  article-title: Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2014.07.005
– volume: 5
  start-page: 2880
  issue: 6
  year: 2022
  ident: 10.1016/j.ijpharm.2024.123928_b0035
  article-title: Self-Adhesive and Antioxidant Poly (vinylpyrrolidone)/Alginate-Based bilayer films loaded with malva sylvestris extracts as potential skin dressings
  publication-title: ACS Applied Bio Materials
  doi: 10.1021/acsabm.2c00254
– volume: 14
  start-page: 1527
  issue: 11
  year: 2020
  ident: 10.1016/j.ijpharm.2024.123928_b0045
  article-title: Medicinal plants used in wound dressings made of electrospun nanofibers
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.3119
– volume: 129400
  year: 2024
  ident: 10.1016/j.ijpharm.2024.123928_b0150
  article-title: Catecholamines polymerization crosslinking for alginate-based burn wound dressings developed with ciprofloxacin and zinc oxide interactions
  publication-title: Int. J. Biol. Macromol.
– volume: 5
  start-page: 773
  issue: 11
  year: 2021
  ident: 10.1016/j.ijpharm.2024.123928_b0050
  article-title: Haemostatic materials for wound healing applications
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-021-00323-z
– volume: 14
  start-page: 699
  issue: 6
  year: 2017
  ident: 10.1016/j.ijpharm.2024.123928_b0080
  article-title: Electrospun collagen nanofibers and their applications in skin tissue engineering
  publication-title: Tissue Engineering and Regenerative Medicine
  doi: 10.1007/s13770-017-0075-9
– volume: 350
  year: 2022
  ident: 10.1016/j.ijpharm.2024.123928_b0090
  article-title: Probing the ion-dipole interactions between the imidazolium-based ionic liquids and polyethylene glycol 200 using excess thermodynamic and spectroscopy studies
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.118519
– volume: 21
  start-page: 1232
  issue: 12
  year: 2020
  ident: 10.1016/j.ijpharm.2024.123928_b0140
  article-title: Bio-Mediated synthesis and characterization of zinc phosphate nanoparticles using enterobacter aerogenes cells for antibacterial and anti-corrosion applications
  publication-title: Curr. Pharm. Biotechnol.
  doi: 10.2174/1389201021666200506073534
– volume: 25
  start-page: 143
  issue: 2
  year: 2015
  ident: 10.1016/j.ijpharm.2024.123928_b0105
  article-title: Therapeutic effects of transdermal systems containing zinc-related materials on thermal burn rats
  publication-title: Biomed. Mater. Eng.
– volume: 23
  start-page: 1228
  issue: 10
  year: 2022
  ident: 10.1016/j.ijpharm.2024.123928_b0135
  article-title: Zinc phosphate nanoparticles: a review on physical, chemical, and biological synthesis and their applications
  publication-title: Curr. Pharm. Biotechnol.
  doi: 10.2174/1389201022666211015115753
– volume: 97
  start-page: 2892
  issue: 8
  year: 2008
  ident: 10.1016/j.ijpharm.2024.123928_b0030
  article-title: Wound healing dressings and drug delivery systems: a review
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.21210
– volume: 27
  start-page: 39
  issue: 153
  year: 2017
  ident: 10.1016/j.ijpharm.2024.123928_b0125
  article-title: Effect of zinc phosphate nanoparticles in combination with glass ionomer cements on streptococcus mutans
  publication-title: Journal of Mazandaran University of Medical Sciences
– volume: 94
  start-page: 610
  year: 2019
  ident: 10.1016/j.ijpharm.2024.123928_b0070
  article-title: Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.05.046
– volume: 60
  start-page: 143
  year: 2016
  ident: 10.1016/j.ijpharm.2024.123928_b0005
  article-title: Fabrication of novel high performance ductile poly (lactic acid) nanofiber scaffold coated with poly (vinyl alcohol) for tissue engineering applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.11.024
– volume: 4
  start-page: 134
  issue: 2
  year: 2015
  ident: 10.1016/j.ijpharm.2024.123928_b0100
  article-title: The healing effect of Arnebia euchroma ointment versus silver sulfadiazine on burn wounds in rat
  publication-title: World Journal of Plastic Surgery
– volume: 50
  start-page: 2893
  issue: 13
  year: 2009
  ident: 10.1016/j.ijpharm.2024.123928_b0190
  article-title: Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation processes
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.04.047
– volume: 115
  start-page: 165
  year: 2018
  ident: 10.1016/j.ijpharm.2024.123928_b0075
  article-title: Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.04.003
– volume: 469
  start-page: 194
  year: 2015
  ident: 10.1016/j.ijpharm.2024.123928_b0085
  article-title: Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2015.01.022
– volume: 87
  start-page: 1787
  issue: 2
  year: 2012
  ident: 10.1016/j.ijpharm.2024.123928_b0165
  article-title: Development of a phytochemical scaffold for bone tissue engineering using Cissus quadrangularis extract
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.09.094
– volume: 35
  start-page: 7363
  issue: 26
  year: 2014
  ident: 10.1016/j.ijpharm.2024.123928_b0055
  article-title: Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.05.019
– volume: 4
  issue: 3
  year: 2017
  ident: 10.1016/j.ijpharm.2024.123928_b0115
  article-title: A novel fabrication of PVA/Alginate-Bioglass electrospun for biomedical engineering application
  publication-title: Nanomedicine Journal
– volume: 26
  start-page: 5617
  issue: 28
  year: 2005
  ident: 10.1016/j.ijpharm.2024.123928_b0060
  article-title: Preparation of γ-PGA/chitosan composite tissue engineering matrices
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.02.012
– volume: 52
  year: 2022
  ident: 10.1016/j.ijpharm.2024.123928_b0025
  article-title: Plant extract delivery and antibacterial properties of nano bacterial cellulose in the presence of dendrimer, chitosan, and herbal materials
  publication-title: J. Ind. Text.
  doi: 10.1177/15280837221121977
– volume: 8
  start-page: 41
  issue: 1
  year: 2012
  ident: 10.1016/j.ijpharm.2024.123928_b0160
  article-title: Antibacterial and cell-adhesive polypeptide and poly (ethylene glycol) hydrogel as a potential scaffold for wound healing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.10.004
– start-page: 1
  year: 2022
  ident: 10.1016/j.ijpharm.2024.123928_b0130
  article-title: Matrix–drug interactions for the development of ph-sensitive alginate-based nanofibers as an advanced wound dressing
  publication-title: J. Polym. Environ.
– volume: 64
  start-page: 987
  issue: 4
  year: 2006
  ident: 10.1016/j.ijpharm.2024.123928_b0180
  article-title: Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm− 1
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2005.08.025
– volume: 67
  year: 2022
  ident: 10.1016/j.ijpharm.2024.123928_b0120
  article-title: Striga angustifolia mediated synthesis of silver nanoparticles: Anti-microbial, antioxidant and anti-proliferative activity in apoptotic p53 signalling pathway
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2021.102945
– volume: 65
  start-page: 4439
  issue: 22
  year: 2017
  ident: 10.1016/j.ijpharm.2024.123928_b0170
  article-title: Nanoencapsulation of Aloe vera in synthetic and naturally occurring polymers by electrohydrodynamic processing of interest in food technology and bioactive packaging
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b01393
– volume: 2
  year: 2021
  ident: 10.1016/j.ijpharm.2024.123928_b0010
  article-title: Engineered herbal scaffolds for tissue repair and regeneration: recent trends and technologies
  publication-title: Biomedical Engineering Advances
  doi: 10.1016/j.bea.2021.100015
– volume: 48
  start-page: 158
  year: 2015
  ident: 10.1016/j.ijpharm.2024.123928_b0155
  article-title: Fabrication and characterization of ovalbumin films for wound dressing applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.11.063
– volume: 15
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.ijpharm.2024.123928_b0185
  article-title: Concentration effects of grape seed extracts in anti-oral cancer cells involving differential apoptosis, oxidative stress, and DNA damage
  publication-title: BMC Complement. Altern. Med.
  doi: 10.1186/s12906-015-0621-8
– year: 2018
  ident: 10.1016/j.ijpharm.2024.123928_b0015
SSID ssj0006213
Score 2.4809382
Snippet The schematic diagram depicts the comprehensive approach employed in the electrospinning technique to fabricate nanofibrous mats. These mats are subject to in...
An important part of wound healing is providing effective wound care, coupled with preventing wound infection, which slows or disrupts healing. There are...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123928
SubjectTerms Alginate - Wound healing - Malva Sylvestris extract
Electrospinning
Title Poly(vinyl alcohol) /Alginate nanofibrous mats containing Malva Sylvestris extract: Synthesis, characterization, in vitro and in vivo assessments for burn wound applications
URI https://dx.doi.org/10.1016/j.ijpharm.2024.123928
https://www.ncbi.nlm.nih.gov/pubmed/38401874
https://www.proquest.com/docview/2934268129
Volume 654
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBale9nL2H3ptnIGo2wQxxf5urdQVrKNlkBb6JvRxQYHo4TYzfBL_1H_486J7GSDjcLebGFZss_R0Sek832MfRRekeAYChweK4ELFKUcEZAvS5UFJReZ1JSNfH4Rz67D7zfRzQE7HXJh6FhlH_ttTN9G677E7f-mu6oq99LjW2F5YpRD3BJQojmx16FPT-72xzzioJdIxtUSPb3P4nEXk2qxIoJoXCYG4QRjeEai7H-fn_6FP7fz0NlT9qQHkDC1fXzGDgrznJ3MLQN1N4arfUJVM4YTmO-5qbsX7H6-rLtPm8p0NQirjvsZ3GlN6gxtAUYYdDa5Xt42gFC2ATrJbjUk4FzUGwGXXU3EHBgaAMM6pVh9wTKDMLKpsD2143-26Z1jqAxsqna9BGG0vdng9Y4PtAFEzYCWNfCTFJ7g9x31l-z67OvV6czpFRscxeOodWIeJ1xEYSKiVOmSawRX0pMKMYzmHppeiMTzS4QYWVL4UuqoLPyoTFO_zDRCDf6KHZqlKd4wUEoLFcVccqFDhFFpKDMtAvSoMqUXjVg42ClXPZ05qWrU-XBubZH35s3JvLk174hNdtVWls_joQrp4AT5H46Z45zzUNUPg9PkOGhpJ0aYAi2Y4w9AZIQfnI3Ya-tNu95wXHKTUOLR_zf8lj2mO9r08r137LBd3xbvETu18ng7OI7Zo-m3H7OLX-GIHvA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZd-rC9jN2bXTUYZYMkvsh27L2FspKuTQg0hb4JXWxwMEqI3Qz_qP3HnRPZzgYbhb3ZMrJlnaOjT0jn-wj5JNx0DGPIH7JICVigKDUUPvqyVImfMZFIjdnIs3k0vQm-34a3R-SszYXBY5VN7LcxfR-tmxKn6U1nk-fOtcv2wvLIKAe4xQ8fkGNkpwp65HhycTmddwE58huVZFgwYYVDIo-zGuWrDXJEw0rRD0YQxhPUZf_7FPUvCLqfis6fkMcNhqQT28yn5Cg1z8jpwpJQ1wO6PORUlQN6ShcHeur6Ofm5WBf1511u6oIKK5D7hTqTAgUaqpQaYcDf5HZ9V1JAsyXFw-xWRoLORLET9LoukJsDogOFyI5ZVl-hzACSLHP4nuoooG2G54Dmhu7yarumwmh7s4PrjhK0pACcKRjX0B8o8kR_31R_QW7Ovy3PpsNGtGGoWBRWw4hFYybADiKMlc6YBnwlXakAxmjmgvWFGLteBigjGaeelDrMUi_M4tjLEg1og70kPbM26QmhSmmhwohJJnQASCoOZKKFD06VxfiiPglaO3HVMJqjsEbB26NrK96Yl6N5uTVvn4y6ahtL6XFfhbh1Av6Hb3KYdu6r-rF1Gg7jFjdjhEnBghw6AMAR_HDSJ6-sN3WtYbDqRq3E1___4Q_k4XQ5u-JXF_PLN-QRPsE9MM99S3rV9i59B1Cqku-bofILlb8hoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28vinyl+alcohol%29+%2FAlginate+nanofibrous+mats+containing+Malva+Sylvestris+extract%3A+Synthesis%2C+characterization%2C+in+vitro+and+in+vivo+assessments+for+burn+wound+applications&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Akbarpour%2C+Ali&rft.au=Rahimnejad%2C+Mostafa&rft.au=Sadeghi-Aghbash%2C+Mona&rft.au=Feizi%2C+Farideh&rft.date=2024-04-10&rft.pub=Elsevier+B.V&rft.issn=0378-5173&rft.eissn=1873-3476&rft.volume=654&rft_id=info:doi/10.1016%2Fj.ijpharm.2024.123928&rft.externalDocID=S0378517324001625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon