Terahertz cascaded metasurfaces for both spin-symmetric and asymmetric beam diffractions with active power distribution

Ultra-compact and tunable devices for terahertz (THz) beam manipulation are highly desired in wireless communication and radar scanning. Although the appearance of the Pancharatnam-Berry (PB) metasurface has provided strategies for THz beam scanning, active output power distribution is still difficu...

Full description

Saved in:
Bibliographic Details
Published inAPL photonics Vol. 8; no. 9; pp. 096112 - 096112-10
Main Authors Liu, Jiayue, Fan, Fei, Tan, Zhiyu, Zhao, Huijun, Cheng, Jierong, Chang, Shengjiang
Format Journal Article
LanguageEnglish
Published AIP Publishing LLC 01.09.2023
Online AccessGet full text

Cover

Loading…
Abstract Ultra-compact and tunable devices for terahertz (THz) beam manipulation are highly desired in wireless communication and radar scanning. Although the appearance of the Pancharatnam-Berry (PB) metasurface has provided strategies for THz beam scanning, active output power distribution is still difficult to achieve, and the flexibility of beam manipulation is limited by a single metasurface. In this work, we demonstrated an all-dielectric cascaded metasurface consisting of a spin-decoupled metasurface and a PB metasurface. The conjugated characteristic of the PB phase for two photonic spin states is broken with highly efficient high-order diffractions of wave vector superposition through the cascaded metasurfaces, and both spin-symmetric and spin-asymmetric transmissions are obtained by designing the differences in metasurface bandwidth. Moreover, the output power between the deflection beams can be actively tuned by changing the incident polarization state, achieving power modulation ratios of 99.3% and 95.1% for the two conjugated spin beams, respectively. Therefore, this work realizes controllable wave division multiplexing and power distribution and opens new avenues for the design of ultra-compact multifunctional devices.
AbstractList Ultra-compact and tunable devices for terahertz (THz) beam manipulation are highly desired in wireless communication and radar scanning. Although the appearance of the Pancharatnam-Berry (PB) metasurface has provided strategies for THz beam scanning, active output power distribution is still difficult to achieve, and the flexibility of beam manipulation is limited by a single metasurface. In this work, we demonstrated an all-dielectric cascaded metasurface consisting of a spin-decoupled metasurface and a PB metasurface. The conjugated characteristic of the PB phase for two photonic spin states is broken with highly efficient high-order diffractions of wave vector superposition through the cascaded metasurfaces, and both spin-symmetric and spin-asymmetric transmissions are obtained by designing the differences in metasurface bandwidth. Moreover, the output power between the deflection beams can be actively tuned by changing the incident polarization state, achieving power modulation ratios of 99.3% and 95.1% for the two conjugated spin beams, respectively. Therefore, this work realizes controllable wave division multiplexing and power distribution and opens new avenues for the design of ultra-compact multifunctional devices.
Author Tan, Zhiyu
Liu, Jiayue
Zhao, Huijun
Cheng, Jierong
Chang, Shengjiang
Fan, Fei
Author_xml – sequence: 1
  givenname: Jiayue
  surname: Liu
  fullname: Liu, Jiayue
  organization: Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology
– sequence: 2
  givenname: Fei
  surname: Fan
  fullname: Fan, Fei
  organization: 2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
– sequence: 3
  givenname: Zhiyu
  surname: Tan
  fullname: Tan, Zhiyu
  organization: Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology
– sequence: 4
  givenname: Huijun
  surname: Zhao
  fullname: Zhao, Huijun
  organization: Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology
– sequence: 5
  givenname: Jierong
  surname: Cheng
  fullname: Cheng, Jierong
  organization: Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology
– sequence: 6
  givenname: Shengjiang
  surname: Chang
  fullname: Chang, Shengjiang
  organization: Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology
BookMark eNp9kUtLAzEQx4MoWGsPfoNcFbYmm9fuUYqPQsFLPS-Tl01pNyXZWuqnd2uLevI0j_9v_swwV-i8ja1D6IaSMSWS3YsxobISkp6hQclUVZBaqvM_-SUa5bwkpMcUrbkYoN3cJVi41H1iA9mAdRavXQd5mzwYl7GPCevYLXDehLbI-3WvpmAwtBbDb6kdrLEN3icwXYhtxrvQDx2KD4c3cedSL-ee1duDfo0uPKyyG53iEL09Pc4nL8Xs9Xk6eZgVhknRFQIMoRUxtakkK0WljTXgueCslv3-FS-rUmsw2paeWbDMKkkcl3UpqFdlzYZoevS1EZbNJoU1pH0TITTfjZjeG0hdMCvX1KVmmisQBBznlFfSOm-dUtxbz4jqvW6PXibFnJPzP36UNIcHNKI5PaBn745sNqGDw8X_wF-Gg4mY
CODEN APPHD2
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_110252
crossref_primary_10_1063_5_0196667
Cites_doi 10.1038/s41586-018-0609-x
10.1021/acsphotonics.9b01047
10.1021/acs.nanolett.6b01528
10.1002/adom.201900736
10.1002/adom.202002007
10.1126/science.1235399
10.1364/prj.471282
10.1002/lpor.201000011
10.1063/1.5042784
10.3389/fphy.2020.584077
10.1103/physreva.82.053811
10.1038/s41928-018-0173-2
10.1038/s41928-020-00497-2
10.1038/nnano.2015.2
10.1088/0957-4484/27/41/412001
10.1080/05704928.2019.1670202
10.1103/physrevlett.125.267402
10.1038/s41467-017-00164-9
10.1364/optica.6.001190
10.1002/adom.201700852
10.1016/s1369-7021(06)71573-5
10.1364/prj.6.000024
10.1038/nphoton.2013.235
10.1002/adma.201204850
10.1002/lpor.201000043
10.1038/nmat3417
10.1002/adma.201401484
10.1038/nphoton.2016.65
10.1038/nmat3292
10.1038/s41377-019-0127-0
10.1063/1.1539300
10.1039/c7nr03824k
10.1002/adom.201801365
10.1038/s41377-023-01228-w
10.1126/science.1210713
10.1103/physrevlett.108.190401
10.1364/ome.9.001118
10.1002/adom.201900628
10.1016/s1369-7021(08)70016-6
10.1038/lsa.2014.99
10.1038/lsa.2015.63
10.1364/oe.26.034919
10.1515/nanoph-2017-0118
10.1002/adom.201700507
10.1016/j.mtphys.2017.11.001
10.1126/science.1231758
10.1515/nanoph-2020-0115
10.1016/j.isci.2020.101403
10.1109/jstqe.2020.2984560
10.1021/acsami.7b12468
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AJDQP
AAYXX
CITATION
DOA
DOI 10.1063/5.0168561
DatabaseName AIP Open Access Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2378-0967
EndPage 096112-10
ExternalDocumentID oai_doaj_org_article_92b3b47a50ae441486defde774fdf307
10_1063_5_0168561
app
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFA0701000
  funderid: https://doi.org/10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62371258; 62335012; 61971242; 61831012; 62205160
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID 5VS
AAYEQ
ADBBV
ADCTM
AGKCL
AGLKD
AHSDT
AJDQP
ALMA_UNASSIGNED_HOLDINGS
ASPBG
BCNDV
EBS
FRJ
GROUPED_DOAJ
KQ8
M~E
OK1
RIP
RQS
AAYXX
CITATION
ID FETCH-LOGICAL-c365t-5ac0180c9c863258bcdcaf45439694584282bbacbd2f3dad3d760e469251f7293
IEDL.DBID DOA
ISSN 2378-0967
IngestDate Tue Oct 22 15:15:13 EDT 2024
Fri Aug 23 00:22:38 EDT 2024
Fri Jun 21 00:15:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-5ac0180c9c863258bcdcaf45439694584282bbacbd2f3dad3d760e469251f7293
ORCID 0000-0001-7127-4728
0000-0003-3016-8034
0000-0002-4117-2525
0000-0001-5471-5085
0000-0001-7763-1992
0009-0001-6596-464X
OpenAccessLink https://doaj.org/article/92b3b47a50ae441486defde774fdf307
PageCount 10
ParticipantIDs scitation_primary_10_1063_5_0168561
crossref_primary_10_1063_5_0168561
doaj_primary_oai_doaj_org_article_92b3b47a50ae441486defde774fdf307
PublicationCentury 2000
PublicationDate 20230901
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 20230901
  day: 01
PublicationDecade 2020
PublicationTitle APL photonics
PublicationYear 2023
Publisher AIP Publishing LLC
Publisher_xml – name: AIP Publishing LLC
References Cui, Li, Liu, Ma, Zhang, Wan, Jiang, Cheng (c19) 2020; 23
Zhang, Zhang, Xu, Wang, Xu, Wei, Li, Gu, Tian, Ouyang, Zhang, Hu, Han, Zhang (c24) 2018; 6
Grady, Heyes, Chowdhury, Zeng, Reiten, Azad, Taylor, Dalvit, Chen (c22) 2013; 340
Jia, Wang, Li, Wang, Luo, Sun, Zhang, He, Zhou (c29) 2019; 8
Tian, Shen, Zhang, Li, Jiang, Cui (c15) 2020; 8
Yu, Genevet, Kats, Aieta, Tetienne, Capasso, Gaburro (c21) 2011; 334
Nagatsuma, Ducournau, Renaud (c1) 2016; 10
Zheng, Muhlenbernd, Kenney, Li, Zentgraf, Zhang (c25) 2015; 10
Fu, Yang, Liu, Wu, Cui (c10) 2020; 8
Zhang, Yang, Yue, Xu, Tian, Zhang, Plum, Zhang, Han, Zhang (c36) 2019; 6
Zheng, Wang, Li, Li, Wang, Zhao, Li, Yue, Zhang, Zhang, Yao (c33) 2021; 9
Huang, Zhang, Zentgraf (c35) 2018; 7
Lee, Nirantar, Headland, Bhaskaran, Sriram, Fumeaux, Withayachumnankul (c38) 2018; 6
Zi, Xu, Wang, Tian, Li, Zhang, Han, Zhang (c23) 2018; 113
Zang, Yao, Li, Zhu, Xie, Chen, Balakin, Shkurinov, Zhu, Zhuang (c40) 2020; 9
Liu, Zhang, Kenney, Su, Xu, Ouyang, Shi, Han, Zhang, Zhang (c11) 2014; 26
Zhang, Tian, Yue, Gu, Zhang, Han, Zhang (c12) 2013; 25
Sun, He, Xiao, Xu, Li, Zhou (c20) 2012; 11
Tan, Fan, Chang (c44) 2020; 26
Venkatesh, Lu, Saeidi, Sengupta (c48) 2020; 3
Mittleman (c7) 2013; 7
Vicarelli, Vitiello, Coquillat, Lombardo, Ferrari, Knap, Polini, Pellegrini, Tredicucci (c8) 2012; 11
Davies, Burnett, Fan, Linfield, Cunningham (c3) 2008; 11
Xu, Xie, Ying (c6) 2017; 9
Zhang, Liu, Li, Cui (c32) 2017; 9
Li, Li, Wang, Liu, Zhang, Zeng, Wang, Sun, Zhao, Zhang (c43) 2019; 7
Li, Jun Cui, Ji, Liu, Ding, Wan, Bo Li, Jiang, Qiu, Zhang (c27) 2017; 8
Yin, Ye, Rho, Wang, Zhang (c28) 2013; 339
Liu, Yang, Rifat, Raj, Komar, Han, Rahmani, Hattori, Neshev, Powell, Shadrivov (c14) 2019; 7
Hasman, Kleiner, Biener, Niv (c39) 2003; 82
Peng, Parkinson, Boland, Gao, Wenas, Davies, Li, Fu, Johnston, Tan, Jagadish (c9) 2016; 16
Lan, Wang, Zeng, Liang, Song, Liu, Mazumder, Yang, Zhang, Mittleman (c47) 2023; 12
Cui, Qi, Wan, Zhao, Cheng (c18) 2014; 3
Wang, Cheng, Winsor, Liu (c50) 2016; 27
Chen, O’Hara, Azad, Taylor (c16) 2011; 5
Fan, Liu, Zhang, Zhu, Wang, Lin, Yan, Chen, Lezec, Lu, Agrawal, Xu (c41) 2020; 125
Milione, Evans, Nolan, Alfano (c31) 2012; 108
Xu, Li, Zhang, Wei, Xu, Wang, Zhang, Zhang, Hu, Zhang, Zhang, Zhang, Han, Zhang (c42) 2019; 6
Shao-he, Jiu-sheng, Jian-zhong (c37) 2019; 9
Menzel, Rockstuhl, Lederer (c49) 2010; 82
Jepsen, Cooke, Koch (c4) 2011; 5
Gong, Qiu, Chen, Zhao, Xia, Shao (c5) 2019; 55
Ling, Zhou, Yi, Shu, Liu, Chen, Luo, Wen, Fan (c30) 2015; 4
Kim, Kim, Kenney, Park, Kim, Min, Zhang (c45) 2018; 6
Ma, Shrestha, Adelberg, Yeh, Hossain, Knightly, Jornet, Mittleman (c2) 2018; 563
Zhao, Fan, Ji, Jiang, Tan, Chang (c46) 2022; 10
Sengupta, Nagatsuma, Mittleman (c13) 2018; 1
Deng, Li (c26) 2017; 3
Chen, Zhang, Li, Wu, Wu (c34) 2018; 26
Padilla, Basov, Smith (c17) 2006; 9
(2023092511320853200_c36) 2019; 6
(2023092511320853200_c30) 2015; 4
(2023092511320853200_c33) 2021; 9
(2023092511320853200_c7) 2013; 7
(2023092511320853200_c42) 2019; 6
(2023092511320853200_c40) 2020; 9
(2023092511320853200_c44) 2020; 26
(2023092511320853200_c15) 2020; 8
(2023092511320853200_c17) 2006; 9
(2023092511320853200_c46) 2022; 10
(2023092511320853200_c10) 2020; 8
(2023092511320853200_c1) 2016; 10
(2023092511320853200_c50) 2016; 27
(2023092511320853200_c14) 2019; 7
(2023092511320853200_c43) 2019; 7
(2023092511320853200_c37) 2019; 9
(2023092511320853200_c9) 2016; 16
(2023092511320853200_c34) 2018; 26
(2023092511320853200_c21) 2011; 334
(2023092511320853200_c45) 2018; 6
(2023092511320853200_c31) 2012; 108
(2023092511320853200_c49) 2010; 82
(2023092511320853200_c12) 2013; 25
(2023092511320853200_c27) 2017; 8
(2023092511320853200_c25) 2015; 10
(2023092511320853200_c8) 2012; 11
(2023092511320853200_c3) 2008; 11
(2023092511320853200_c4) 2011; 5
(2023092511320853200_c23) 2018; 113
(2023092511320853200_c5) 2019; 55
(2023092511320853200_c19) 2020; 23
(2023092511320853200_c28) 2013; 339
(2023092511320853200_c11) 2014; 26
(2023092511320853200_c22) 2013; 340
(2023092511320853200_c38) 2018; 6
(2023092511320853200_c47) 2023; 12
(2023092511320853200_c16) 2011; 5
(2023092511320853200_c6) 2017; 9
(2023092511320853200_c35) 2018; 7
(2023092511320853200_c2) 2018; 563
(2023092511320853200_c18) 2014; 3
(2023092511320853200_c20) 2012; 11
(2023092511320853200_c48) 2020; 3
(2023092511320853200_c24) 2018; 6
(2023092511320853200_c32) 2017; 9
(2023092511320853200_c39) 2003; 82
(2023092511320853200_c29) 2019; 8
(2023092511320853200_c13) 2018; 1
(2023092511320853200_c26) 2017; 3
(2023092511320853200_c41) 2020; 125
References_xml – volume: 6
  start-page: 24
  year: 2018
  ident: c24
  article-title: Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime
  publication-title: Photonics Res.
  contributor:
    fullname: Zhang
– volume: 55
  start-page: 418
  year: 2019
  ident: c5
  article-title: Biomedical applications of terahertz technology
  publication-title: Appl. Spectrosc. Rev.
  contributor:
    fullname: Shao
– volume: 12
  start-page: 191
  year: 2023
  ident: c47
  article-title: Real-time programmable metasurface for terahertz multifunctional wave front engineering
  publication-title: Light: Sci. Appl.
  contributor:
    fullname: Mittleman
– volume: 10
  start-page: 308
  year: 2015
  ident: c25
  article-title: Metasurface holograms reaching 80% efficiency
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 1700507
  year: 2018
  ident: c45
  article-title: Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Zhang
– volume: 9
  start-page: 1118
  year: 2019
  ident: c37
  article-title: Terahertz wave front manipulation based on Pancharatnam-Berry coding metasurface
  publication-title: Opt. Mater. Express
  contributor:
    fullname: Jian-zhong
– volume: 7
  start-page: 1900736
  year: 2019
  ident: c14
  article-title: Deeply subwavelength metasurface resonators for terahertz wavefront manipulation
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Shadrivov
– volume: 9
  start-page: 2002007
  year: 2021
  ident: c33
  article-title: All-dielectric metasurface for manipulating the superpositions of orbital angular momentum via spin-decoupling
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Yao
– volume: 16
  start-page: 4925
  year: 2016
  ident: c9
  article-title: Broadband phase-sensitive single InP nanowire photoconductive terahertz detectors
  publication-title: Nano Lett.
  contributor:
    fullname: Jagadish
– volume: 26
  start-page: 5031
  year: 2014
  ident: c11
  article-title: Broadband metasurfaces with simultaneous control of phase and amplitude
  publication-title: Adv. Mater.
  contributor:
    fullname: Zhang
– volume: 3
  start-page: e218
  year: 2014
  ident: c18
  article-title: Coding metamaterials, digital metamaterials and programmable metamaterials
  publication-title: Light: Sci. Appl.
  contributor:
    fullname: Cheng
– volume: 6
  start-page: 2933
  year: 2019
  ident: c42
  article-title: Spin-decoupled multifunctional metasurface for asymmetric polarization generation
  publication-title: ACS Photonics
  contributor:
    fullname: Zhang
– volume: 3
  start-page: 16
  year: 2017
  ident: c26
  article-title: Metasurface optical holography
  publication-title: Mater. Today Phys.
  contributor:
    fullname: Li
– volume: 11
  start-page: 426
  year: 2012
  ident: c20
  article-title: Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves
  publication-title: Nat. Mater.
  contributor:
    fullname: Zhou
– volume: 334
  start-page: 333
  year: 2011
  ident: c21
  article-title: Light propagation with phase discontinuities: Generalized laws of reflection and refraction
  publication-title: Science
  contributor:
    fullname: Gaburro
– volume: 3
  start-page: 785
  year: 2020
  ident: c48
  article-title: A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips
  publication-title: Nat. Electron.
  contributor:
    fullname: Sengupta
– volume: 7
  start-page: 1169
  year: 2018
  ident: c35
  article-title: Metasurface holography: From fundamentals to applications
  publication-title: Nanophotonics
  contributor:
    fullname: Zentgraf
– volume: 23
  start-page: 101403
  year: 2020
  ident: c19
  publication-title: iScience
  contributor:
    fullname: Cheng
– volume: 10
  start-page: 371
  year: 2016
  ident: c1
  article-title: Advances in terahertz communications accelerated by photonics
  publication-title: Nat. Photonics
  contributor:
    fullname: Renaud
– volume: 8
  start-page: 1900628
  year: 2020
  ident: c10
  article-title: Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Cui
– volume: 9
  start-page: 36447
  year: 2017
  ident: c32
  article-title: Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Cui
– volume: 11
  start-page: 18
  year: 2008
  ident: c3
  article-title: Terahertz spectroscopy of explosives and drugs
  publication-title: Mater. Today
  contributor:
    fullname: Cunningham
– volume: 6
  start-page: 1190
  year: 2019
  ident: c36
  article-title: Direct polarization measurement using a multiplexed Pancharatnam–Berry metahologram
  publication-title: Optica
  contributor:
    fullname: Zhang
– volume: 339
  start-page: 1405
  year: 2013
  ident: c28
  article-title: Photonic spin Hall effect at metasurfaces
  publication-title: Science
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 1801365
  year: 2019
  ident: c43
  article-title: Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Zhang
– volume: 563
  start-page: 89
  year: 2018
  ident: c2
  article-title: Security and eavesdropping in terahertz wireless links
  publication-title: Nature
  contributor:
    fullname: Mittleman
– volume: 82
  start-page: 053811
  year: 2010
  ident: c49
  article-title: Advanced Jones calculus for the classification of periodic metamaterials
  publication-title: Phys. Rev. A
  contributor:
    fullname: Lederer
– volume: 340
  start-page: 1304
  year: 2013
  ident: c22
  article-title: Terahertz metamaterials for linear polarization conversion and anomalous refraction
  publication-title: Science
  contributor:
    fullname: Chen
– volume: 9
  start-page: 1501
  year: 2020
  ident: c40
  article-title: Geometric phase for multidimensional manipulation of photonics spin Hall effect and helicity-dependent imaging
  publication-title: Nanophotonics
  contributor:
    fullname: Zhuang
– volume: 10
  start-page: 2658
  year: 2022
  ident: c46
  article-title: Active terahertz beam manipulation with photonic spin conversion based on a liquid crystal Pancharatnam-Berry metadevice
  publication-title: Photonics Res.
  contributor:
    fullname: Chang
– volume: 113
  start-page: 101104
  year: 2018
  ident: c23
  article-title: Antireflection-assisted all-dielectric terahertz metamaterial polarization converter
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 666
  year: 2013
  ident: c7
  article-title: Frontiers in terahertz sources and plasmonics
  publication-title: Nat. Photonics
  contributor:
    fullname: Mittleman
– volume: 1
  start-page: 622
  year: 2018
  ident: c13
  article-title: Terahertz integrated electronic and hybrid electronic-photonic systems
  publication-title: Nat. Electron.
  contributor:
    fullname: Mittleman
– volume: 9
  start-page: 28
  year: 2006
  ident: c17
  article-title: Negative refractive index metamaterials
  publication-title: Mater. Today
  contributor:
    fullname: Smith
– volume: 125
  start-page: 267402
  year: 2020
  ident: c41
  article-title: Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Xu
– volume: 26
  start-page: 4700108
  year: 2020
  ident: c44
  article-title: Active broadband manipulation of terahertz photonic spin based on gyrotropic Pancharatnam-Berry metasurface
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  contributor:
    fullname: Chang
– volume: 82
  start-page: 328
  year: 2003
  ident: c39
  article-title: Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Niv
– volume: 25
  start-page: 4567
  year: 2013
  ident: c12
  article-title: Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities
  publication-title: Adv. Mater.
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 1700852
  year: 2018
  ident: c38
  article-title: Broadband terahertz circular-polarization beam splitter
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Withayachumnankul
– volume: 8
  start-page: 16
  year: 2019
  ident: c29
  article-title: Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces
  publication-title: Light: Sci. Appl.
  contributor:
    fullname: Zhou
– volume: 27
  start-page: 412001
  year: 2016
  ident: c50
  article-title: Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications
  publication-title: Nanotechnology
  contributor:
    fullname: Liu
– volume: 108
  start-page: 190401
  year: 2012
  ident: c31
  article-title: Higher order Pancharatnam-Berry phase and the angular momentum of light
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Alfano
– volume: 26
  start-page: 34919
  year: 2018
  ident: c34
  article-title: A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation
  publication-title: Opt. Express
  contributor:
    fullname: Wu
– volume: 8
  start-page: 584077
  year: 2020
  ident: c15
  article-title: Terahertz metasurfaces: Toward multifunctional and programmable wave manipulation
  publication-title: Front. Phys.
  contributor:
    fullname: Cui
– volume: 5
  start-page: 513
  year: 2011
  ident: c16
  article-title: Manipulation of terahertz radiation using metamaterials
  publication-title: Laser Photonics Rev.
  contributor:
    fullname: Taylor
– volume: 9
  start-page: 13864
  year: 2017
  ident: c6
  article-title: Mechanisms and applications of terahertz metamaterial sensing: A review
  publication-title: Nanoscale
  contributor:
    fullname: Ying
– volume: 11
  start-page: 865
  year: 2012
  ident: c8
  article-title: Graphene field-effect transistors as room-temperature terahertz detectors
  publication-title: Nat. Mater.
  contributor:
    fullname: Tredicucci
– volume: 4
  start-page: e290
  year: 2015
  ident: c30
  article-title: Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence
  publication-title: Light: Sci. Appl.
  contributor:
    fullname: Fan
– volume: 5
  start-page: 124
  year: 2011
  ident: c4
  article-title: Terahertz spectroscopy and imaging—Modern techniques and applications
  publication-title: Laser Photonics Rev.
  contributor:
    fullname: Koch
– volume: 8
  start-page: 197
  year: 2017
  ident: c27
  article-title: Electromagnetic reprogrammable coding-metasurface holograms
  publication-title: Nat. Commun.
  contributor:
    fullname: Zhang
– volume: 563
  start-page: 89
  year: 2018
  ident: 2023092511320853200_c2
  article-title: Security and eavesdropping in terahertz wireless links
  publication-title: Nature
  doi: 10.1038/s41586-018-0609-x
– volume: 6
  start-page: 2933
  year: 2019
  ident: 2023092511320853200_c42
  article-title: Spin-decoupled multifunctional metasurface for asymmetric polarization generation
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b01047
– volume: 16
  start-page: 4925
  year: 2016
  ident: 2023092511320853200_c9
  article-title: Broadband phase-sensitive single InP nanowire photoconductive terahertz detectors
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01528
– volume: 7
  start-page: 1900736
  year: 2019
  ident: 2023092511320853200_c14
  article-title: Deeply subwavelength metasurface resonators for terahertz wavefront manipulation
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900736
– volume: 9
  start-page: 2002007
  year: 2021
  ident: 2023092511320853200_c33
  article-title: All-dielectric metasurface for manipulating the superpositions of orbital angular momentum via spin-decoupling
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202002007
– volume: 340
  start-page: 1304
  year: 2013
  ident: 2023092511320853200_c22
  article-title: Terahertz metamaterials for linear polarization conversion and anomalous refraction
  publication-title: Science
  doi: 10.1126/science.1235399
– volume: 10
  start-page: 2658
  year: 2022
  ident: 2023092511320853200_c46
  article-title: Active terahertz beam manipulation with photonic spin conversion based on a liquid crystal Pancharatnam-Berry metadevice
  publication-title: Photonics Res.
  doi: 10.1364/prj.471282
– volume: 5
  start-page: 124
  year: 2011
  ident: 2023092511320853200_c4
  article-title: Terahertz spectroscopy and imaging—Modern techniques and applications
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201000011
– volume: 113
  start-page: 101104
  year: 2018
  ident: 2023092511320853200_c23
  article-title: Antireflection-assisted all-dielectric terahertz metamaterial polarization converter
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5042784
– volume: 8
  start-page: 584077
  year: 2020
  ident: 2023092511320853200_c15
  article-title: Terahertz metasurfaces: Toward multifunctional and programmable wave manipulation
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.584077
– volume: 82
  start-page: 053811
  year: 2010
  ident: 2023092511320853200_c49
  article-title: Advanced Jones calculus for the classification of periodic metamaterials
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.82.053811
– volume: 1
  start-page: 622
  year: 2018
  ident: 2023092511320853200_c13
  article-title: Terahertz integrated electronic and hybrid electronic-photonic systems
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0173-2
– volume: 3
  start-page: 785
  year: 2020
  ident: 2023092511320853200_c48
  article-title: A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00497-2
– volume: 10
  start-page: 308
  year: 2015
  ident: 2023092511320853200_c25
  article-title: Metasurface holograms reaching 80% efficiency
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.2
– volume: 27
  start-page: 412001
  year: 2016
  ident: 2023092511320853200_c50
  article-title: Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/41/412001
– volume: 55
  start-page: 418
  year: 2019
  ident: 2023092511320853200_c5
  article-title: Biomedical applications of terahertz technology
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2019.1670202
– volume: 125
  start-page: 267402
  year: 2020
  ident: 2023092511320853200_c41
  article-title: Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.125.267402
– volume: 8
  start-page: 197
  year: 2017
  ident: 2023092511320853200_c27
  article-title: Electromagnetic reprogrammable coding-metasurface holograms
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00164-9
– volume: 6
  start-page: 1190
  year: 2019
  ident: 2023092511320853200_c36
  article-title: Direct polarization measurement using a multiplexed Pancharatnam–Berry metahologram
  publication-title: Optica
  doi: 10.1364/optica.6.001190
– volume: 6
  start-page: 1700852
  year: 2018
  ident: 2023092511320853200_c38
  article-title: Broadband terahertz circular-polarization beam splitter
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700852
– volume: 9
  start-page: 28
  year: 2006
  ident: 2023092511320853200_c17
  article-title: Negative refractive index metamaterials
  publication-title: Mater. Today
  doi: 10.1016/s1369-7021(06)71573-5
– volume: 6
  start-page: 24
  year: 2018
  ident: 2023092511320853200_c24
  article-title: Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime
  publication-title: Photonics Res.
  doi: 10.1364/prj.6.000024
– volume: 7
  start-page: 666
  year: 2013
  ident: 2023092511320853200_c7
  article-title: Frontiers in terahertz sources and plasmonics
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.235
– volume: 25
  start-page: 4567
  year: 2013
  ident: 2023092511320853200_c12
  article-title: Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204850
– volume: 5
  start-page: 513
  year: 2011
  ident: 2023092511320853200_c16
  article-title: Manipulation of terahertz radiation using metamaterials
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201000043
– volume: 11
  start-page: 865
  year: 2012
  ident: 2023092511320853200_c8
  article-title: Graphene field-effect transistors as room-temperature terahertz detectors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3417
– volume: 26
  start-page: 5031
  year: 2014
  ident: 2023092511320853200_c11
  article-title: Broadband metasurfaces with simultaneous control of phase and amplitude
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401484
– volume: 10
  start-page: 371
  year: 2016
  ident: 2023092511320853200_c1
  article-title: Advances in terahertz communications accelerated by photonics
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.65
– volume: 11
  start-page: 426
  year: 2012
  ident: 2023092511320853200_c20
  article-title: Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3292
– volume: 8
  start-page: 16
  year: 2019
  ident: 2023092511320853200_c29
  article-title: Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-019-0127-0
– volume: 82
  start-page: 328
  year: 2003
  ident: 2023092511320853200_c39
  article-title: Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1539300
– volume: 9
  start-page: 13864
  year: 2017
  ident: 2023092511320853200_c6
  article-title: Mechanisms and applications of terahertz metamaterial sensing: A review
  publication-title: Nanoscale
  doi: 10.1039/c7nr03824k
– volume: 7
  start-page: 1801365
  year: 2019
  ident: 2023092511320853200_c43
  article-title: Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801365
– volume: 12
  start-page: 191
  year: 2023
  ident: 2023092511320853200_c47
  article-title: Real-time programmable metasurface for terahertz multifunctional wave front engineering
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-023-01228-w
– volume: 334
  start-page: 333
  year: 2011
  ident: 2023092511320853200_c21
  article-title: Light propagation with phase discontinuities: Generalized laws of reflection and refraction
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 108
  start-page: 190401
  year: 2012
  ident: 2023092511320853200_c31
  article-title: Higher order Pancharatnam-Berry phase and the angular momentum of light
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.108.190401
– volume: 9
  start-page: 1118
  year: 2019
  ident: 2023092511320853200_c37
  article-title: Terahertz wave front manipulation based on Pancharatnam-Berry coding metasurface
  publication-title: Opt. Mater. Express
  doi: 10.1364/ome.9.001118
– volume: 8
  start-page: 1900628
  year: 2020
  ident: 2023092511320853200_c10
  article-title: Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900628
– volume: 11
  start-page: 18
  year: 2008
  ident: 2023092511320853200_c3
  article-title: Terahertz spectroscopy of explosives and drugs
  publication-title: Mater. Today
  doi: 10.1016/s1369-7021(08)70016-6
– volume: 3
  start-page: e218
  year: 2014
  ident: 2023092511320853200_c18
  article-title: Coding metamaterials, digital metamaterials and programmable metamaterials
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2014.99
– volume: 4
  start-page: e290
  year: 2015
  ident: 2023092511320853200_c30
  article-title: Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence
  publication-title: Light: Sci. Appl.
  doi: 10.1038/lsa.2015.63
– volume: 26
  start-page: 34919
  year: 2018
  ident: 2023092511320853200_c34
  article-title: A high-efficiency dual-wavelength achromatic metalens based on Pancharatnam-Berry phase manipulation
  publication-title: Opt. Express
  doi: 10.1364/oe.26.034919
– volume: 7
  start-page: 1169
  year: 2018
  ident: 2023092511320853200_c35
  article-title: Metasurface holography: From fundamentals to applications
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2017-0118
– volume: 6
  start-page: 1700507
  year: 2018
  ident: 2023092511320853200_c45
  article-title: Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700507
– volume: 3
  start-page: 16
  year: 2017
  ident: 2023092511320853200_c26
  article-title: Metasurface optical holography
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2017.11.001
– volume: 339
  start-page: 1405
  year: 2013
  ident: 2023092511320853200_c28
  article-title: Photonic spin Hall effect at metasurfaces
  publication-title: Science
  doi: 10.1126/science.1231758
– volume: 9
  start-page: 1501
  year: 2020
  ident: 2023092511320853200_c40
  article-title: Geometric phase for multidimensional manipulation of photonics spin Hall effect and helicity-dependent imaging
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0115
– volume: 23
  start-page: 101403
  year: 2020
  ident: 2023092511320853200_c19
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101403
– volume: 26
  start-page: 4700108
  year: 2020
  ident: 2023092511320853200_c44
  article-title: Active broadband manipulation of terahertz photonic spin based on gyrotropic Pancharatnam-Berry metasurface
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/jstqe.2020.2984560
– volume: 9
  start-page: 36447
  year: 2017
  ident: 2023092511320853200_c32
  article-title: Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12468
SSID ssj0001671945
Score 2.3161125
Snippet Ultra-compact and tunable devices for terahertz (THz) beam manipulation are highly desired in wireless communication and radar scanning. Although the...
SourceID doaj
crossref
scitation
SourceType Open Website
Aggregation Database
Publisher
StartPage 096112
SummonAdditionalLinks – databaseName: AIP Open Access Journals
  dbid: AJDQP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5Ke1APvsX6YrFeF2OS3U2O9VFKD6LQQm9hn-ChsTQR0V_vbJK2eih4CSTZEJjNznzfzOYbgBslrdKBtvTOBJrGSAioxCPlyOLCWKhY12qfz3w4iUdTNm1Bb0MFn0e3XlaTJ8xTnE4o0iBsQ6c_enx9WadSuEAqzpa6Qb-f-RNtKlH-HdjC2FKXuX9FksE-7DYQkPTrOTuAls0PYa-Bg6RZbMURfI4tegK7KL-JloXfx27IzJY-p-f8RiqCeJMotDQp5m85Lb5mM98eSxOZGyLXp8rKGfGNUBb1TwwF8clXIitPR-a-TRreLlatr45hMngaPwxp0yeB6oizkjKpvQyXTnXCo5AlShstXcwQa_DU10GRVikltTKhi4w0kRE8sMiLEds4BNfRCbTz99yeAhGCm0C4RHHNY8ms5InRSWCUMJ642C5cL-2ZzWs5jKwqY_MoY1lj9C7ce0uvBngF6-oCTmvWLIgsDVWkYiFZIC1CsjjhxjpjEY0649DxdKG3mqfNrzr716hz2PZd4uutYRfQLhcf9hKxRKmumm_pBwRnyDE
  priority: 102
  providerName: American Institute of Physics
Title Terahertz cascaded metasurfaces for both spin-symmetric and asymmetric beam diffractions with active power distribution
URI http://dx.doi.org/10.1063/5.0168561
https://doaj.org/article/92b3b47a50ae441486defde774fdf307
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHtSDb7E-yqJel6bdV3Ksj1J6EIUWegv7CnhILE1E9Nc7m01rPYgXL4E8YMNMsvN9O7PfIHSjldMmMo70bGQIA0JAFByJABbXZ1IzE9Q-H8VoysYzPltr9eVrwoI8cDBcN-lrqplUPFIOQjeLhXWZdYBaMpvRZh95lKyRqXp1RUhg53wpJSRo16tzipiL3o8AVOv076AtCDch870WXIb7aLdBhXgQ3uYAbbjiEO01CBE3_195hN4nDiYHt6g-sVGlL223OHeVX-bLfG0VBgiKNRgfl_OXgpQfee47ZhmsCovV96l2Kse-N8oi7GsosV-Pxaqe_PDcd06D2-WqG9Yxmg4fJncj0rROIIYKXhGujFfmMomJBe3zWBtrVMY4wA-R-NQoMC2tldG2n1GrLLVSRA6oMsCdDPA2PUGt4rVwpwhLKWwks1gLI5jiTonYmjiyWlrPZVwbXS3tmc6DQkZaZ7YFTXnaGL2Nbr2lVw94Uev6Arg6bVyd_uXqNrpe-en3oc7-Y6hztO37yodisgvUqhZv7hLQR6U7aHMwvn9-6tQf3Bd9j9xj
link.rule.ids 315,783,787,867,2109,27902,27936,27937,76737
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7C5pD20CR9kM1TNL2qcWxL8h7zZJNslhZ2YW9GL0Mg65q1Q2h_fWbW2kcPhV4MtmUsZmzpm9Ho-wC-Ge2Njazn5y6yPMWAgGs8colRXJwqk9qW7XMo--P0fiImoTaH9sJgJ-rv-qlqKYKr6iwYkD8j5nypVoQDMjkjwk2ZCQp-NhXprXRg8-L--uePVZJFKgzSxYJRaP2Zv-ahOV3_e9jCWaddAF-bY2534EMAh-yi7cwubPjyI2wHoMjCb1h_gteRxzHCz5o_zOqaKtwdm_qGsn0FlVgxRKLMoA9YXT2VvP49nZJwlmW6dEyvTo3XU0YSKbN2e0PNKC3L9HwMZBUJqOHteimK9RnGtzejqz4PCgrcJlI0XGhLBF22ZzOZxCIz1lldpAJRiOzRCikGXMZoa1xcJE67xCkZeYyYEfUUCLuTL9Apf5V-D5hS0kWqyIy0MtXCa5k5m0XOKEchje_C14U986olysjnC9wyyUUejN6FS7L0sgFxW88voLfz4Om8F5vEpEqLSHsEa2kmnS-cR5xauAKHpC6cLv3071ft_1erE9jqjx4H-eBu-HAA70hLvi0gO4ROM3vxR4g4GnMcvqs3KgzVQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terahertz+cascaded+metasurfaces+for+both+spin-symmetric+and+asymmetric+beam+diffractions+with+active+power+distribution&rft.jtitle=APL+photonics&rft.au=Jiayue+Liu&rft.au=Fei+Fan&rft.au=Zhiyu+Tan&rft.au=Huijun+Zhao&rft.date=2023-09-01&rft.pub=AIP+Publishing+LLC&rft.eissn=2378-0967&rft.volume=8&rft.issue=9&rft.spage=096112&rft.epage=096112-10&rft_id=info:doi/10.1063%2F5.0168561&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_92b3b47a50ae441486defde774fdf307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2378-0967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2378-0967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2378-0967&client=summon