Laser-induced photopatterning of organic–inorganic TiO2-based hybrid materials with tunable interfacial electron transfer

Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-b...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 11; no. 8; pp. 1248 - 1257
Main Authors Kuznetsov, A. I., Kameneva, O., Bityurin, N., Rozes, L., Sanchez, C., Kanaev, A.
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-based gel, and the organic, poly(hydroxyethyl methacrylate) networks allows (i) a rapid scavenging of the photo-excited holes by the polymer, (ii) an efficient trapping of the photo-exited electrons as small polarons (Ti(3+)) that develop "dark" absorption continuum covering the spectral range from 350 nm (UV) to 2.5 microm (IR), and (iii) long-term (over months) conservation of trapped charges at high number density. Furthermore, we give the proof that the electron transfer depends on the material microstructure, which can be affected by the material chemistry and processing. Undeniably, a delay between the gelation of the system and the organic polymerization step allows tuning the photochromic responses of the resulting nanocomposites. A comparison is made between the prepared gel-based samples and a reference sample, which is obtained by the organic copolymerization of functional precondensed inorganic building units, titanium oxo-clusters, Ti(16)O(16)(OEt)(24)(OEMA)(8) with hydroxyethyl methacrylate. The experiments show the highest values of quantum yield (12%) and Ti(3+) concentration (1.7 x 10(20) cm(-3) or 14% of titanium atoms) attained in samples where the organic polymerization is induced after gelation. This behavior is explained by a strong coupling between the organic and the inorganic components of the hybrid towards the hole exchange and a poor coupling towards the electron exchange.
AbstractList Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-based gel, and the organic, poly(hydroxyethyl methacrylate) networks allows (i) a rapid scavenging of the photo-excited holes by the polymer, (ii) an efficient trapping of the photo-exited electrons as small polarons (Ti(3+)) that develop "dark" absorption continuum covering the spectral range from 350 nm (UV) to 2.5 microm (IR), and (iii) long-term (over months) conservation of trapped charges at high number density. Furthermore, we give the proof that the electron transfer depends on the material microstructure, which can be affected by the material chemistry and processing. Undeniably, a delay between the gelation of the system and the organic polymerization step allows tuning the photochromic responses of the resulting nanocomposites. A comparison is made between the prepared gel-based samples and a reference sample, which is obtained by the organic copolymerization of functional precondensed inorganic building units, titanium oxo-clusters, Ti(16)O(16)(OEt)(24)(OEMA)(8) with hydroxyethyl methacrylate. The experiments show the highest values of quantum yield (12%) and Ti(3+) concentration (1.7 x 10(20) cm(-3) or 14% of titanium atoms) attained in samples where the organic polymerization is induced after gelation. This behavior is explained by a strong coupling between the organic and the inorganic components of the hybrid towards the hole exchange and a poor coupling towards the electron exchange.
Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-based gel, and the organic, poly(hydroxyethyl methacrylate) networks allows (i) a rapid scavenging of the photo-excited holes by the polymer, (ii) an efficient trapping of the photo-exited electrons as small polarons (Ti(3+)) that develop "dark" absorption continuum covering the spectral range from 350 nm (UV) to 2.5 microm (IR), and (iii) long-term (over months) conservation of trapped charges at high number density. Furthermore, we give the proof that the electron transfer depends on the material microstructure, which can be affected by the material chemistry and processing. Undeniably, a delay between the gelation of the system and the organic polymerization step allows tuning the photochromic responses of the resulting nanocomposites. A comparison is made between the prepared gel-based samples and a reference sample, which is obtained by the organic copolymerization of functional precondensed inorganic building units, titanium oxo-clusters, Ti(16)O(16)(OEt)(24)(OEMA)(8) with hydroxyethyl methacrylate. The experiments show the highest values of quantum yield (12%) and Ti(3+) concentration (1.7 x 10(20) cm(-3) or 14% of titanium atoms) attained in samples where the organic polymerization is induced after gelation. This behavior is explained by a strong coupling between the organic and the inorganic components of the hybrid towards the hole exchange and a poor coupling towards the electron exchange.Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-based gel, and the organic, poly(hydroxyethyl methacrylate) networks allows (i) a rapid scavenging of the photo-excited holes by the polymer, (ii) an efficient trapping of the photo-exited electrons as small polarons (Ti(3+)) that develop "dark" absorption continuum covering the spectral range from 350 nm (UV) to 2.5 microm (IR), and (iii) long-term (over months) conservation of trapped charges at high number density. Furthermore, we give the proof that the electron transfer depends on the material microstructure, which can be affected by the material chemistry and processing. Undeniably, a delay between the gelation of the system and the organic polymerization step allows tuning the photochromic responses of the resulting nanocomposites. A comparison is made between the prepared gel-based samples and a reference sample, which is obtained by the organic copolymerization of functional precondensed inorganic building units, titanium oxo-clusters, Ti(16)O(16)(OEt)(24)(OEMA)(8) with hydroxyethyl methacrylate. The experiments show the highest values of quantum yield (12%) and Ti(3+) concentration (1.7 x 10(20) cm(-3) or 14% of titanium atoms) attained in samples where the organic polymerization is induced after gelation. This behavior is explained by a strong coupling between the organic and the inorganic components of the hybrid towards the hole exchange and a poor coupling towards the electron exchange.
Author Rozes, L.
Sanchez, C.
Kuznetsov, A. I.
Bityurin, N.
Kameneva, O.
Kanaev, A.
Author_xml – sequence: 1
  givenname: A. I.
  surname: Kuznetsov
  fullname: Kuznetsov, A. I.
– sequence: 2
  givenname: O.
  surname: Kameneva
  fullname: Kameneva, O.
– sequence: 3
  givenname: N.
  surname: Bityurin
  fullname: Bityurin, N.
– sequence: 4
  givenname: L.
  surname: Rozes
  fullname: Rozes, L.
– sequence: 5
  givenname: C.
  surname: Sanchez
  fullname: Sanchez, C.
– sequence: 6
  givenname: A.
  surname: Kanaev
  fullname: Kanaev, A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21190594$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19209369$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00411457$$DView record in HAL
BookMark eNplkc1uFDEMxyNURD9A4glQLiA4TIknmY8cqwoo0kq9lPPIk3i6qWaTJcmAKi68A2_Ik5Bqt4sEF9uyf_-_ZPuUHfngibGXIM5BSP1-7EEpre6esBNQray06NXRoe7aY3aa0p0QAhqQz9gx6Fpo2eoT9mOFiWLlvF0MWb5dhxy2mDNF7_wtDxMP8Ra9M79__nJ-X_Mbd11XY1Favr4fo7N8g0XicE78u8trnheP40zc-dKe0JQJp5lMjsHzHNGnieJz9nQqCnqxz2fsy8cPN5dX1er60-fLi1VlZNvkqtFiqlttahQaNQlr9CjbXk2yNnU_AlFnCPquNlbJHq1sBJbYd70C2Sorz9i7ne8a52Eb3Qbj_RDQDVcXq-GhJ4QCUE33DQr7ZsduY_i6UMrDxiVD84yewpKGttUgAboCvtqDy7ghe_B9PG0BXu8BTAbnqSxtXDpwNYAWjVaFe7vjTAwpRZr-Wonh4bvD43cLev4PalzG7IIvJ3Xz_4I_z9WngQ
CitedBy_id crossref_primary_10_1021_acs_chemmater_7b03320
crossref_primary_10_1016_j_cej_2018_11_132
crossref_primary_10_1364_OME_3_000533
crossref_primary_10_1016_j_ccr_2021_213886
crossref_primary_10_1039_c1py00341k
crossref_primary_10_1080_15421406_2011_538333
crossref_primary_10_1039_c3dt50399b
crossref_primary_10_1039_c3tc30432a
crossref_primary_10_1016_j_jeurceramsoc_2025_117332
crossref_primary_10_1039_c2cc33969b
crossref_primary_10_1007_s00339_012_7213_y
crossref_primary_10_1016_j_jlumin_2011_12_072
crossref_primary_10_1134_S1063783413020248
crossref_primary_10_3390_ma7053956
crossref_primary_10_1002_ejic_201000807
crossref_primary_10_1016_j_crci_2009_06_001
crossref_primary_10_1021_acs_jpcc_6b13068
crossref_primary_10_1007_s10853_022_08090_y
crossref_primary_10_1016_j_polymer_2016_10_008
crossref_primary_10_1016_j_apcatb_2024_123692
crossref_primary_10_1364_JOT_78_000537
crossref_primary_10_1088_2053_1591_1_4_045039
crossref_primary_10_1039_C4CP05149A
crossref_primary_10_1039_c0nr00909a
crossref_primary_10_1002_cssc_201501353
crossref_primary_10_1002_asia_202100588
crossref_primary_10_1039_c0jm04047a
crossref_primary_10_3390_catal13020423
crossref_primary_10_1021_acs_chemmater_4c01141
crossref_primary_10_1016_j_polymer_2011_07_056
crossref_primary_10_1039_C8NR07868H
crossref_primary_10_15407_ujpe58_12_1132
crossref_primary_10_1021_cm402528b
crossref_primary_10_1007_s13233_012_0045_y
crossref_primary_10_1016_j_ceramint_2024_07_456
crossref_primary_10_1002_pola_24695
crossref_primary_10_1039_b924840d
crossref_primary_10_1002_lpor_202301326
crossref_primary_10_1039_c0cs00137f
crossref_primary_10_1016_j_jcat_2019_05_008
crossref_primary_10_1021_ja903726m
crossref_primary_10_1016_j_materresbull_2019_02_013
crossref_primary_10_1002_aenm_202200352
crossref_primary_10_1021_acsomega_4c05121
crossref_primary_10_1039_C4NR01788A
crossref_primary_10_1016_j_synthmet_2013_10_025
crossref_primary_10_1039_C7CS00511C
Cites_doi 10.1016/j.cplett.2004.09.046
10.1002/(SICI)1521-4095(199912)11:18<1508::AID-ADMA1508>3.0.CO;2-V
10.1002/app.20909
10.1016/S0009-2614(02)01758-X
10.1016/j.jnoncrysol.2004.09.001
10.1063/1.1568544
10.1002/adma.200300389
10.1002/qua.21088
10.1021/ma0507239
10.1021/jp0559581
10.1134/S1028335806030013
10.1021/j100329a027
10.1103/PhysRevE.71.021403
10.1364/OE.15.005782
10.1103/PhysRevE.48.3692
10.1021/j100045a027
10.1016/j.cplett.2006.07.099
10.1002/adma.200602264
10.1016/S0040-6090(99)00082-6
10.1016/S0927-7757(99)00249-6
10.1016/S0022-3093(99)00885-6
10.1021/j100210a010
10.1039/b507305g
10.1016/j.apsusc.2005.03.083
10.1103/PhysRevB.15.3229
10.1021/cm000937z
10.1039/B710800A
10.1007/s00339-006-3577-1
10.1111/j.1551-2916.2006.01259.x
10.1007/s00706-006-0464-6
10.1021/cm950331o
10.1039/b509097k
10.1021/jp9505800
10.1111/j.1151-2916.2003.tb03371.x
10.1021/ja043330i
10.1016/j.optmat.2004.10.011
10.1016/S0009-2614(03)00612-2
10.1016/S0030-4018(00)00976-7
ContentType Journal Article
Copyright 2009 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1039/b814494j
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 1257
ExternalDocumentID oai_HAL_hal_00411457v1
19209369
21190594
10_1039_b814494j
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
UMC
ID FETCH-LOGICAL-c365t-590f269c2a09a9e0dc9b3684f32c28b1ee7ce1872cd438ad350aad387841364d3
ISSN 1463-9076
IngestDate Fri May 09 12:16:15 EDT 2025
Fri Jul 11 01:09:59 EDT 2025
Mon Jul 21 05:17:15 EDT 2025
Mon Jul 21 09:17:45 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Jul 01 02:06:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-590f269c2a09a9e0dc9b3684f32c28b1ee7ce1872cd438ad350aad387841364d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19209369
PQID 66913117
PQPubID 23479
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_00411457v1
proquest_miscellaneous_66913117
pubmed_primary_19209369
pascalfrancis_primary_21190594
crossref_primary_10_1039_b814494j
crossref_citationtrail_10_1039_b814494j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2009
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Jiang (b814494j-(cit6)/*[position()=1]) 2000; 185
Escribano (b814494j-(cit5)/*[position()=1]) 2008; 18
Blanc (b814494j-(cit11)/*[position()=1]) 1999; 11
Kameneva (b814494j-(cit22)/*[position()=1]) 2006; 51
Kuznetsov (b814494j-(cit18)/*[position()=1]) 2005; 71
Blanchard (b814494j-(cit27)/*[position()=1]) 2000; 265
Yoshida (b814494j-(cit7)/*[position()=1]) 1996; 8
Kallala (b814494j-(cit28)/*[position()=1]) 1993; 48
Fadeeva (b814494j-(cit23)/*[position()=1]) 2006; 84
Passinger (b814494j-(cit15)/*[position()=1]) 2007; 19
Yeh (b814494j-(cit9)/*[position()=1]) 2004; 94
Sanchez (b814494j-(cit4)/*[position()=1]) 2003; 15
Luo (b814494j-(cit12)/*[position()=2]) 2005; 351
Rozes (b814494j-(cit24)/*[position()=1]) 2006; 137
Lundquist (b814494j-(cit33)/*[position()=1]) 2006; 106
Luo (b814494j-(cit12)/*[position()=1]) 2005; 27
Daude (b814494j-(cit36)/*[position()=1]) 1977; 15
Elim (b814494j-(cit10)/*[position()=1]) 2003; 82
Segawa (b814494j-(cit16)/*[position()=2]) 2006; 89
Segawa (b814494j-(cit16)/*[position()=1]) 2003; 86
Kuznetsov (b814494j-(cit20)/*[position()=1]) 2007; 15
Trabelsi (b814494j-(cit26)/*[position()=1]) 2005; 38
Kormann (b814494j-(cit38)/*[position()=1]) 1988; 92
Kuznetsov (b814494j-(cit19)/*[position()=1]) 2006; 110
Rivallin (b814494j-(cit32)/*[position()=1]) 2005; 398
Fornasieri (b814494j-(cit25)/*[position()=1]) 2005; 127
Serpone (b814494j-(cit39)/*[position()=1]) 1995; 99
Bityurin (b814494j-(cit31)/*[position()=1]) 2003; 367
Lee (b814494j-(cit8)/*[position()=1]) 2001; 13
Kameneva (b814494j-(cit21)/*[position()=1]) 2005; 15
Henglein (b814494j-(cit37)/*[position()=1]) 1982; 86
Sanchez (b814494j-(cit3)/*[position()=1]) 2005; 15
Kuznetsov (b814494j-(cit34)/*[position()=1]) 2006; 429
Tohge (b814494j-(cit13)/*[position()=1]) 1999; 351
Bityurin (b814494j-(cit35)/*[position()=1]) 2005; 248
Sun (b814494j-(cit40)/*[position()=1]) 1996; 100
Bityurin (b814494j-(cit17)/*[position()=1]) 2003; 374
Ponton (b814494j-(cit30)/*[position()=1]) 1999; 162
References_xml – volume: 398
  start-page: 157
  year: 2005
  ident: b814494j-(cit32)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.09.046
– volume: 11
  start-page: 1508
  year: 1999
  ident: b814494j-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199912)11:18<1508::AID-ADMA1508>3.0.CO;2-V
– volume: 94
  start-page: 400
  year: 2004
  ident: b814494j-(cit9)/*[position()=1]
  publication-title: J. Appl. Polymer Sci.
  doi: 10.1002/app.20909
– volume: 367
  start-page: 690
  year: 2003
  ident: b814494j-(cit31)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01758-X
– volume: 351
  start-page: 29
  year: 2005
  ident: b814494j-(cit12)/*[position()=2]
  publication-title: J. Non-Cryst. Sol.
  doi: 10.1016/j.jnoncrysol.2004.09.001
– volume: 82
  start-page: 2691
  year: 2003
  ident: b814494j-(cit10)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1568544
– volume: 15
  start-page: 1969
  year: 2003
  ident: b814494j-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200300389
– volume: 106
  start-page: 3214
  year: 2006
  ident: b814494j-(cit33)/*[position()=1]
  publication-title: Int. J. Quant. Chem.
  doi: 10.1002/qua.21088
– volume: 38
  start-page: 6068
  year: 2005
  ident: b814494j-(cit26)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma0507239
– volume: 110
  start-page: 435
  year: 2006
  ident: b814494j-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0559581
– volume: 51
  start-page: 103
  year: 2006
  ident: b814494j-(cit22)/*[position()=1]
  publication-title: Doklady Physics.
  doi: 10.1134/S1028335806030013
– volume: 92
  start-page: 5196
  year: 1988
  ident: b814494j-(cit38)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100329a027
– volume: 71
  start-page: 021403
  year: 2005
  ident: b814494j-(cit18)/*[position()=1]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.021403
– volume: 15
  start-page: 5782
  year: 2007
  ident: b814494j-(cit20)/*[position()=1]
  publication-title: Optics Express
  doi: 10.1364/OE.15.005782
– volume: 48
  start-page: 3692
  year: 1993
  ident: b814494j-(cit28)/*[position()=1]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.48.3692
– volume: 99
  start-page: 16655
  year: 1995
  ident: b814494j-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100045a027
– volume: 429
  start-page: 523
  year: 2006
  ident: b814494j-(cit34)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.07.099
– volume: 19
  start-page: 1218
  year: 2007
  ident: b814494j-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602264
– volume: 351
  start-page: 85
  year: 1999
  ident: b814494j-(cit13)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00082-6
– volume: 162
  start-page: 177
  year: 1999
  ident: b814494j-(cit30)/*[position()=1]
  publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects
  doi: 10.1016/S0927-7757(99)00249-6
– volume: 265
  start-page: 83
  year: 2000
  ident: b814494j-(cit27)/*[position()=1]
  publication-title: J. Non-Cryst. Sol.
  doi: 10.1016/S0022-3093(99)00885-6
– volume: 86
  start-page: 241
  year: 1982
  ident: b814494j-(cit37)/*[position()=1]
  publication-title: Phys. Chem.
  doi: 10.1021/j100210a010
– volume: 15
  start-page: 3380
  year: 2005
  ident: b814494j-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b507305g
– volume: 248
  start-page: 86
  year: 2005
  ident: b814494j-(cit35)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2005.03.083
– volume: 15
  start-page: 3229
  year: 1977
  ident: b814494j-(cit36)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.15.3229
– volume: 13
  start-page: 1137
  year: 2001
  ident: b814494j-(cit8)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm000937z
– volume: 18
  start-page: 23
  year: 2008
  ident: b814494j-(cit5)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B710800A
– volume: 84
  start-page: 27
  year: 2006
  ident: b814494j-(cit23)/*[position()=1]
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-006-3577-1
– volume: 89
  start-page: 3507
  year: 2006
  ident: b814494j-(cit16)/*[position()=2]
  publication-title: J. Am. Cer. Soc.
  doi: 10.1111/j.1551-2916.2006.01259.x
– volume: 137
  start-page: 501
  year: 2006
  ident: b814494j-(cit24)/*[position()=1]
  publication-title: Monat. Fur Chem.
  doi: 10.1007/s00706-006-0464-6
– volume: 8
  start-page: 235
  year: 1996
  ident: b814494j-(cit7)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm950331o
– volume: 15
  start-page: 3559
  year: 2005
  ident: b814494j-(cit3)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b509097k
– volume: 100
  start-page: 4127
  year: 1996
  ident: b814494j-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9505800
– volume: 86
  start-page: 761
  year: 2003
  ident: b814494j-(cit16)/*[position()=1]
  publication-title: J. Am. Cer. Soc.
  doi: 10.1111/j.1151-2916.2003.tb03371.x
– volume: 127
  start-page: 4869
  year: 2005
  ident: b814494j-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja043330i
– volume: 27
  start-page: 1461
  year: 2005
  ident: b814494j-(cit12)/*[position()=1]
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2004.10.011
– volume: 374
  start-page: 95
  year: 2003
  ident: b814494j-(cit17)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)00612-2
– volume: 185
  start-page: 19
  year: 2000
  ident: b814494j-(cit6)/*[position()=1]
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(00)00976-7
SSID ssj0001513
Score 2.155802
Snippet Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1248
SubjectTerms Chemical Sciences
Electrons
Gels - chemical synthesis
Gels - chemistry
Inorganic chemistry
Kinetics
Lasers
Models, Molecular
Molecular Structure
Nanotechnology - methods
Optical Phenomena
Photochemistry - methods
Polyhydroxyethyl Methacrylate - chemical synthesis
Polyhydroxyethyl Methacrylate - chemistry
Spectrophotometry
Titanium - chemistry
Title Laser-induced photopatterning of organic–inorganic TiO2-based hybrid materials with tunable interfacial electron transfer
URI https://www.ncbi.nlm.nih.gov/pubmed/19209369
https://www.proquest.com/docview/66913117
https://hal.science/hal-00411457
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QNICPGmPBaDkDhUKamd57FUi7pQ2D10pb1Fju2oIEirtqnEcuE_8A_4afwSxvGjaVWkhUsUTZLKyffVM-PxzCD00pckZ74gniB-7AVSUC-nHLjM87hgHFReXUvvw8dodB68uwgvWq1fjV1L1Srv8cu9eSX_gyrIAFeVJfsPyLofBQGcA75wBITheCWMx6CCFh541ZWK4s-nsxW4wCo9pzR7mXXPJm53NNBPpZEARqfEUypMdKffVNZWF0xXPWazNlvprCpVT2IB31OtrNueOaqxBJi7ZmOvMW3PLOLc9pDTZ0qk10-W9frD2XDocsreV5elXC1n63qK6nVPeu4K-wqz8Lo2bU-d9A34DCo8oHPENsGiSz3ZjXtbixhpYxFDz7tBRD3w001V7KZMd5Bzk3W_QcqkMfOCnZLsVQk-VRVV8wQ8xzT4vFF7NtS_ow3dHsU6Ok_TzD55gA4JuCKkjQ4Hx5OTsdP3YDNRncOmX8GWOKbpa_vsltFzMFVbbm_M2RIAKHT7lL_7N7WdM7mFbhoHBQ80226jlizvoGtDi-ld9H2LdXiHdXhWYMOx3z9-Or7hDd-w5ht2fMOKb9jwDTf4hi3fsOXbPXT-9ngyHHmmhYfHaRSuvDD1CxKlnDA_Zan0BU9zGiVBQQknSd6XMuayn8SEi4AmTNDQZ3BMVDScRoGg91G7nJXyIcIsZFREMUskTYMiypngQmmkXIQs8WXQQa_sN864qW-v2qx8yXaR7KDn7s65rumy554XAJO7rIqwjwbjTMlUibp-EMbrfgcdbaHobldlE1UhpA56ZmHNACUVi2OlnFXLLIpSVegq7qAHGu3NSFLiqy6bj64wysfo-ubf9AS1V4tKPgUjeZUfGZb-Ad5lwbQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser-induced+photopatterning+of+organic%E2%80%93inorganic+TiO2-based+hybrid+materials+with+tunable+interfacial+electron+transfer&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Kuznetsov%2C+A.+I.&rft.au=Kameneva%2C+O.&rft.au=Bityurin%2C+N.&rft.au=Rozes%2C+L.&rft.date=2009-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=11&rft.issue=8&rft.spage=1248&rft_id=info:doi/10.1039%2Fb814494j&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_b814494j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon