Laser-induced photopatterning of organic–inorganic TiO2-based hybrid materials with tunable interfacial electron transfer
Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-b...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 11; no. 8; pp. 1248 - 1257 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-based gel, and the organic, poly(hydroxyethyl methacrylate) networks allows (i) a rapid scavenging of the photo-excited holes by the polymer, (ii) an efficient trapping of the photo-exited electrons as small polarons (Ti(3+)) that develop "dark" absorption continuum covering the spectral range from 350 nm (UV) to 2.5 microm (IR), and (iii) long-term (over months) conservation of trapped charges at high number density. Furthermore, we give the proof that the electron transfer depends on the material microstructure, which can be affected by the material chemistry and processing. Undeniably, a delay between the gelation of the system and the organic polymerization step allows tuning the photochromic responses of the resulting nanocomposites. A comparison is made between the prepared gel-based samples and a reference sample, which is obtained by the organic copolymerization of functional precondensed inorganic building units, titanium oxo-clusters, Ti(16)O(16)(OEt)(24)(OEMA)(8) with hydroxyethyl methacrylate. The experiments show the highest values of quantum yield (12%) and Ti(3+) concentration (1.7 x 10(20) cm(-3) or 14% of titanium atoms) attained in samples where the organic polymerization is induced after gelation. This behavior is explained by a strong coupling between the organic and the inorganic components of the hybrid towards the hole exchange and a poor coupling towards the electron exchange. |
---|---|
AbstractList | Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-based gel, and the organic, poly(hydroxyethyl methacrylate) networks allows (i) a rapid scavenging of the photo-excited holes by the polymer, (ii) an efficient trapping of the photo-exited electrons as small polarons (Ti(3+)) that develop "dark" absorption continuum covering the spectral range from 350 nm (UV) to 2.5 microm (IR), and (iii) long-term (over months) conservation of trapped charges at high number density. Furthermore, we give the proof that the electron transfer depends on the material microstructure, which can be affected by the material chemistry and processing. Undeniably, a delay between the gelation of the system and the organic polymerization step allows tuning the photochromic responses of the resulting nanocomposites. A comparison is made between the prepared gel-based samples and a reference sample, which is obtained by the organic copolymerization of functional precondensed inorganic building units, titanium oxo-clusters, Ti(16)O(16)(OEt)(24)(OEMA)(8) with hydroxyethyl methacrylate. The experiments show the highest values of quantum yield (12%) and Ti(3+) concentration (1.7 x 10(20) cm(-3) or 14% of titanium atoms) attained in samples where the organic polymerization is induced after gelation. This behavior is explained by a strong coupling between the organic and the inorganic components of the hybrid towards the hole exchange and a poor coupling towards the electron exchange. Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-based gel, and the organic, poly(hydroxyethyl methacrylate) networks allows (i) a rapid scavenging of the photo-excited holes by the polymer, (ii) an efficient trapping of the photo-exited electrons as small polarons (Ti(3+)) that develop "dark" absorption continuum covering the spectral range from 350 nm (UV) to 2.5 microm (IR), and (iii) long-term (over months) conservation of trapped charges at high number density. Furthermore, we give the proof that the electron transfer depends on the material microstructure, which can be affected by the material chemistry and processing. Undeniably, a delay between the gelation of the system and the organic polymerization step allows tuning the photochromic responses of the resulting nanocomposites. A comparison is made between the prepared gel-based samples and a reference sample, which is obtained by the organic copolymerization of functional precondensed inorganic building units, titanium oxo-clusters, Ti(16)O(16)(OEt)(24)(OEMA)(8) with hydroxyethyl methacrylate. The experiments show the highest values of quantum yield (12%) and Ti(3+) concentration (1.7 x 10(20) cm(-3) or 14% of titanium atoms) attained in samples where the organic polymerization is induced after gelation. This behavior is explained by a strong coupling between the organic and the inorganic components of the hybrid towards the hole exchange and a poor coupling towards the electron exchange.Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them suitable for laser-induced photopatterning. We show that the electronic coupling along the extended interface between the inorganic, TiO(2)-based gel, and the organic, poly(hydroxyethyl methacrylate) networks allows (i) a rapid scavenging of the photo-excited holes by the polymer, (ii) an efficient trapping of the photo-exited electrons as small polarons (Ti(3+)) that develop "dark" absorption continuum covering the spectral range from 350 nm (UV) to 2.5 microm (IR), and (iii) long-term (over months) conservation of trapped charges at high number density. Furthermore, we give the proof that the electron transfer depends on the material microstructure, which can be affected by the material chemistry and processing. Undeniably, a delay between the gelation of the system and the organic polymerization step allows tuning the photochromic responses of the resulting nanocomposites. A comparison is made between the prepared gel-based samples and a reference sample, which is obtained by the organic copolymerization of functional precondensed inorganic building units, titanium oxo-clusters, Ti(16)O(16)(OEt)(24)(OEMA)(8) with hydroxyethyl methacrylate. The experiments show the highest values of quantum yield (12%) and Ti(3+) concentration (1.7 x 10(20) cm(-3) or 14% of titanium atoms) attained in samples where the organic polymerization is induced after gelation. This behavior is explained by a strong coupling between the organic and the inorganic components of the hybrid towards the hole exchange and a poor coupling towards the electron exchange. |
Author | Rozes, L. Sanchez, C. Kuznetsov, A. I. Bityurin, N. Kameneva, O. Kanaev, A. |
Author_xml | – sequence: 1 givenname: A. I. surname: Kuznetsov fullname: Kuznetsov, A. I. – sequence: 2 givenname: O. surname: Kameneva fullname: Kameneva, O. – sequence: 3 givenname: N. surname: Bityurin fullname: Bityurin, N. – sequence: 4 givenname: L. surname: Rozes fullname: Rozes, L. – sequence: 5 givenname: C. surname: Sanchez fullname: Sanchez, C. – sequence: 6 givenname: A. surname: Kanaev fullname: Kanaev, A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21190594$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19209369$$D View this record in MEDLINE/PubMed https://hal.science/hal-00411457$$DView record in HAL |
BookMark | eNplkc1uFDEMxyNURD9A4glQLiA4TIknmY8cqwoo0kq9lPPIk3i6qWaTJcmAKi68A2_Ik5Bqt4sEF9uyf_-_ZPuUHfngibGXIM5BSP1-7EEpre6esBNQray06NXRoe7aY3aa0p0QAhqQz9gx6Fpo2eoT9mOFiWLlvF0MWb5dhxy2mDNF7_wtDxMP8Ra9M79__nJ-X_Mbd11XY1Favr4fo7N8g0XicE78u8trnheP40zc-dKe0JQJp5lMjsHzHNGnieJz9nQqCnqxz2fsy8cPN5dX1er60-fLi1VlZNvkqtFiqlttahQaNQlr9CjbXk2yNnU_AlFnCPquNlbJHq1sBJbYd70C2Sorz9i7ne8a52Eb3Qbj_RDQDVcXq-GhJ4QCUE33DQr7ZsduY_i6UMrDxiVD84yewpKGttUgAboCvtqDy7ghe_B9PG0BXu8BTAbnqSxtXDpwNYAWjVaFe7vjTAwpRZr-Wonh4bvD43cLev4PalzG7IIvJ3Xz_4I_z9WngQ |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_7b03320 crossref_primary_10_1016_j_cej_2018_11_132 crossref_primary_10_1364_OME_3_000533 crossref_primary_10_1016_j_ccr_2021_213886 crossref_primary_10_1039_c1py00341k crossref_primary_10_1080_15421406_2011_538333 crossref_primary_10_1039_c3dt50399b crossref_primary_10_1039_c3tc30432a crossref_primary_10_1016_j_jeurceramsoc_2025_117332 crossref_primary_10_1039_c2cc33969b crossref_primary_10_1007_s00339_012_7213_y crossref_primary_10_1016_j_jlumin_2011_12_072 crossref_primary_10_1134_S1063783413020248 crossref_primary_10_3390_ma7053956 crossref_primary_10_1002_ejic_201000807 crossref_primary_10_1016_j_crci_2009_06_001 crossref_primary_10_1021_acs_jpcc_6b13068 crossref_primary_10_1007_s10853_022_08090_y crossref_primary_10_1016_j_polymer_2016_10_008 crossref_primary_10_1016_j_apcatb_2024_123692 crossref_primary_10_1364_JOT_78_000537 crossref_primary_10_1088_2053_1591_1_4_045039 crossref_primary_10_1039_C4CP05149A crossref_primary_10_1039_c0nr00909a crossref_primary_10_1002_cssc_201501353 crossref_primary_10_1002_asia_202100588 crossref_primary_10_1039_c0jm04047a crossref_primary_10_3390_catal13020423 crossref_primary_10_1021_acs_chemmater_4c01141 crossref_primary_10_1016_j_polymer_2011_07_056 crossref_primary_10_1039_C8NR07868H crossref_primary_10_15407_ujpe58_12_1132 crossref_primary_10_1021_cm402528b crossref_primary_10_1007_s13233_012_0045_y crossref_primary_10_1016_j_ceramint_2024_07_456 crossref_primary_10_1002_pola_24695 crossref_primary_10_1039_b924840d crossref_primary_10_1002_lpor_202301326 crossref_primary_10_1039_c0cs00137f crossref_primary_10_1016_j_jcat_2019_05_008 crossref_primary_10_1021_ja903726m crossref_primary_10_1016_j_materresbull_2019_02_013 crossref_primary_10_1002_aenm_202200352 crossref_primary_10_1021_acsomega_4c05121 crossref_primary_10_1039_C4NR01788A crossref_primary_10_1016_j_synthmet_2013_10_025 crossref_primary_10_1039_C7CS00511C |
Cites_doi | 10.1016/j.cplett.2004.09.046 10.1002/(SICI)1521-4095(199912)11:18<1508::AID-ADMA1508>3.0.CO;2-V 10.1002/app.20909 10.1016/S0009-2614(02)01758-X 10.1016/j.jnoncrysol.2004.09.001 10.1063/1.1568544 10.1002/adma.200300389 10.1002/qua.21088 10.1021/ma0507239 10.1021/jp0559581 10.1134/S1028335806030013 10.1021/j100329a027 10.1103/PhysRevE.71.021403 10.1364/OE.15.005782 10.1103/PhysRevE.48.3692 10.1021/j100045a027 10.1016/j.cplett.2006.07.099 10.1002/adma.200602264 10.1016/S0040-6090(99)00082-6 10.1016/S0927-7757(99)00249-6 10.1016/S0022-3093(99)00885-6 10.1021/j100210a010 10.1039/b507305g 10.1016/j.apsusc.2005.03.083 10.1103/PhysRevB.15.3229 10.1021/cm000937z 10.1039/B710800A 10.1007/s00339-006-3577-1 10.1111/j.1551-2916.2006.01259.x 10.1007/s00706-006-0464-6 10.1021/cm950331o 10.1039/b509097k 10.1021/jp9505800 10.1111/j.1151-2916.2003.tb03371.x 10.1021/ja043330i 10.1016/j.optmat.2004.10.011 10.1016/S0009-2614(03)00612-2 10.1016/S0030-4018(00)00976-7 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 1XC |
DOI | 10.1039/b814494j |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 1257 |
ExternalDocumentID | oai_HAL_hal_00411457v1 19209369 21190594 10_1039_b814494j |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG IQODW CGR CUY CVF ECM EIF NPM 7X8 1XC UMC |
ID | FETCH-LOGICAL-c365t-590f269c2a09a9e0dc9b3684f32c28b1ee7ce1872cd438ad350aad387841364d3 |
ISSN | 1463-9076 |
IngestDate | Fri May 09 12:16:15 EDT 2025 Fri Jul 11 01:09:59 EDT 2025 Mon Jul 21 05:17:15 EDT 2025 Mon Jul 21 09:17:45 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Tue Jul 01 02:06:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-590f269c2a09a9e0dc9b3684f32c28b1ee7ce1872cd438ad350aad387841364d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 19209369 |
PQID | 66913117 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_00411457v1 proquest_miscellaneous_66913117 pubmed_primary_19209369 pascalfrancis_primary_21190594 crossref_primary_10_1039_b814494j crossref_citationtrail_10_1039_b814494j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2009 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Jiang (b814494j-(cit6)/*[position()=1]) 2000; 185 Escribano (b814494j-(cit5)/*[position()=1]) 2008; 18 Blanc (b814494j-(cit11)/*[position()=1]) 1999; 11 Kameneva (b814494j-(cit22)/*[position()=1]) 2006; 51 Kuznetsov (b814494j-(cit18)/*[position()=1]) 2005; 71 Blanchard (b814494j-(cit27)/*[position()=1]) 2000; 265 Yoshida (b814494j-(cit7)/*[position()=1]) 1996; 8 Kallala (b814494j-(cit28)/*[position()=1]) 1993; 48 Fadeeva (b814494j-(cit23)/*[position()=1]) 2006; 84 Passinger (b814494j-(cit15)/*[position()=1]) 2007; 19 Yeh (b814494j-(cit9)/*[position()=1]) 2004; 94 Sanchez (b814494j-(cit4)/*[position()=1]) 2003; 15 Luo (b814494j-(cit12)/*[position()=2]) 2005; 351 Rozes (b814494j-(cit24)/*[position()=1]) 2006; 137 Lundquist (b814494j-(cit33)/*[position()=1]) 2006; 106 Luo (b814494j-(cit12)/*[position()=1]) 2005; 27 Daude (b814494j-(cit36)/*[position()=1]) 1977; 15 Elim (b814494j-(cit10)/*[position()=1]) 2003; 82 Segawa (b814494j-(cit16)/*[position()=2]) 2006; 89 Segawa (b814494j-(cit16)/*[position()=1]) 2003; 86 Kuznetsov (b814494j-(cit20)/*[position()=1]) 2007; 15 Trabelsi (b814494j-(cit26)/*[position()=1]) 2005; 38 Kormann (b814494j-(cit38)/*[position()=1]) 1988; 92 Kuznetsov (b814494j-(cit19)/*[position()=1]) 2006; 110 Rivallin (b814494j-(cit32)/*[position()=1]) 2005; 398 Fornasieri (b814494j-(cit25)/*[position()=1]) 2005; 127 Serpone (b814494j-(cit39)/*[position()=1]) 1995; 99 Bityurin (b814494j-(cit31)/*[position()=1]) 2003; 367 Lee (b814494j-(cit8)/*[position()=1]) 2001; 13 Kameneva (b814494j-(cit21)/*[position()=1]) 2005; 15 Henglein (b814494j-(cit37)/*[position()=1]) 1982; 86 Sanchez (b814494j-(cit3)/*[position()=1]) 2005; 15 Kuznetsov (b814494j-(cit34)/*[position()=1]) 2006; 429 Tohge (b814494j-(cit13)/*[position()=1]) 1999; 351 Bityurin (b814494j-(cit35)/*[position()=1]) 2005; 248 Sun (b814494j-(cit40)/*[position()=1]) 1996; 100 Bityurin (b814494j-(cit17)/*[position()=1]) 2003; 374 Ponton (b814494j-(cit30)/*[position()=1]) 1999; 162 |
References_xml | – volume: 398 start-page: 157 year: 2005 ident: b814494j-(cit32)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.09.046 – volume: 11 start-page: 1508 year: 1999 ident: b814494j-(cit11)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199912)11:18<1508::AID-ADMA1508>3.0.CO;2-V – volume: 94 start-page: 400 year: 2004 ident: b814494j-(cit9)/*[position()=1] publication-title: J. Appl. Polymer Sci. doi: 10.1002/app.20909 – volume: 367 start-page: 690 year: 2003 ident: b814494j-(cit31)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01758-X – volume: 351 start-page: 29 year: 2005 ident: b814494j-(cit12)/*[position()=2] publication-title: J. Non-Cryst. Sol. doi: 10.1016/j.jnoncrysol.2004.09.001 – volume: 82 start-page: 2691 year: 2003 ident: b814494j-(cit10)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1568544 – volume: 15 start-page: 1969 year: 2003 ident: b814494j-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200300389 – volume: 106 start-page: 3214 year: 2006 ident: b814494j-(cit33)/*[position()=1] publication-title: Int. J. Quant. Chem. doi: 10.1002/qua.21088 – volume: 38 start-page: 6068 year: 2005 ident: b814494j-(cit26)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma0507239 – volume: 110 start-page: 435 year: 2006 ident: b814494j-(cit19)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0559581 – volume: 51 start-page: 103 year: 2006 ident: b814494j-(cit22)/*[position()=1] publication-title: Doklady Physics. doi: 10.1134/S1028335806030013 – volume: 92 start-page: 5196 year: 1988 ident: b814494j-(cit38)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100329a027 – volume: 71 start-page: 021403 year: 2005 ident: b814494j-(cit18)/*[position()=1] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.021403 – volume: 15 start-page: 5782 year: 2007 ident: b814494j-(cit20)/*[position()=1] publication-title: Optics Express doi: 10.1364/OE.15.005782 – volume: 48 start-page: 3692 year: 1993 ident: b814494j-(cit28)/*[position()=1] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.48.3692 – volume: 99 start-page: 16655 year: 1995 ident: b814494j-(cit39)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100045a027 – volume: 429 start-page: 523 year: 2006 ident: b814494j-(cit34)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.07.099 – volume: 19 start-page: 1218 year: 2007 ident: b814494j-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200602264 – volume: 351 start-page: 85 year: 1999 ident: b814494j-(cit13)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00082-6 – volume: 162 start-page: 177 year: 1999 ident: b814494j-(cit30)/*[position()=1] publication-title: Colloids and Surfaces A: Physicochem. Eng. Aspects doi: 10.1016/S0927-7757(99)00249-6 – volume: 265 start-page: 83 year: 2000 ident: b814494j-(cit27)/*[position()=1] publication-title: J. Non-Cryst. Sol. doi: 10.1016/S0022-3093(99)00885-6 – volume: 86 start-page: 241 year: 1982 ident: b814494j-(cit37)/*[position()=1] publication-title: Phys. Chem. doi: 10.1021/j100210a010 – volume: 15 start-page: 3380 year: 2005 ident: b814494j-(cit21)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b507305g – volume: 248 start-page: 86 year: 2005 ident: b814494j-(cit35)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.03.083 – volume: 15 start-page: 3229 year: 1977 ident: b814494j-(cit36)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.15.3229 – volume: 13 start-page: 1137 year: 2001 ident: b814494j-(cit8)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm000937z – volume: 18 start-page: 23 year: 2008 ident: b814494j-(cit5)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/B710800A – volume: 84 start-page: 27 year: 2006 ident: b814494j-(cit23)/*[position()=1] publication-title: Appl. Phys. A doi: 10.1007/s00339-006-3577-1 – volume: 89 start-page: 3507 year: 2006 ident: b814494j-(cit16)/*[position()=2] publication-title: J. Am. Cer. Soc. doi: 10.1111/j.1551-2916.2006.01259.x – volume: 137 start-page: 501 year: 2006 ident: b814494j-(cit24)/*[position()=1] publication-title: Monat. Fur Chem. doi: 10.1007/s00706-006-0464-6 – volume: 8 start-page: 235 year: 1996 ident: b814494j-(cit7)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm950331o – volume: 15 start-page: 3559 year: 2005 ident: b814494j-(cit3)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b509097k – volume: 100 start-page: 4127 year: 1996 ident: b814494j-(cit40)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp9505800 – volume: 86 start-page: 761 year: 2003 ident: b814494j-(cit16)/*[position()=1] publication-title: J. Am. Cer. Soc. doi: 10.1111/j.1151-2916.2003.tb03371.x – volume: 127 start-page: 4869 year: 2005 ident: b814494j-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043330i – volume: 27 start-page: 1461 year: 2005 ident: b814494j-(cit12)/*[position()=1] publication-title: Opt. Mater. doi: 10.1016/j.optmat.2004.10.011 – volume: 374 start-page: 95 year: 2003 ident: b814494j-(cit17)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)00612-2 – volume: 185 start-page: 19 year: 2000 ident: b814494j-(cit6)/*[position()=1] publication-title: Opt. Commun. doi: 10.1016/S0030-4018(00)00976-7 |
SSID | ssj0001513 |
Score | 2.155802 |
Snippet | Hybrid organic-inorganic materials based on TiO(2) gels demonstrate high photosensitivity. Associated with their stable photochromic behavior, these make them... |
SourceID | hal proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1248 |
SubjectTerms | Chemical Sciences Electrons Gels - chemical synthesis Gels - chemistry Inorganic chemistry Kinetics Lasers Models, Molecular Molecular Structure Nanotechnology - methods Optical Phenomena Photochemistry - methods Polyhydroxyethyl Methacrylate - chemical synthesis Polyhydroxyethyl Methacrylate - chemistry Spectrophotometry Titanium - chemistry |
Title | Laser-induced photopatterning of organic–inorganic TiO2-based hybrid materials with tunable interfacial electron transfer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19209369 https://www.proquest.com/docview/66913117 https://hal.science/hal-00411457 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QNICPGmPBaDkDhUKamd57FUi7pQ2D10pb1Fju2oIEirtqnEcuE_8A_4afwSxvGjaVWkhUsUTZLKyffVM-PxzCD00pckZ74gniB-7AVSUC-nHLjM87hgHFReXUvvw8dodB68uwgvWq1fjV1L1Srv8cu9eSX_gyrIAFeVJfsPyLofBQGcA75wBITheCWMx6CCFh541ZWK4s-nsxW4wCo9pzR7mXXPJm53NNBPpZEARqfEUypMdKffVNZWF0xXPWazNlvprCpVT2IB31OtrNueOaqxBJi7ZmOvMW3PLOLc9pDTZ0qk10-W9frD2XDocsreV5elXC1n63qK6nVPeu4K-wqz8Lo2bU-d9A34DCo8oHPENsGiSz3ZjXtbixhpYxFDz7tBRD3w001V7KZMd5Bzk3W_QcqkMfOCnZLsVQk-VRVV8wQ8xzT4vFF7NtS_ow3dHsU6Ok_TzD55gA4JuCKkjQ4Hx5OTsdP3YDNRncOmX8GWOKbpa_vsltFzMFVbbm_M2RIAKHT7lL_7N7WdM7mFbhoHBQ80226jlizvoGtDi-ld9H2LdXiHdXhWYMOx3z9-Or7hDd-w5ht2fMOKb9jwDTf4hi3fsOXbPXT-9ngyHHmmhYfHaRSuvDD1CxKlnDA_Zan0BU9zGiVBQQknSd6XMuayn8SEi4AmTNDQZ3BMVDScRoGg91G7nJXyIcIsZFREMUskTYMiypngQmmkXIQs8WXQQa_sN864qW-v2qx8yXaR7KDn7s65rumy554XAJO7rIqwjwbjTMlUibp-EMbrfgcdbaHobldlE1UhpA56ZmHNACUVi2OlnFXLLIpSVegq7qAHGu3NSFLiqy6bj64wysfo-ubf9AS1V4tKPgUjeZUfGZb-Ad5lwbQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser-induced+photopatterning+of+organic%E2%80%93inorganic+TiO2-based+hybrid+materials+with+tunable+interfacial+electron+transfer&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Kuznetsov%2C+A.+I.&rft.au=Kameneva%2C+O.&rft.au=Bityurin%2C+N.&rft.au=Rozes%2C+L.&rft.date=2009-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=11&rft.issue=8&rft.spage=1248&rft_id=info:doi/10.1039%2Fb814494j&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_b814494j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |