A marginalized two-part model for longitudinal semicontinuous data

In health services research, it is common to encounter semicontinuous data, characterized by a point mass at zero followed by a right-skewed continuous distribution with positive support. Examples include health expenditures, in which the zeros represent a subpopulation of patients who do not use he...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 26; no. 4; p. 1949
Main Authors Smith, Valerie A, Neelon, Brian, Preisser, John S, Maciejewski, Matthew L
Format Journal Article
LanguageEnglish
Published England 01.08.2017
Subjects
Online AccessGet more information
ISSN1477-0334
DOI10.1177/0962280215592908

Cover

Abstract In health services research, it is common to encounter semicontinuous data, characterized by a point mass at zero followed by a right-skewed continuous distribution with positive support. Examples include health expenditures, in which the zeros represent a subpopulation of patients who do not use health services, while the continuous distribution describes the level of expenditures among health services users. Longitudinal semicontinuous data are typically analyzed using two-part random-effect mixtures with one component that models the probability of health services use, and a second component that models the distribution of log-scale positive expenditures among users. However, because the second part conditions on a non-zero response, obtaining interpretable effects of covariates on the combined population of health services users and non-users is not straightforward, even though this is often of greatest interest to investigators. Here, we propose a marginalized two-part model for longitudinal data that allows investigators to obtain the effect of covariates on the overall population mean. The model additionally provides estimates of the overall population mean on the original, untransformed scale, and many covariates take a dual population average and subject-specific interpretation. Using a Bayesian estimation approach, this model maintains the flexibility to include complex random-effect structures and easily estimate functions of the overall mean. We illustrate this approach by evaluating the effect of a copayment increase on health care expenditures in the Veterans Affairs health care system over a four-year period.
AbstractList In health services research, it is common to encounter semicontinuous data, characterized by a point mass at zero followed by a right-skewed continuous distribution with positive support. Examples include health expenditures, in which the zeros represent a subpopulation of patients who do not use health services, while the continuous distribution describes the level of expenditures among health services users. Longitudinal semicontinuous data are typically analyzed using two-part random-effect mixtures with one component that models the probability of health services use, and a second component that models the distribution of log-scale positive expenditures among users. However, because the second part conditions on a non-zero response, obtaining interpretable effects of covariates on the combined population of health services users and non-users is not straightforward, even though this is often of greatest interest to investigators. Here, we propose a marginalized two-part model for longitudinal data that allows investigators to obtain the effect of covariates on the overall population mean. The model additionally provides estimates of the overall population mean on the original, untransformed scale, and many covariates take a dual population average and subject-specific interpretation. Using a Bayesian estimation approach, this model maintains the flexibility to include complex random-effect structures and easily estimate functions of the overall mean. We illustrate this approach by evaluating the effect of a copayment increase on health care expenditures in the Veterans Affairs health care system over a four-year period.
Author Preisser, John S
Smith, Valerie A
Maciejewski, Matthew L
Neelon, Brian
Author_xml – sequence: 1
  givenname: Valerie A
  surname: Smith
  fullname: Smith, Valerie A
  organization: 2 Department of Biostatistics, University of North Carolina, USA
– sequence: 2
  givenname: Brian
  surname: Neelon
  fullname: Neelon, Brian
  organization: 3 Department of Public Health Sciences, Medical University of South Carolina, USA
– sequence: 3
  givenname: John S
  surname: Preisser
  fullname: Preisser, John S
  organization: 2 Department of Biostatistics, University of North Carolina, USA
– sequence: 4
  givenname: Matthew L
  surname: Maciejewski
  fullname: Maciejewski, Matthew L
  organization: 4 Division of General Internal Medicine, Department of Medicine, Duke University, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26156962$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLxDAURoMozkP3riR_oHpz0yTNchx8wYAbXQ9pczNU2qS0KaK_3hF1dTaHw_et2GlMkRi7EnAjhDG3YDViBSiUsmihOmFLURpTgJTlgq2m6R0ADJT2nC1QC6WP_pLdbXjvxkMbXdd-kef5IxWDGzPvk6eOhzTyLsVDm2f_4_CJ-rZJMbdxTvPEvcvugp0F1010-cc1e3u4f90-FbuXx-ftZlc0UqtcKNSq9lSHRgVTGS0xWCVqU1kPaGsgW6rGkzRUESEaKwE0gHKyDAQgcM2uf7vDXPfk98PYHqd_7v_P4DcEdEua
CitedBy_id crossref_primary_10_1007_s10899_021_10005_6
crossref_primary_10_1214_18_STS681
crossref_primary_10_1001_jamadermatol_2018_5942
crossref_primary_10_1080_02664763_2021_1891527
crossref_primary_10_1177_09622802221107106
crossref_primary_10_1002_bimj_201900280
crossref_primary_10_1002_sim_8795
crossref_primary_10_1002_sim_8513
crossref_primary_10_1038_s41372_020_0688_z
crossref_primary_10_1111_add_14900
crossref_primary_10_1002_bimj_201900148
crossref_primary_10_1002_cjs_11801
crossref_primary_10_1080_10705511_2018_1561294
crossref_primary_10_1002_sim_7063
crossref_primary_10_1007_s12561_023_09397_3
crossref_primary_10_1089_bfm_2020_0336
crossref_primary_10_1093_biomtc_ujae007
crossref_primary_10_1007_s11136_017_1584_7
crossref_primary_10_1155_2018_2834183
crossref_primary_10_1146_annurev_statistics_060116_054131
crossref_primary_10_1007_s10742_017_0169_9
crossref_primary_10_1177_0962280218758358
crossref_primary_10_1097_MLR_0000000000001326
crossref_primary_10_5351_KJAS_2023_36_3_225
crossref_primary_10_2196_39904
crossref_primary_10_1001_jamasurg_2019_3732
crossref_primary_10_1097_SLA_0000000000006333
crossref_primary_10_1371_journal_pcbi_1006329
crossref_primary_10_3102_10769986251318028
crossref_primary_10_7326_ANNALS_24_00480
crossref_primary_10_1111_1475_6773_13648
crossref_primary_10_3390_math9202603
crossref_primary_10_1002_bimj_202300182
crossref_primary_10_1111_biom_13794
crossref_primary_10_1111_1475_6773_12815
crossref_primary_10_1002_sim_7050
crossref_primary_10_1155_2023_3420873
crossref_primary_10_1186_s40814_023_01257_7
crossref_primary_10_1002_sim_8140
crossref_primary_10_1002_pst_2338
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1177/0962280215592908
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
ExternalDocumentID 26156962
Genre Journal Article
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADUE
AAEWN
AAGGD
AAJIQ
AAJOX
AAJPV
AANSI
AAPEO
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEIA
ADNMO
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AJEFB
AJMMQ
AJUZI
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
CGR
COF
CORYS
CQQTX
CS3
CUY
CVF
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EBS
ECM
EIF
EJD
EMOBN
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M4V
M7S
N9A
NPM
O9-
OVD
P.B
P2P
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
ID FETCH-LOGICAL-c365t-5265bdebfc5f787632f951b789d029b0e945cde37e8ee22793006005a34fe0012
IngestDate Thu Apr 03 07:08:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords health care expenditures
copayment increase
two-part models
Semicontinuous data
log-skew-normal distribution
marginalized models
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-5265bdebfc5f787632f951b789d029b0e945cde37e8ee22793006005a34fe0012
PMID 26156962
ParticipantIDs pubmed_primary_26156962
PublicationCentury 2000
PublicationDate 2017-Aug
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2017
SSID ssj0007049
Score 2.3582397
Snippet In health services research, it is common to encounter semicontinuous data, characterized by a point mass at zero followed by a right-skewed continuous...
SourceID pubmed
SourceType Index Database
StartPage 1949
SubjectTerms Bayes Theorem
Data Interpretation, Statistical
Deductibles and Coinsurance - economics
Health Expenditures - statistics & numerical data
Health Services Research - methods
Humans
Longitudinal Studies
Models, Statistical
Normal Distribution
United States
United States Department of Veterans Affairs - economics
Title A marginalized two-part model for longitudinal semicontinuous data
URI https://www.ncbi.nlm.nih.gov/pubmed/26156962
Volume 26
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qguhBtL5f7MGbRGM22-0eW1FEaPHQijdJNhtQ7IM2RejRX-7M7iaN9YF6CWW3CSUznZ3n9xFy4ieMaTi3PRXJCAIUX3v1VEkvUTyAoAUxswzaZ7t20w1vH_hDpfJW6lqaZPGZmn45V_IfqcIayBWnZP8g2eKhsACfQb5wBQnD9Vcybpz2opHhtXqaguOYvQ68IXzN0tuYBsKXAfIRTRLDfTXGRvgBUkNMsPHVjaUVvin6nQa22QyUILG06ZXtuVKOgwUq0sdFTuYezhgIuGdZ0bbWrpjfHJW0726kTfE_7wA-LafDn_QzmFvLoe04yN1AhEtJwDGXN8TBiWLNaChgkbk0pbOzdjLe6VNYMpoX0qKWfrbmpp4MQRZi9gRYQA2kQYHISsId9ox0IRLkNWkt-8-7c_ja-dYCWRACTXsb8z3uLBcQQM2K2-fzPwWhpN3tc2GJcU8662TNxRW0YZVkg1R0v0pWWwUo77hKlluuj6JKVgpZjzdJs0HLakRzNaJGjSioES2rEf2oRhTVaIt0r686lzeeo9bwFKvxzENShDjRcap4KhCUMEjB1Y5FXSZ-IGNfy5CrRDOh61ojyCRD4B6fRyxMNbrI22SxP-jrXUJjiDjrHLnrwjBUkZIC7gPHFh7GmYiTPbJjX8zj0OKnPOavbP_bnQOyMtOrQ7KUwh9WH4H3l8XHRkDvgSRY-A
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+marginalized+two-part+model+for+longitudinal+semicontinuous+data&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Smith%2C+Valerie+A&rft.au=Neelon%2C+Brian&rft.au=Preisser%2C+John+S&rft.au=Maciejewski%2C+Matthew+L&rft.date=2017-08-01&rft.eissn=1477-0334&rft.volume=26&rft.issue=4&rft.spage=1949&rft_id=info:doi/10.1177%2F0962280215592908&rft_id=info%3Apmid%2F26156962&rft_id=info%3Apmid%2F26156962&rft.externalDocID=26156962