A marginalized two-part model for longitudinal semicontinuous data
In health services research, it is common to encounter semicontinuous data, characterized by a point mass at zero followed by a right-skewed continuous distribution with positive support. Examples include health expenditures, in which the zeros represent a subpopulation of patients who do not use he...
Saved in:
Published in | Statistical methods in medical research Vol. 26; no. 4; p. 1949 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.08.2017
|
Subjects | |
Online Access | Get more information |
ISSN | 1477-0334 |
DOI | 10.1177/0962280215592908 |
Cover
Abstract | In health services research, it is common to encounter semicontinuous data, characterized by a point mass at zero followed by a right-skewed continuous distribution with positive support. Examples include health expenditures, in which the zeros represent a subpopulation of patients who do not use health services, while the continuous distribution describes the level of expenditures among health services users. Longitudinal semicontinuous data are typically analyzed using two-part random-effect mixtures with one component that models the probability of health services use, and a second component that models the distribution of log-scale positive expenditures among users. However, because the second part conditions on a non-zero response, obtaining interpretable effects of covariates on the combined population of health services users and non-users is not straightforward, even though this is often of greatest interest to investigators. Here, we propose a marginalized two-part model for longitudinal data that allows investigators to obtain the effect of covariates on the overall population mean. The model additionally provides estimates of the overall population mean on the original, untransformed scale, and many covariates take a dual population average and subject-specific interpretation. Using a Bayesian estimation approach, this model maintains the flexibility to include complex random-effect structures and easily estimate functions of the overall mean. We illustrate this approach by evaluating the effect of a copayment increase on health care expenditures in the Veterans Affairs health care system over a four-year period. |
---|---|
AbstractList | In health services research, it is common to encounter semicontinuous data, characterized by a point mass at zero followed by a right-skewed continuous distribution with positive support. Examples include health expenditures, in which the zeros represent a subpopulation of patients who do not use health services, while the continuous distribution describes the level of expenditures among health services users. Longitudinal semicontinuous data are typically analyzed using two-part random-effect mixtures with one component that models the probability of health services use, and a second component that models the distribution of log-scale positive expenditures among users. However, because the second part conditions on a non-zero response, obtaining interpretable effects of covariates on the combined population of health services users and non-users is not straightforward, even though this is often of greatest interest to investigators. Here, we propose a marginalized two-part model for longitudinal data that allows investigators to obtain the effect of covariates on the overall population mean. The model additionally provides estimates of the overall population mean on the original, untransformed scale, and many covariates take a dual population average and subject-specific interpretation. Using a Bayesian estimation approach, this model maintains the flexibility to include complex random-effect structures and easily estimate functions of the overall mean. We illustrate this approach by evaluating the effect of a copayment increase on health care expenditures in the Veterans Affairs health care system over a four-year period. |
Author | Preisser, John S Smith, Valerie A Maciejewski, Matthew L Neelon, Brian |
Author_xml | – sequence: 1 givenname: Valerie A surname: Smith fullname: Smith, Valerie A organization: 2 Department of Biostatistics, University of North Carolina, USA – sequence: 2 givenname: Brian surname: Neelon fullname: Neelon, Brian organization: 3 Department of Public Health Sciences, Medical University of South Carolina, USA – sequence: 3 givenname: John S surname: Preisser fullname: Preisser, John S organization: 2 Department of Biostatistics, University of North Carolina, USA – sequence: 4 givenname: Matthew L surname: Maciejewski fullname: Maciejewski, Matthew L organization: 4 Division of General Internal Medicine, Department of Medicine, Duke University, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26156962$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j0tLxDAURoMozkP3riR_oHpz0yTNchx8wYAbXQ9pczNU2qS0KaK_3hF1dTaHw_et2GlMkRi7EnAjhDG3YDViBSiUsmihOmFLURpTgJTlgq2m6R0ADJT2nC1QC6WP_pLdbXjvxkMbXdd-kef5IxWDGzPvk6eOhzTyLsVDm2f_4_CJ-rZJMbdxTvPEvcvugp0F1010-cc1e3u4f90-FbuXx-ftZlc0UqtcKNSq9lSHRgVTGS0xWCVqU1kPaGsgW6rGkzRUESEaKwE0gHKyDAQgcM2uf7vDXPfk98PYHqd_7v_P4DcEdEua |
CitedBy_id | crossref_primary_10_1007_s10899_021_10005_6 crossref_primary_10_1214_18_STS681 crossref_primary_10_1001_jamadermatol_2018_5942 crossref_primary_10_1080_02664763_2021_1891527 crossref_primary_10_1177_09622802221107106 crossref_primary_10_1002_bimj_201900280 crossref_primary_10_1002_sim_8795 crossref_primary_10_1002_sim_8513 crossref_primary_10_1038_s41372_020_0688_z crossref_primary_10_1111_add_14900 crossref_primary_10_1002_bimj_201900148 crossref_primary_10_1002_cjs_11801 crossref_primary_10_1080_10705511_2018_1561294 crossref_primary_10_1002_sim_7063 crossref_primary_10_1007_s12561_023_09397_3 crossref_primary_10_1089_bfm_2020_0336 crossref_primary_10_1093_biomtc_ujae007 crossref_primary_10_1007_s11136_017_1584_7 crossref_primary_10_1155_2018_2834183 crossref_primary_10_1146_annurev_statistics_060116_054131 crossref_primary_10_1007_s10742_017_0169_9 crossref_primary_10_1177_0962280218758358 crossref_primary_10_1097_MLR_0000000000001326 crossref_primary_10_5351_KJAS_2023_36_3_225 crossref_primary_10_2196_39904 crossref_primary_10_1001_jamasurg_2019_3732 crossref_primary_10_1097_SLA_0000000000006333 crossref_primary_10_1371_journal_pcbi_1006329 crossref_primary_10_3102_10769986251318028 crossref_primary_10_7326_ANNALS_24_00480 crossref_primary_10_1111_1475_6773_13648 crossref_primary_10_3390_math9202603 crossref_primary_10_1002_bimj_202300182 crossref_primary_10_1111_biom_13794 crossref_primary_10_1111_1475_6773_12815 crossref_primary_10_1002_sim_7050 crossref_primary_10_1155_2023_3420873 crossref_primary_10_1186_s40814_023_01257_7 crossref_primary_10_1002_sim_8140 crossref_primary_10_1002_pst_2338 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1177/0962280215592908 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Statistics Mathematics |
EISSN | 1477-0334 |
ExternalDocumentID | 26156962 |
Genre | Journal Article |
GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADUE AAEWN AAGGD AAJIQ AAJOX AAJPV AANSI AAPEO AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEIA ADNMO ADNON ADRRZ ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGWFA AGWNL AHDMH AHHFK AHMBA AJEFB AJMMQ AJUZI AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU CGR COF CORYS CQQTX CS3 CUY CVF DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EBS ECM EIF EJD EMOBN F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M4V M7S N9A NPM O9- OVD P.B P2P PHGZT PQQKQ PROAC PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI |
ID | FETCH-LOGICAL-c365t-5265bdebfc5f787632f951b789d029b0e945cde37e8ee22793006005a34fe0012 |
IngestDate | Thu Apr 03 07:08:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | health care expenditures copayment increase two-part models Semicontinuous data log-skew-normal distribution marginalized models |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-5265bdebfc5f787632f951b789d029b0e945cde37e8ee22793006005a34fe0012 |
PMID | 26156962 |
ParticipantIDs | pubmed_primary_26156962 |
PublicationCentury | 2000 |
PublicationDate | 2017-Aug |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-Aug |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Statistical methods in medical research |
PublicationTitleAlternate | Stat Methods Med Res |
PublicationYear | 2017 |
SSID | ssj0007049 |
Score | 2.3582397 |
Snippet | In health services research, it is common to encounter semicontinuous data, characterized by a point mass at zero followed by a right-skewed continuous... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1949 |
SubjectTerms | Bayes Theorem Data Interpretation, Statistical Deductibles and Coinsurance - economics Health Expenditures - statistics & numerical data Health Services Research - methods Humans Longitudinal Studies Models, Statistical Normal Distribution United States United States Department of Veterans Affairs - economics |
Title | A marginalized two-part model for longitudinal semicontinuous data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26156962 |
Volume | 26 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qguhBtL5f7MGbRGM22-0eW1FEaPHQijdJNhtQ7IM2RejRX-7M7iaN9YF6CWW3CSUznZ3n9xFy4ieMaTi3PRXJCAIUX3v1VEkvUTyAoAUxswzaZ7t20w1vH_hDpfJW6lqaZPGZmn45V_IfqcIayBWnZP8g2eKhsACfQb5wBQnD9Vcybpz2opHhtXqaguOYvQ68IXzN0tuYBsKXAfIRTRLDfTXGRvgBUkNMsPHVjaUVvin6nQa22QyUILG06ZXtuVKOgwUq0sdFTuYezhgIuGdZ0bbWrpjfHJW0726kTfE_7wA-LafDn_QzmFvLoe04yN1AhEtJwDGXN8TBiWLNaChgkbk0pbOzdjLe6VNYMpoX0qKWfrbmpp4MQRZi9gRYQA2kQYHISsId9ox0IRLkNWkt-8-7c_ja-dYCWRACTXsb8z3uLBcQQM2K2-fzPwWhpN3tc2GJcU8662TNxRW0YZVkg1R0v0pWWwUo77hKlluuj6JKVgpZjzdJs0HLakRzNaJGjSioES2rEf2oRhTVaIt0r686lzeeo9bwFKvxzENShDjRcap4KhCUMEjB1Y5FXSZ-IGNfy5CrRDOh61ojyCRD4B6fRyxMNbrI22SxP-jrXUJjiDjrHLnrwjBUkZIC7gPHFh7GmYiTPbJjX8zj0OKnPOavbP_bnQOyMtOrQ7KUwh9WH4H3l8XHRkDvgSRY-A |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+marginalized+two-part+model+for+longitudinal+semicontinuous+data&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Smith%2C+Valerie+A&rft.au=Neelon%2C+Brian&rft.au=Preisser%2C+John+S&rft.au=Maciejewski%2C+Matthew+L&rft.date=2017-08-01&rft.eissn=1477-0334&rft.volume=26&rft.issue=4&rft.spage=1949&rft_id=info:doi/10.1177%2F0962280215592908&rft_id=info%3Apmid%2F26156962&rft_id=info%3Apmid%2F26156962&rft.externalDocID=26156962 |