Organics abatement and recovery from wastewater by a polymerization-based electrochemically assisted persulfate process: Promotion effect of chloride ion and its mechanism
Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for orga...
Saved in:
Published in | Journal of hazardous materials Vol. 446; p. 130658 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48–79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers.
[Display omitted]
•Derived Cl2•- are initiators for organics polymerization in the presence of Cl-.•Moderate rate constants between Cl2•- and contaminants favor the polymerization.•Dissolved chlorinated organic products can be reduced through polymerization.•The process has high tolerance to Cl- in the real industrial wastewater treatment.•Contaminants removal and resource recovery can be achieved simultaneously. |
---|---|
AbstractList | Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48-79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers.Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48-79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers. Ubiquitous chloride ion (Cl ) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl , differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO ) (or hydroxyl radical (HO )), dichloride radical (Cl ) derived from Cl has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48-79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl . The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers. Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48–79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers. [Display omitted] •Derived Cl2•- are initiators for organics polymerization in the presence of Cl-.•Moderate rate constants between Cl2•- and contaminants favor the polymerization.•Dissolved chlorinated organic products can be reduced through polymerization.•The process has high tolerance to Cl- in the real industrial wastewater treatment.•Contaminants removal and resource recovery can be achieved simultaneously. |
ArticleNumber | 130658 |
Author | Yang, Sui-Qin Wang, Ming-Kui Liu, Zheng-Qian Cui, Yu-Hong |
Author_xml | – sequence: 1 givenname: Sui-Qin orcidid: 0000-0002-6379-0439 surname: Yang fullname: Yang, Sui-Qin organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China – sequence: 2 givenname: Zheng-Qian surname: Liu fullname: Liu, Zheng-Qian organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China – sequence: 3 givenname: Yu-Hong surname: Cui fullname: Cui, Yu-Hong email: yhcui@hust.edu.cn organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China – sequence: 4 givenname: Ming-Kui surname: Wang fullname: Wang, Ming-Kui organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36580777$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuFDEQRS0URCaBTwB5yaYHu91PWKAo4iVFCgtYW9XlasYjd3uwPYkmv8RP4mYGFmyysmSfc1Wue8HOZj8TYy-lWEshmzfb9XYDDxOkdSnKci2VaOruCVvJrlWFUqo5YyuhRFWorq_O2UWMWyGEbOvqGTtXmRVt267Yr9vwA2aLkcMAiSaaE4fZ8EDo7ygc-Bj8xO8hJrrP74EPBw58591homAfIFk_FwNEMpwcYQoeNzRZBOcyGKPNouE7CnHvxhzAd5mgGN_yrznYLzqnccwm9yPHjfPBGuLL9TKGTZFPhJs8Ypyes6cjuEgvTucl-_7xw7frz8XN7acv11c3BeZ_paIWRKKiGjqkBjvAsq3FAAMKZYzppDRKYGXqBkQriUbsByjLGpqGAHtEdcleH3PzrD_3FJOebERyDmby-6hzXt_XXd-ojL46ofthIqN3wU4QDvrvgjNQHwEMPsZA4z9ECr0Uqbf6VKReitTHIrP37j8Pbfqz7RTAukft90eb8pruLAUd0dKMZGwuNmnj7SMJvwEsrcMU |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_106434 crossref_primary_10_1016_j_molstruc_2023_135908 crossref_primary_10_1016_j_jwpe_2024_105865 crossref_primary_10_1039_D4TB01311E crossref_primary_10_1016_j_cej_2024_156385 crossref_primary_10_1016_j_jece_2023_111501 crossref_primary_10_1016_j_watres_2024_121715 crossref_primary_10_1021_acs_analchem_3c04325 crossref_primary_10_1016_j_jelechem_2025_119059 crossref_primary_10_1016_j_eesus_2025_02_004 crossref_primary_10_1016_j_jhazmat_2024_134498 crossref_primary_10_1016_j_seppur_2024_130452 crossref_primary_10_1016_j_jhazmat_2023_132004 crossref_primary_10_1021_acsestwater_4c00280 crossref_primary_10_1038_s41467_023_44422_5 crossref_primary_10_1016_j_apcato_2025_207033 crossref_primary_10_1016_j_seppur_2024_127931 crossref_primary_10_1016_j_jhazmat_2024_134318 crossref_primary_10_1016_j_jece_2025_116180 crossref_primary_10_1016_j_psep_2024_12_106 crossref_primary_10_1021_acsestwater_4c01181 crossref_primary_10_1016_j_jes_2023_06_034 |
Cites_doi | 10.1016/j.apcatb.2022.121716 10.1021/acs.est.8b02219 10.1016/j.watres.2018.02.015 10.1016/j.cej.2018.12.144 10.1016/j.jhazmat.2021.127255 10.1080/09593330.2017.1323960 10.1021/es0480567 10.1016/j.electacta.2010.02.052 10.1021/es050634b 10.1021/acs.est.9b02401 10.1016/j.scitotenv.2021.145522 10.1021/es404118q 10.1021/acs.est.9b07082 10.1021/acs.est.0c05596 10.1016/j.jhazmat.2020.124126 10.1016/j.cej.2017.08.033 10.1016/j.jhazmat.2011.09.007 10.1016/j.cej.2020.126140 10.1016/j.apcatb.2020.119484 10.1016/j.jhazmat.2006.05.083 10.1016/j.jhazmat.2012.05.074 10.1016/j.watres.2020.115745 10.1016/j.watres.2012.10.018 10.1016/j.watres.2021.117944 10.1016/j.chemosphere.2014.03.007 10.1021/acs.est.9b02462 10.1016/j.scitotenv.2017.07.151 10.1021/acs.est.8b00576 10.1016/j.jenvman.2019.04.004 10.1016/j.cej.2019.05.095 10.1016/j.chemosphere.2021.130949 10.1016/j.scitotenv.2022.153909 10.1021/acs.est.8b01662 10.1016/j.envpol.2019.01.065 10.1016/j.watres.2021.116914 10.1016/j.apcatb.2021.120446 10.1016/j.jhazmat.2018.06.008 10.1016/j.cclet.2019.04.057 10.1016/j.jhazmat.2021.127068 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jhazmat.2022.130658 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 36580777 10_1016_j_jhazmat_2022_130658 S0304389422024542 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SSH T9H TAE VH1 WUQ EFKBS NPM 7X8 |
ID | FETCH-LOGICAL-c365t-50ee04e5a8ce6c8ac2750babc03ddd811d30c4d56a071eefc9ba225a66eac9cc3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Thu Jul 10 19:03:20 EDT 2025 Mon Jul 21 06:04:18 EDT 2025 Tue Jul 01 01:05:54 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Fri Feb 23 02:39:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polymerization Advanced oxidation Organics recovery Chlorine radical Wastewater treatment |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-50ee04e5a8ce6c8ac2750babc03ddd811d30c4d56a071eefc9ba225a66eac9cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6379-0439 |
PMID | 36580777 |
PQID | 2759958963 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2759958963 pubmed_primary_36580777 crossref_primary_10_1016_j_jhazmat_2022_130658 crossref_citationtrail_10_1016_j_jhazmat_2022_130658 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2022_130658 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-15 |
PublicationDateYYYYMMDD | 2023-03-15 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yuan, Garg, Wang, Li, Chen, Gao (bib27) 2022; 423 Escobedo, Cho, Chang (bib34) 2022; 423 Zhang, Parker (bib20) 2018; 52 Zhang, Gao, Qin, Wang, Wu, Li (bib5) 2019; 247 Oyekunle, Cai, Gendy, Chen (bib12) 2021; 280 Xu, Lin, Li, Zhang (bib23) 2017; 609 Anipsitakis, Dionysiou, Gonzalez (bib42) 2006; 40 Li, An, Chen, Sheng, Fu, Chen (bib11) 2006; 138 Zhang, Zhou, Sun, Meng, Luo, Zhou (bib15) 2018; 52 Long, Xiong, Huang, Yu, Zhou, Zhang (bib9) 2022; 317 Ding, Hu (bib38) 2021; 404 Liu, Yang, Lai, Fan, Cui (bib7) 2022 Caregnato, Rosso, Soler, Arques, Mártire, Gonzalez (bib13) 2013; 47 Bao, Xiong, Wei (bib29) 2010; 55 Fang, Dionysiou, Wang, Al-Abed, Zhou (bib35) 2012; 227–228 Thiam, Sirés, Brillas (bib18) 2015 Lei, Cheng, Luo, Yang, An (bib25) 2019; 53 Mei, Sun, Han, Wei, An, Wang (bib17) 2019; 373 Yuan, Ramjaun, Wang, Liu (bib28) 2011; 196 Lee, von Gunten, Kim (bib19) 2020; 54 Xiang, Qu, Wang, Wang, Bin-Jumah, Allam (bib43) 2020; 402 Ianni JC.Kintecus (Windows Version 6.80); 2021. Hou, Ling, Dionysiou, Wang, Huang, Guo (bib30) 2018; 52 Peng, Shang, Gao, Xu (bib32) 2021; 282 Dou, Peng, Kong, Hu (bib10) 2022; 824 Wang, Chen, Wang, Yan, Liu (bib2) 2021; 772 Liang, Duan, Xu, Chen, Wu, Qiu (bib1) 2021; 297 Chen, Du, Zhou, Wu, Zheng, Fang (bib36) 2021; 194 Yang, Pignatello, Ma, Mitch (bib16) 2014; 48 Vione, Maurino, Minero, Calza, Pelizzetti (bib37) 2005; 39 Li, Yan, Yao, Zhang, Li, Lai (bib21) 2019; 361 . Chen, Wu, Hou, Wang, Fang (bib31) 2022; 209 Silveira, Cardoso, Barreto-Rodrigues, Zazo, Casas (bib22) 2018; 39 Yuan, Wang, Hu, Wang, Gao (bib40) 2014; 109 Farhat, Keller, Tait, Radjenovic (bib3) 2017; 330 Gao, Niu, Qin, Guo, Ji, Li (bib4) 2020; 176 Lei, Lei, Westerhoff, Zhang, Yang (bib14) 2021; 55 Varanasi, Coscarelli, Khaksari, Mazzoleni, Minakata (bib33) 2018; 135 State Environmental Protection Administration. Determination methods for examination of water and wastewater, fourth ed. China Environmental Science Press Beijing; 2002. Koo, Chen, Cho, An, Choi (bib6) 2019; 53 Li, Wu, Wang, Hou, Huang, Kong (bib39) 2018; 357 Li, Li, Xiong, Yao, Lai (bib8) 2019; 30 Garba, Zhou, Lawan, Xiao, Zhang, Wang (bib41) 2019; 241 Escobedo (10.1016/j.jhazmat.2022.130658_bib34) 2022; 423 Zhang (10.1016/j.jhazmat.2022.130658_bib20) 2018; 52 10.1016/j.jhazmat.2022.130658_bib26 10.1016/j.jhazmat.2022.130658_bib24 Peng (10.1016/j.jhazmat.2022.130658_bib32) 2021; 282 Lee (10.1016/j.jhazmat.2022.130658_bib19) 2020; 54 Chen (10.1016/j.jhazmat.2022.130658_bib36) 2021; 194 Yuan (10.1016/j.jhazmat.2022.130658_bib27) 2022; 423 Chen (10.1016/j.jhazmat.2022.130658_bib31) 2022; 209 Zhang (10.1016/j.jhazmat.2022.130658_bib5) 2019; 247 Yuan (10.1016/j.jhazmat.2022.130658_bib40) 2014; 109 Lei (10.1016/j.jhazmat.2022.130658_bib14) 2021; 55 Varanasi (10.1016/j.jhazmat.2022.130658_bib33) 2018; 135 Caregnato (10.1016/j.jhazmat.2022.130658_bib13) 2013; 47 Liang (10.1016/j.jhazmat.2022.130658_bib1) 2021; 297 Li (10.1016/j.jhazmat.2022.130658_bib11) 2006; 138 Xu (10.1016/j.jhazmat.2022.130658_bib23) 2017; 609 Gao (10.1016/j.jhazmat.2022.130658_bib4) 2020; 176 Thiam (10.1016/j.jhazmat.2022.130658_bib18) 2015 Liu (10.1016/j.jhazmat.2022.130658_bib7) 2022 Yuan (10.1016/j.jhazmat.2022.130658_bib28) 2011; 196 Dou (10.1016/j.jhazmat.2022.130658_bib10) 2022; 824 Mei (10.1016/j.jhazmat.2022.130658_bib17) 2019; 373 Koo (10.1016/j.jhazmat.2022.130658_bib6) 2019; 53 Bao (10.1016/j.jhazmat.2022.130658_bib29) 2010; 55 Garba (10.1016/j.jhazmat.2022.130658_bib41) 2019; 241 Farhat (10.1016/j.jhazmat.2022.130658_bib3) 2017; 330 Li (10.1016/j.jhazmat.2022.130658_bib21) 2019; 361 Anipsitakis (10.1016/j.jhazmat.2022.130658_bib42) 2006; 40 Ding (10.1016/j.jhazmat.2022.130658_bib38) 2021; 404 Zhang (10.1016/j.jhazmat.2022.130658_bib15) 2018; 52 Hou (10.1016/j.jhazmat.2022.130658_bib30) 2018; 52 Fang (10.1016/j.jhazmat.2022.130658_bib35) 2012; 227–228 Yang (10.1016/j.jhazmat.2022.130658_bib16) 2014; 48 Vione (10.1016/j.jhazmat.2022.130658_bib37) 2005; 39 Oyekunle (10.1016/j.jhazmat.2022.130658_bib12) 2021; 280 Long (10.1016/j.jhazmat.2022.130658_bib9) 2022; 317 Lei (10.1016/j.jhazmat.2022.130658_bib25) 2019; 53 Silveira (10.1016/j.jhazmat.2022.130658_bib22) 2018; 39 Wang (10.1016/j.jhazmat.2022.130658_bib2) 2021; 772 Xiang (10.1016/j.jhazmat.2022.130658_bib43) 2020; 402 Li (10.1016/j.jhazmat.2022.130658_bib8) 2019; 30 Li (10.1016/j.jhazmat.2022.130658_bib39) 2018; 357 |
References_xml | – volume: 138 start-page: 392 year: 2006 end-page: 400 ident: bib11 article-title: Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions publication-title: J Hazard Mater – reference: State Environmental Protection Administration. Determination methods for examination of water and wastewater, fourth ed. China Environmental Science Press Beijing; 2002. – year: 2022 ident: bib7 article-title: Treatment of contaminants by a cathode/Fe publication-title: Water Res – volume: 317 year: 2022 ident: bib9 article-title: Sustainable Fe(III)/Fe(II) cycles triggered by co-catalyst of weak electrical current in Fe(III)/peroxymonosulfate system: collaboration of radical and non-radical mechanisms publication-title: Appl Catal B – volume: 109 start-page: 106 year: 2014 end-page: 112 ident: bib40 article-title: Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: kinetics modeling and byproducts identification publication-title: Chemosphere – volume: 52 start-page: 6317 year: 2018 end-page: 6325 ident: bib30 article-title: Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter publication-title: Environ Sci Technol – volume: 772 year: 2021 ident: bib2 article-title: Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates publication-title: Sci Total Environ – volume: 423 year: 2022 ident: bib27 article-title: Influence of salinity on the heterogeneous catalytic ozonation process: implications to treatment of high salinity wastewater publication-title: J Hazard Mater – volume: 196 start-page: 173 year: 2011 end-page: 179 ident: bib28 article-title: Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds publication-title: J Hazard Mater – volume: 52 start-page: 9579 year: 2018 end-page: 9594 ident: bib20 article-title: Halogen radical oxidants in natural and engineered aquatic systems publication-title: Environ Sci Technol – volume: 357 start-page: 207 year: 2018 end-page: 216 ident: bib39 article-title: Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fe°) activated peroxydisulfate (PDS) system in groundwater publication-title: J Hazard Mater – volume: 280 year: 2021 ident: bib12 article-title: Impact of chloride ions on activated persulfates based advanced oxidation process (AOPs): a mini review publication-title: Chemosphere – volume: 39 start-page: 1208 year: 2018 end-page: 1216 ident: bib22 article-title: Electro activation of persulfate using iron sheet as low-cost electrode: the role of the operating conditions publication-title: Environ Technol – volume: 247 start-page: 362 year: 2019 end-page: 370 ident: bib5 article-title: Photochemical degradation kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: a case of 1-chlorodecane publication-title: Environ Pollut – reference: Ianni JC.Kintecus (Windows Version 6.80); 2021. 〈 – volume: 361 start-page: 1317 year: 2019 end-page: 1332 ident: bib21 article-title: Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe publication-title: Chem Eng J – volume: 282 year: 2021 ident: bib32 article-title: Co publication-title: Appl Catal B – volume: 209 year: 2022 ident: bib31 article-title: Transformation of gemfibrozil by the interaction of chloride with sulfate radicals: radical chemistry, transient intermediates and pathways publication-title: Water Res – volume: 39 start-page: 5066 year: 2005 end-page: 5075 ident: bib37 article-title: Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution publication-title: Environ Sci Technol – volume: 241 start-page: 59 year: 2019 end-page: 75 ident: bib41 article-title: An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review publication-title: J Environ Manag – reference: 〉. – volume: 55 start-page: 689 year: 2021 end-page: 699 ident: bib14 article-title: Reactivity of chlorine radicals (Cl publication-title: Environ Sci Technol – volume: 40 start-page: 1000 year: 2006 end-page: 1007 ident: bib42 article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions publication-title: Environ Sci Technol – volume: 373 start-page: 668 year: 2019 end-page: 676 ident: bib17 article-title: Sulfate and hydroxyl radicals-initiated degradation reaction on phenolic contaminants in the aqueous phase: mechanisms, kinetics and toxicity assessment publication-title: Chem Eng J – volume: 176 year: 2020 ident: bib4 article-title: Unexpected culprit of increased estrogenic effects: oligomers in the photodegradation of preservative ethylparaben in water publication-title: Water Res – volume: 135 start-page: 22 year: 2018 end-page: 30 ident: bib33 article-title: Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes publication-title: Water Res – volume: 53 start-page: 11170 year: 2019 end-page: 11182 ident: bib25 article-title: Rate constants and mechanisms of the reactions of Cl publication-title: Environ Sci Technol – start-page: 81 year: 2015 ident: bib18 article-title: Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton publication-title: Water Res – volume: 52 start-page: 7380 year: 2018 end-page: 7389 ident: bib15 article-title: Impact of chloride ions on UV/H publication-title: Environ Sci Technol – volume: 194 year: 2021 ident: bib36 article-title: Formation of nitro(so) and chlorinated products and toxicity alteration during the UV/monochloramine treatment of phenol publication-title: Water Res – volume: 402 year: 2020 ident: bib43 article-title: Removal of 4-chlorophenol, bisphenol A and nonylphenol mixtures by aqueous chlorination and formation of coupling products publication-title: Chem Eng J – volume: 609 start-page: 644 year: 2017 end-page: 654 ident: bib23 article-title: The mechanism and efficiency of MnO publication-title: Sci Total Environ – volume: 47 start-page: 351 year: 2013 end-page: 362 ident: bib13 article-title: Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: role of Cl publication-title: Water Res – volume: 330 start-page: 1265 year: 2017 end-page: 1271 ident: bib3 article-title: Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate publication-title: Chem Eng J – volume: 54 start-page: 3064 year: 2020 end-page: 3081 ident: bib19 article-title: Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks publication-title: Environ Sci Technol – volume: 423 year: 2022 ident: bib34 article-title: Electrochemical activation of hydrogen peroxide, persulfate, and free chlorine using sacrificial iron anodes for decentralized wastewater treatment publication-title: J Hazard Mater – volume: 53 start-page: 9926 year: 2019 end-page: 9936 ident: bib6 article-title: In situ photoelectrochemical chloride activation using a WO publication-title: Environ Sci Technol – volume: 30 start-page: 2139 year: 2019 end-page: 2146 ident: bib8 article-title: The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review publication-title: Chin Chem Lett – volume: 297 year: 2021 ident: bib1 article-title: Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: pyrolysis temperature-depended performance and mechanisms publication-title: Appl Catal B – volume: 227–228 start-page: 394 year: 2012 end-page: 401 ident: bib35 article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics publication-title: J Hazard Mater – volume: 404 year: 2021 ident: bib38 article-title: Enhancing the degradation of carbamazepine by UVA-LED/WO publication-title: J Hazard Mater – volume: 824 year: 2022 ident: bib10 article-title: A review on the removal of Cl(-I) with high concentration from industrial wastewater: approaches and mechanisms publication-title: Sci Total Environ – volume: 55 start-page: 4030 year: 2010 end-page: 4038 ident: bib29 article-title: Electrochemical polymerization of phenol on 304 stainless steel anodes and subsequent coating structure analysis publication-title: Electrochim Acta – volume: 48 start-page: 2344 year: 2014 end-page: 2351 ident: bib16 article-title: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) publication-title: Environ Sci Technol – volume: 317 year: 2022 ident: 10.1016/j.jhazmat.2022.130658_bib9 article-title: Sustainable Fe(III)/Fe(II) cycles triggered by co-catalyst of weak electrical current in Fe(III)/peroxymonosulfate system: collaboration of radical and non-radical mechanisms publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.121716 – volume: 52 start-page: 9579 issue: 17 year: 2018 ident: 10.1016/j.jhazmat.2022.130658_bib20 article-title: Halogen radical oxidants in natural and engineered aquatic systems publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b02219 – volume: 135 start-page: 22 year: 2018 ident: 10.1016/j.jhazmat.2022.130658_bib33 article-title: Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes publication-title: Water Res doi: 10.1016/j.watres.2018.02.015 – volume: 361 start-page: 1317 year: 2019 ident: 10.1016/j.jhazmat.2022.130658_bib21 article-title: Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation publication-title: Chem Eng J doi: 10.1016/j.cej.2018.12.144 – volume: 423 year: 2022 ident: 10.1016/j.jhazmat.2022.130658_bib27 article-title: Influence of salinity on the heterogeneous catalytic ozonation process: implications to treatment of high salinity wastewater publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.127255 – volume: 39 start-page: 1208 issue: 9 year: 2018 ident: 10.1016/j.jhazmat.2022.130658_bib22 article-title: Electro activation of persulfate using iron sheet as low-cost electrode: the role of the operating conditions publication-title: Environ Technol doi: 10.1080/09593330.2017.1323960 – volume: 39 start-page: 5066 issue: 13 year: 2005 ident: 10.1016/j.jhazmat.2022.130658_bib37 article-title: Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution publication-title: Environ Sci Technol doi: 10.1021/es0480567 – volume: 55 start-page: 4030 issue: 12 year: 2010 ident: 10.1016/j.jhazmat.2022.130658_bib29 article-title: Electrochemical polymerization of phenol on 304 stainless steel anodes and subsequent coating structure analysis publication-title: Electrochim Acta doi: 10.1016/j.electacta.2010.02.052 – volume: 40 start-page: 1000 issue: 3 year: 2006 ident: 10.1016/j.jhazmat.2022.130658_bib42 article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions publication-title: Environ Sci Technol doi: 10.1021/es050634b – volume: 53 start-page: 9926 issue: 16 year: 2019 ident: 10.1016/j.jhazmat.2022.130658_bib6 article-title: In situ photoelectrochemical chloride activation using a WO3 electrode for oxidative treatment with simultaneous H2 evolution under visible light publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b02401 – volume: 772 year: 2021 ident: 10.1016/j.jhazmat.2022.130658_bib2 article-title: Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145522 – volume: 48 start-page: 2344 issue: 4 year: 2014 ident: 10.1016/j.jhazmat.2022.130658_bib16 article-title: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) publication-title: Environ Sci Technol doi: 10.1021/es404118q – volume: 54 start-page: 3064 issue: 6 year: 2020 ident: 10.1016/j.jhazmat.2022.130658_bib19 article-title: Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b07082 – volume: 55 start-page: 689 issue: 1 year: 2021 ident: 10.1016/j.jhazmat.2022.130658_bib14 article-title: Reactivity of chlorine radicals (Cl• and Cl2•–) with dissolved organic matter and the formation of chlorinated byproducts publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c05596 – volume: 404 year: 2021 ident: 10.1016/j.jhazmat.2022.130658_bib38 article-title: Enhancing the degradation of carbamazepine by UVA-LED/WO3 process with peroxydisulfate: effects of light wavelength and water matrix publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124126 – volume: 330 start-page: 1265 year: 2017 ident: 10.1016/j.jhazmat.2022.130658_bib3 article-title: Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate publication-title: Chem Eng J doi: 10.1016/j.cej.2017.08.033 – volume: 196 start-page: 173 year: 2011 ident: 10.1016/j.jhazmat.2022.130658_bib28 article-title: Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2011.09.007 – volume: 402 year: 2020 ident: 10.1016/j.jhazmat.2022.130658_bib43 article-title: Removal of 4-chlorophenol, bisphenol A and nonylphenol mixtures by aqueous chlorination and formation of coupling products publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126140 – volume: 282 year: 2021 ident: 10.1016/j.jhazmat.2022.130658_bib32 article-title: Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: role of pyridinic N-Co binding and high tolerance of chloride publication-title: Appl Catal B doi: 10.1016/j.apcatb.2020.119484 – ident: 10.1016/j.jhazmat.2022.130658_bib24 – volume: 138 start-page: 392 issue: 2 year: 2006 ident: 10.1016/j.jhazmat.2022.130658_bib11 article-title: Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2006.05.083 – volume: 227–228 start-page: 394 year: 2012 ident: 10.1016/j.jhazmat.2022.130658_bib35 article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2012.05.074 – volume: 176 year: 2020 ident: 10.1016/j.jhazmat.2022.130658_bib4 article-title: Unexpected culprit of increased estrogenic effects: oligomers in the photodegradation of preservative ethylparaben in water publication-title: Water Res doi: 10.1016/j.watres.2020.115745 – volume: 47 start-page: 351 issue: 1 year: 2013 ident: 10.1016/j.jhazmat.2022.130658_bib13 article-title: Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: role of Cl2− radical publication-title: Water Res doi: 10.1016/j.watres.2012.10.018 – volume: 209 year: 2022 ident: 10.1016/j.jhazmat.2022.130658_bib31 article-title: Transformation of gemfibrozil by the interaction of chloride with sulfate radicals: radical chemistry, transient intermediates and pathways publication-title: Water Res doi: 10.1016/j.watres.2021.117944 – volume: 109 start-page: 106 year: 2014 ident: 10.1016/j.jhazmat.2022.130658_bib40 article-title: Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: kinetics modeling and byproducts identification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.03.007 – year: 2022 ident: 10.1016/j.jhazmat.2022.130658_bib7 article-title: Treatment of contaminants by a cathode/FeIII/peroxydisulfate process: formation of suspended solid organic-polymers publication-title: Water Res – start-page: 81 year: 2015 ident: 10.1016/j.jhazmat.2022.130658_bib18 article-title: Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton publication-title: Water Res – ident: 10.1016/j.jhazmat.2022.130658_bib26 – volume: 53 start-page: 11170 issue: 19 year: 2019 ident: 10.1016/j.jhazmat.2022.130658_bib25 article-title: Rate constants and mechanisms of the reactions of Cl• and Cl2•– with trace organic contaminants publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b02462 – volume: 609 start-page: 644 year: 2017 ident: 10.1016/j.jhazmat.2022.130658_bib23 article-title: The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.07.151 – volume: 52 start-page: 6317 issue: 11 year: 2018 ident: 10.1016/j.jhazmat.2022.130658_bib30 article-title: Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b00576 – volume: 241 start-page: 59 year: 2019 ident: 10.1016/j.jhazmat.2022.130658_bib41 article-title: An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review publication-title: J Environ Manag doi: 10.1016/j.jenvman.2019.04.004 – volume: 373 start-page: 668 year: 2019 ident: 10.1016/j.jhazmat.2022.130658_bib17 article-title: Sulfate and hydroxyl radicals-initiated degradation reaction on phenolic contaminants in the aqueous phase: mechanisms, kinetics and toxicity assessment publication-title: Chem Eng J doi: 10.1016/j.cej.2019.05.095 – volume: 280 year: 2021 ident: 10.1016/j.jhazmat.2022.130658_bib12 article-title: Impact of chloride ions on activated persulfates based advanced oxidation process (AOPs): a mini review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130949 – volume: 824 year: 2022 ident: 10.1016/j.jhazmat.2022.130658_bib10 article-title: A review on the removal of Cl(-I) with high concentration from industrial wastewater: approaches and mechanisms publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.153909 – volume: 52 start-page: 7380 issue: 13 year: 2018 ident: 10.1016/j.jhazmat.2022.130658_bib15 article-title: Impact of chloride ions on UV/H2O2 and UV/persulfate advanced oxidation processes publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b01662 – volume: 247 start-page: 362 year: 2019 ident: 10.1016/j.jhazmat.2022.130658_bib5 article-title: Photochemical degradation kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: a case of 1-chlorodecane publication-title: Environ Pollut doi: 10.1016/j.envpol.2019.01.065 – volume: 194 year: 2021 ident: 10.1016/j.jhazmat.2022.130658_bib36 article-title: Formation of nitro(so) and chlorinated products and toxicity alteration during the UV/monochloramine treatment of phenol publication-title: Water Res doi: 10.1016/j.watres.2021.116914 – volume: 297 year: 2021 ident: 10.1016/j.jhazmat.2022.130658_bib1 article-title: Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: pyrolysis temperature-depended performance and mechanisms publication-title: Appl Catal B doi: 10.1016/j.apcatb.2021.120446 – volume: 357 start-page: 207 year: 2018 ident: 10.1016/j.jhazmat.2022.130658_bib39 article-title: Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fe°) activated peroxydisulfate (PDS) system in groundwater publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.06.008 – volume: 30 start-page: 2139 issue: 12 year: 2019 ident: 10.1016/j.jhazmat.2022.130658_bib8 article-title: The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2019.04.057 – volume: 423 year: 2022 ident: 10.1016/j.jhazmat.2022.130658_bib34 article-title: Electrochemical activation of hydrogen peroxide, persulfate, and free chlorine using sacrificial iron anodes for decentralized wastewater treatment publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.127068 |
SSID | ssj0001754 |
Score | 2.531218 |
Snippet | Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in... Ubiquitous chloride ion (Cl ) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130658 |
SubjectTerms | Advanced oxidation Chlorine radical Organics recovery Polymerization Wastewater treatment |
Title | Organics abatement and recovery from wastewater by a polymerization-based electrochemically assisted persulfate process: Promotion effect of chloride ion and its mechanism |
URI | https://dx.doi.org/10.1016/j.jhazmat.2022.130658 https://www.ncbi.nlm.nih.gov/pubmed/36580777 https://www.proquest.com/docview/2759958963 |
Volume | 446 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpemkPpU1f20eYQq_e9VoP272F0LB9hUIbyM3oZbLLxjb1LmFzyB_qn-zMSk5aaAn0YrCRZKEZzYw0880w9tY44yUq6kTkGh8lLxPKc5NMRZbamhfOOwInfzlWsxPx8VSe7rDDAQtDYZVR9geZvpXW8cskruakm88n38iph-pWZBm5DwXJYSFy4vLx1U2YB6rHkEKKPADY-gbFM1mMF2f6Eg1DPCZmGdVFVlT5_e_66V_251YPHT1kD6IBCQdhjo_Yjm_22P3f0grusTuf9cVj9jPALG0P2qBBSbeAoBsHdARG_t0AIUvgQvd0fYarC2YDGrp2uSEnTkBnJqTkHMRaOTYmF1hiQ9xKdFEKHZqP62WNA0AXMAfv4GsI8WsbCNEi0NZgzyjUz3mgzzSN-aqHc0-443l__oSdHL3_fjhLYmmGxHIlV4lMvU-Fl7qwXtlCW0oTb7SxKXfOFdOp46kVTiqNJoz3tS2NRsmhlUJBX1rLn7Ldpm38cwY6qwXXyqWGl4Lyv-lSSBxCeSeFMPmIiYEglY15y6l8xrIaAtQWVaRjRXSsAh1HbHzdrQuJO27rUAzUrv7gwAqVy21d3wzcUeHuJJeLbny77itclrKUBUq5EXsW2OZ6NriQRZrn-Yv___FLdg_fOMXETeUrtrv6sfav0Uhamf3tLthndw8-fJod_wJdYhYG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Lb9Mw2BrjABwQDBhlPD4krmnT2M6D2zRtKtBNSGzSbpZf0Vp1SURaTeXAH-JP8n11sg0JNIlLDo6dWN_b_l6MfTDOeImKOhKZxkfBi4jq3ERjkcS25LnzjpKTj0_SyZn4fC7Pt9hBnwtDYZWd7A8yfSOtu5FRB81RM5uNvpFTD9WtSBJyHwqUw_cFsi-1MRj-vInzQP0YakiRCwCn36TxjObD-YX-gZYhnhOThBojp9T6_e8K6l8G6EYRHT1hjzsLEvbDJp-yLV_tsEe36grusHtTffWM_Qp5lrYFbdCipGtA0JUDOgMjAa-BUkvgSrd0f4bgBbMGDU29WJMXJ6RnRqTlHHTNcmxXXWCBE5GX6KYUGrQfV4sSPwBNSDr4CF9DjF9dQQgXgboEe0Gxfs4DDdM2ZssWLj0lHs_ay-fs7Ojw9GASdb0ZIstTuYxk7H0svNS59anNtaU68UYbG3PnXD4eOx5b4WSq0YbxvrSF0Sg6dJqipC-s5S_YdlVX_iUDnZSC69TFhheCCsDpQkj8ROqdFMJkAyZ6hCjbFS6n_hkL1UeozVWHR0V4VAGPAza8XtaEyh13Lch7bKs_SFChdrlr6fueOhSyJ_lcdOXrVasQLEUhcxRzA7YbyOZ6NwjIPM6y7NX___gdezA5PZ6q6aeTL3vsIb7hFCA3lq_Z9vL7yr9Bi2lp3m444jeJlReU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organics+abatement+and+recovery+from+wastewater+by+a+polymerization-based+electrochemically+assisted+persulfate+process%3A+Promotion+effect+of+chloride+ion+and+its+mechanism&rft.jtitle=Journal+of+hazardous+materials&rft.au=Yang%2C+Sui-Qin&rft.au=Liu%2C+Zheng-Qian&rft.au=Cui%2C+Yu-Hong&rft.au=Wang%2C+Ming-Kui&rft.date=2023-03-15&rft.eissn=1873-3336&rft.volume=446&rft.spage=130658&rft_id=info:doi/10.1016%2Fj.jhazmat.2022.130658&rft_id=info%3Apmid%2F36580777&rft.externalDocID=36580777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |