Organics abatement and recovery from wastewater by a polymerization-based electrochemically assisted persulfate process: Promotion effect of chloride ion and its mechanism

Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for orga...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 446; p. 130658
Main Authors Yang, Sui-Qin, Liu, Zheng-Qian, Cui, Yu-Hong, Wang, Ming-Kui
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48–79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers. [Display omitted] •Derived Cl2•- are initiators for organics polymerization in the presence of Cl-.•Moderate rate constants between Cl2•- and contaminants favor the polymerization.•Dissolved chlorinated organic products can be reduced through polymerization.•The process has high tolerance to Cl- in the real industrial wastewater treatment.•Contaminants removal and resource recovery can be achieved simultaneously.
AbstractList Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48-79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers.Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48-79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers.
Ubiquitous chloride ion (Cl ) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl , differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO ) (or hydroxyl radical (HO )), dichloride radical (Cl ) derived from Cl has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48-79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl . The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers.
Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48–79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers. [Display omitted] •Derived Cl2•- are initiators for organics polymerization in the presence of Cl-.•Moderate rate constants between Cl2•- and contaminants favor the polymerization.•Dissolved chlorinated organic products can be reduced through polymerization.•The process has high tolerance to Cl- in the real industrial wastewater treatment.•Contaminants removal and resource recovery can be achieved simultaneously.
ArticleNumber 130658
Author Yang, Sui-Qin
Wang, Ming-Kui
Liu, Zheng-Qian
Cui, Yu-Hong
Author_xml – sequence: 1
  givenname: Sui-Qin
  orcidid: 0000-0002-6379-0439
  surname: Yang
  fullname: Yang, Sui-Qin
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China
– sequence: 2
  givenname: Zheng-Qian
  surname: Liu
  fullname: Liu, Zheng-Qian
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
– sequence: 3
  givenname: Yu-Hong
  surname: Cui
  fullname: Cui, Yu-Hong
  email: yhcui@hust.edu.cn
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
– sequence: 4
  givenname: Ming-Kui
  surname: Wang
  fullname: Wang, Ming-Kui
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36580777$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuFDEQRS0URCaBTwB5yaYHu91PWKAo4iVFCgtYW9XlasYjd3uwPYkmv8RP4mYGFmyysmSfc1Wue8HOZj8TYy-lWEshmzfb9XYDDxOkdSnKci2VaOruCVvJrlWFUqo5YyuhRFWorq_O2UWMWyGEbOvqGTtXmRVt267Yr9vwA2aLkcMAiSaaE4fZ8EDo7ygc-Bj8xO8hJrrP74EPBw58591homAfIFk_FwNEMpwcYQoeNzRZBOcyGKPNouE7CnHvxhzAd5mgGN_yrznYLzqnccwm9yPHjfPBGuLL9TKGTZFPhJs8Ypyes6cjuEgvTucl-_7xw7frz8XN7acv11c3BeZ_paIWRKKiGjqkBjvAsq3FAAMKZYzppDRKYGXqBkQriUbsByjLGpqGAHtEdcleH3PzrD_3FJOebERyDmby-6hzXt_XXd-ojL46ofthIqN3wU4QDvrvgjNQHwEMPsZA4z9ECr0Uqbf6VKReitTHIrP37j8Pbfqz7RTAukft90eb8pruLAUd0dKMZGwuNmnj7SMJvwEsrcMU
CitedBy_id crossref_primary_10_1016_j_jwpe_2024_106434
crossref_primary_10_1016_j_molstruc_2023_135908
crossref_primary_10_1016_j_jwpe_2024_105865
crossref_primary_10_1039_D4TB01311E
crossref_primary_10_1016_j_cej_2024_156385
crossref_primary_10_1016_j_jece_2023_111501
crossref_primary_10_1016_j_watres_2024_121715
crossref_primary_10_1021_acs_analchem_3c04325
crossref_primary_10_1016_j_jelechem_2025_119059
crossref_primary_10_1016_j_eesus_2025_02_004
crossref_primary_10_1016_j_jhazmat_2024_134498
crossref_primary_10_1016_j_seppur_2024_130452
crossref_primary_10_1016_j_jhazmat_2023_132004
crossref_primary_10_1021_acsestwater_4c00280
crossref_primary_10_1038_s41467_023_44422_5
crossref_primary_10_1016_j_apcato_2025_207033
crossref_primary_10_1016_j_seppur_2024_127931
crossref_primary_10_1016_j_jhazmat_2024_134318
crossref_primary_10_1016_j_jece_2025_116180
crossref_primary_10_1016_j_psep_2024_12_106
crossref_primary_10_1021_acsestwater_4c01181
crossref_primary_10_1016_j_jes_2023_06_034
Cites_doi 10.1016/j.apcatb.2022.121716
10.1021/acs.est.8b02219
10.1016/j.watres.2018.02.015
10.1016/j.cej.2018.12.144
10.1016/j.jhazmat.2021.127255
10.1080/09593330.2017.1323960
10.1021/es0480567
10.1016/j.electacta.2010.02.052
10.1021/es050634b
10.1021/acs.est.9b02401
10.1016/j.scitotenv.2021.145522
10.1021/es404118q
10.1021/acs.est.9b07082
10.1021/acs.est.0c05596
10.1016/j.jhazmat.2020.124126
10.1016/j.cej.2017.08.033
10.1016/j.jhazmat.2011.09.007
10.1016/j.cej.2020.126140
10.1016/j.apcatb.2020.119484
10.1016/j.jhazmat.2006.05.083
10.1016/j.jhazmat.2012.05.074
10.1016/j.watres.2020.115745
10.1016/j.watres.2012.10.018
10.1016/j.watres.2021.117944
10.1016/j.chemosphere.2014.03.007
10.1021/acs.est.9b02462
10.1016/j.scitotenv.2017.07.151
10.1021/acs.est.8b00576
10.1016/j.jenvman.2019.04.004
10.1016/j.cej.2019.05.095
10.1016/j.chemosphere.2021.130949
10.1016/j.scitotenv.2022.153909
10.1021/acs.est.8b01662
10.1016/j.envpol.2019.01.065
10.1016/j.watres.2021.116914
10.1016/j.apcatb.2021.120446
10.1016/j.jhazmat.2018.06.008
10.1016/j.cclet.2019.04.057
10.1016/j.jhazmat.2021.127068
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jhazmat.2022.130658
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 36580777
10_1016_j_jhazmat_2022_130658
S0304389422024542
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SSH
T9H
TAE
VH1
WUQ
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c365t-50ee04e5a8ce6c8ac2750babc03ddd811d30c4d56a071eefc9ba225a66eac9cc3
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Thu Jul 10 19:03:20 EDT 2025
Mon Jul 21 06:04:18 EDT 2025
Tue Jul 01 01:05:54 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Fri Feb 23 02:39:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polymerization
Advanced oxidation
Organics recovery
Chlorine radical
Wastewater treatment
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-50ee04e5a8ce6c8ac2750babc03ddd811d30c4d56a071eefc9ba225a66eac9cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6379-0439
PMID 36580777
PQID 2759958963
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2759958963
pubmed_primary_36580777
crossref_primary_10_1016_j_jhazmat_2022_130658
crossref_citationtrail_10_1016_j_jhazmat_2022_130658
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2022_130658
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yuan, Garg, Wang, Li, Chen, Gao (bib27) 2022; 423
Escobedo, Cho, Chang (bib34) 2022; 423
Zhang, Parker (bib20) 2018; 52
Zhang, Gao, Qin, Wang, Wu, Li (bib5) 2019; 247
Oyekunle, Cai, Gendy, Chen (bib12) 2021; 280
Xu, Lin, Li, Zhang (bib23) 2017; 609
Anipsitakis, Dionysiou, Gonzalez (bib42) 2006; 40
Li, An, Chen, Sheng, Fu, Chen (bib11) 2006; 138
Zhang, Zhou, Sun, Meng, Luo, Zhou (bib15) 2018; 52
Long, Xiong, Huang, Yu, Zhou, Zhang (bib9) 2022; 317
Ding, Hu (bib38) 2021; 404
Liu, Yang, Lai, Fan, Cui (bib7) 2022
Caregnato, Rosso, Soler, Arques, Mártire, Gonzalez (bib13) 2013; 47
Bao, Xiong, Wei (bib29) 2010; 55
Fang, Dionysiou, Wang, Al-Abed, Zhou (bib35) 2012; 227–228
Thiam, Sirés, Brillas (bib18) 2015
Lei, Cheng, Luo, Yang, An (bib25) 2019; 53
Mei, Sun, Han, Wei, An, Wang (bib17) 2019; 373
Yuan, Ramjaun, Wang, Liu (bib28) 2011; 196
Lee, von Gunten, Kim (bib19) 2020; 54
Xiang, Qu, Wang, Wang, Bin-Jumah, Allam (bib43) 2020; 402
Ianni JC.Kintecus (Windows Version 6.80); 2021.
Hou, Ling, Dionysiou, Wang, Huang, Guo (bib30) 2018; 52
Peng, Shang, Gao, Xu (bib32) 2021; 282
Dou, Peng, Kong, Hu (bib10) 2022; 824
Wang, Chen, Wang, Yan, Liu (bib2) 2021; 772
Liang, Duan, Xu, Chen, Wu, Qiu (bib1) 2021; 297
Chen, Du, Zhou, Wu, Zheng, Fang (bib36) 2021; 194
Yang, Pignatello, Ma, Mitch (bib16) 2014; 48
Vione, Maurino, Minero, Calza, Pelizzetti (bib37) 2005; 39
Li, Yan, Yao, Zhang, Li, Lai (bib21) 2019; 361
.
Chen, Wu, Hou, Wang, Fang (bib31) 2022; 209
Silveira, Cardoso, Barreto-Rodrigues, Zazo, Casas (bib22) 2018; 39
Yuan, Wang, Hu, Wang, Gao (bib40) 2014; 109
Farhat, Keller, Tait, Radjenovic (bib3) 2017; 330
Gao, Niu, Qin, Guo, Ji, Li (bib4) 2020; 176
Lei, Lei, Westerhoff, Zhang, Yang (bib14) 2021; 55
Varanasi, Coscarelli, Khaksari, Mazzoleni, Minakata (bib33) 2018; 135
State Environmental Protection Administration. Determination methods for examination of water and wastewater, fourth ed. China Environmental Science Press Beijing; 2002.
Koo, Chen, Cho, An, Choi (bib6) 2019; 53
Li, Wu, Wang, Hou, Huang, Kong (bib39) 2018; 357
Li, Li, Xiong, Yao, Lai (bib8) 2019; 30
Garba, Zhou, Lawan, Xiao, Zhang, Wang (bib41) 2019; 241
Escobedo (10.1016/j.jhazmat.2022.130658_bib34) 2022; 423
Zhang (10.1016/j.jhazmat.2022.130658_bib20) 2018; 52
10.1016/j.jhazmat.2022.130658_bib26
10.1016/j.jhazmat.2022.130658_bib24
Peng (10.1016/j.jhazmat.2022.130658_bib32) 2021; 282
Lee (10.1016/j.jhazmat.2022.130658_bib19) 2020; 54
Chen (10.1016/j.jhazmat.2022.130658_bib36) 2021; 194
Yuan (10.1016/j.jhazmat.2022.130658_bib27) 2022; 423
Chen (10.1016/j.jhazmat.2022.130658_bib31) 2022; 209
Zhang (10.1016/j.jhazmat.2022.130658_bib5) 2019; 247
Yuan (10.1016/j.jhazmat.2022.130658_bib40) 2014; 109
Lei (10.1016/j.jhazmat.2022.130658_bib14) 2021; 55
Varanasi (10.1016/j.jhazmat.2022.130658_bib33) 2018; 135
Caregnato (10.1016/j.jhazmat.2022.130658_bib13) 2013; 47
Liang (10.1016/j.jhazmat.2022.130658_bib1) 2021; 297
Li (10.1016/j.jhazmat.2022.130658_bib11) 2006; 138
Xu (10.1016/j.jhazmat.2022.130658_bib23) 2017; 609
Gao (10.1016/j.jhazmat.2022.130658_bib4) 2020; 176
Thiam (10.1016/j.jhazmat.2022.130658_bib18) 2015
Liu (10.1016/j.jhazmat.2022.130658_bib7) 2022
Yuan (10.1016/j.jhazmat.2022.130658_bib28) 2011; 196
Dou (10.1016/j.jhazmat.2022.130658_bib10) 2022; 824
Mei (10.1016/j.jhazmat.2022.130658_bib17) 2019; 373
Koo (10.1016/j.jhazmat.2022.130658_bib6) 2019; 53
Bao (10.1016/j.jhazmat.2022.130658_bib29) 2010; 55
Garba (10.1016/j.jhazmat.2022.130658_bib41) 2019; 241
Farhat (10.1016/j.jhazmat.2022.130658_bib3) 2017; 330
Li (10.1016/j.jhazmat.2022.130658_bib21) 2019; 361
Anipsitakis (10.1016/j.jhazmat.2022.130658_bib42) 2006; 40
Ding (10.1016/j.jhazmat.2022.130658_bib38) 2021; 404
Zhang (10.1016/j.jhazmat.2022.130658_bib15) 2018; 52
Hou (10.1016/j.jhazmat.2022.130658_bib30) 2018; 52
Fang (10.1016/j.jhazmat.2022.130658_bib35) 2012; 227–228
Yang (10.1016/j.jhazmat.2022.130658_bib16) 2014; 48
Vione (10.1016/j.jhazmat.2022.130658_bib37) 2005; 39
Oyekunle (10.1016/j.jhazmat.2022.130658_bib12) 2021; 280
Long (10.1016/j.jhazmat.2022.130658_bib9) 2022; 317
Lei (10.1016/j.jhazmat.2022.130658_bib25) 2019; 53
Silveira (10.1016/j.jhazmat.2022.130658_bib22) 2018; 39
Wang (10.1016/j.jhazmat.2022.130658_bib2) 2021; 772
Xiang (10.1016/j.jhazmat.2022.130658_bib43) 2020; 402
Li (10.1016/j.jhazmat.2022.130658_bib8) 2019; 30
Li (10.1016/j.jhazmat.2022.130658_bib39) 2018; 357
References_xml – volume: 138
  start-page: 392
  year: 2006
  end-page: 400
  ident: bib11
  article-title: Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions
  publication-title: J Hazard Mater
– reference: State Environmental Protection Administration. Determination methods for examination of water and wastewater, fourth ed. China Environmental Science Press Beijing; 2002.
– year: 2022
  ident: bib7
  article-title: Treatment of contaminants by a cathode/Fe
  publication-title: Water Res
– volume: 317
  year: 2022
  ident: bib9
  article-title: Sustainable Fe(III)/Fe(II) cycles triggered by co-catalyst of weak electrical current in Fe(III)/peroxymonosulfate system: collaboration of radical and non-radical mechanisms
  publication-title: Appl Catal B
– volume: 109
  start-page: 106
  year: 2014
  end-page: 112
  ident: bib40
  article-title: Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: kinetics modeling and byproducts identification
  publication-title: Chemosphere
– volume: 52
  start-page: 6317
  year: 2018
  end-page: 6325
  ident: bib30
  article-title: Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter
  publication-title: Environ Sci Technol
– volume: 772
  year: 2021
  ident: bib2
  article-title: Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates
  publication-title: Sci Total Environ
– volume: 423
  year: 2022
  ident: bib27
  article-title: Influence of salinity on the heterogeneous catalytic ozonation process: implications to treatment of high salinity wastewater
  publication-title: J Hazard Mater
– volume: 196
  start-page: 173
  year: 2011
  end-page: 179
  ident: bib28
  article-title: Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds
  publication-title: J Hazard Mater
– volume: 52
  start-page: 9579
  year: 2018
  end-page: 9594
  ident: bib20
  article-title: Halogen radical oxidants in natural and engineered aquatic systems
  publication-title: Environ Sci Technol
– volume: 357
  start-page: 207
  year: 2018
  end-page: 216
  ident: bib39
  article-title: Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fe°) activated peroxydisulfate (PDS) system in groundwater
  publication-title: J Hazard Mater
– volume: 280
  year: 2021
  ident: bib12
  article-title: Impact of chloride ions on activated persulfates based advanced oxidation process (AOPs): a mini review
  publication-title: Chemosphere
– volume: 39
  start-page: 1208
  year: 2018
  end-page: 1216
  ident: bib22
  article-title: Electro activation of persulfate using iron sheet as low-cost electrode: the role of the operating conditions
  publication-title: Environ Technol
– volume: 247
  start-page: 362
  year: 2019
  end-page: 370
  ident: bib5
  article-title: Photochemical degradation kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: a case of 1-chlorodecane
  publication-title: Environ Pollut
– reference: Ianni JC.Kintecus (Windows Version 6.80); 2021. 〈
– volume: 361
  start-page: 1317
  year: 2019
  end-page: 1332
  ident: bib21
  article-title: Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe
  publication-title: Chem Eng J
– volume: 282
  year: 2021
  ident: bib32
  article-title: Co
  publication-title: Appl Catal B
– volume: 209
  year: 2022
  ident: bib31
  article-title: Transformation of gemfibrozil by the interaction of chloride with sulfate radicals: radical chemistry, transient intermediates and pathways
  publication-title: Water Res
– volume: 39
  start-page: 5066
  year: 2005
  end-page: 5075
  ident: bib37
  article-title: Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution
  publication-title: Environ Sci Technol
– volume: 241
  start-page: 59
  year: 2019
  end-page: 75
  ident: bib41
  article-title: An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review
  publication-title: J Environ Manag
– reference: 〉.
– volume: 55
  start-page: 689
  year: 2021
  end-page: 699
  ident: bib14
  article-title: Reactivity of chlorine radicals (Cl
  publication-title: Environ Sci Technol
– volume: 40
  start-page: 1000
  year: 2006
  end-page: 1007
  ident: bib42
  article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions
  publication-title: Environ Sci Technol
– volume: 373
  start-page: 668
  year: 2019
  end-page: 676
  ident: bib17
  article-title: Sulfate and hydroxyl radicals-initiated degradation reaction on phenolic contaminants in the aqueous phase: mechanisms, kinetics and toxicity assessment
  publication-title: Chem Eng J
– volume: 176
  year: 2020
  ident: bib4
  article-title: Unexpected culprit of increased estrogenic effects: oligomers in the photodegradation of preservative ethylparaben in water
  publication-title: Water Res
– volume: 135
  start-page: 22
  year: 2018
  end-page: 30
  ident: bib33
  article-title: Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes
  publication-title: Water Res
– volume: 53
  start-page: 11170
  year: 2019
  end-page: 11182
  ident: bib25
  article-title: Rate constants and mechanisms of the reactions of Cl
  publication-title: Environ Sci Technol
– start-page: 81
  year: 2015
  ident: bib18
  article-title: Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton
  publication-title: Water Res
– volume: 52
  start-page: 7380
  year: 2018
  end-page: 7389
  ident: bib15
  article-title: Impact of chloride ions on UV/H
  publication-title: Environ Sci Technol
– volume: 194
  year: 2021
  ident: bib36
  article-title: Formation of nitro(so) and chlorinated products and toxicity alteration during the UV/monochloramine treatment of phenol
  publication-title: Water Res
– volume: 402
  year: 2020
  ident: bib43
  article-title: Removal of 4-chlorophenol, bisphenol A and nonylphenol mixtures by aqueous chlorination and formation of coupling products
  publication-title: Chem Eng J
– volume: 609
  start-page: 644
  year: 2017
  end-page: 654
  ident: bib23
  article-title: The mechanism and efficiency of MnO
  publication-title: Sci Total Environ
– volume: 47
  start-page: 351
  year: 2013
  end-page: 362
  ident: bib13
  article-title: Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: role of Cl
  publication-title: Water Res
– volume: 330
  start-page: 1265
  year: 2017
  end-page: 1271
  ident: bib3
  article-title: Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate
  publication-title: Chem Eng J
– volume: 54
  start-page: 3064
  year: 2020
  end-page: 3081
  ident: bib19
  article-title: Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks
  publication-title: Environ Sci Technol
– volume: 423
  year: 2022
  ident: bib34
  article-title: Electrochemical activation of hydrogen peroxide, persulfate, and free chlorine using sacrificial iron anodes for decentralized wastewater treatment
  publication-title: J Hazard Mater
– volume: 53
  start-page: 9926
  year: 2019
  end-page: 9936
  ident: bib6
  article-title: In situ photoelectrochemical chloride activation using a WO
  publication-title: Environ Sci Technol
– volume: 30
  start-page: 2139
  year: 2019
  end-page: 2146
  ident: bib8
  article-title: The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review
  publication-title: Chin Chem Lett
– volume: 297
  year: 2021
  ident: bib1
  article-title: Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: pyrolysis temperature-depended performance and mechanisms
  publication-title: Appl Catal B
– volume: 227–228
  start-page: 394
  year: 2012
  end-page: 401
  ident: bib35
  article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics
  publication-title: J Hazard Mater
– volume: 404
  year: 2021
  ident: bib38
  article-title: Enhancing the degradation of carbamazepine by UVA-LED/WO
  publication-title: J Hazard Mater
– volume: 824
  year: 2022
  ident: bib10
  article-title: A review on the removal of Cl(-I) with high concentration from industrial wastewater: approaches and mechanisms
  publication-title: Sci Total Environ
– volume: 55
  start-page: 4030
  year: 2010
  end-page: 4038
  ident: bib29
  article-title: Electrochemical polymerization of phenol on 304 stainless steel anodes and subsequent coating structure analysis
  publication-title: Electrochim Acta
– volume: 48
  start-page: 2344
  year: 2014
  end-page: 2351
  ident: bib16
  article-title: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)
  publication-title: Environ Sci Technol
– volume: 317
  year: 2022
  ident: 10.1016/j.jhazmat.2022.130658_bib9
  article-title: Sustainable Fe(III)/Fe(II) cycles triggered by co-catalyst of weak electrical current in Fe(III)/peroxymonosulfate system: collaboration of radical and non-radical mechanisms
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.121716
– volume: 52
  start-page: 9579
  issue: 17
  year: 2018
  ident: 10.1016/j.jhazmat.2022.130658_bib20
  article-title: Halogen radical oxidants in natural and engineered aquatic systems
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b02219
– volume: 135
  start-page: 22
  year: 2018
  ident: 10.1016/j.jhazmat.2022.130658_bib33
  article-title: Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.02.015
– volume: 361
  start-page: 1317
  year: 2019
  ident: 10.1016/j.jhazmat.2022.130658_bib21
  article-title: Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.12.144
– volume: 423
  year: 2022
  ident: 10.1016/j.jhazmat.2022.130658_bib27
  article-title: Influence of salinity on the heterogeneous catalytic ozonation process: implications to treatment of high salinity wastewater
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.127255
– volume: 39
  start-page: 1208
  issue: 9
  year: 2018
  ident: 10.1016/j.jhazmat.2022.130658_bib22
  article-title: Electro activation of persulfate using iron sheet as low-cost electrode: the role of the operating conditions
  publication-title: Environ Technol
  doi: 10.1080/09593330.2017.1323960
– volume: 39
  start-page: 5066
  issue: 13
  year: 2005
  ident: 10.1016/j.jhazmat.2022.130658_bib37
  article-title: Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution
  publication-title: Environ Sci Technol
  doi: 10.1021/es0480567
– volume: 55
  start-page: 4030
  issue: 12
  year: 2010
  ident: 10.1016/j.jhazmat.2022.130658_bib29
  article-title: Electrochemical polymerization of phenol on 304 stainless steel anodes and subsequent coating structure analysis
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2010.02.052
– volume: 40
  start-page: 1000
  issue: 3
  year: 2006
  ident: 10.1016/j.jhazmat.2022.130658_bib42
  article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions
  publication-title: Environ Sci Technol
  doi: 10.1021/es050634b
– volume: 53
  start-page: 9926
  issue: 16
  year: 2019
  ident: 10.1016/j.jhazmat.2022.130658_bib6
  article-title: In situ photoelectrochemical chloride activation using a WO3 electrode for oxidative treatment with simultaneous H2 evolution under visible light
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b02401
– volume: 772
  year: 2021
  ident: 10.1016/j.jhazmat.2022.130658_bib2
  article-title: Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145522
– volume: 48
  start-page: 2344
  issue: 4
  year: 2014
  ident: 10.1016/j.jhazmat.2022.130658_bib16
  article-title: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)
  publication-title: Environ Sci Technol
  doi: 10.1021/es404118q
– volume: 54
  start-page: 3064
  issue: 6
  year: 2020
  ident: 10.1016/j.jhazmat.2022.130658_bib19
  article-title: Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b07082
– volume: 55
  start-page: 689
  issue: 1
  year: 2021
  ident: 10.1016/j.jhazmat.2022.130658_bib14
  article-title: Reactivity of chlorine radicals (Cl• and Cl2•–) with dissolved organic matter and the formation of chlorinated byproducts
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c05596
– volume: 404
  year: 2021
  ident: 10.1016/j.jhazmat.2022.130658_bib38
  article-title: Enhancing the degradation of carbamazepine by UVA-LED/WO3 process with peroxydisulfate: effects of light wavelength and water matrix
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124126
– volume: 330
  start-page: 1265
  year: 2017
  ident: 10.1016/j.jhazmat.2022.130658_bib3
  article-title: Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2017.08.033
– volume: 196
  start-page: 173
  year: 2011
  ident: 10.1016/j.jhazmat.2022.130658_bib28
  article-title: Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2011.09.007
– volume: 402
  year: 2020
  ident: 10.1016/j.jhazmat.2022.130658_bib43
  article-title: Removal of 4-chlorophenol, bisphenol A and nonylphenol mixtures by aqueous chlorination and formation of coupling products
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.126140
– volume: 282
  year: 2021
  ident: 10.1016/j.jhazmat.2022.130658_bib32
  article-title: Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: role of pyridinic N-Co binding and high tolerance of chloride
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2020.119484
– ident: 10.1016/j.jhazmat.2022.130658_bib24
– volume: 138
  start-page: 392
  issue: 2
  year: 2006
  ident: 10.1016/j.jhazmat.2022.130658_bib11
  article-title: Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2006.05.083
– volume: 227–228
  start-page: 394
  year: 2012
  ident: 10.1016/j.jhazmat.2022.130658_bib35
  article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2012.05.074
– volume: 176
  year: 2020
  ident: 10.1016/j.jhazmat.2022.130658_bib4
  article-title: Unexpected culprit of increased estrogenic effects: oligomers in the photodegradation of preservative ethylparaben in water
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115745
– volume: 47
  start-page: 351
  issue: 1
  year: 2013
  ident: 10.1016/j.jhazmat.2022.130658_bib13
  article-title: Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: role of Cl2− radical
  publication-title: Water Res
  doi: 10.1016/j.watres.2012.10.018
– volume: 209
  year: 2022
  ident: 10.1016/j.jhazmat.2022.130658_bib31
  article-title: Transformation of gemfibrozil by the interaction of chloride with sulfate radicals: radical chemistry, transient intermediates and pathways
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.117944
– volume: 109
  start-page: 106
  year: 2014
  ident: 10.1016/j.jhazmat.2022.130658_bib40
  article-title: Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: kinetics modeling and byproducts identification
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.03.007
– year: 2022
  ident: 10.1016/j.jhazmat.2022.130658_bib7
  article-title: Treatment of contaminants by a cathode/FeIII/peroxydisulfate process: formation of suspended solid organic-polymers
  publication-title: Water Res
– start-page: 81
  year: 2015
  ident: 10.1016/j.jhazmat.2022.130658_bib18
  article-title: Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton
  publication-title: Water Res
– ident: 10.1016/j.jhazmat.2022.130658_bib26
– volume: 53
  start-page: 11170
  issue: 19
  year: 2019
  ident: 10.1016/j.jhazmat.2022.130658_bib25
  article-title: Rate constants and mechanisms of the reactions of Cl• and Cl2•– with trace organic contaminants
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b02462
– volume: 609
  start-page: 644
  year: 2017
  ident: 10.1016/j.jhazmat.2022.130658_bib23
  article-title: The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.07.151
– volume: 52
  start-page: 6317
  issue: 11
  year: 2018
  ident: 10.1016/j.jhazmat.2022.130658_bib30
  article-title: Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b00576
– volume: 241
  start-page: 59
  year: 2019
  ident: 10.1016/j.jhazmat.2022.130658_bib41
  article-title: An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2019.04.004
– volume: 373
  start-page: 668
  year: 2019
  ident: 10.1016/j.jhazmat.2022.130658_bib17
  article-title: Sulfate and hydroxyl radicals-initiated degradation reaction on phenolic contaminants in the aqueous phase: mechanisms, kinetics and toxicity assessment
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.05.095
– volume: 280
  year: 2021
  ident: 10.1016/j.jhazmat.2022.130658_bib12
  article-title: Impact of chloride ions on activated persulfates based advanced oxidation process (AOPs): a mini review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130949
– volume: 824
  year: 2022
  ident: 10.1016/j.jhazmat.2022.130658_bib10
  article-title: A review on the removal of Cl(-I) with high concentration from industrial wastewater: approaches and mechanisms
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.153909
– volume: 52
  start-page: 7380
  issue: 13
  year: 2018
  ident: 10.1016/j.jhazmat.2022.130658_bib15
  article-title: Impact of chloride ions on UV/H2O2 and UV/persulfate advanced oxidation processes
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b01662
– volume: 247
  start-page: 362
  year: 2019
  ident: 10.1016/j.jhazmat.2022.130658_bib5
  article-title: Photochemical degradation kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: a case of 1-chlorodecane
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2019.01.065
– volume: 194
  year: 2021
  ident: 10.1016/j.jhazmat.2022.130658_bib36
  article-title: Formation of nitro(so) and chlorinated products and toxicity alteration during the UV/monochloramine treatment of phenol
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.116914
– volume: 297
  year: 2021
  ident: 10.1016/j.jhazmat.2022.130658_bib1
  article-title: Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: pyrolysis temperature-depended performance and mechanisms
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2021.120446
– volume: 357
  start-page: 207
  year: 2018
  ident: 10.1016/j.jhazmat.2022.130658_bib39
  article-title: Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fe°) activated peroxydisulfate (PDS) system in groundwater
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2018.06.008
– volume: 30
  start-page: 2139
  issue: 12
  year: 2019
  ident: 10.1016/j.jhazmat.2022.130658_bib8
  article-title: The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2019.04.057
– volume: 423
  year: 2022
  ident: 10.1016/j.jhazmat.2022.130658_bib34
  article-title: Electrochemical activation of hydrogen peroxide, persulfate, and free chlorine using sacrificial iron anodes for decentralized wastewater treatment
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.127068
SSID ssj0001754
Score 2.531218
Snippet Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in...
Ubiquitous chloride ion (Cl ) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130658
SubjectTerms Advanced oxidation
Chlorine radical
Organics recovery
Polymerization
Wastewater treatment
Title Organics abatement and recovery from wastewater by a polymerization-based electrochemically assisted persulfate process: Promotion effect of chloride ion and its mechanism
URI https://dx.doi.org/10.1016/j.jhazmat.2022.130658
https://www.ncbi.nlm.nih.gov/pubmed/36580777
https://www.proquest.com/docview/2759958963
Volume 446
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpemkPpU1f20eYQq_e9VoP272F0LB9hUIbyM3oZbLLxjb1LmFzyB_qn-zMSk5aaAn0YrCRZKEZzYw0880w9tY44yUq6kTkGh8lLxPKc5NMRZbamhfOOwInfzlWsxPx8VSe7rDDAQtDYZVR9geZvpXW8cskruakm88n38iph-pWZBm5DwXJYSFy4vLx1U2YB6rHkEKKPADY-gbFM1mMF2f6Eg1DPCZmGdVFVlT5_e_66V_251YPHT1kD6IBCQdhjo_Yjm_22P3f0grusTuf9cVj9jPALG0P2qBBSbeAoBsHdARG_t0AIUvgQvd0fYarC2YDGrp2uSEnTkBnJqTkHMRaOTYmF1hiQ9xKdFEKHZqP62WNA0AXMAfv4GsI8WsbCNEi0NZgzyjUz3mgzzSN-aqHc0-443l__oSdHL3_fjhLYmmGxHIlV4lMvU-Fl7qwXtlCW0oTb7SxKXfOFdOp46kVTiqNJoz3tS2NRsmhlUJBX1rLn7Ldpm38cwY6qwXXyqWGl4Lyv-lSSBxCeSeFMPmIiYEglY15y6l8xrIaAtQWVaRjRXSsAh1HbHzdrQuJO27rUAzUrv7gwAqVy21d3wzcUeHuJJeLbny77itclrKUBUq5EXsW2OZ6NriQRZrn-Yv___FLdg_fOMXETeUrtrv6sfav0Uhamf3tLthndw8-fJod_wJdYhYG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Lb9Mw2BrjABwQDBhlPD4krmnT2M6D2zRtKtBNSGzSbpZf0Vp1SURaTeXAH-JP8n11sg0JNIlLDo6dWN_b_l6MfTDOeImKOhKZxkfBi4jq3ERjkcS25LnzjpKTj0_SyZn4fC7Pt9hBnwtDYZWd7A8yfSOtu5FRB81RM5uNvpFTD9WtSBJyHwqUw_cFsi-1MRj-vInzQP0YakiRCwCn36TxjObD-YX-gZYhnhOThBojp9T6_e8K6l8G6EYRHT1hjzsLEvbDJp-yLV_tsEe36grusHtTffWM_Qp5lrYFbdCipGtA0JUDOgMjAa-BUkvgSrd0f4bgBbMGDU29WJMXJ6RnRqTlHHTNcmxXXWCBE5GX6KYUGrQfV4sSPwBNSDr4CF9DjF9dQQgXgboEe0Gxfs4DDdM2ZssWLj0lHs_ay-fs7Ojw9GASdb0ZIstTuYxk7H0svNS59anNtaU68UYbG3PnXD4eOx5b4WSq0YbxvrSF0Sg6dJqipC-s5S_YdlVX_iUDnZSC69TFhheCCsDpQkj8ROqdFMJkAyZ6hCjbFS6n_hkL1UeozVWHR0V4VAGPAza8XtaEyh13Lch7bKs_SFChdrlr6fueOhSyJ_lcdOXrVasQLEUhcxRzA7YbyOZ6NwjIPM6y7NX___gdezA5PZ6q6aeTL3vsIb7hFCA3lq_Z9vL7yr9Bi2lp3m444jeJlReU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organics+abatement+and+recovery+from+wastewater+by+a+polymerization-based+electrochemically+assisted+persulfate+process%3A+Promotion+effect+of+chloride+ion+and+its+mechanism&rft.jtitle=Journal+of+hazardous+materials&rft.au=Yang%2C+Sui-Qin&rft.au=Liu%2C+Zheng-Qian&rft.au=Cui%2C+Yu-Hong&rft.au=Wang%2C+Ming-Kui&rft.date=2023-03-15&rft.eissn=1873-3336&rft.volume=446&rft.spage=130658&rft_id=info:doi/10.1016%2Fj.jhazmat.2022.130658&rft_id=info%3Apmid%2F36580777&rft.externalDocID=36580777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon