Two-step model for reduction reaction of ultrathin nickel oxide by hydrogen

Nickel (Ni) is used as a catalyst for nitric oxide decomposition and ammonia production but it is easily oxidized and deactivated. Clarification of the reduction process of oxidized Ni is essential to promote more efficient use of Ni catalysts. In this study, the reduction processes of ultrathin oxi...

Full description

Saved in:
Bibliographic Details
Published inJournal of vacuum science & technology. A, Vacuum, surfaces, and films Vol. 39; no. 4
Main Authors Ogawa, Shuichi, Taga, Ryo, Yoshigoe, Akitaka, Takakuwa, Yuji
Format Journal Article
LanguageEnglish
Published 01.07.2021
Online AccessGet full text

Cover

Loading…
Abstract Nickel (Ni) is used as a catalyst for nitric oxide decomposition and ammonia production but it is easily oxidized and deactivated. Clarification of the reduction process of oxidized Ni is essential to promote more efficient use of Ni catalysts. In this study, the reduction processes of ultrathin oxide films formed on Ni(111) surfaces by thermal oxidation under vacuum and a hydrogen atmosphere were investigated by in situ time-resolved photoelectron spectroscopy. On the basis of these results, we propose a reaction model for the reduction of Ni oxide films. Our results show that the reduction of Ni oxide films on heating under vacuum does not yield a clean Ni(111) surface owing to formation of a residual stable suboxide structure on the Ni(111) surface. Conversely, in a hydrogen atmosphere of 1 × 10−5 Pa, the Ni oxide was completely reduced and a clean Ni(111) surface was obtained, even when heating below 300 °C. The reduction in a hydrogen atmosphere was best described by a two-step reaction model. The rate of the first step depends on the reduction temperature, and the rate of the second step depends on the H2 pressure. The rate-limiting process for the first step is surface precipitation of O atoms and that of the second step is dissociation of H2 molecules.
AbstractList Nickel (Ni) is used as a catalyst for nitric oxide decomposition and ammonia production but it is easily oxidized and deactivated. Clarification of the reduction process of oxidized Ni is essential to promote more efficient use of Ni catalysts. In this study, the reduction processes of ultrathin oxide films formed on Ni(111) surfaces by thermal oxidation under vacuum and a hydrogen atmosphere were investigated by in situ time-resolved photoelectron spectroscopy. On the basis of these results, we propose a reaction model for the reduction of Ni oxide films. Our results show that the reduction of Ni oxide films on heating under vacuum does not yield a clean Ni(111) surface owing to formation of a residual stable suboxide structure on the Ni(111) surface. Conversely, in a hydrogen atmosphere of 1 × 10−5 Pa, the Ni oxide was completely reduced and a clean Ni(111) surface was obtained, even when heating below 300 °C. The reduction in a hydrogen atmosphere was best described by a two-step reaction model. The rate of the first step depends on the reduction temperature, and the rate of the second step depends on the H2 pressure. The rate-limiting process for the first step is surface precipitation of O atoms and that of the second step is dissociation of H2 molecules.
Author Takakuwa, Yuji
Yoshigoe, Akitaka
Ogawa, Shuichi
Taga, Ryo
Author_xml – sequence: 1
  givenname: Shuichi
  surname: Ogawa
  fullname: Ogawa, Shuichi
  email: ogasyu@tohoku.ac.jp
  organization: 4Micro System Integration Center (μSIC), Tohoku University, Aramaki aza Aoba 519-1176, Aoba-ku, Sendai 980-0845, Japan
– sequence: 2
  givenname: Ryo
  surname: Taga
  fullname: Taga, Ryo
  organization: Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University
– sequence: 3
  givenname: Akitaka
  surname: Yoshigoe
  fullname: Yoshigoe, Akitaka
  organization: Materials Sciences Research Center, Japan Atomic Energy Agency
– sequence: 4
  givenname: Yuji
  surname: Takakuwa
  fullname: Takakuwa, Yuji
  organization: Micro System Integration Center (μSIC), Tohoku University
BookMark eNqdkE1LAzEYhINUsK0e_Ae5Kmz7vskmuz1K0SoWvNTzkubDRrebkmzV_nu3tCKIJ08zh2eGYQak14TGEnKJMEJEOZYjAEAQ8oT0UTDISiEmPdKHgucZQ8AzMkjptYMYA9knj4uPkKXWbug6GFtTFyKN1mx160PTOXUwwdFt3UbVrnxDG6_fOjR8emPpckdXOxPDi23OyalTdbIXRx2S57vbxfQ-mz_NHqY380xzKdosXyrHBDOgkIPlOpdCsHJpctS8nHClS-skd0XBoEBkHBjXyinIVWml6KAhGR96dQwpResq7Vu139kt9HWFUO2_qGR1_KJLXP1KbKJfq7j7k70-sOm79X_we4g_YLUxjn8B0Kt8BA
CODEN JVTAD6
CitedBy_id crossref_primary_10_1016_j_jpowsour_2024_235626
crossref_primary_10_2139_ssrn_4112719
crossref_primary_10_1016_j_apsusc_2022_154748
Cites_doi 10.1103/PhysRevB.46.9724
10.1007/BF00811477
10.1088/0022-3719/3/2/010
10.1016/0039-6028(90)90586-W
10.1380/ejssnt.2012.525
10.1002/sia.1359
10.1002/jctb.5000630501
10.1021/jp2034467
10.1002/adfm.201504811
10.1103/PhysRevB.5.4709
10.1088/0953-8984/24/26/262001
10.1143/JJAP.46.3244
10.1016/0039-6028(85)90211-0
10.1016/0920-5861(95)00173-5
10.1143/JJAP.44.L1048
10.1039/c004291a
10.1063/1.5093430
10.1021/ja0121080
10.1021/jp302488f
10.1016/S0169-4332(00)00779-0
10.3131/jvsj.49.327
10.1021/acs.jpclett.0c02112
10.1016/S0926-860X(02)00669-5
10.1016/0039-6028(77)90289-8
10.1016/j.susc.2003.09.051
10.1063/1.474362
10.1016/0039-6028(74)90224-6
10.1088/0953-8984/24/17/175005
10.1063/1.4812824
10.1016/j.susc.2007.04.044
10.1006/jcat.2002.3579
10.1039/C3CY00519D
10.1143/JJAP.45.7063
10.1063/1.464958
10.1016/j.susc.2015.09.014
10.1002/sia.3522
10.1016/j.apcata.2014.12.004
10.1016/S0065-2741(13)70007-1
10.1063/1.471525
10.1021/jp806527q
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AAYXX
CITATION
DOI 10.1116/6.0001056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1520-8559
ExternalDocumentID 10_1116_6_0001056
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP20H02191
  funderid: https://doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: JP19K05260
  funderid: https://doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: JP17KK00125
  funderid: https://doi.org/10.13039/501100001691
GroupedDBID -~X
.DC
29L
5-Q
AAAAW
AAEUA
AAPUP
AAYIH
ABFTF
ABNAN
ACBRY
ACGFS
ADCTM
ADLOM
AENEX
AFFNX
AFHCQ
AGKCL
AGMXG
AGTJO
AGVCI
AHSDT
AI.
ALMA_UNASSIGNED_HOLDINGS
BAUXJ
DU5
EBS
EJD
F5P
H~9
M71
M73
RAW
RIP
RNS
ROL
RQS
SJN
UPT
VAS
VH1
VOH
WH7
XFK
XJT
YQT
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
ID FETCH-LOGICAL-c365t-4baf252d0a130e3c465528bd41c3893ac8ef63f772071123023cafa04a8e651c3
ISSN 0734-2101
IngestDate Tue Jul 01 03:53:37 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Thu Jun 23 13:36:19 EDT 2022
Fri Jun 21 00:13:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Published under an exclusive license by the AVS.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-4baf252d0a130e3c465528bd41c3893ac8ef63f772071123023cafa04a8e651c3
ORCID 0000-0002-6625-7904
PageCount 9
ParticipantIDs crossref_citationtrail_10_1116_6_0001056
scitation_primary_10_1116_6_0001056
crossref_primary_10_1116_6_0001056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of vacuum science & technology. A, Vacuum, surfaces, and films
PublicationYear 2021
References Fujita, Abe, Tanabe, Ito, Tokunaga, Arai, Yamamoto, Hirata, Chen (c5) 2016
Wu, Wang (c36) 1997
Vu Grimsby, Wu, Mitchell (c37) 1990
Kishi, Padama, Arevalo, Moreno, Kasai, Taniguchi, Uenishi, Tanaka, Nishihata (c4) 2012
Tang, Nishimoto, Ogawa, Takakuwa (c26) 2012
Catapan, Oliveira, Chen, Vlachos (c10) 2012
Tanuma, Powell, Penn (c33) 2011
Ogawa, Yamada, Kadowaki, Taniguchi, Abukawa, Takakuwa (c34) 2019
Wulser, Hearty, Langell (c14) 1992
Wua, Ho (c2) 2010
Furstenau, Mcdougall, Langell (c13) 1985
Ogawa, Takakuwa (c24) 2005
Yang, Whitten (c41) 1993
Richardson, Scates, Twigg (c15) 2003
Ogawa, Yoshigoe, Ishidzuka, Teraoka, Takakuwa (c32) 2007
Vattuone, Yeo, King (c6) 1996
Padama, Kishi, Arevalo, Moreno, Kasai, Taniguchi, Uenishi, Tanaka, Nishihata (c3) 2012
Holloway, Hudson (c19) 1974
Xu, Cheah, Zhao (c17) 2013
Takahashi (c1) 1996
Ogawa, Takakuwa (c27) 2006
Shirley (c30) 1972
Vattuone, Yeo, King (c7) 1996
Teraoka, Yoshigoe (c28) 2001
Brewer, Rosenblatt (c40) 1969
Lin, Chen, Wang (c12) 2011
Cao, Yan, Deng, Yuan, Wang, Sun, Wang, Hari, Zhang (c22) 2014
Lescop, Jay, Fanjoux (c21) 2004
Ogawa, Takakuwa (c35) 2006
Ogawa, Takakuwa (c25) 2007
Norton, Tapping, Goodale (c18) 1977
Bengaard, Nørskov, Sehested, Clausen, Nielsen, Molenbroek, Rostrup-Nielsen (c8) 2002
Rodriguez, Hanson, Frenkel, Kim, Pérez (c16) 2002
Ellingham (c39) 1944
Doniach, Sunjic (c31) 1970
Ogawa, Yamaguchi, Holby, Yamada, Yoshigoe, Takakuwa (c29) 2020
Mohsenzadeh, Richards, Bolton (c11) 2016
Inokawa, Ichikawa, Miyaoka (c23) 2015
Blaylock, Ogura, Green, Beran (c9) 2009
Fanjoux, Lescop, Le Nadan (c20) 2002
(2023062904054626000_c16) 2002; 124
(2023062904054626000_c9) 2009; 113
(2023062904054626000_c15) 2003; 246
(2023062904054626000_c14) 1992; 46
(2023062904054626000_c36) 1997; 107
(2023062904054626000_c3) 2012; 24
(2023062904054626000_c6) 1996; 41
(2023062904054626000_c8) 2002; 209
(2023062904054626000_c19) 1974; 43
(2023062904054626000_c22) 2014; 4
(2023062904054626000_c4) 2012; 24
(2023062904054626000_c26) 2012; 10
(2023062904054626000_c27) 2006; 45
(2023062904054626000_c29) 2020; 11
(2023062904054626000_c35) 2006; 49
(2023062904054626000_c38) 1954
(2023062904054626000_c10) 2012; 116
(2023062904054626000_c18) 1977; 65
(2023062904054626000_c41) 1993; 98
(2023062904054626000_c24) 2005; 44
(2023062904054626000_c30) 1972; 5
(2023062904054626000_c33) 2011; 43
(2023062904054626000_c1) 1996; 27
(2023062904054626000_c13) 1985; 150
(2023062904054626000_c21) 2004; 548
(2023062904054626000_c34) 2019; 125
(2023062904054626000_c25) 2007; 601
(2023062904054626000_c12) 2011; 115
(2023062904054626000_c11) 2016; 644
(2023062904054626000_c7) 1996; 104
(2023062904054626000_c20) 2002; 34
(2023062904054626000_c5) 2016; 26
(2023062904054626000_c23) 2015; 491
2023062904054626000_c42
(2023062904054626000_c17) 2013; 139
(2023062904054626000_c37) 1990; 232
(2023062904054626000_c40) 1969; 2
(2023062904054626000_c39) 1944; 63
(2023062904054626000_c2) 2010; 12
(2023062904054626000_c28) 2001; 169–170
(2023062904054626000_c31) 1970; 3
(2023062904054626000_c32) 2007; 46
References_xml – start-page: 4898
  year: 2009
  ident: c9
  publication-title: J. Phys. Chem. C
– start-page: 175005
  year: 2012
  ident: c3
  publication-title: J. Phys. Condens. Matter
– start-page: 361
  year: 2014
  ident: c22
  publication-title: Catal. Sci. Technol.
– start-page: 16
  year: 1997
  ident: c36
  publication-title: J. Chem. Phys.
– start-page: 137
  year: 2003
  ident: c15
  publication-title: Appl. Catal. A Gen.
– start-page: 738
  year: 2001
  ident: c28
  publication-title: Appl. Surf. Sci.
– start-page: 555
  year: 2002
  ident: c20
  publication-title: Surf. Interface Anal.
– start-page: 184
  year: 2015
  ident: c23
  publication-title: Appl. Catal. A Gen.
– start-page: 1
  year: 1969
  ident: c40
  publication-title: Adv. High Temp. Chem.
– start-page: 1609
  year: 2016
  ident: c5
  publication-title: Adv. Funct. Mater.
– start-page: 327
  year: 2006
  ident: c35
  publication-title: J. Vac. Soc. Jpn.
– start-page: 8096
  year: 1996
  ident: c7
  publication-title: J. Chem. Phys.
– start-page: 13707
  year: 2010
  ident: c2
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 9159
  year: 2020
  ident: c29
  publication-title: J. Phys. Chem. Lett.
– start-page: 144303
  year: 2019
  ident: c34
  publication-title: J. Appl. Phys.
– start-page: 346
  year: 2002
  ident: c16
  publication-title: J. Am. Chem. Soc.
– start-page: 51
  year: 1990
  ident: c37
  publication-title: Surf. Sci.
– start-page: 9724
  year: 1992
  ident: c14
  publication-title: Phys. Rev. B
– start-page: 689
  year: 2011
  ident: c33
  publication-title: Surf. Interface Anal.
– start-page: 83
  year: 2004
  ident: c21
  publication-title: Surf. Sci.
– start-page: 141
  year: 1974
  ident: c19
  publication-title: Surf. Sci.
– start-page: 365
  year: 2002
  ident: c8
  publication-title: J. Catal.
– start-page: 63
  year: 1996
  ident: c1
  publication-title: Catal. Today
– start-page: 125
  year: 1944
  ident: c39
  publication-title: J. Soc. Chem. Ind.
– start-page: 4709
  year: 1972
  ident: c30
  publication-title: Phys. Rev. B
– start-page: 119
  year: 1996
  ident: c6
  publication-title: Catal. Lett.
– start-page: 55
  year: 1985
  ident: c13
  publication-title: Surf. Sci.
– start-page: 024704
  year: 2013
  ident: c17
  publication-title: J. Chem. Phys.
– start-page: 3244
  year: 2007
  ident: c32
  publication-title: Jpn. J. Appl. Phys.
– start-page: 262001
  year: 2012
  ident: c4
  publication-title: J. Phys. Condens. Matter
– start-page: 18582
  year: 2011
  ident: c12
  publication-title: J. Phys. Chem. C
– start-page: 13
  year: 1977
  ident: c18
  publication-title: Surf. Sci.
– start-page: 3838
  year: 2007
  ident: c25
  publication-title: Surf. Sci.
– start-page: 5039
  year: 1993
  ident: c41
  publication-title: J. Chem. Phys.
– start-page: 7063
  year: 2006
  ident: c27
  publication-title: Jpn. J. Appl. Phys.
– start-page: 53
  year: 2016
  ident: c11
  publication-title: Surf. Sci.
– start-page: L1048
  year: 2005
  ident: c24
  publication-title: Jpn. J. Appl. Phys.
– start-page: 525
  year: 2012
  ident: c26
  publication-title: e-J. Surf. Sci. Nanotechnol.
– start-page: 20281
  year: 2012
  ident: c10
  publication-title: J. Phys. Chem. C
– start-page: 285
  year: 1970
  ident: c31
  publication-title: J. Phys. C Solid State Phys.
– volume: 46
  start-page: 9724
  year: 1992
  ident: 2023062904054626000_c14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.9724
– volume: 41
  start-page: 119
  year: 1996
  ident: 2023062904054626000_c6
  publication-title: Catal. Lett.
  doi: 10.1007/BF00811477
– volume: 3
  start-page: 285
  year: 1970
  ident: 2023062904054626000_c31
  publication-title: J. Phys. C Solid State Phys.
  doi: 10.1088/0022-3719/3/2/010
– volume: 232
  start-page: 51
  year: 1990
  ident: 2023062904054626000_c37
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(90)90586-W
– volume: 10
  start-page: 525
  year: 2012
  ident: 2023062904054626000_c26
  publication-title: e-J. Surf. Sci. Nanotechnol.
  doi: 10.1380/ejssnt.2012.525
– volume: 34
  start-page: 555
  year: 2002
  ident: 2023062904054626000_c20
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1359
– volume: 63
  start-page: 125
  year: 1944
  ident: 2023062904054626000_c39
  publication-title: J. Soc. Chem. Ind.
  doi: 10.1002/jctb.5000630501
– volume: 115
  start-page: 18582
  year: 2011
  ident: 2023062904054626000_c12
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2034467
– volume-title: Chemical Thermodynamics
  year: 1954
  ident: 2023062904054626000_c38
– volume: 26
  start-page: 1609
  year: 2016
  ident: 2023062904054626000_c5
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504811
– volume: 5
  start-page: 4709
  year: 1972
  ident: 2023062904054626000_c30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.5.4709
– volume: 24
  start-page: 262001
  year: 2012
  ident: 2023062904054626000_c4
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/24/26/262001
– volume: 46
  start-page: 3244
  year: 2007
  ident: 2023062904054626000_c32
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.46.3244
– volume: 150
  start-page: 55
  year: 1985
  ident: 2023062904054626000_c13
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(85)90211-0
– volume: 27
  start-page: 63
  year: 1996
  ident: 2023062904054626000_c1
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(95)00173-5
– volume: 44
  start-page: L1048
  year: 2005
  ident: 2023062904054626000_c24
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.44.L1048
– volume: 12
  start-page: 13707
  year: 2010
  ident: 2023062904054626000_c2
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c004291a
– volume: 125
  start-page: 144303
  year: 2019
  ident: 2023062904054626000_c34
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5093430
– volume: 124
  start-page: 346
  year: 2002
  ident: 2023062904054626000_c16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0121080
– volume: 116
  start-page: 20281
  year: 2012
  ident: 2023062904054626000_c10
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp302488f
– volume: 169–170
  start-page: 738
  year: 2001
  ident: 2023062904054626000_c28
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(00)00779-0
– volume: 49
  start-page: 327
  year: 2006
  ident: 2023062904054626000_c35
  publication-title: J. Vac. Soc. Jpn.
  doi: 10.3131/jvsj.49.327
– volume: 11
  start-page: 9159
  year: 2020
  ident: 2023062904054626000_c29
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02112
– volume: 246
  start-page: 137
  year: 2003
  ident: 2023062904054626000_c15
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(02)00669-5
– volume: 65
  start-page: 13
  year: 1977
  ident: 2023062904054626000_c18
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(77)90289-8
– volume: 548
  start-page: 83
  year: 2004
  ident: 2023062904054626000_c21
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2003.09.051
– volume: 107
  start-page: 16
  year: 1997
  ident: 2023062904054626000_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474362
– volume: 43
  start-page: 141
  year: 1974
  ident: 2023062904054626000_c19
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(74)90224-6
– volume: 24
  start-page: 175005
  year: 2012
  ident: 2023062904054626000_c3
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/24/17/175005
– ident: 2023062904054626000_c42
– volume: 139
  start-page: 024704
  year: 2013
  ident: 2023062904054626000_c17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4812824
– volume: 601
  start-page: 3838
  year: 2007
  ident: 2023062904054626000_c25
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2007.04.044
– volume: 209
  start-page: 365
  year: 2002
  ident: 2023062904054626000_c8
  publication-title: J. Catal.
  doi: 10.1006/jcat.2002.3579
– volume: 4
  start-page: 361
  year: 2014
  ident: 2023062904054626000_c22
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C3CY00519D
– volume: 45
  start-page: 7063
  year: 2006
  ident: 2023062904054626000_c27
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.45.7063
– volume: 98
  start-page: 5039
  year: 1993
  ident: 2023062904054626000_c41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464958
– volume: 644
  start-page: 53
  year: 2016
  ident: 2023062904054626000_c11
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2015.09.014
– volume: 43
  start-page: 689
  year: 2011
  ident: 2023062904054626000_c33
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.3522
– volume: 491
  start-page: 184
  year: 2015
  ident: 2023062904054626000_c23
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2014.12.004
– volume: 2
  start-page: 1
  year: 1969
  ident: 2023062904054626000_c40
  publication-title: Adv. High Temp. Chem.
  doi: 10.1016/S0065-2741(13)70007-1
– volume: 104
  start-page: 8096
  year: 1996
  ident: 2023062904054626000_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471525
– volume: 113
  start-page: 4898
  year: 2009
  ident: 2023062904054626000_c9
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806527q
SSID ssj0002206
Score 2.3415952
Snippet Nickel (Ni) is used as a catalyst for nitric oxide decomposition and ammonia production but it is easily oxidized and deactivated. Clarification of the...
SourceID crossref
scitation
SourceType Enrichment Source
Index Database
Publisher
Title Two-step model for reduction reaction of ultrathin nickel oxide by hydrogen
URI http://dx.doi.org/10.1116/6.0001056
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8R4QDBAbFxkAQ9IVUbrOm77WHHRBAwktknjqbIduw3tkqpNNsoP4HdzfIlTWJE2XqLIOrnI39eT75weHyP0sit7PckSETEd04jygYwGMREQtWqadGIlB7YT0-FndnBCP5zGp43Gr7WqpbIQ-_LnxnUl_4MqjAGuZpXsNZANN4UBOAd84QgIw_FqGF_kEaA0d_vZ2IrBhWnFajEFNSgrOVjOTBPaSZq1shR-tqA_f6SJMtJzskoW-divB7ssUs-5LMuzVrX4x_CkCMn4_dbQlslaG3O2LBeae8djEvI6nZ0Fzf5lzC-sUj2alKmcpHXOwOV2v67y2gUtJ-nYFSkOp2nBp7y2nvJp6W70rfyermctSCdUuFbOrdelEYSbbkh55wuhbD_2HcK9d3atjjwL6T-cvsk_mD-VzHafGxpr__XBC2WILgBiIzbyl95AWwTCDdJEW8O3h5-OwjedELtLa3hr36MKLn4dnvuHsrkFwLhaijW5cnwX3fEQ4qEjzT3UUNkOur3WfXIH3bTVv3J5H32siIQtkTAQCQci4YpIONc4EAk7ImFLJCxWuCLSA3Ty_t3xm4PI77IRyS6Li4gKrklMkjYHOaO60jTUI32R0I40YpbLvtKsq2FaQI2CzgGRJ7nmbcr7isVg9BA1szxTjxDu84T1ZIcLTjjt8fYgYYwMpKCsIwQXahe9qmZoVE2P2QllNrqExC56Hkznru_KJqMXYZqvaXWeL2qL0TzRe1d54GO0XZP5CWoWi1I9BVFaiGeeMb8Be62Lxw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-step+model+for+reduction+reaction+of+ultrathin+nickel+oxide+by+hydrogen&rft.jtitle=Journal+of+vacuum+science+%26+technology.+A%2C+Vacuum%2C+surfaces%2C+and+films&rft.au=Ogawa%2C+Shuichi&rft.au=Taga%2C+Ryo&rft.au=Yoshigoe%2C+Akitaka&rft.au=Takakuwa%2C+Yuji&rft.date=2021-07-01&rft.issn=0734-2101&rft.eissn=1520-8559&rft.volume=39&rft.issue=4&rft_id=info:doi/10.1116%2F6.0001056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1116_6_0001056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-2101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-2101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-2101&client=summon