Two-step model for reduction reaction of ultrathin nickel oxide by hydrogen
Nickel (Ni) is used as a catalyst for nitric oxide decomposition and ammonia production but it is easily oxidized and deactivated. Clarification of the reduction process of oxidized Ni is essential to promote more efficient use of Ni catalysts. In this study, the reduction processes of ultrathin oxi...
Saved in:
Published in | Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vol. 39; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Nickel (Ni) is used as a catalyst for nitric oxide decomposition and ammonia production but it is easily oxidized and deactivated. Clarification of the reduction process of oxidized Ni is essential to promote more efficient use of Ni catalysts. In this study, the reduction processes of ultrathin oxide films formed on Ni(111) surfaces by thermal oxidation under vacuum and a hydrogen atmosphere were investigated by in situ time-resolved photoelectron spectroscopy. On the basis of these results, we propose a reaction model for the reduction of Ni oxide films. Our results show that the reduction of Ni oxide films on heating under vacuum does not yield a clean Ni(111) surface owing to formation of a residual stable suboxide structure on the Ni(111) surface. Conversely, in a hydrogen atmosphere of 1 × 10−5 Pa, the Ni oxide was completely reduced and a clean Ni(111) surface was obtained, even when heating below 300 °C. The reduction in a hydrogen atmosphere was best described by a two-step reaction model. The rate of the first step depends on the reduction temperature, and the rate of the second step depends on the H2 pressure. The rate-limiting process for the first step is surface precipitation of O atoms and that of the second step is dissociation of H2 molecules. |
---|---|
AbstractList | Nickel (Ni) is used as a catalyst for nitric oxide decomposition and ammonia production but it is easily oxidized and deactivated. Clarification of the reduction process of oxidized Ni is essential to promote more efficient use of Ni catalysts. In this study, the reduction processes of ultrathin oxide films formed on Ni(111) surfaces by thermal oxidation under vacuum and a hydrogen atmosphere were investigated by in situ time-resolved photoelectron spectroscopy. On the basis of these results, we propose a reaction model for the reduction of Ni oxide films. Our results show that the reduction of Ni oxide films on heating under vacuum does not yield a clean Ni(111) surface owing to formation of a residual stable suboxide structure on the Ni(111) surface. Conversely, in a hydrogen atmosphere of 1 × 10−5 Pa, the Ni oxide was completely reduced and a clean Ni(111) surface was obtained, even when heating below 300 °C. The reduction in a hydrogen atmosphere was best described by a two-step reaction model. The rate of the first step depends on the reduction temperature, and the rate of the second step depends on the H2 pressure. The rate-limiting process for the first step is surface precipitation of O atoms and that of the second step is dissociation of H2 molecules. |
Author | Takakuwa, Yuji Yoshigoe, Akitaka Ogawa, Shuichi Taga, Ryo |
Author_xml | – sequence: 1 givenname: Shuichi surname: Ogawa fullname: Ogawa, Shuichi email: ogasyu@tohoku.ac.jp organization: 4Micro System Integration Center (μSIC), Tohoku University, Aramaki aza Aoba 519-1176, Aoba-ku, Sendai 980-0845, Japan – sequence: 2 givenname: Ryo surname: Taga fullname: Taga, Ryo organization: Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University – sequence: 3 givenname: Akitaka surname: Yoshigoe fullname: Yoshigoe, Akitaka organization: Materials Sciences Research Center, Japan Atomic Energy Agency – sequence: 4 givenname: Yuji surname: Takakuwa fullname: Takakuwa, Yuji organization: Micro System Integration Center (μSIC), Tohoku University |
BookMark | eNqdkE1LAzEYhINUsK0e_Ae5Kmz7vskmuz1K0SoWvNTzkubDRrebkmzV_nu3tCKIJ08zh2eGYQak14TGEnKJMEJEOZYjAEAQ8oT0UTDISiEmPdKHgucZQ8AzMkjptYMYA9knj4uPkKXWbug6GFtTFyKN1mx160PTOXUwwdFt3UbVrnxDG6_fOjR8emPpckdXOxPDi23OyalTdbIXRx2S57vbxfQ-mz_NHqY380xzKdosXyrHBDOgkIPlOpdCsHJpctS8nHClS-skd0XBoEBkHBjXyinIVWml6KAhGR96dQwpResq7Vu139kt9HWFUO2_qGR1_KJLXP1KbKJfq7j7k70-sOm79X_we4g_YLUxjn8B0Kt8BA |
CODEN | JVTAD6 |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2024_235626 crossref_primary_10_2139_ssrn_4112719 crossref_primary_10_1016_j_apsusc_2022_154748 |
Cites_doi | 10.1103/PhysRevB.46.9724 10.1007/BF00811477 10.1088/0022-3719/3/2/010 10.1016/0039-6028(90)90586-W 10.1380/ejssnt.2012.525 10.1002/sia.1359 10.1002/jctb.5000630501 10.1021/jp2034467 10.1002/adfm.201504811 10.1103/PhysRevB.5.4709 10.1088/0953-8984/24/26/262001 10.1143/JJAP.46.3244 10.1016/0039-6028(85)90211-0 10.1016/0920-5861(95)00173-5 10.1143/JJAP.44.L1048 10.1039/c004291a 10.1063/1.5093430 10.1021/ja0121080 10.1021/jp302488f 10.1016/S0169-4332(00)00779-0 10.3131/jvsj.49.327 10.1021/acs.jpclett.0c02112 10.1016/S0926-860X(02)00669-5 10.1016/0039-6028(77)90289-8 10.1016/j.susc.2003.09.051 10.1063/1.474362 10.1016/0039-6028(74)90224-6 10.1088/0953-8984/24/17/175005 10.1063/1.4812824 10.1016/j.susc.2007.04.044 10.1006/jcat.2002.3579 10.1039/C3CY00519D 10.1143/JJAP.45.7063 10.1063/1.464958 10.1016/j.susc.2015.09.014 10.1002/sia.3522 10.1016/j.apcata.2014.12.004 10.1016/S0065-2741(13)70007-1 10.1063/1.471525 10.1021/jp806527q |
ContentType | Journal Article |
Copyright | Author(s) |
Copyright_xml | – notice: Author(s) |
DBID | AAYXX CITATION |
DOI | 10.1116/6.0001056 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1520-8559 |
ExternalDocumentID | 10_1116_6_0001056 |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: JP20H02191 funderid: https://doi.org/10.13039/501100001691 – fundername: Japan Society for the Promotion of Science grantid: JP19K05260 funderid: https://doi.org/10.13039/501100001691 – fundername: Japan Society for the Promotion of Science grantid: JP17KK00125 funderid: https://doi.org/10.13039/501100001691 |
GroupedDBID | -~X .DC 29L 5-Q AAAAW AAEUA AAPUP AAYIH ABFTF ABNAN ACBRY ACGFS ADCTM ADLOM AENEX AFFNX AFHCQ AGKCL AGMXG AGTJO AGVCI AHSDT AI. ALMA_UNASSIGNED_HOLDINGS BAUXJ DU5 EBS EJD F5P H~9 M71 M73 RAW RIP RNS ROL RQS SJN UPT VAS VH1 VOH WH7 XFK XJT YQT AAGWI AAYXX ABJGX ADMLS CITATION |
ID | FETCH-LOGICAL-c365t-4baf252d0a130e3c465528bd41c3893ac8ef63f772071123023cafa04a8e651c3 |
ISSN | 0734-2101 |
IngestDate | Tue Jul 01 03:53:37 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Thu Jun 23 13:36:19 EDT 2022 Fri Jun 21 00:13:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Published under an exclusive license by the AVS. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-4baf252d0a130e3c465528bd41c3893ac8ef63f772071123023cafa04a8e651c3 |
ORCID | 0000-0002-6625-7904 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1116_6_0001056 scitation_primary_10_1116_6_0001056 crossref_primary_10_1116_6_0001056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of vacuum science & technology. A, Vacuum, surfaces, and films |
PublicationYear | 2021 |
References | Fujita, Abe, Tanabe, Ito, Tokunaga, Arai, Yamamoto, Hirata, Chen (c5) 2016 Wu, Wang (c36) 1997 Vu Grimsby, Wu, Mitchell (c37) 1990 Kishi, Padama, Arevalo, Moreno, Kasai, Taniguchi, Uenishi, Tanaka, Nishihata (c4) 2012 Tang, Nishimoto, Ogawa, Takakuwa (c26) 2012 Catapan, Oliveira, Chen, Vlachos (c10) 2012 Tanuma, Powell, Penn (c33) 2011 Ogawa, Yamada, Kadowaki, Taniguchi, Abukawa, Takakuwa (c34) 2019 Wulser, Hearty, Langell (c14) 1992 Wua, Ho (c2) 2010 Furstenau, Mcdougall, Langell (c13) 1985 Ogawa, Takakuwa (c24) 2005 Yang, Whitten (c41) 1993 Richardson, Scates, Twigg (c15) 2003 Ogawa, Yoshigoe, Ishidzuka, Teraoka, Takakuwa (c32) 2007 Vattuone, Yeo, King (c6) 1996 Padama, Kishi, Arevalo, Moreno, Kasai, Taniguchi, Uenishi, Tanaka, Nishihata (c3) 2012 Holloway, Hudson (c19) 1974 Xu, Cheah, Zhao (c17) 2013 Takahashi (c1) 1996 Ogawa, Takakuwa (c27) 2006 Shirley (c30) 1972 Vattuone, Yeo, King (c7) 1996 Teraoka, Yoshigoe (c28) 2001 Brewer, Rosenblatt (c40) 1969 Lin, Chen, Wang (c12) 2011 Cao, Yan, Deng, Yuan, Wang, Sun, Wang, Hari, Zhang (c22) 2014 Lescop, Jay, Fanjoux (c21) 2004 Ogawa, Takakuwa (c35) 2006 Ogawa, Takakuwa (c25) 2007 Norton, Tapping, Goodale (c18) 1977 Bengaard, Nørskov, Sehested, Clausen, Nielsen, Molenbroek, Rostrup-Nielsen (c8) 2002 Rodriguez, Hanson, Frenkel, Kim, Pérez (c16) 2002 Ellingham (c39) 1944 Doniach, Sunjic (c31) 1970 Ogawa, Yamaguchi, Holby, Yamada, Yoshigoe, Takakuwa (c29) 2020 Mohsenzadeh, Richards, Bolton (c11) 2016 Inokawa, Ichikawa, Miyaoka (c23) 2015 Blaylock, Ogura, Green, Beran (c9) 2009 Fanjoux, Lescop, Le Nadan (c20) 2002 (2023062904054626000_c16) 2002; 124 (2023062904054626000_c9) 2009; 113 (2023062904054626000_c15) 2003; 246 (2023062904054626000_c14) 1992; 46 (2023062904054626000_c36) 1997; 107 (2023062904054626000_c3) 2012; 24 (2023062904054626000_c6) 1996; 41 (2023062904054626000_c8) 2002; 209 (2023062904054626000_c19) 1974; 43 (2023062904054626000_c22) 2014; 4 (2023062904054626000_c4) 2012; 24 (2023062904054626000_c26) 2012; 10 (2023062904054626000_c27) 2006; 45 (2023062904054626000_c29) 2020; 11 (2023062904054626000_c35) 2006; 49 (2023062904054626000_c38) 1954 (2023062904054626000_c10) 2012; 116 (2023062904054626000_c18) 1977; 65 (2023062904054626000_c41) 1993; 98 (2023062904054626000_c24) 2005; 44 (2023062904054626000_c30) 1972; 5 (2023062904054626000_c33) 2011; 43 (2023062904054626000_c1) 1996; 27 (2023062904054626000_c13) 1985; 150 (2023062904054626000_c21) 2004; 548 (2023062904054626000_c34) 2019; 125 (2023062904054626000_c25) 2007; 601 (2023062904054626000_c12) 2011; 115 (2023062904054626000_c11) 2016; 644 (2023062904054626000_c7) 1996; 104 (2023062904054626000_c20) 2002; 34 (2023062904054626000_c5) 2016; 26 (2023062904054626000_c23) 2015; 491 2023062904054626000_c42 (2023062904054626000_c17) 2013; 139 (2023062904054626000_c37) 1990; 232 (2023062904054626000_c40) 1969; 2 (2023062904054626000_c39) 1944; 63 (2023062904054626000_c2) 2010; 12 (2023062904054626000_c28) 2001; 169–170 (2023062904054626000_c31) 1970; 3 (2023062904054626000_c32) 2007; 46 |
References_xml | – start-page: 4898 year: 2009 ident: c9 publication-title: J. Phys. Chem. C – start-page: 175005 year: 2012 ident: c3 publication-title: J. Phys. Condens. Matter – start-page: 361 year: 2014 ident: c22 publication-title: Catal. Sci. Technol. – start-page: 16 year: 1997 ident: c36 publication-title: J. Chem. Phys. – start-page: 137 year: 2003 ident: c15 publication-title: Appl. Catal. A Gen. – start-page: 738 year: 2001 ident: c28 publication-title: Appl. Surf. Sci. – start-page: 555 year: 2002 ident: c20 publication-title: Surf. Interface Anal. – start-page: 184 year: 2015 ident: c23 publication-title: Appl. Catal. A Gen. – start-page: 1 year: 1969 ident: c40 publication-title: Adv. High Temp. Chem. – start-page: 1609 year: 2016 ident: c5 publication-title: Adv. Funct. Mater. – start-page: 327 year: 2006 ident: c35 publication-title: J. Vac. Soc. Jpn. – start-page: 8096 year: 1996 ident: c7 publication-title: J. Chem. Phys. – start-page: 13707 year: 2010 ident: c2 publication-title: Phys. Chem. Chem. Phys. – start-page: 9159 year: 2020 ident: c29 publication-title: J. Phys. Chem. Lett. – start-page: 144303 year: 2019 ident: c34 publication-title: J. Appl. Phys. – start-page: 346 year: 2002 ident: c16 publication-title: J. Am. Chem. Soc. – start-page: 51 year: 1990 ident: c37 publication-title: Surf. Sci. – start-page: 9724 year: 1992 ident: c14 publication-title: Phys. Rev. B – start-page: 689 year: 2011 ident: c33 publication-title: Surf. Interface Anal. – start-page: 83 year: 2004 ident: c21 publication-title: Surf. Sci. – start-page: 141 year: 1974 ident: c19 publication-title: Surf. Sci. – start-page: 365 year: 2002 ident: c8 publication-title: J. Catal. – start-page: 63 year: 1996 ident: c1 publication-title: Catal. Today – start-page: 125 year: 1944 ident: c39 publication-title: J. Soc. Chem. Ind. – start-page: 4709 year: 1972 ident: c30 publication-title: Phys. Rev. B – start-page: 119 year: 1996 ident: c6 publication-title: Catal. Lett. – start-page: 55 year: 1985 ident: c13 publication-title: Surf. Sci. – start-page: 024704 year: 2013 ident: c17 publication-title: J. Chem. Phys. – start-page: 3244 year: 2007 ident: c32 publication-title: Jpn. J. Appl. Phys. – start-page: 262001 year: 2012 ident: c4 publication-title: J. Phys. Condens. Matter – start-page: 18582 year: 2011 ident: c12 publication-title: J. Phys. Chem. C – start-page: 13 year: 1977 ident: c18 publication-title: Surf. Sci. – start-page: 3838 year: 2007 ident: c25 publication-title: Surf. Sci. – start-page: 5039 year: 1993 ident: c41 publication-title: J. Chem. Phys. – start-page: 7063 year: 2006 ident: c27 publication-title: Jpn. J. Appl. Phys. – start-page: 53 year: 2016 ident: c11 publication-title: Surf. Sci. – start-page: L1048 year: 2005 ident: c24 publication-title: Jpn. J. Appl. Phys. – start-page: 525 year: 2012 ident: c26 publication-title: e-J. Surf. Sci. Nanotechnol. – start-page: 20281 year: 2012 ident: c10 publication-title: J. Phys. Chem. C – start-page: 285 year: 1970 ident: c31 publication-title: J. Phys. C Solid State Phys. – volume: 46 start-page: 9724 year: 1992 ident: 2023062904054626000_c14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.9724 – volume: 41 start-page: 119 year: 1996 ident: 2023062904054626000_c6 publication-title: Catal. Lett. doi: 10.1007/BF00811477 – volume: 3 start-page: 285 year: 1970 ident: 2023062904054626000_c31 publication-title: J. Phys. C Solid State Phys. doi: 10.1088/0022-3719/3/2/010 – volume: 232 start-page: 51 year: 1990 ident: 2023062904054626000_c37 publication-title: Surf. Sci. doi: 10.1016/0039-6028(90)90586-W – volume: 10 start-page: 525 year: 2012 ident: 2023062904054626000_c26 publication-title: e-J. Surf. Sci. Nanotechnol. doi: 10.1380/ejssnt.2012.525 – volume: 34 start-page: 555 year: 2002 ident: 2023062904054626000_c20 publication-title: Surf. Interface Anal. doi: 10.1002/sia.1359 – volume: 63 start-page: 125 year: 1944 ident: 2023062904054626000_c39 publication-title: J. Soc. Chem. Ind. doi: 10.1002/jctb.5000630501 – volume: 115 start-page: 18582 year: 2011 ident: 2023062904054626000_c12 publication-title: J. Phys. Chem. C doi: 10.1021/jp2034467 – volume-title: Chemical Thermodynamics year: 1954 ident: 2023062904054626000_c38 – volume: 26 start-page: 1609 year: 2016 ident: 2023062904054626000_c5 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504811 – volume: 5 start-page: 4709 year: 1972 ident: 2023062904054626000_c30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.5.4709 – volume: 24 start-page: 262001 year: 2012 ident: 2023062904054626000_c4 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/26/262001 – volume: 46 start-page: 3244 year: 2007 ident: 2023062904054626000_c32 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.46.3244 – volume: 150 start-page: 55 year: 1985 ident: 2023062904054626000_c13 publication-title: Surf. Sci. doi: 10.1016/0039-6028(85)90211-0 – volume: 27 start-page: 63 year: 1996 ident: 2023062904054626000_c1 publication-title: Catal. Today doi: 10.1016/0920-5861(95)00173-5 – volume: 44 start-page: L1048 year: 2005 ident: 2023062904054626000_c24 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.44.L1048 – volume: 12 start-page: 13707 year: 2010 ident: 2023062904054626000_c2 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c004291a – volume: 125 start-page: 144303 year: 2019 ident: 2023062904054626000_c34 publication-title: J. Appl. Phys. doi: 10.1063/1.5093430 – volume: 124 start-page: 346 year: 2002 ident: 2023062904054626000_c16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0121080 – volume: 116 start-page: 20281 year: 2012 ident: 2023062904054626000_c10 publication-title: J. Phys. Chem. C doi: 10.1021/jp302488f – volume: 169–170 start-page: 738 year: 2001 ident: 2023062904054626000_c28 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(00)00779-0 – volume: 49 start-page: 327 year: 2006 ident: 2023062904054626000_c35 publication-title: J. Vac. Soc. Jpn. doi: 10.3131/jvsj.49.327 – volume: 11 start-page: 9159 year: 2020 ident: 2023062904054626000_c29 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02112 – volume: 246 start-page: 137 year: 2003 ident: 2023062904054626000_c15 publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(02)00669-5 – volume: 65 start-page: 13 year: 1977 ident: 2023062904054626000_c18 publication-title: Surf. Sci. doi: 10.1016/0039-6028(77)90289-8 – volume: 548 start-page: 83 year: 2004 ident: 2023062904054626000_c21 publication-title: Surf. Sci. doi: 10.1016/j.susc.2003.09.051 – volume: 107 start-page: 16 year: 1997 ident: 2023062904054626000_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.474362 – volume: 43 start-page: 141 year: 1974 ident: 2023062904054626000_c19 publication-title: Surf. Sci. doi: 10.1016/0039-6028(74)90224-6 – volume: 24 start-page: 175005 year: 2012 ident: 2023062904054626000_c3 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/17/175005 – ident: 2023062904054626000_c42 – volume: 139 start-page: 024704 year: 2013 ident: 2023062904054626000_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.4812824 – volume: 601 start-page: 3838 year: 2007 ident: 2023062904054626000_c25 publication-title: Surf. Sci. doi: 10.1016/j.susc.2007.04.044 – volume: 209 start-page: 365 year: 2002 ident: 2023062904054626000_c8 publication-title: J. Catal. doi: 10.1006/jcat.2002.3579 – volume: 4 start-page: 361 year: 2014 ident: 2023062904054626000_c22 publication-title: Catal. Sci. Technol. doi: 10.1039/C3CY00519D – volume: 45 start-page: 7063 year: 2006 ident: 2023062904054626000_c27 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.45.7063 – volume: 98 start-page: 5039 year: 1993 ident: 2023062904054626000_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.464958 – volume: 644 start-page: 53 year: 2016 ident: 2023062904054626000_c11 publication-title: Surf. Sci. doi: 10.1016/j.susc.2015.09.014 – volume: 43 start-page: 689 year: 2011 ident: 2023062904054626000_c33 publication-title: Surf. Interface Anal. doi: 10.1002/sia.3522 – volume: 491 start-page: 184 year: 2015 ident: 2023062904054626000_c23 publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.12.004 – volume: 2 start-page: 1 year: 1969 ident: 2023062904054626000_c40 publication-title: Adv. High Temp. Chem. doi: 10.1016/S0065-2741(13)70007-1 – volume: 104 start-page: 8096 year: 1996 ident: 2023062904054626000_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.471525 – volume: 113 start-page: 4898 year: 2009 ident: 2023062904054626000_c9 publication-title: J. Phys. Chem. C doi: 10.1021/jp806527q |
SSID | ssj0002206 |
Score | 2.3415952 |
Snippet | Nickel (Ni) is used as a catalyst for nitric oxide decomposition and ammonia production but it is easily oxidized and deactivated. Clarification of the... |
SourceID | crossref scitation |
SourceType | Enrichment Source Index Database Publisher |
Title | Two-step model for reduction reaction of ultrathin nickel oxide by hydrogen |
URI | http://dx.doi.org/10.1116/6.0001056 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8R4QDBAbFxkAQ9IVUbrOm77WHHRBAwktknjqbIduw3tkqpNNsoP4HdzfIlTWJE2XqLIOrnI39eT75weHyP0sit7PckSETEd04jygYwGMREQtWqadGIlB7YT0-FndnBCP5zGp43Gr7WqpbIQ-_LnxnUl_4MqjAGuZpXsNZANN4UBOAd84QgIw_FqGF_kEaA0d_vZ2IrBhWnFajEFNSgrOVjOTBPaSZq1shR-tqA_f6SJMtJzskoW-divB7ssUs-5LMuzVrX4x_CkCMn4_dbQlslaG3O2LBeae8djEvI6nZ0Fzf5lzC-sUj2alKmcpHXOwOV2v67y2gUtJ-nYFSkOp2nBp7y2nvJp6W70rfyermctSCdUuFbOrdelEYSbbkh55wuhbD_2HcK9d3atjjwL6T-cvsk_mD-VzHafGxpr__XBC2WILgBiIzbyl95AWwTCDdJEW8O3h5-OwjedELtLa3hr36MKLn4dnvuHsrkFwLhaijW5cnwX3fEQ4qEjzT3UUNkOur3WfXIH3bTVv3J5H32siIQtkTAQCQci4YpIONc4EAk7ImFLJCxWuCLSA3Ty_t3xm4PI77IRyS6Li4gKrklMkjYHOaO60jTUI32R0I40YpbLvtKsq2FaQI2CzgGRJ7nmbcr7isVg9BA1szxTjxDu84T1ZIcLTjjt8fYgYYwMpKCsIwQXahe9qmZoVE2P2QllNrqExC56Hkznru_KJqMXYZqvaXWeL2qL0TzRe1d54GO0XZP5CWoWi1I9BVFaiGeeMb8Be62Lxw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-step+model+for+reduction+reaction+of+ultrathin+nickel+oxide+by+hydrogen&rft.jtitle=Journal+of+vacuum+science+%26+technology.+A%2C+Vacuum%2C+surfaces%2C+and+films&rft.au=Ogawa%2C+Shuichi&rft.au=Taga%2C+Ryo&rft.au=Yoshigoe%2C+Akitaka&rft.au=Takakuwa%2C+Yuji&rft.date=2021-07-01&rft.issn=0734-2101&rft.eissn=1520-8559&rft.volume=39&rft.issue=4&rft_id=info:doi/10.1116%2F6.0001056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1116_6_0001056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-2101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-2101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-2101&client=summon |