Boundary layer stability on a rotating wind turbine blade section
Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of 1×105 and angles of attack (AoA) of 12.8°, 4.2°, and 1.2° are considered. Simulatio...
Saved in:
Published in | Physics of fluids (1994) Vol. 36; no. 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 1089-7666 |
DOI | 10.1063/5.0223207 |
Cover
Loading…
Abstract | Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of
1×105 and angles of attack (AoA) of
12.8°, 4.2°, and
1.2° are considered. Simulations with and without rotation are performed for each AoA. For
AoA=12.8°, rotation increases the reverse flow from 7% of the free-stream velocity in the non-rotating case to 16% of it in the rotating case in the laminar separation bubble (LSB), triggering an oblique instability mechanism in the latter, leading to a faster breakdown to small-scale turbulence. However, rotation delays transition and reattachment in
3%–4% of the chord due to the acceleration of the boundary layer upstream of the LSB, which is subject to a strong adverse pressure gradient (APG), stabilizing Tollmien–Schlichting (TS) waves. Regarding
AoA=4.2° and
1.2°, rotation slightly decelerates the attached boundary layer since the APG is very mild but accelerates the separated flow downstream, stabilizing Kelvin–Helmholtz (KH) modes. This mitigates the oblique instability mechanism and slows down the breakdown of KH vortices in the rotating case. In these cases, the transition location is little affected by rotation, possibly due to a rotation-independent absolute instability. Rotation also generates a spanwise tip-flow in the LSB for
AoA=4.2° and
1.2°, which is highly unstable and triggers stationary and traveling crossflow modes. Nevertheless, the amplitudes of these modes remain too low to trigger transition. |
---|---|
AbstractList | Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of 1×105 and angles of attack (AoA) of 12.8°, 4.2°, and 1.2° are considered. Simulations with and without rotation are performed for each AoA. For AoA=12.8°, rotation increases the reverse flow from 7% of the free-stream velocity in the non-rotating case to 16% of it in the rotating case in the laminar separation bubble (LSB), triggering an oblique instability mechanism in the latter, leading to a faster breakdown to small-scale turbulence. However, rotation delays transition and reattachment in 3%–4% of the chord due to the acceleration of the boundary layer upstream of the LSB, which is subject to a strong adverse pressure gradient (APG), stabilizing Tollmien–Schlichting (TS) waves. Regarding AoA=4.2° and 1.2°, rotation slightly decelerates the attached boundary layer since the APG is very mild but accelerates the separated flow downstream, stabilizing Kelvin–Helmholtz (KH) modes. This mitigates the oblique instability mechanism and slows down the breakdown of KH vortices in the rotating case. In these cases, the transition location is little affected by rotation, possibly due to a rotation-independent absolute instability. Rotation also generates a spanwise tip-flow in the LSB for AoA=4.2° and 1.2°, which is highly unstable and triggers stationary and traveling crossflow modes. Nevertheless, the amplitudes of these modes remain too low to trigger transition. Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of 1×105 and angles of attack (AoA) of 12.8°, 4.2°, and 1.2° are considered. Simulations with and without rotation are performed for each AoA. For AoA=12.8°, rotation increases the reverse flow from 7% of the free-stream velocity in the non-rotating case to 16% of it in the rotating case in the laminar separation bubble (LSB), triggering an oblique instability mechanism in the latter, leading to a faster breakdown to small-scale turbulence. However, rotation delays transition and reattachment in 3%–4% of the chord due to the acceleration of the boundary layer upstream of the LSB, which is subject to a strong adverse pressure gradient (APG), stabilizing Tollmien–Schlichting (TS) waves. Regarding AoA=4.2° and 1.2°, rotation slightly decelerates the attached boundary layer since the APG is very mild but accelerates the separated flow downstream, stabilizing Kelvin–Helmholtz (KH) modes. This mitigates the oblique instability mechanism and slows down the breakdown of KH vortices in the rotating case. In these cases, the transition location is little affected by rotation, possibly due to a rotation-independent absolute instability. Rotation also generates a spanwise tip-flow in the LSB for AoA=4.2° and 1.2°, which is highly unstable and triggers stationary and traveling crossflow modes. Nevertheless, the amplitudes of these modes remain too low to trigger transition. Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of 1x10(5) and angles of attack (AoA) of 12.8 degrees, 4.2 degrees, and 1.2 degrees are considered. Simulations with and without rotation are performed for each AoA. For AoA=12.8 degrees, rotation increases the reverse flow from 7% of the free-stream velocity in the non-rotating case to 16% of it in the rotating case in the laminar separation bubble (LSB), triggering an oblique instability mechanism in the latter, leading to a faster breakdown to small-scale turbulence. However, rotation delays transition and reattachment in 3%-4% of the chord due to the acceleration of the boundary layer upstream of the LSB, which is subject to a strong adverse pressure gradient (APG), stabilizing Tollmien-Schlichting (TS) waves. Regarding AoA=4.2 degrees and 1.2 degrees, rotation slightly decelerates the attached boundary layer since the APG is very mild but accelerates the separated flow downstream, stabilizing Kelvin-Helmholtz (KH) modes. This mitigates the oblique instability mechanism and slows down the breakdown of KH vortices in the rotating case. In these cases, the transition location is little affected by rotation, possibly due to a rotation-independent absolute instability. Rotation also generates a spanwise tip-flow in the LSB for AoA=4.2 degrees and 1.2 degrees, which is highly unstable and triggers stationary and traveling crossflow modes. Nevertheless, the amplitudes of these modes remain too low to trigger transition. |
Author | Fava, T. C. L. Henningson, D. S. Hanifi, A. |
Author_xml | – sequence: 1 givenname: T. C. L. surname: Fava fullname: Fava, T. C. L. organization: Department of Engineering Mechanics, FLOW and SeRC, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden – sequence: 2 givenname: D. S. surname: Henningson fullname: Henningson, D. S. organization: Department of Engineering Mechanics, FLOW and SeRC, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden – sequence: 3 givenname: A. surname: Hanifi fullname: Hanifi, A. organization: Department of Engineering Mechanics, FLOW and SeRC, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-354749$$DView record from Swedish Publication Index |
BookMark | eNp9kEtPwzAQhC1UJNrCgX9giRNIaR0_42MpT6kSF-BqOYlTXIJdbEdV_z2p2l4Q4rR7-GZ2dkZg4LwzAFzmaJIjTqZsgjAmGIkTMMxRITPBOR_sdoEyzkl-BkYxrhBCRGI-BLNb37lahy1s9dYEGJMubWvTFnoHNQw-6WTdEm6sq2HqQmmdgWWrawOjqZL17hycNrqN5uIwx-Dt4f51_pQtXh6f57NFVhHOUkYJF6WppaGSVIhgUYhGiwY1rKANxrjOjcSIGk0roqWWJcuRpCUxhhndEEHGINv7xo1Zd6VaB_vV51ZeW3Vn32fKh6X6TB-KMCr6I2NwtefXwX93Jia18l1wfURF-mYKTAtGe2q6p6rgYwymUZXdvexdCtq2Kkdq16ti6tBrr7j-pTgm-Yu9OWQ-uv4D_wAu5YXw |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1017_jfm_2024_913 |
Cites_doi | 10.1016/S0960-1481(99)00109-3 10.1017/S0022112099008976 10.1016/S0997-7546(98)80056-3 10.1063/1.3276903 10.1007/s00348-015-1988-5 10.1088/1742-6596/1618/5/052042 10.1017/S002211200900634X 10.1063/1.3666844 10.2514/1.J057686 10.1007/978-3-642-81932-2 10.1063/1.3662133 10.1007/s00348-014-1669-9 10.1017/jfm.2013.504 10.1088/1742-6596/75/1/012032 10.1002/we.540 10.2514/1.J058809 10.1006/jcph.1999.6203 10.1063/1.5094609 10.1007/s00348-008-0548-7 10.1063/5.0030070 10.1002/we.214 10.1115/1.483261 10.1146/annurev.fluid.29.1.245 10.2514/3.4901 10.5194/wes-6-715-2021 10.2514/3.1687 10.1017/jfm.2018.283 10.2514/8.1921 10.1016/j.ijheatfluidflow.2018.04.009 10.1017/jfm.2020.767 10.1017/S0022112065001374 10.1002/we.269 10.1016/S0376-0421(00)00002-6 10.1023/B:APPL.0000014928.69394.50 10.1017/jfm.2012.324 10.1063/1.5079536 10.1017/S0022112010000856 10.1146/annurev.fluid.35.101101.161045 10.2514/3.50846 10.1088/1742-6596/75/1/012022 10.1016/S0167-6105(01)00158-1 10.2514/1.9103 10.5194/wes-7-967-2022 10.3390/en7106798 10.1002/we.1674 10.1016/0167-6105(92)90537-K 10.1063/5.0159783 10.1098/rsta.2000.0706 10.1063/1.866483 10.1146/annurev.fl.22.010190.002353 10.1017/jfm.2016.331 10.2514/3.8321 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M ADTPV AOWAS D8V |
DOI | 10.1063/5.0223207 |
DatabaseName | AIP (American Institute of Physics) Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP (American Institute of Physics) Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | oai_DiVA_org_kth_354749 10_1063_5_0223207 |
GrantInformation_xml | – fundername: Stand Up for Energy funderid: 10.13039/100022724 – fundername: Swedish National Infrastructure for Computing – fundername: StandUp for Wind |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BDMKI BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX CITATION 8FD H8D L7M ADMLS ADTPV AOWAS D8V |
ID | FETCH-LOGICAL-c365t-4367bed9e493c032787fa7f0f584f222d1e9204ea4c3a9a9b51094b3ee5eaf373 |
IEDL.DBID | AJDQP |
ISSN | 1070-6631 1089-7666 |
IngestDate | Thu Aug 21 06:36:56 EDT 2025 Mon Jun 30 16:03:04 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Sun Jul 06 05:03:51 EDT 2025 Wed Sep 25 09:11:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-4367bed9e493c032787fa7f0f584f222d1e9204ea4c3a9a9b51094b3ee5eaf373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7864-3071 0009-0007-8056-6109 0000-0002-5913-5431 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0223207 |
PQID | 3108824854 |
PQPubID | 2050667 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1063_5_0223207 swepub_primary_oai_DiVA_org_kth_354749 crossref_primary_10_1063_5_0223207 proquest_journals_3108824854 scitation_primary_10_1063_5_0223207 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Schlatter, Örlü (c46) 2012 Theofilis, Hein, Dallmann (c39) 2000 Beneddine, Sipp, Arnault, Dandois, Lesshafft (c75) 2016 Marxen, Lang, Rist, Wagner (c74) 2003 Rodríguez, Theofilis (c40) 2010 Kupfer, Bers, Ram (c72) 1987 Dumitrescu, Cardoş, Dumitrache (c13) 2007 Hussain, Garrett, Stephen (c62) 2011 Towne, Schmidt, Colonius (c59) 2018 Herbert (c64) 1997 Schreck, Sørensen, Robinson (c21) 2007 Breton, Coton, Moe (c19) 2008 Alam, Sandham (c67) 2000 Negi, Vinuesa, Hanifi, Schlatter, Henningson (c49) 2018 Lobo, Schaffarczyk, Breuer (c53) 2022 Borodulin, Ivanov, Kachanov, Mischenko, Örlü, Hanifi, Hein (c61) 2019 Brinkerhoff, Yaras (c57) 2011 Diwan, Ramesh (c55) 2009 Weihs, Katz (c37) 1983 Gross, Fasel, Friederich, Kloker (c28) 2012 Arnal, Casalis (c63) 2000 Schmidt, Colonius (c60) 2020 Lang, Gardner, Mariappan, Klein, Raffel (c22) 2015 Cherubini, Robinet, De Palma (c51) 2010 Winkelman, Barlow (c35) 1980 Saric, Reed, White (c52) 2003 Horlock, Wordsworth (c5) 1965 Wen, Gross (c30) 2019 Raghav, Komerath (c34) 2014 Rodríguez, Gennaro, Souza (c70) 2021 Avanci, Rodríguez, Alves (c71) 2019 Hernandez, Sørensen, Shen (c23) 2007 McCroskey, Yaggy (c6) 1968 Fogarty (c2) 1951 Burgmann, Schröder (c54) 2008 Fava, Lobo, Nogueira, Schaffarczyk, Breuer, Henningson, Hanifi (c56) 2023 Herráez, Stoevesandt, Peinke (c16) 2014 Jing, Ducoin (c31) 2020 Banks, Gadd (c4) 1963 Schewe (c38) 2001 Jing, Ducoin, Braud (c27) 2020 Rodríguez, Gennaro, Juniper (c68) 2013 Ronsten (c14) 1992 Guntur, Sørensen (c29) 2014 Fava, Lokatt, Sørensen, Zahle, Hanifi, Henningson (c26) 2021 Shen, Sørensen (c11) 1999 Dumitrescu, Cardos (c20) 2004 Huerre, Monkewitz (c50) 1990 Hammond, Redekopp (c66) 1998 Chaviaropoulos, Hansen (c12) 2000 Du, Selig (c10) 2000 (2024092413343098000_c52) 2003; 35 (2024092413343098000_c12) 2000; 122 (2024092413343098000_c34) 2014; 55 (2024092413343098000_c67) 2000; 410 (2024092413343098000_c49) 2018; 71 (2024092413343098000_c55) 2009; 629 (2024092413343098000_c70) 2021; 906 (2024092413343098000_c64) 1997; 29 (2024092413343098000_c14) 1992; 39 (2024092413343098000_c16) 2014; 7 (2024092413343098000_c62) 2011; 23 (2024092413343098000_c51) 2010; 22 (2024092413343098000_c32) 2006 (2024092413343098000_c13) 2007; 75 2024092413343098000_c24 (2024092413343098000_c71) 2019; 31 (2024092413343098000_c5) 1965; 23 (2024092413343098000_c40) 2010; 655 2024092413343098000_c65 (2024092413343098000_c10) 2000; 20 (2024092413343098000_c74) 2003; 71 (2024092413343098000_c27) 2020; 1618 (2024092413343098000_c23) 2007; 75 (2024092413343098000_c73) 2001 2024092413343098000_c1 (2024092413343098000_c6) 1968; 6 2024092413343098000_c3 (2024092413343098000_c28) 2012; 15 (2024092413343098000_c54) 2008; 45 2024092413343098000_c7 (2024092413343098000_c39) 2000; 358 2024092413343098000_c8 2024092413343098000_c9 (2024092413343098000_c57) 2011; 23 (2024092413343098000_c33) 2008 (2024092413343098000_c19) 2008; 11 (2024092413343098000_c37) 1983; 21 (2024092413343098000_c75) 2016; 798 (2024092413343098000_c66) 1998; 17 (2024092413343098000_c38) 2001; 89 (2024092413343098000_c59) 2018; 847 Haase (2024092413343098000_c36) 1982 (2024092413343098000_c56) 2023; 35 (2024092413343098000_c46) 2012; 710 (2024092413343098000_c31) 2020; 32 (2024092413343098000_c26) 2021; 6 (2024092413343098000_c50) 1990; 22 (2024092413343098000_c44) 2008 (2024092413343098000_c68) 2013; 734 (2024092413343098000_c20) 2004; 42 (2024092413343098000_c18) 2012 Ansys (2024092413343098000_c45) 2013 2024092413343098000_c47 (2024092413343098000_c41) 2018 (2024092413343098000_c35) 1980; 18 (2024092413343098000_c21) 2007; 10 2024092413343098000_c43 (2024092413343098000_c4) 1963; 1 (2024092413343098000_c29) 2014; 17 Ansys (2024092413343098000_c48) 2017 2024092413343098000_c17 (2024092413343098000_c72) 1987; 30 (2024092413343098000_c2) 1951; 18 (2024092413343098000_c61) 2019; 31 (2024092413343098000_c69) 2013 (2024092413343098000_c60) 2020; 58 (2024092413343098000_c58) 2003 (2024092413343098000_c63) 2000; 36 (2024092413343098000_c25) 2018 (2024092413343098000_c30) 2019; 57 (2024092413343098000_c11) 1999; 150 (2024092413343098000_c22) 2015; 56 (2024092413343098000_c53) 2022; 7 2024092413343098000_c15 (2024092413343098000_c42) 2012 |
References_xml | – start-page: 167 year: 2000 ident: c10 article-title: The effect of rotation on the boundary layer of a wind turbine blade publication-title: Renew. Energy – start-page: 967 year: 2022 ident: c53 article-title: Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence publication-title: Wind Energy Sci. – start-page: 305 year: 1965 ident: c5 article-title: The three-dimensional laminar boundary layer on a rotating helical blade publication-title: J. Fluid Mech. – start-page: 133 year: 2003 ident: c74 article-title: A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble publication-title: Flow, Turbul. Combust. – start-page: 114108 year: 2011 ident: c62 article-title: The instability of the boundary layer over a disk rotating in an enforced axial flow publication-title: Phys. Fluids – start-page: 1 year: 2014 ident: c34 article-title: Velocity measurements on a retreating blade in dynamic stall publication-title: Exp. Fluids – start-page: 145 year: 1998 ident: c66 article-title: Local and global instability properties of separation bubbles publication-title: Eur. J. Mech. - B/Fluids – start-page: 5 year: 2012 ident: c46 article-title: Turbulent boundary layers at moderate Reynolds numbers: Inflow length and tripping effects publication-title: J. Fluid Mech. – start-page: 1 year: 2000 ident: c67 article-title: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment publication-title: J. Fluid Mech. – start-page: 064101 year: 2019 ident: c61 article-title: Experimental and theoretical study of swept-wing boundary-layer instabilities. Unsteady crossflow instability publication-title: Phys. Fluids – start-page: 941 year: 1963 ident: c4 article-title: Delaying effect of rotation on laminar separation publication-title: AIAA J. – start-page: 3229 year: 2000 ident: c39 article-title: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble publication-title: Philos. Trans. Roy. Soc. London. Ser. A: Math., Phys. Eng. Sci. – start-page: 124102 year: 2011 ident: c57 article-title: Interaction of viscous and inviscid instability modes in separation-bubble transition publication-title: Phys. Fluids – start-page: 012022 year: 2007 ident: c13 article-title: Modelling of inboard stall delay due to rotation publication-title: J. Phys: Conf. Ser. – start-page: 245 year: 1997 ident: c64 article-title: Parabolized stability equations publication-title: Annu. Rev. Fluid Mech. – start-page: R4 year: 2013 ident: c68 article-title: The two classes of primary modal instability in laminar separation bubbles publication-title: J. Fluid Mech. – start-page: 408 year: 2004 ident: c20 article-title: Rotational effects on the boundary-layer flow in wind turbines publication-title: AIAA J. – start-page: 330 year: 2000 ident: c12 article-title: Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver publication-title: J. Fluids Eng. – start-page: 247 year: 1951 ident: c2 article-title: The laminar boundary layer on a rotating blade publication-title: J. Aeronaut. Sci. – start-page: 518 year: 1999 ident: c11 article-title: Quasi-3D Navier–Stokes model for a rotating airfoil publication-title: J. Comput. Phys. – start-page: 6798 year: 2014 ident: c16 article-title: Insight into rotational effects on a wind turbine blade using Navier–Stokes computations publication-title: Energies – start-page: 983 year: 2012 ident: c28 article-title: Numerical investigation of rotational augmentation for S822 wind turbine airfoil publication-title: Wind Energy – start-page: 1434 year: 2019 ident: c30 article-title: Numerical investigation of deep dynamic stall for a helicopter blade section publication-title: AIAA J. – start-page: 1267 year: 2001 ident: c38 article-title: Reynolds-number effects in flow around more-or-less bluff bodies publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 173 year: 2000 ident: c63 article-title: Laminar-turbulent transition prediction in three-dimensional flows publication-title: Prog. Aerosp. Sci. – start-page: 1757 year: 1983 ident: c37 article-title: Cellular patterns in poststall flow over unswept wings publication-title: AIAA J. – start-page: 1023 year: 2020 ident: c60 article-title: Guide to spectral proper orthogonal decomposition publication-title: AIAA J. – start-page: 675 year: 2008 ident: c54 article-title: Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements publication-title: Exp. Fluids – start-page: 1919 year: 1968 ident: c6 article-title: Laminar boundary layers on helicopter rotors in forward flight publication-title: AIAA J. – start-page: 014102 year: 2010 ident: c51 article-title: The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble publication-title: Phys. Fluids – start-page: 105 year: 1992 ident: c14 article-title: Static pressure measurements on a rotating and a non-rotating 2.375 m wind turbine blade. Comparison with 2D calculations publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 459 year: 2008 ident: c19 article-title: A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data publication-title: Wind Energy – start-page: A13 year: 2021 ident: c70 article-title: Self-excited primary and secondary instability of laminar separation bubbles publication-title: J. Fluid Mech. – start-page: 124102 year: 2020 ident: c31 article-title: Direct numerical simulation and stability analysis of the transitional boundary layer on a marine propeller blade publication-title: Phys. Fluids – start-page: 821 year: 2018 ident: c59 article-title: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis publication-title: J. Fluid Mech. – start-page: 159 year: 2007 ident: c21 article-title: Aerodynamic structures and processes in rotationally augmented flow fields publication-title: Wind Energy – start-page: 084104 year: 2023 ident: c56 article-title: Numerical study of the hydrodynamic stability of a wind-turbine airfoil with a laminar separation bubble under free-stream turbulence publication-title: Phys. Fluids – start-page: 1985 year: 2014 ident: c29 article-title: Comments on the research article by Gross (2012) publication-title: Wind Energy – start-page: 485 year: 2016 ident: c75 article-title: Conditions for validity of mean flow stability analysis publication-title: J. Fluid Mech. – start-page: 118 year: 2015 ident: c22 article-title: Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and image derotation publication-title: Exp. Fluids – start-page: 413 year: 2003 ident: c52 article-title: Stability and transition of three-dimensional boundary layers publication-title: Annu. Rev. Fluid Mech. – start-page: 1006 year: 1980 ident: c35 article-title: Flowfield model for a rectangular planform wing beyond stall publication-title: AIAA J. – start-page: 014103 year: 2019 ident: c71 article-title: A geometrical criterion for absolute instability in separated boundary layers publication-title: Phys. Fluids – start-page: 052042 year: 2020 ident: c27 article-title: Direct numerical simulation of transitional boundary layers on a horizontal axis wind turbine blade publication-title: J. Phys: Conf. Ser. – start-page: 715 year: 2021 ident: c26 article-title: A simplified model for transition prediction applicable to wind-turbine rotors publication-title: Wind Energy Sci. – start-page: 280 year: 2010 ident: c40 article-title: Structural changes of laminar separation bubbles induced by global linear instability publication-title: J. Fluid Mech. – start-page: 473 year: 1990 ident: c50 article-title: Local and global instabilities in spatially developing flows publication-title: Annu. Rev. Fluid Mech. – start-page: 378 year: 2018 ident: c49 article-title: Unsteady aerodynamic effects in small-amplitude pitch oscillations of an airfoil publication-title: Int. J. Heat Fluid Flow – start-page: 012032 year: 2007 ident: c23 article-title: 3D boundary layer study on a rotating wind turbine blade publication-title: J. Phys: Conf. Ser. – start-page: 263 year: 2009 ident: c55 article-title: On the origin of the inflectional instability of a laminar separation bubble publication-title: J. Fluid Mech. – start-page: 3075 year: 1987 ident: c72 article-title: The cusp map in the complex-frequency plane for absolute instabilities publication-title: Phys. Fluids – ident: 2024092413343098000_c17 – start-page: 1 year: 2008 ident: 2024092413343098000_c33 article-title: Discrete structures in the radial flow over a rotor blade in dynamic stall – ident: 2024092413343098000_c65 – volume: 20 start-page: 167 year: 2000 ident: 2024092413343098000_c10 article-title: The effect of rotation on the boundary layer of a wind turbine blade publication-title: Renew. Energy doi: 10.1016/S0960-1481(99)00109-3 – volume: 410 start-page: 1 year: 2000 ident: 2024092413343098000_c67 article-title: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment publication-title: J. Fluid Mech. doi: 10.1017/S0022112099008976 – volume: 17 start-page: 145 year: 1998 ident: 2024092413343098000_c66 article-title: Local and global instability properties of separation bubbles publication-title: Eur. J. Mech. - B/Fluids doi: 10.1016/S0997-7546(98)80056-3 – volume: 22 start-page: 014102 year: 2010 ident: 2024092413343098000_c51 article-title: The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble publication-title: Phys. Fluids doi: 10.1063/1.3276903 – volume: 56 start-page: 118 year: 2015 ident: 2024092413343098000_c22 article-title: Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and image derotation publication-title: Exp. Fluids doi: 10.1007/s00348-015-1988-5 – volume: 1618 start-page: 052042 year: 2020 ident: 2024092413343098000_c27 article-title: Direct numerical simulation of transitional boundary layers on a horizontal axis wind turbine blade publication-title: J. Phys: Conf. Ser. doi: 10.1088/1742-6596/1618/5/052042 – volume: 629 start-page: 263 year: 2009 ident: 2024092413343098000_c55 article-title: On the origin of the inflectional instability of a laminar separation bubble publication-title: J. Fluid Mech. doi: 10.1017/S002211200900634X – volume: 23 start-page: 124102 year: 2011 ident: 2024092413343098000_c57 article-title: Interaction of viscous and inviscid instability modes in separation-bubble transition publication-title: Phys. Fluids doi: 10.1063/1.3666844 – ident: 2024092413343098000_c9 – volume: 57 start-page: 1434 year: 2019 ident: 2024092413343098000_c30 article-title: Numerical investigation of deep dynamic stall for a helicopter blade section publication-title: AIAA J. doi: 10.2514/1.J057686 – start-page: 1 year: 2012 ident: 2024092413343098000_c18 article-title: Transition detection and skin friction measurements on rotating propeller blades – start-page: 22 volume-title: Recent Contributions to Fluid Mechanics year: 1982 ident: 2024092413343098000_c36 article-title: Half model testing applied to wings above and below stall doi: 10.1007/978-3-642-81932-2 – ident: 2024092413343098000_c43 – volume: 23 start-page: 114108 year: 2011 ident: 2024092413343098000_c62 article-title: The instability of the boundary layer over a disk rotating in an enforced axial flow publication-title: Phys. Fluids doi: 10.1063/1.3662133 – volume: 55 start-page: 1 year: 2014 ident: 2024092413343098000_c34 article-title: Velocity measurements on a retreating blade in dynamic stall publication-title: Exp. Fluids doi: 10.1007/s00348-014-1669-9 – volume: 734 start-page: R4 year: 2013 ident: 2024092413343098000_c68 article-title: The two classes of primary modal instability in laminar separation bubbles publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.504 – ident: 2024092413343098000_c1 – volume: 75 start-page: 012032 year: 2007 ident: 2024092413343098000_c23 article-title: 3D boundary layer study on a rotating wind turbine blade publication-title: J. Phys: Conf. Ser. doi: 10.1088/1742-6596/75/1/012032 – volume: 15 start-page: 983 year: 2012 ident: 2024092413343098000_c28 article-title: Numerical investigation of rotational augmentation for S822 wind turbine airfoil publication-title: Wind Energy doi: 10.1002/we.540 – ident: 2024092413343098000_c47 – volume: 58 start-page: 1023 year: 2020 ident: 2024092413343098000_c60 article-title: Guide to spectral proper orthogonal decomposition publication-title: AIAA J. doi: 10.2514/1.J058809 – volume: 150 start-page: 518 year: 1999 ident: 2024092413343098000_c11 article-title: Quasi-3D Navier–Stokes model for a rotating airfoil publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6203 – volume: 31 start-page: 064101 year: 2019 ident: 2024092413343098000_c61 article-title: Experimental and theoretical study of swept-wing boundary-layer instabilities. Unsteady crossflow instability publication-title: Phys. Fluids doi: 10.1063/1.5094609 – volume: 45 start-page: 675 year: 2008 ident: 2024092413343098000_c54 article-title: Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements publication-title: Exp. Fluids doi: 10.1007/s00348-008-0548-7 – volume: 32 start-page: 124102 year: 2020 ident: 2024092413343098000_c31 article-title: Direct numerical simulation and stability analysis of the transitional boundary layer on a marine propeller blade publication-title: Phys. Fluids doi: 10.1063/5.0030070 – volume: 10 start-page: 159 year: 2007 ident: 2024092413343098000_c21 article-title: Aerodynamic structures and processes in rotationally augmented flow fields publication-title: Wind Energy doi: 10.1002/we.214 – volume: 122 start-page: 330 year: 2000 ident: 2024092413343098000_c12 article-title: Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver publication-title: J. Fluids Eng. doi: 10.1115/1.483261 – volume: 29 start-page: 245 year: 1997 ident: 2024092413343098000_c64 article-title: Parabolized stability equations publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.29.1.245 – volume: 6 start-page: 1919 year: 1968 ident: 2024092413343098000_c6 article-title: Laminar boundary layers on helicopter rotors in forward flight publication-title: AIAA J. doi: 10.2514/3.4901 – volume: 6 start-page: 715 year: 2021 ident: 2024092413343098000_c26 article-title: A simplified model for transition prediction applicable to wind-turbine rotors publication-title: Wind Energy Sci. doi: 10.5194/wes-6-715-2021 – volume: 1 start-page: 941 year: 1963 ident: 2024092413343098000_c4 article-title: Delaying effect of rotation on laminar separation publication-title: AIAA J. doi: 10.2514/3.1687 – volume: 847 start-page: 821 year: 2018 ident: 2024092413343098000_c59 article-title: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.283 – volume: 18 start-page: 247 year: 1951 ident: 2024092413343098000_c2 article-title: The laminar boundary layer on a rotating blade publication-title: J. Aeronaut. Sci. doi: 10.2514/8.1921 – start-page: 1 year: 2013 ident: 2024092413343098000_c69 article-title: Direct numerical simulations of transition to turbulence in two-dimensional laminar separation bubbles – ident: 2024092413343098000_c8 – volume: 71 start-page: 378 year: 2018 ident: 2024092413343098000_c49 article-title: Unsteady aerodynamic effects in small-amplitude pitch oscillations of an airfoil publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2018.04.009 – year: 2017 ident: 2024092413343098000_c48 article-title: Ansys ICEM CFD User's Manual 18.2 – volume: 906 start-page: A13 year: 2021 ident: 2024092413343098000_c70 article-title: Self-excited primary and secondary instability of laminar separation bubbles publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.767 – volume: 23 start-page: 305 year: 1965 ident: 2024092413343098000_c5 article-title: The three-dimensional laminar boundary layer on a rotating helical blade publication-title: J. Fluid Mech. doi: 10.1017/S0022112065001374 – volume: 11 start-page: 459 year: 2008 ident: 2024092413343098000_c19 article-title: A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data publication-title: Wind Energy doi: 10.1002/we.269 – ident: 2024092413343098000_c15 – volume: 36 start-page: 173 year: 2000 ident: 2024092413343098000_c63 article-title: Laminar-turbulent transition prediction in three-dimensional flows publication-title: Prog. Aerosp. Sci. doi: 10.1016/S0376-0421(00)00002-6 – volume: 71 start-page: 133 year: 2003 ident: 2024092413343098000_c74 article-title: A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble publication-title: Flow, Turbul. Combust. doi: 10.1023/B:APPL.0000014928.69394.50 – volume: 710 start-page: 5 year: 2012 ident: 2024092413343098000_c46 article-title: Turbulent boundary layers at moderate Reynolds numbers: Inflow length and tripping effects publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.324 – start-page: 1 year: 2006 ident: 2024092413343098000_c32 article-title: Radial flow measurements downstream of forced dynamic separation on a rotor blade – volume: 31 start-page: 014103 year: 2019 ident: 2024092413343098000_c71 article-title: A geometrical criterion for absolute instability in separated boundary layers publication-title: Phys. Fluids doi: 10.1063/1.5079536 – volume: 655 start-page: 280 year: 2010 ident: 2024092413343098000_c40 article-title: Structural changes of laminar separation bubbles induced by global linear instability publication-title: J. Fluid Mech. doi: 10.1017/S0022112010000856 – volume: 35 start-page: 413 year: 2003 ident: 2024092413343098000_c52 article-title: Stability and transition of three-dimensional boundary layers publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.35.101101.161045 – volume: 18 start-page: 1006 year: 1980 ident: 2024092413343098000_c35 article-title: Flowfield model for a rectangular planform wing beyond stall publication-title: AIAA J. doi: 10.2514/3.50846 – volume: 75 start-page: 012022 year: 2007 ident: 2024092413343098000_c13 article-title: Modelling of inboard stall delay due to rotation publication-title: J. Phys: Conf. Ser. doi: 10.1088/1742-6596/75/1/012022 – volume: 89 start-page: 1267 year: 2001 ident: 2024092413343098000_c38 article-title: Reynolds-number effects in flow around more-or-less bluff bodies publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/S0167-6105(01)00158-1 – start-page: 1 year: 2012 ident: 2024092413343098000_c42 article-title: Light Rotor: The 10-MW reference wind turbine – volume: 42 start-page: 408 year: 2004 ident: 2024092413343098000_c20 article-title: Rotational effects on the boundary-layer flow in wind turbines publication-title: AIAA J. doi: 10.2514/1.9103 – ident: 2024092413343098000_c3 – volume: 7 start-page: 967 year: 2022 ident: 2024092413343098000_c53 article-title: Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence publication-title: Wind Energy Sci. doi: 10.5194/wes-7-967-2022 – volume: 7 start-page: 6798 year: 2014 ident: 2024092413343098000_c16 article-title: Insight into rotational effects on a wind turbine blade using Navier–Stokes computations publication-title: Energies doi: 10.3390/en7106798 – volume: 17 start-page: 1985 year: 2014 ident: 2024092413343098000_c29 article-title: Comments on the research article by Gross et al. (2012) publication-title: Wind Energy doi: 10.1002/we.1674 – ident: 2024092413343098000_c7 – volume: 39 start-page: 105 year: 1992 ident: 2024092413343098000_c14 article-title: Static pressure measurements on a rotating and a non-rotating 2.375 m wind turbine blade. Comparison with 2D calculations publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(92)90537-K – start-page: 1 year: 2018 ident: 2024092413343098000_c25 article-title: Linear stability analysis in rotating frames and its application to fan blade transition prediction – year: 2013 ident: 2024092413343098000_c45 article-title: Ansys Fluent User's Guide 15 – volume: 35 start-page: 084104 year: 2023 ident: 2024092413343098000_c56 article-title: Numerical study of the hydrodynamic stability of a wind-turbine airfoil with a laminar separation bubble under free-stream turbulence publication-title: Phys. Fluids doi: 10.1063/5.0159783 – volume: 358 start-page: 3229 year: 2000 ident: 2024092413343098000_c39 article-title: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble publication-title: Philos. Trans. Roy. Soc. London. Ser. A: Math., Phys. Eng. Sci. doi: 10.1098/rsta.2000.0706 – start-page: 179 volume-title: New Results in Numerical and Experimental Fluid Mechanics XI: Contributions to the 20th STAB/DGLR Symposium year: 2018 ident: 2024092413343098000_c41 article-title: Extension of the PSE code NOLOT for transition analysis in rotating reference frames – start-page: 1 volume-title: VKI/RTO-LS Low Reynolds Number Aerodynamics on Aircraft Including Applications in Emerging UAV Technology year: 2003 ident: 2024092413343098000_c58 article-title: Instability and transition mechanisms in laminar separation bubbles – volume: 30 start-page: 3075 year: 1987 ident: 2024092413343098000_c72 article-title: The cusp map in the complex-frequency plane for absolute instabilities publication-title: Phys. Fluids doi: 10.1063/1.866483 – volume: 22 start-page: 473 year: 1990 ident: 2024092413343098000_c50 article-title: Local and global instabilities in spatially developing flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.22.010190.002353 – ident: 2024092413343098000_c24 – volume: 798 start-page: 485 year: 2016 ident: 2024092413343098000_c75 article-title: Conditions for validity of mean flow stability analysis publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.331 – volume: 21 start-page: 1757 year: 1983 ident: 2024092413343098000_c37 article-title: Cellular patterns in poststall flow over unswept wings publication-title: AIAA J. doi: 10.2514/3.8321 – volume-title: Stability and Transition in Shear Flows year: 2001 ident: 2024092413343098000_c73 – year: 2008 ident: 2024092413343098000_c44 article-title: Nek5000 web page |
SSID | ssj0003926 |
Score | 2.468921 |
Snippet | Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent... |
SourceID | swepub proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acceleration Angle of attack Boundary layer stability Boundary layer transition Breakdown Cross flow Flow separation Flow stability Fluid dynamics Fluid flow Laminar boundary layer Laminar flow Large eddy simulation Reversed flow Reynolds number Rotation Suction Surface stability Turbine blades Turbulence Turbulent boundary layer Turbulent flow Wind effects Wind turbines |
Title | Boundary layer stability on a rotating wind turbine blade section |
URI | http://dx.doi.org/10.1063/5.0223207 https://www.proquest.com/docview/3108824854 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-354749 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bSwJBFB5EiXrpYkWWyZARvWytO7edR8tEJKMow7dhdme2IllDjfDfd_aiXajo_ewsnMt83-GcOQehQ2pCobknHcq171DLuSOFFo7mkD17omGzV--9K97p0-6ADQqo_ksFn5NTdgIwQ7zkxXjJA3IMGVap2W3dXC8uXIB4nrUWQibESWM-QOjzx19h54NLLgPQZDXvb7NCU3xpr6PVnBjiZmbJDVSwcRmt5SQR5yE4KaOltGcznGyi5lm6Emk8w0MNxBkDz0s7XWd4FGONx6Pkj_EDfoO0GwOyQA5scTDUxuJJ2oAVb6F---LuvOPkGxGckHA2dSjhIrBGWipJ6IIufRFpEbkR0IgIkN40rPRcajUNiZZaBhBxkgbEWmZ1RATZRsV4FNsdhI1gJimJetowalwTRFEgrG1EvvGpoayCjucKU3MVJVsrhiotW3OimMp1W0EHC9GXbEbGT0LVudZVHiYTBdwSGD71Ga2g-sISfx1ylNloIZJMx2493TcVuIx6nj4qwqigcvdfx-2hFQ84StYyVkXF6fjV7gPHmAY18LFW7_K2lvvaO86uy1c |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary+layer+stability+on+a+rotating+wind+turbine+blade+section&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Fava+T+C+L&rft.au=Henningson%2C+D+S&rft.au=Hanifi%2C+A&rft.date=2024-09-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=36&rft.issue=9&rft_id=info:doi/10.1063%2F5.0223207&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |