Boundary layer stability on a rotating wind turbine blade section

Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of 1×105 and angles of attack (AoA) of 12.8°, 4.2°, and 1.2° are considered. Simulatio...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 36; no. 9
Main Authors Fava, T. C. L., Henningson, D. S., Hanifi, A.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.09.2024
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
1089-7666
DOI10.1063/5.0223207

Cover

Loading…
Abstract Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of 1×105 and angles of attack (AoA) of 12.8°, 4.2°, and 1.2° are considered. Simulations with and without rotation are performed for each AoA. For AoA=12.8°, rotation increases the reverse flow from 7% of the free-stream velocity in the non-rotating case to 16% of it in the rotating case in the laminar separation bubble (LSB), triggering an oblique instability mechanism in the latter, leading to a faster breakdown to small-scale turbulence. However, rotation delays transition and reattachment in 3%–4% of the chord due to the acceleration of the boundary layer upstream of the LSB, which is subject to a strong adverse pressure gradient (APG), stabilizing Tollmien–Schlichting (TS) waves. Regarding AoA=4.2° and 1.2°, rotation slightly decelerates the attached boundary layer since the APG is very mild but accelerates the separated flow downstream, stabilizing Kelvin–Helmholtz (KH) modes. This mitigates the oblique instability mechanism and slows down the breakdown of KH vortices in the rotating case. In these cases, the transition location is little affected by rotation, possibly due to a rotation-independent absolute instability. Rotation also generates a spanwise tip-flow in the LSB for AoA=4.2° and 1.2°, which is highly unstable and triggers stationary and traveling crossflow modes. Nevertheless, the amplitudes of these modes remain too low to trigger transition.
AbstractList Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of 1×105 and angles of attack (AoA) of 12.8°, 4.2°, and 1.2° are considered. Simulations with and without rotation are performed for each AoA. For AoA=12.8°, rotation increases the reverse flow from 7% of the free-stream velocity in the non-rotating case to 16% of it in the rotating case in the laminar separation bubble (LSB), triggering an oblique instability mechanism in the latter, leading to a faster breakdown to small-scale turbulence. However, rotation delays transition and reattachment in 3%–4% of the chord due to the acceleration of the boundary layer upstream of the LSB, which is subject to a strong adverse pressure gradient (APG), stabilizing Tollmien–Schlichting (TS) waves. Regarding AoA=4.2° and 1.2°, rotation slightly decelerates the attached boundary layer since the APG is very mild but accelerates the separated flow downstream, stabilizing Kelvin–Helmholtz (KH) modes. This mitigates the oblique instability mechanism and slows down the breakdown of KH vortices in the rotating case. In these cases, the transition location is little affected by rotation, possibly due to a rotation-independent absolute instability. Rotation also generates a spanwise tip-flow in the LSB for AoA=4.2° and 1.2°, which is highly unstable and triggers stationary and traveling crossflow modes. Nevertheless, the amplitudes of these modes remain too low to trigger transition.
Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of 1×105 and angles of attack (AoA) of 12.8°, 4.2°, and 1.2° are considered. Simulations with and without rotation are performed for each AoA. For AoA=12.8°, rotation increases the reverse flow from 7% of the free-stream velocity in the non-rotating case to 16% of it in the rotating case in the laminar separation bubble (LSB), triggering an oblique instability mechanism in the latter, leading to a faster breakdown to small-scale turbulence. However, rotation delays transition and reattachment in 3%–4% of the chord due to the acceleration of the boundary layer upstream of the LSB, which is subject to a strong adverse pressure gradient (APG), stabilizing Tollmien–Schlichting (TS) waves. Regarding AoA=4.2° and 1.2°, rotation slightly decelerates the attached boundary layer since the APG is very mild but accelerates the separated flow downstream, stabilizing Kelvin–Helmholtz (KH) modes. This mitigates the oblique instability mechanism and slows down the breakdown of KH vortices in the rotating case. In these cases, the transition location is little affected by rotation, possibly due to a rotation-independent absolute instability. Rotation also generates a spanwise tip-flow in the LSB for AoA=4.2° and 1.2°, which is highly unstable and triggers stationary and traveling crossflow modes. Nevertheless, the amplitudes of these modes remain too low to trigger transition.
Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent transition on the suction surface. A chord Reynolds number of 1x10(5) and angles of attack (AoA) of 12.8 degrees, 4.2 degrees, and 1.2 degrees are considered. Simulations with and without rotation are performed for each AoA. For AoA=12.8 degrees, rotation increases the reverse flow from 7% of the free-stream velocity in the non-rotating case to 16% of it in the rotating case in the laminar separation bubble (LSB), triggering an oblique instability mechanism in the latter, leading to a faster breakdown to small-scale turbulence. However, rotation delays transition and reattachment in 3%-4% of the chord due to the acceleration of the boundary layer upstream of the LSB, which is subject to a strong adverse pressure gradient (APG), stabilizing Tollmien-Schlichting (TS) waves. Regarding AoA=4.2 degrees and 1.2 degrees, rotation slightly decelerates the attached boundary layer since the APG is very mild but accelerates the separated flow downstream, stabilizing Kelvin-Helmholtz (KH) modes. This mitigates the oblique instability mechanism and slows down the breakdown of KH vortices in the rotating case. In these cases, the transition location is little affected by rotation, possibly due to a rotation-independent absolute instability. Rotation also generates a spanwise tip-flow in the LSB for AoA=4.2 degrees and 1.2 degrees, which is highly unstable and triggers stationary and traveling crossflow modes. Nevertheless, the amplitudes of these modes remain too low to trigger transition.
Author Fava, T. C. L.
Henningson, D. S.
Hanifi, A.
Author_xml – sequence: 1
  givenname: T. C. L.
  surname: Fava
  fullname: Fava, T. C. L.
  organization: Department of Engineering Mechanics, FLOW and SeRC, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 2
  givenname: D. S.
  surname: Henningson
  fullname: Henningson, D. S.
  organization: Department of Engineering Mechanics, FLOW and SeRC, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 3
  givenname: A.
  surname: Hanifi
  fullname: Hanifi, A.
  organization: Department of Engineering Mechanics, FLOW and SeRC, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-354749$$DView record from Swedish Publication Index
BookMark eNp9kEtPwzAQhC1UJNrCgX9giRNIaR0_42MpT6kSF-BqOYlTXIJdbEdV_z2p2l4Q4rR7-GZ2dkZg4LwzAFzmaJIjTqZsgjAmGIkTMMxRITPBOR_sdoEyzkl-BkYxrhBCRGI-BLNb37lahy1s9dYEGJMubWvTFnoHNQw-6WTdEm6sq2HqQmmdgWWrawOjqZL17hycNrqN5uIwx-Dt4f51_pQtXh6f57NFVhHOUkYJF6WppaGSVIhgUYhGiwY1rKANxrjOjcSIGk0roqWWJcuRpCUxhhndEEHGINv7xo1Zd6VaB_vV51ZeW3Vn32fKh6X6TB-KMCr6I2NwtefXwX93Jia18l1wfURF-mYKTAtGe2q6p6rgYwymUZXdvexdCtq2Kkdq16ti6tBrr7j-pTgm-Yu9OWQ-uv4D_wAu5YXw
CODEN PHFLE6
CitedBy_id crossref_primary_10_1017_jfm_2024_913
Cites_doi 10.1016/S0960-1481(99)00109-3
10.1017/S0022112099008976
10.1016/S0997-7546(98)80056-3
10.1063/1.3276903
10.1007/s00348-015-1988-5
10.1088/1742-6596/1618/5/052042
10.1017/S002211200900634X
10.1063/1.3666844
10.2514/1.J057686
10.1007/978-3-642-81932-2
10.1063/1.3662133
10.1007/s00348-014-1669-9
10.1017/jfm.2013.504
10.1088/1742-6596/75/1/012032
10.1002/we.540
10.2514/1.J058809
10.1006/jcph.1999.6203
10.1063/1.5094609
10.1007/s00348-008-0548-7
10.1063/5.0030070
10.1002/we.214
10.1115/1.483261
10.1146/annurev.fluid.29.1.245
10.2514/3.4901
10.5194/wes-6-715-2021
10.2514/3.1687
10.1017/jfm.2018.283
10.2514/8.1921
10.1016/j.ijheatfluidflow.2018.04.009
10.1017/jfm.2020.767
10.1017/S0022112065001374
10.1002/we.269
10.1016/S0376-0421(00)00002-6
10.1023/B:APPL.0000014928.69394.50
10.1017/jfm.2012.324
10.1063/1.5079536
10.1017/S0022112010000856
10.1146/annurev.fluid.35.101101.161045
10.2514/3.50846
10.1088/1742-6596/75/1/012022
10.1016/S0167-6105(01)00158-1
10.2514/1.9103
10.5194/wes-7-967-2022
10.3390/en7106798
10.1002/we.1674
10.1016/0167-6105(92)90537-K
10.1063/5.0159783
10.1098/rsta.2000.0706
10.1063/1.866483
10.1146/annurev.fl.22.010190.002353
10.1017/jfm.2016.331
10.2514/3.8321
ContentType Journal Article
Copyright Author(s)
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
ADTPV
AOWAS
D8V
DOI 10.1063/5.0223207
DatabaseName AIP (American Institute of Physics) Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database


CrossRef
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP (American Institute of Physics) Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID oai_DiVA_org_kth_354749
10_1063_5_0223207
GrantInformation_xml – fundername: Stand Up for Energy
  funderid: 10.13039/100022724
– fundername: Swedish National Infrastructure for Computing
– fundername: StandUp for Wind
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
CITATION
8FD
H8D
L7M
ADMLS
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c365t-4367bed9e493c032787fa7f0f584f222d1e9204ea4c3a9a9b51094b3ee5eaf373
IEDL.DBID AJDQP
ISSN 1070-6631
1089-7666
IngestDate Thu Aug 21 06:36:56 EDT 2025
Mon Jun 30 16:03:04 EDT 2025
Thu Apr 24 22:56:47 EDT 2025
Sun Jul 06 05:03:51 EDT 2025
Wed Sep 25 09:11:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-4367bed9e493c032787fa7f0f584f222d1e9204ea4c3a9a9b51094b3ee5eaf373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7864-3071
0009-0007-8056-6109
0000-0002-5913-5431
OpenAccessLink http://dx.doi.org/10.1063/5.0223207
PQID 3108824854
PQPubID 2050667
PageCount 20
ParticipantIDs crossref_citationtrail_10_1063_5_0223207
swepub_primary_oai_DiVA_org_kth_354749
crossref_primary_10_1063_5_0223207
proquest_journals_3108824854
scitation_primary_10_1063_5_0223207
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Schlatter, Örlü (c46) 2012
Theofilis, Hein, Dallmann (c39) 2000
Beneddine, Sipp, Arnault, Dandois, Lesshafft (c75) 2016
Marxen, Lang, Rist, Wagner (c74) 2003
Rodríguez, Theofilis (c40) 2010
Kupfer, Bers, Ram (c72) 1987
Dumitrescu, Cardoş, Dumitrache (c13) 2007
Hussain, Garrett, Stephen (c62) 2011
Towne, Schmidt, Colonius (c59) 2018
Herbert (c64) 1997
Schreck, Sørensen, Robinson (c21) 2007
Breton, Coton, Moe (c19) 2008
Alam, Sandham (c67) 2000
Negi, Vinuesa, Hanifi, Schlatter, Henningson (c49) 2018
Lobo, Schaffarczyk, Breuer (c53) 2022
Borodulin, Ivanov, Kachanov, Mischenko, Örlü, Hanifi, Hein (c61) 2019
Brinkerhoff, Yaras (c57) 2011
Diwan, Ramesh (c55) 2009
Weihs, Katz (c37) 1983
Gross, Fasel, Friederich, Kloker (c28) 2012
Arnal, Casalis (c63) 2000
Schmidt, Colonius (c60) 2020
Lang, Gardner, Mariappan, Klein, Raffel (c22) 2015
Cherubini, Robinet, De Palma (c51) 2010
Winkelman, Barlow (c35) 1980
Saric, Reed, White (c52) 2003
Horlock, Wordsworth (c5) 1965
Wen, Gross (c30) 2019
Raghav, Komerath (c34) 2014
Rodríguez, Gennaro, Souza (c70) 2021
Avanci, Rodríguez, Alves (c71) 2019
Hernandez, Sørensen, Shen (c23) 2007
McCroskey, Yaggy (c6) 1968
Fogarty (c2) 1951
Burgmann, Schröder (c54) 2008
Fava, Lobo, Nogueira, Schaffarczyk, Breuer, Henningson, Hanifi (c56) 2023
Herráez, Stoevesandt, Peinke (c16) 2014
Jing, Ducoin (c31) 2020
Banks, Gadd (c4) 1963
Schewe (c38) 2001
Jing, Ducoin, Braud (c27) 2020
Rodríguez, Gennaro, Juniper (c68) 2013
Ronsten (c14) 1992
Guntur, Sørensen (c29) 2014
Fava, Lokatt, Sørensen, Zahle, Hanifi, Henningson (c26) 2021
Shen, Sørensen (c11) 1999
Dumitrescu, Cardos (c20) 2004
Huerre, Monkewitz (c50) 1990
Hammond, Redekopp (c66) 1998
Chaviaropoulos, Hansen (c12) 2000
Du, Selig (c10) 2000
(2024092413343098000_c52) 2003; 35
(2024092413343098000_c12) 2000; 122
(2024092413343098000_c34) 2014; 55
(2024092413343098000_c67) 2000; 410
(2024092413343098000_c49) 2018; 71
(2024092413343098000_c55) 2009; 629
(2024092413343098000_c70) 2021; 906
(2024092413343098000_c64) 1997; 29
(2024092413343098000_c14) 1992; 39
(2024092413343098000_c16) 2014; 7
(2024092413343098000_c62) 2011; 23
(2024092413343098000_c51) 2010; 22
(2024092413343098000_c32) 2006
(2024092413343098000_c13) 2007; 75
2024092413343098000_c24
(2024092413343098000_c71) 2019; 31
(2024092413343098000_c5) 1965; 23
(2024092413343098000_c40) 2010; 655
2024092413343098000_c65
(2024092413343098000_c10) 2000; 20
(2024092413343098000_c74) 2003; 71
(2024092413343098000_c27) 2020; 1618
(2024092413343098000_c23) 2007; 75
(2024092413343098000_c73) 2001
2024092413343098000_c1
(2024092413343098000_c6) 1968; 6
2024092413343098000_c3
(2024092413343098000_c28) 2012; 15
(2024092413343098000_c54) 2008; 45
2024092413343098000_c7
(2024092413343098000_c39) 2000; 358
2024092413343098000_c8
2024092413343098000_c9
(2024092413343098000_c57) 2011; 23
(2024092413343098000_c33) 2008
(2024092413343098000_c19) 2008; 11
(2024092413343098000_c37) 1983; 21
(2024092413343098000_c75) 2016; 798
(2024092413343098000_c66) 1998; 17
(2024092413343098000_c38) 2001; 89
(2024092413343098000_c59) 2018; 847
Haase (2024092413343098000_c36) 1982
(2024092413343098000_c56) 2023; 35
(2024092413343098000_c46) 2012; 710
(2024092413343098000_c31) 2020; 32
(2024092413343098000_c26) 2021; 6
(2024092413343098000_c50) 1990; 22
(2024092413343098000_c44) 2008
(2024092413343098000_c68) 2013; 734
(2024092413343098000_c20) 2004; 42
(2024092413343098000_c18) 2012
Ansys (2024092413343098000_c45) 2013
2024092413343098000_c47
(2024092413343098000_c41) 2018
(2024092413343098000_c35) 1980; 18
(2024092413343098000_c21) 2007; 10
2024092413343098000_c43
(2024092413343098000_c4) 1963; 1
(2024092413343098000_c29) 2014; 17
Ansys (2024092413343098000_c48) 2017
2024092413343098000_c17
(2024092413343098000_c72) 1987; 30
(2024092413343098000_c2) 1951; 18
(2024092413343098000_c61) 2019; 31
(2024092413343098000_c69) 2013
(2024092413343098000_c60) 2020; 58
(2024092413343098000_c58) 2003
(2024092413343098000_c63) 2000; 36
(2024092413343098000_c25) 2018
(2024092413343098000_c30) 2019; 57
(2024092413343098000_c11) 1999; 150
(2024092413343098000_c22) 2015; 56
(2024092413343098000_c53) 2022; 7
2024092413343098000_c15
(2024092413343098000_c42) 2012
References_xml – start-page: 167
  year: 2000
  ident: c10
  article-title: The effect of rotation on the boundary layer of a wind turbine blade
  publication-title: Renew. Energy
– start-page: 967
  year: 2022
  ident: c53
  article-title: Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
  publication-title: Wind Energy Sci.
– start-page: 305
  year: 1965
  ident: c5
  article-title: The three-dimensional laminar boundary layer on a rotating helical blade
  publication-title: J. Fluid Mech.
– start-page: 133
  year: 2003
  ident: c74
  article-title: A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble
  publication-title: Flow, Turbul. Combust.
– start-page: 114108
  year: 2011
  ident: c62
  article-title: The instability of the boundary layer over a disk rotating in an enforced axial flow
  publication-title: Phys. Fluids
– start-page: 1
  year: 2014
  ident: c34
  article-title: Velocity measurements on a retreating blade in dynamic stall
  publication-title: Exp. Fluids
– start-page: 145
  year: 1998
  ident: c66
  article-title: Local and global instability properties of separation bubbles
  publication-title: Eur. J. Mech. - B/Fluids
– start-page: 5
  year: 2012
  ident: c46
  article-title: Turbulent boundary layers at moderate Reynolds numbers: Inflow length and tripping effects
  publication-title: J. Fluid Mech.
– start-page: 1
  year: 2000
  ident: c67
  article-title: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment
  publication-title: J. Fluid Mech.
– start-page: 064101
  year: 2019
  ident: c61
  article-title: Experimental and theoretical study of swept-wing boundary-layer instabilities. Unsteady crossflow instability
  publication-title: Phys. Fluids
– start-page: 941
  year: 1963
  ident: c4
  article-title: Delaying effect of rotation on laminar separation
  publication-title: AIAA J.
– start-page: 3229
  year: 2000
  ident: c39
  article-title: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble
  publication-title: Philos. Trans. Roy. Soc. London. Ser. A: Math., Phys. Eng. Sci.
– start-page: 124102
  year: 2011
  ident: c57
  article-title: Interaction of viscous and inviscid instability modes in separation-bubble transition
  publication-title: Phys. Fluids
– start-page: 012022
  year: 2007
  ident: c13
  article-title: Modelling of inboard stall delay due to rotation
  publication-title: J. Phys: Conf. Ser.
– start-page: 245
  year: 1997
  ident: c64
  article-title: Parabolized stability equations
  publication-title: Annu. Rev. Fluid Mech.
– start-page: R4
  year: 2013
  ident: c68
  article-title: The two classes of primary modal instability in laminar separation bubbles
  publication-title: J. Fluid Mech.
– start-page: 408
  year: 2004
  ident: c20
  article-title: Rotational effects on the boundary-layer flow in wind turbines
  publication-title: AIAA J.
– start-page: 330
  year: 2000
  ident: c12
  article-title: Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver
  publication-title: J. Fluids Eng.
– start-page: 247
  year: 1951
  ident: c2
  article-title: The laminar boundary layer on a rotating blade
  publication-title: J. Aeronaut. Sci.
– start-page: 518
  year: 1999
  ident: c11
  article-title: Quasi-3D Navier–Stokes model for a rotating airfoil
  publication-title: J. Comput. Phys.
– start-page: 6798
  year: 2014
  ident: c16
  article-title: Insight into rotational effects on a wind turbine blade using Navier–Stokes computations
  publication-title: Energies
– start-page: 983
  year: 2012
  ident: c28
  article-title: Numerical investigation of rotational augmentation for S822 wind turbine airfoil
  publication-title: Wind Energy
– start-page: 1434
  year: 2019
  ident: c30
  article-title: Numerical investigation of deep dynamic stall for a helicopter blade section
  publication-title: AIAA J.
– start-page: 1267
  year: 2001
  ident: c38
  article-title: Reynolds-number effects in flow around more-or-less bluff bodies
  publication-title: J. Wind Eng. Ind. Aerodyn.
– start-page: 173
  year: 2000
  ident: c63
  article-title: Laminar-turbulent transition prediction in three-dimensional flows
  publication-title: Prog. Aerosp. Sci.
– start-page: 1757
  year: 1983
  ident: c37
  article-title: Cellular patterns in poststall flow over unswept wings
  publication-title: AIAA J.
– start-page: 1023
  year: 2020
  ident: c60
  article-title: Guide to spectral proper orthogonal decomposition
  publication-title: AIAA J.
– start-page: 675
  year: 2008
  ident: c54
  article-title: Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements
  publication-title: Exp. Fluids
– start-page: 1919
  year: 1968
  ident: c6
  article-title: Laminar boundary layers on helicopter rotors in forward flight
  publication-title: AIAA J.
– start-page: 014102
  year: 2010
  ident: c51
  article-title: The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble
  publication-title: Phys. Fluids
– start-page: 105
  year: 1992
  ident: c14
  article-title: Static pressure measurements on a rotating and a non-rotating 2.375 m wind turbine blade. Comparison with 2D calculations
  publication-title: J. Wind Eng. Ind. Aerodyn.
– start-page: 459
  year: 2008
  ident: c19
  article-title: A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data
  publication-title: Wind Energy
– start-page: A13
  year: 2021
  ident: c70
  article-title: Self-excited primary and secondary instability of laminar separation bubbles
  publication-title: J. Fluid Mech.
– start-page: 124102
  year: 2020
  ident: c31
  article-title: Direct numerical simulation and stability analysis of the transitional boundary layer on a marine propeller blade
  publication-title: Phys. Fluids
– start-page: 821
  year: 2018
  ident: c59
  article-title: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
  publication-title: J. Fluid Mech.
– start-page: 159
  year: 2007
  ident: c21
  article-title: Aerodynamic structures and processes in rotationally augmented flow fields
  publication-title: Wind Energy
– start-page: 084104
  year: 2023
  ident: c56
  article-title: Numerical study of the hydrodynamic stability of a wind-turbine airfoil with a laminar separation bubble under free-stream turbulence
  publication-title: Phys. Fluids
– start-page: 1985
  year: 2014
  ident: c29
  article-title: Comments on the research article by Gross (2012)
  publication-title: Wind Energy
– start-page: 485
  year: 2016
  ident: c75
  article-title: Conditions for validity of mean flow stability analysis
  publication-title: J. Fluid Mech.
– start-page: 118
  year: 2015
  ident: c22
  article-title: Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and image derotation
  publication-title: Exp. Fluids
– start-page: 413
  year: 2003
  ident: c52
  article-title: Stability and transition of three-dimensional boundary layers
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 1006
  year: 1980
  ident: c35
  article-title: Flowfield model for a rectangular planform wing beyond stall
  publication-title: AIAA J.
– start-page: 014103
  year: 2019
  ident: c71
  article-title: A geometrical criterion for absolute instability in separated boundary layers
  publication-title: Phys. Fluids
– start-page: 052042
  year: 2020
  ident: c27
  article-title: Direct numerical simulation of transitional boundary layers on a horizontal axis wind turbine blade
  publication-title: J. Phys: Conf. Ser.
– start-page: 715
  year: 2021
  ident: c26
  article-title: A simplified model for transition prediction applicable to wind-turbine rotors
  publication-title: Wind Energy Sci.
– start-page: 280
  year: 2010
  ident: c40
  article-title: Structural changes of laminar separation bubbles induced by global linear instability
  publication-title: J. Fluid Mech.
– start-page: 473
  year: 1990
  ident: c50
  article-title: Local and global instabilities in spatially developing flows
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 378
  year: 2018
  ident: c49
  article-title: Unsteady aerodynamic effects in small-amplitude pitch oscillations of an airfoil
  publication-title: Int. J. Heat Fluid Flow
– start-page: 012032
  year: 2007
  ident: c23
  article-title: 3D boundary layer study on a rotating wind turbine blade
  publication-title: J. Phys: Conf. Ser.
– start-page: 263
  year: 2009
  ident: c55
  article-title: On the origin of the inflectional instability of a laminar separation bubble
  publication-title: J. Fluid Mech.
– start-page: 3075
  year: 1987
  ident: c72
  article-title: The cusp map in the complex-frequency plane for absolute instabilities
  publication-title: Phys. Fluids
– ident: 2024092413343098000_c17
– start-page: 1
  year: 2008
  ident: 2024092413343098000_c33
  article-title: Discrete structures in the radial flow over a rotor blade in dynamic stall
– ident: 2024092413343098000_c65
– volume: 20
  start-page: 167
  year: 2000
  ident: 2024092413343098000_c10
  article-title: The effect of rotation on the boundary layer of a wind turbine blade
  publication-title: Renew. Energy
  doi: 10.1016/S0960-1481(99)00109-3
– volume: 410
  start-page: 1
  year: 2000
  ident: 2024092413343098000_c67
  article-title: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099008976
– volume: 17
  start-page: 145
  year: 1998
  ident: 2024092413343098000_c66
  article-title: Local and global instability properties of separation bubbles
  publication-title: Eur. J. Mech. - B/Fluids
  doi: 10.1016/S0997-7546(98)80056-3
– volume: 22
  start-page: 014102
  year: 2010
  ident: 2024092413343098000_c51
  article-title: The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble
  publication-title: Phys. Fluids
  doi: 10.1063/1.3276903
– volume: 56
  start-page: 118
  year: 2015
  ident: 2024092413343098000_c22
  article-title: Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and image derotation
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-015-1988-5
– volume: 1618
  start-page: 052042
  year: 2020
  ident: 2024092413343098000_c27
  article-title: Direct numerical simulation of transitional boundary layers on a horizontal axis wind turbine blade
  publication-title: J. Phys: Conf. Ser.
  doi: 10.1088/1742-6596/1618/5/052042
– volume: 629
  start-page: 263
  year: 2009
  ident: 2024092413343098000_c55
  article-title: On the origin of the inflectional instability of a laminar separation bubble
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200900634X
– volume: 23
  start-page: 124102
  year: 2011
  ident: 2024092413343098000_c57
  article-title: Interaction of viscous and inviscid instability modes in separation-bubble transition
  publication-title: Phys. Fluids
  doi: 10.1063/1.3666844
– ident: 2024092413343098000_c9
– volume: 57
  start-page: 1434
  year: 2019
  ident: 2024092413343098000_c30
  article-title: Numerical investigation of deep dynamic stall for a helicopter blade section
  publication-title: AIAA J.
  doi: 10.2514/1.J057686
– start-page: 1
  year: 2012
  ident: 2024092413343098000_c18
  article-title: Transition detection and skin friction measurements on rotating propeller blades
– start-page: 22
  volume-title: Recent Contributions to Fluid Mechanics
  year: 1982
  ident: 2024092413343098000_c36
  article-title: Half model testing applied to wings above and below stall
  doi: 10.1007/978-3-642-81932-2
– ident: 2024092413343098000_c43
– volume: 23
  start-page: 114108
  year: 2011
  ident: 2024092413343098000_c62
  article-title: The instability of the boundary layer over a disk rotating in an enforced axial flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.3662133
– volume: 55
  start-page: 1
  year: 2014
  ident: 2024092413343098000_c34
  article-title: Velocity measurements on a retreating blade in dynamic stall
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-014-1669-9
– volume: 734
  start-page: R4
  year: 2013
  ident: 2024092413343098000_c68
  article-title: The two classes of primary modal instability in laminar separation bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.504
– ident: 2024092413343098000_c1
– volume: 75
  start-page: 012032
  year: 2007
  ident: 2024092413343098000_c23
  article-title: 3D boundary layer study on a rotating wind turbine blade
  publication-title: J. Phys: Conf. Ser.
  doi: 10.1088/1742-6596/75/1/012032
– volume: 15
  start-page: 983
  year: 2012
  ident: 2024092413343098000_c28
  article-title: Numerical investigation of rotational augmentation for S822 wind turbine airfoil
  publication-title: Wind Energy
  doi: 10.1002/we.540
– ident: 2024092413343098000_c47
– volume: 58
  start-page: 1023
  year: 2020
  ident: 2024092413343098000_c60
  article-title: Guide to spectral proper orthogonal decomposition
  publication-title: AIAA J.
  doi: 10.2514/1.J058809
– volume: 150
  start-page: 518
  year: 1999
  ident: 2024092413343098000_c11
  article-title: Quasi-3D Navier–Stokes model for a rotating airfoil
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6203
– volume: 31
  start-page: 064101
  year: 2019
  ident: 2024092413343098000_c61
  article-title: Experimental and theoretical study of swept-wing boundary-layer instabilities. Unsteady crossflow instability
  publication-title: Phys. Fluids
  doi: 10.1063/1.5094609
– volume: 45
  start-page: 675
  year: 2008
  ident: 2024092413343098000_c54
  article-title: Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-008-0548-7
– volume: 32
  start-page: 124102
  year: 2020
  ident: 2024092413343098000_c31
  article-title: Direct numerical simulation and stability analysis of the transitional boundary layer on a marine propeller blade
  publication-title: Phys. Fluids
  doi: 10.1063/5.0030070
– volume: 10
  start-page: 159
  year: 2007
  ident: 2024092413343098000_c21
  article-title: Aerodynamic structures and processes in rotationally augmented flow fields
  publication-title: Wind Energy
  doi: 10.1002/we.214
– volume: 122
  start-page: 330
  year: 2000
  ident: 2024092413343098000_c12
  article-title: Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.483261
– volume: 29
  start-page: 245
  year: 1997
  ident: 2024092413343098000_c64
  article-title: Parabolized stability equations
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.29.1.245
– volume: 6
  start-page: 1919
  year: 1968
  ident: 2024092413343098000_c6
  article-title: Laminar boundary layers on helicopter rotors in forward flight
  publication-title: AIAA J.
  doi: 10.2514/3.4901
– volume: 6
  start-page: 715
  year: 2021
  ident: 2024092413343098000_c26
  article-title: A simplified model for transition prediction applicable to wind-turbine rotors
  publication-title: Wind Energy Sci.
  doi: 10.5194/wes-6-715-2021
– volume: 1
  start-page: 941
  year: 1963
  ident: 2024092413343098000_c4
  article-title: Delaying effect of rotation on laminar separation
  publication-title: AIAA J.
  doi: 10.2514/3.1687
– volume: 847
  start-page: 821
  year: 2018
  ident: 2024092413343098000_c59
  article-title: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.283
– volume: 18
  start-page: 247
  year: 1951
  ident: 2024092413343098000_c2
  article-title: The laminar boundary layer on a rotating blade
  publication-title: J. Aeronaut. Sci.
  doi: 10.2514/8.1921
– start-page: 1
  year: 2013
  ident: 2024092413343098000_c69
  article-title: Direct numerical simulations of transition to turbulence in two-dimensional laminar separation bubbles
– ident: 2024092413343098000_c8
– volume: 71
  start-page: 378
  year: 2018
  ident: 2024092413343098000_c49
  article-title: Unsteady aerodynamic effects in small-amplitude pitch oscillations of an airfoil
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2018.04.009
– year: 2017
  ident: 2024092413343098000_c48
  article-title: Ansys ICEM CFD User's Manual 18.2
– volume: 906
  start-page: A13
  year: 2021
  ident: 2024092413343098000_c70
  article-title: Self-excited primary and secondary instability of laminar separation bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.767
– volume: 23
  start-page: 305
  year: 1965
  ident: 2024092413343098000_c5
  article-title: The three-dimensional laminar boundary layer on a rotating helical blade
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112065001374
– volume: 11
  start-page: 459
  year: 2008
  ident: 2024092413343098000_c19
  article-title: A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data
  publication-title: Wind Energy
  doi: 10.1002/we.269
– ident: 2024092413343098000_c15
– volume: 36
  start-page: 173
  year: 2000
  ident: 2024092413343098000_c63
  article-title: Laminar-turbulent transition prediction in three-dimensional flows
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/S0376-0421(00)00002-6
– volume: 71
  start-page: 133
  year: 2003
  ident: 2024092413343098000_c74
  article-title: A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble
  publication-title: Flow, Turbul. Combust.
  doi: 10.1023/B:APPL.0000014928.69394.50
– volume: 710
  start-page: 5
  year: 2012
  ident: 2024092413343098000_c46
  article-title: Turbulent boundary layers at moderate Reynolds numbers: Inflow length and tripping effects
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.324
– start-page: 1
  year: 2006
  ident: 2024092413343098000_c32
  article-title: Radial flow measurements downstream of forced dynamic separation on a rotor blade
– volume: 31
  start-page: 014103
  year: 2019
  ident: 2024092413343098000_c71
  article-title: A geometrical criterion for absolute instability in separated boundary layers
  publication-title: Phys. Fluids
  doi: 10.1063/1.5079536
– volume: 655
  start-page: 280
  year: 2010
  ident: 2024092413343098000_c40
  article-title: Structural changes of laminar separation bubbles induced by global linear instability
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010000856
– volume: 35
  start-page: 413
  year: 2003
  ident: 2024092413343098000_c52
  article-title: Stability and transition of three-dimensional boundary layers
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.35.101101.161045
– volume: 18
  start-page: 1006
  year: 1980
  ident: 2024092413343098000_c35
  article-title: Flowfield model for a rectangular planform wing beyond stall
  publication-title: AIAA J.
  doi: 10.2514/3.50846
– volume: 75
  start-page: 012022
  year: 2007
  ident: 2024092413343098000_c13
  article-title: Modelling of inboard stall delay due to rotation
  publication-title: J. Phys: Conf. Ser.
  doi: 10.1088/1742-6596/75/1/012022
– volume: 89
  start-page: 1267
  year: 2001
  ident: 2024092413343098000_c38
  article-title: Reynolds-number effects in flow around more-or-less bluff bodies
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/S0167-6105(01)00158-1
– start-page: 1
  year: 2012
  ident: 2024092413343098000_c42
  article-title: Light Rotor: The 10-MW reference wind turbine
– volume: 42
  start-page: 408
  year: 2004
  ident: 2024092413343098000_c20
  article-title: Rotational effects on the boundary-layer flow in wind turbines
  publication-title: AIAA J.
  doi: 10.2514/1.9103
– ident: 2024092413343098000_c3
– volume: 7
  start-page: 967
  year: 2022
  ident: 2024092413343098000_c53
  article-title: Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
  publication-title: Wind Energy Sci.
  doi: 10.5194/wes-7-967-2022
– volume: 7
  start-page: 6798
  year: 2014
  ident: 2024092413343098000_c16
  article-title: Insight into rotational effects on a wind turbine blade using Navier–Stokes computations
  publication-title: Energies
  doi: 10.3390/en7106798
– volume: 17
  start-page: 1985
  year: 2014
  ident: 2024092413343098000_c29
  article-title: Comments on the research article by Gross et al. (2012)
  publication-title: Wind Energy
  doi: 10.1002/we.1674
– ident: 2024092413343098000_c7
– volume: 39
  start-page: 105
  year: 1992
  ident: 2024092413343098000_c14
  article-title: Static pressure measurements on a rotating and a non-rotating 2.375 m wind turbine blade. Comparison with 2D calculations
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(92)90537-K
– start-page: 1
  year: 2018
  ident: 2024092413343098000_c25
  article-title: Linear stability analysis in rotating frames and its application to fan blade transition prediction
– year: 2013
  ident: 2024092413343098000_c45
  article-title: Ansys Fluent User's Guide 15
– volume: 35
  start-page: 084104
  year: 2023
  ident: 2024092413343098000_c56
  article-title: Numerical study of the hydrodynamic stability of a wind-turbine airfoil with a laminar separation bubble under free-stream turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/5.0159783
– volume: 358
  start-page: 3229
  year: 2000
  ident: 2024092413343098000_c39
  article-title: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble
  publication-title: Philos. Trans. Roy. Soc. London. Ser. A: Math., Phys. Eng. Sci.
  doi: 10.1098/rsta.2000.0706
– start-page: 179
  volume-title: New Results in Numerical and Experimental Fluid Mechanics XI: Contributions to the 20th STAB/DGLR Symposium
  year: 2018
  ident: 2024092413343098000_c41
  article-title: Extension of the PSE code NOLOT for transition analysis in rotating reference frames
– start-page: 1
  volume-title: VKI/RTO-LS Low Reynolds Number Aerodynamics on Aircraft Including Applications in Emerging UAV Technology
  year: 2003
  ident: 2024092413343098000_c58
  article-title: Instability and transition mechanisms in laminar separation bubbles
– volume: 30
  start-page: 3075
  year: 1987
  ident: 2024092413343098000_c72
  article-title: The cusp map in the complex-frequency plane for absolute instabilities
  publication-title: Phys. Fluids
  doi: 10.1063/1.866483
– volume: 22
  start-page: 473
  year: 1990
  ident: 2024092413343098000_c50
  article-title: Local and global instabilities in spatially developing flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.22.010190.002353
– ident: 2024092413343098000_c24
– volume: 798
  start-page: 485
  year: 2016
  ident: 2024092413343098000_c75
  article-title: Conditions for validity of mean flow stability analysis
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.331
– volume: 21
  start-page: 1757
  year: 1983
  ident: 2024092413343098000_c37
  article-title: Cellular patterns in poststall flow over unswept wings
  publication-title: AIAA J.
  doi: 10.2514/3.8321
– volume-title: Stability and Transition in Shear Flows
  year: 2001
  ident: 2024092413343098000_c73
– year: 2008
  ident: 2024092413343098000_c44
  article-title: Nek5000 web page
SSID ssj0003926
Score 2.468921
Snippet Wall-resolved large eddy simulations of the flow on a rotating wind turbine blade section are conducted to study the rotation effects on laminar-turbulent...
SourceID swepub
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acceleration
Angle of attack
Boundary layer stability
Boundary layer transition
Breakdown
Cross flow
Flow separation
Flow stability
Fluid dynamics
Fluid flow
Laminar boundary layer
Laminar flow
Large eddy simulation
Reversed flow
Reynolds number
Rotation
Suction
Surface stability
Turbine blades
Turbulence
Turbulent boundary layer
Turbulent flow
Wind effects
Wind turbines
Title Boundary layer stability on a rotating wind turbine blade section
URI http://dx.doi.org/10.1063/5.0223207
https://www.proquest.com/docview/3108824854
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-354749
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bSwJBFB5EiXrpYkWWyZARvWytO7edR8tEJKMow7dhdme2IllDjfDfd_aiXajo_ewsnMt83-GcOQehQ2pCobknHcq171DLuSOFFo7mkD17omGzV--9K97p0-6ADQqo_ksFn5NTdgIwQ7zkxXjJA3IMGVap2W3dXC8uXIB4nrUWQibESWM-QOjzx19h54NLLgPQZDXvb7NCU3xpr6PVnBjiZmbJDVSwcRmt5SQR5yE4KaOltGcznGyi5lm6Emk8w0MNxBkDz0s7XWd4FGONx6Pkj_EDfoO0GwOyQA5scTDUxuJJ2oAVb6F---LuvOPkGxGckHA2dSjhIrBGWipJ6IIufRFpEbkR0IgIkN40rPRcajUNiZZaBhBxkgbEWmZ1RATZRsV4FNsdhI1gJimJetowalwTRFEgrG1EvvGpoayCjucKU3MVJVsrhiotW3OimMp1W0EHC9GXbEbGT0LVudZVHiYTBdwSGD71Ga2g-sISfx1ylNloIZJMx2493TcVuIx6nj4qwqigcvdfx-2hFQ84StYyVkXF6fjV7gPHmAY18LFW7_K2lvvaO86uy1c
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary+layer+stability+on+a+rotating+wind+turbine+blade+section&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Fava+T+C+L&rft.au=Henningson%2C+D+S&rft.au=Hanifi%2C+A&rft.date=2024-09-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=36&rft.issue=9&rft_id=info:doi/10.1063%2F5.0223207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon