Novel chitosan-based nanocomposites as ecofriendly pesticide carriers: Synthesis, root rot inhibition and growth management of tomato plants

Novel bio-based nanocomposites were developed as carriers for loading and sustained-release of vanillin (Van.) and cinnamaldehyde (Cinn.) antioxidants. The composites were obtained by intercalation of chitosan (CS) into sodium montmorillonite (CS/Mt), incorporation of chitosan with polyaniline (CS/P...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 282; p. 119111
Main Authors Elsherbiny, Abeer S., Galal, Alyaa, Ghoneem, Khalid M., Salahuddin, Nehal A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Novel bio-based nanocomposites were developed as carriers for loading and sustained-release of vanillin (Van.) and cinnamaldehyde (Cinn.) antioxidants. The composites were obtained by intercalation of chitosan (CS) into sodium montmorillonite (CS/Mt), incorporation of chitosan with polyaniline (CS/PANI) and chitosan/polyaniline/exfoliated montmorillonite (CS/PANI/Mt). The structure and morphology of composites were characterized by FTIR, XRD, SEM and TEM. The release data of Van. and Cinn. from CS and CS/Mt obeyed well zero-order equation. However, Higuchi and Korsmeyer-Peppas models fitted well the release data from CS/PANI and CS/Mt composites. Their antifungal activity was examined towards Fusarium oxysporum and Pythium debaryanum. In vitro assay, CS, Cinn., Van., CS/PANI and CS/PANI/Cinn., have a strong inhibitory effect on the linear growth of the target pathogens, even at lower concentrations. Greenhouse assay indicated that seedling treatment by the loaded CS/PANI/Cinn and CS/Mt/Cinn. reduced both disease index and disease incidence parameters of both pathogens and possessed seedlings growth promoting potential of tomato compared to untreated-infected controls. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2022.119111