DISTRIBUTED PROXIMAL-GRADIENT METHOD FOR CONVEX OPTIMIZATION WITH INEQUALITY CONSTRAINTS
We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penal...
Saved in:
Published in | The ANZIAM journal Vol. 56; no. 2; pp. 160 - 178 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1446-1811 1446-8735 |
DOI | 10.1017/S1446181114000273 |
Cover
Loading…
Abstract | We consider a distributed optimization problem over a multi-agent network, in which
the sum of several local convex objective functions is minimized subject to global
convex inequality constraints. We first transform the constrained optimization
problem to an unconstrained one, using the exact penalty function method. Our
transformed problem has a smaller number of variables and a simpler structure than
the existing distributed primal–dual subgradient methods for constrained
distributed optimization problems. Using the special structure of this problem, we
then propose a distributed proximal-gradient algorithm over a time-changing
connectivity network, and establish a convergence rate depending on the number of
iterations, the network topology and the number of agents. Although the transformed
problem is nonsmooth by nature, our method can still achieve a convergence rate, ${\mathcal{O}}(1/k)$, after $k$ iterations, which is faster than the rate, ${\mathcal{O}}(1/\sqrt{k})$, of existing distributed subgradient-based methods. Simulation
experiments on a distributed state estimation problem illustrate the excellent
performance of our proposed method. |
---|---|
AbstractList | We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penalty function method. Our transformed problem has a smaller number of variables and a simpler structure than the existing distributed primal-dual subgradient methods for constrained distributed optimization problems. Using the special structure of this problem, we then propose a distributed proximal-gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending on the number of iterations, the network topology and the number of agents. Although the transformed problem is nonsmooth by nature, our method can still achieve a convergence rate, O(1/k), after k iterations, which is faster than the rate, O(1/[radical]k), of existing distributed subgradient-based methods. Simulation experiments on a distributed state estimation problem illustrate the excellent performance of our proposed method. We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penalty function method. Our transformed problem has a smaller number of variables and a simpler structure than the existing distributed primal–dual subgradient methods for constrained distributed optimization problems. Using the special structure of this problem, we then propose a distributed proximal-gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending on the number of iterations, the network topology and the number of agents. Although the transformed problem is nonsmooth by nature, our method can still achieve a convergence rate, ${\mathcal{O}}(1/k)$, after $k$ iterations, which is faster than the rate, ${\mathcal{O}}(1/\sqrt{k})$, of existing distributed subgradient-based methods. Simulation experiments on a distributed state estimation problem illustrate the excellent performance of our proposed method. We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penalty function method. Our transformed problem has a smaller number of variables and a simpler structure than the existing distributed primal–dual subgradient methods for constrained distributed optimization problems. Using the special structure of this problem, we then propose a distributed proximal-gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending on the number of iterations, the network topology and the number of agents. Although the transformed problem is nonsmooth by nature, our method can still achieve a convergence rate, ${\mathcal{O}}(1/k)$ , after $k$ iterations, which is faster than the rate, ${\mathcal{O}}(1/\sqrt{k})$ , of existing distributed subgradient-based methods. Simulation experiments on a distributed state estimation problem illustrate the excellent performance of our proposed method. |
Author | WU, ZHIYOU WANG, XIANGYU LONG, QIANG WU, CHANGZHI LI, JUEYOU |
Author_xml | – sequence: 1 givenname: JUEYOU surname: LI fullname: LI, JUEYOU email: zywu@cqnu.edu.cn organization: 1School of Mathematics, Chongqing Normal University, Chongqing 400047, PR China email zywu@cqnu.edu.cn – sequence: 2 givenname: CHANGZHI surname: WU fullname: WU, CHANGZHI email: c.wu@curtin.edu.au organization: 3Australasian Joint Research Centre for Building Information Modelling, School of Built Environment, Curtin University, WA 6102, Australia email c.wu@curtin.edu.au – sequence: 3 givenname: ZHIYOU surname: WU fullname: WU, ZHIYOU email: zywu@cqnu.edu.cn organization: 1School of Mathematics, Chongqing Normal University, Chongqing 400047, PR China email zywu@cqnu.edu.cn – sequence: 4 givenname: QIANG surname: LONG fullname: LONG, QIANG email: longqiang@swust.edu.cn organization: 4School of Science, Southwest University of Science and Technology, Sichuan 621010, PR China email longqiang@swust.edu.cn – sequence: 5 givenname: XIANGYU surname: WANG fullname: WANG, XIANGYU email: c.wu@curtin.edu.au organization: 3Australasian Joint Research Centre for Building Information Modelling, School of Built Environment, Curtin University, WA 6102, Australia email c.wu@curtin.edu.au |
BookMark | eNp9kM1OwkAUhScGEwF9AHddukHndn4KywoFJoEWYVDURTOdDqYEWmzLwrfhWXgyS2ClCat7c-_5zklOA9XSLDUI3QN-BAzO0wwo5dAGAIoxth1yherHU6vtEFY778f_DWoUxQpjShxi19FnT8zkVDzPpdezJtNgIcbuqDWYuj3h-dIae3IY9Kx-MD3su4H_6i0O-2AixVh8uFIE_mH_JuTQEr73MndHQr5blaoydIUvZ7foeqnWhbk7zyaa9z3ZHbZGwUB0qxhNOCtbpK3BUM7tjsZxbHOuWMRA2wo7HWZ3eASUxVrx2BBGedswwnVksyUGHBnQlDTRw8l3m2ffO1OU4SYptFmvVWqyXRECd5wOUOBHqXOS6jwritwsQ52UqkyytMxVsg4Bh8c6w391ViT8Ibd5slH5z0WGnBm1ifIk_jLhKtvlaVXGBeoXq2uCPw |
CitedBy_id | crossref_primary_10_1007_s11590_016_1071_z crossref_primary_10_1007_s10957_015_0757_1 crossref_primary_10_1007_s10589_016_9826_0 crossref_primary_10_3934_jimo_2017021 |
Cites_doi | 10.1109/Allerton.2012.6483273 10.3934/jimo.2012.8.1057 10.1109/CDC.2008.4739339 10.1137/S1052623499362111 10.1016/j.sysconle.2004.02.022 10.1016/j.jprocont.2010.12.010 10.1007/s10957-009-9522-7 10.1016/j.jpdc.2006.08.010 10.1007/BF01681332 10.3934/jimo.2014.10.743 10.1137/080716542 10.3934/jimo.2010.6.895 10.3934/jimo.2012.8.705 10.1109/59.898096 10.1016/j.automatica.2013.05.027 10.1109/TAC.2008.2009515 10.1016/j.trc.2009.04.022 10.1109/TAC.2011.2167817 10.1007/978-0-8176-8216-3 10.1016/j.automatica.2013.02.052 10.1109/TAC.2010.2041686 10.1007/s10107-011-0472-0 10.1109/TAC.2011.2161027 10.3934/jimo.2009.5.585 10.1007/s10107-012-0629-5 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Australian Mathematical Society |
Copyright_xml | – notice: Copyright © 2014 Australian Mathematical Society |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1017/S1446181114000273 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Distributed proximal-gradient method J. Li et al. |
EISSN | 1446-8735 |
EndPage | 178 |
ExternalDocumentID | 10_1017_S1446181114000273 |
GroupedDBID | --Z -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 123 23M 2WC 4.4 5VS 6J9 6~7 74X 74Y 7~V 88I 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABROB ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFS ACIMK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEGXH AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BQFHP C0O C1A CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DOHLZ DWQXO EBS EGQIC EJD ESX GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU KAFGG KC5 KCGVB KFECR KWQ L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OK1 PTHSS PYCCK RAMDC RCA RFR RNS ROL RR0 S6U SAAAG SJN T9M TN5 UT1 VH1 WFFJZ WQ3 WXU WXY WYP ZCG ZDLDU ZJOSE ZMEZD ZYDXJ ~02 ~V1 AAKNA AATMM AAYXX ABHFL ABVKB ABVZP ABXHF ACDLN ACEJA ACOZI ACRPL ADNMO AEMFK AFZFC AGQPQ AKMAY AMVHM ANOYL CITATION PHGZM PHGZT 7TB 8FD FR3 KR7 PQGLB |
ID | FETCH-LOGICAL-c365t-38c1e46629c0dd266a5b51c2a0795296b145dca6de35468e536cb25f010be1c43 |
ISSN | 1446-1811 |
IngestDate | Thu Jul 10 22:18:43 EDT 2025 Tue Jul 01 02:30:24 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Wed Mar 13 05:39:11 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | proximal-gradient method distributed algorithm convex optimization 90C25 exact penalty function method |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-38c1e46629c0dd266a5b51c2a0795296b145dca6de35468e536cb25f010be1c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7FE45FCC8FB02098BCC5A10ED14992C3/S1446181114000273a.pdf/div-class-title-distributed-proximal-gradient-method-for-convex-optimization-with-inequality-constraints-div.pdf |
PQID | 1677914164 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1677914164 crossref_citationtrail_10_1017_S1446181114000273 crossref_primary_10_1017_S1446181114000273 cambridge_journals_10_1017_S1446181114000273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK |
PublicationTitle | The ANZIAM journal |
PublicationTitleAlternate | ANZIAM J |
PublicationYear | 2014 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Zhu (S1446181114000273_r31) 2012; 57 Meng (S1446181114000273_r14) 2009; 5 Schmidt (S1446181114000273_r21) 2011 S1446181114000273_r4 S1446181114000273_r29 S1446181114000273_r28 S1446181114000273_r6 S1446181114000273_r27 S1446181114000273_r7 S1446181114000273_r8 S1446181114000273_r9 S1446181114000273_r22 S1446181114000273_r20 S1446181114000273_r26 S1446181114000273_r25 S1446181114000273_r24 S1446181114000273_r23 S1446181114000273_r1 S1446181114000273_r2 S1446181114000273_r19 S1446181114000273_r18 Bertsekas (S1446181114000273_r3) 1999 S1446181114000273_r17 S1446181114000273_r16 S1446181114000273_r10 Bertsekas (S1446181114000273_r5) 1989 S1446181114000273_r30 S1446181114000273_r15 S1446181114000273_r13 Li (S1446181114000273_r11) 2014 S1446181114000273_r12 |
References_xml | – ident: S1446181114000273_r24 – ident: S1446181114000273_r6 doi: 10.1109/Allerton.2012.6483273 – ident: S1446181114000273_r29 doi: 10.3934/jimo.2012.8.1057 – ident: S1446181114000273_r10 doi: 10.1109/CDC.2008.4739339 – ident: S1446181114000273_r16 doi: 10.1137/S1052623499362111 – ident: S1446181114000273_r27 doi: 10.1016/j.sysconle.2004.02.022 – ident: S1446181114000273_r15 doi: 10.1016/j.jprocont.2010.12.010 – ident: S1446181114000273_r18 doi: 10.1007/s10957-009-9522-7 – ident: S1446181114000273_r28 doi: 10.1016/j.jpdc.2006.08.010 – ident: S1446181114000273_r2 doi: 10.1007/BF01681332 – ident: S1446181114000273_r22 doi: 10.3934/jimo.2014.10.743 – ident: S1446181114000273_r1 doi: 10.1137/080716542 – ident: S1446181114000273_r30 doi: 10.3934/jimo.2010.6.895 – ident: S1446181114000273_r13 doi: 10.3934/jimo.2012.8.705 – ident: S1446181114000273_r9 doi: 10.1109/59.898096 – ident: S1446181114000273_r12 doi: 10.1016/j.automatica.2013.05.027 – ident: S1446181114000273_r25 – ident: S1446181114000273_r17 doi: 10.1109/TAC.2008.2009515 – ident: S1446181114000273_r7 doi: 10.1016/j.trc.2009.04.022 – volume: 57 start-page: 151 year: 2012 ident: S1446181114000273_r31 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2011.2167817 – ident: S1446181114000273_r23 doi: 10.1007/978-0-8176-8216-3 – start-page: 1 year: 2014 ident: S1446181114000273_r11 article-title: Gradient-free method for nonsmooth distributed optimization publication-title: J. Global. Optim. – ident: S1446181114000273_r26 doi: 10.1016/j.automatica.2013.02.052 – start-page: 1458 year: 2011 ident: S1446181114000273_r21 article-title: Convergence rates of inexact proximal-gradient methods for convex optimization publication-title: Adv. Neural Inf. Process. Syst. – ident: S1446181114000273_r19 doi: 10.1109/TAC.2010.2041686 – volume-title: Nonlinear programming year: 1999 ident: S1446181114000273_r3 – volume-title: Parallel and distributed computation: numerical methods year: 1989 ident: S1446181114000273_r5 – ident: S1446181114000273_r4 doi: 10.1007/s10107-011-0472-0 – ident: S1446181114000273_r8 doi: 10.1109/TAC.2011.2161027 – volume: 5 start-page: 585 year: 2009 ident: S1446181114000273_r14 article-title: A penalty function algorithm with objective parameters for nonlinear mathematical programming publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2009.5.585 – ident: S1446181114000273_r20 doi: 10.1007/s10107-012-0629-5 |
SSID | ssj0043732 |
Score | 1.9863317 |
Snippet | We consider a distributed optimization problem over a multi-agent network, in which
the sum of several local convex objective functions is minimized subject to... We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 160 |
SubjectTerms | Algorithms Computer simulation Constraints Convergence Inequalities Networks Optimization State estimation |
Title | DISTRIBUTED PROXIMAL-GRADIENT METHOD FOR CONVEX OPTIMIZATION WITH INEQUALITY CONSTRAINTS |
URI | https://www.cambridge.org/core/product/identifier/S1446181114000273/type/journal_article https://www.proquest.com/docview/1677914164 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaE9AIHhudQXmNm6IVgxg9Jjo9uamoxiV1aG9L0kIlk-cSkDE0u_A3-QH5Lfhkry3YcQjuUi8ezIymy9ss-pNUuQm8LkVuc910TdD01sSDU5NjCpp8LgjktsCzLdI5iGmX405iMO51frail5YJ_ED__eq_kf7gKNOCruiV7C842gwIB3oG_8AQOw_OfeHzEztJTdpiB9IGlTMZsFAzN49MAbLw47Y3CNEqOeuDmHQycg8AaJPGXcKzfk5MUpNak3KDSlK8sjXosDsHEHbL0vAetVT1lFqdnbQO2LOIcT1gw6rWnqEJ6WImILDxPskbUZ-VGbBTEx5OIbVOB0Go5TPTlqc8sqFJcVVsRNm6C2hbX3zJrR5IoAQvupwlWhe4lN7S-p9OW1FJZpxuv0Oe0RKyt6w9U2trWBYB2FEGVPUoNrX4N3Mgyc89G6zWxiDrMzZvutL2D9hzwPZwu2jsM45PTWsGrZFDlIXr9KfVhucpE_ucg7ZQd26bPtuYvzZn0Abpf-SFGoEH1EHXk_BG6N2qS-F49RhcteBk78DI0vAyA13qlobVetWG1XilIGRtIGS1IPUHZxzAdRGZVi8MULiUL0-0LW2JKHV9YeQ5W3YxwYgtnZnm-OrrnNia5mNFcugTTviQuFdwhBbj7XNoCu09Rd345l8-QIbjnEeET8GUtLAvsF6TwZxxTaStrmu6j982STSsoX02vZdM-supVnYoqr70qr_Ltpi7vmi7fdVKXmxq_qVk1BdGrztNmc3m5hClRz_Nt8Gjw89tN-QW6u_n7vETdxY-lfAW27YK_rrD2G-2DiLs |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DISTRIBUTED+PROXIMAL-GRADIENT+METHOD+FOR%C2%A0CONVEX%C2%A0OPTIMIZATION%C2%A0WITH+INEQUALITY+CONSTRAINTS&rft.jtitle=The+ANZIAM+journal&rft.au=LI%2C+JUEYOU&rft.au=WU%2C+CHANGZHI&rft.au=WU%2C+ZHIYOU&rft.au=LONG%2C+QIANG&rft.date=2014-10-01&rft.pub=Cambridge+University+Press&rft.issn=1446-1811&rft.eissn=1446-8735&rft.volume=56&rft.issue=2&rft.spage=160&rft.epage=178&rft_id=info:doi/10.1017%2FS1446181114000273&rft.externalDocID=10_1017_S1446181114000273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1446-1811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1446-1811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1446-1811&client=summon |