DISTRIBUTED PROXIMAL-GRADIENT METHOD FOR CONVEX OPTIMIZATION WITH INEQUALITY CONSTRAINTS

We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penal...

Full description

Saved in:
Bibliographic Details
Published inThe ANZIAM journal Vol. 56; no. 2; pp. 160 - 178
Main Authors LI, JUEYOU, WU, CHANGZHI, WU, ZHIYOU, LONG, QIANG, WANG, XIANGYU
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2014
Subjects
Online AccessGet full text
ISSN1446-1811
1446-8735
DOI10.1017/S1446181114000273

Cover

Loading…
Abstract We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penalty function method. Our transformed problem has a smaller number of variables and a simpler structure than the existing distributed primal–dual subgradient methods for constrained distributed optimization problems. Using the special structure of this problem, we then propose a distributed proximal-gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending on the number of iterations, the network topology and the number of agents. Although the transformed problem is nonsmooth by nature, our method can still achieve a convergence rate, ${\mathcal{O}}(1/k)$, after $k$ iterations, which is faster than the rate, ${\mathcal{O}}(1/\sqrt{k})$, of existing distributed subgradient-based methods. Simulation experiments on a distributed state estimation problem illustrate the excellent performance of our proposed method.
AbstractList We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penalty function method. Our transformed problem has a smaller number of variables and a simpler structure than the existing distributed primal-dual subgradient methods for constrained distributed optimization problems. Using the special structure of this problem, we then propose a distributed proximal-gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending on the number of iterations, the network topology and the number of agents. Although the transformed problem is nonsmooth by nature, our method can still achieve a convergence rate, O(1/k), after k iterations, which is faster than the rate, O(1/[radical]k), of existing distributed subgradient-based methods. Simulation experiments on a distributed state estimation problem illustrate the excellent performance of our proposed method.
We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penalty function method. Our transformed problem has a smaller number of variables and a simpler structure than the existing distributed primal–dual subgradient methods for constrained distributed optimization problems. Using the special structure of this problem, we then propose a distributed proximal-gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending on the number of iterations, the network topology and the number of agents. Although the transformed problem is nonsmooth by nature, our method can still achieve a convergence rate, ${\mathcal{O}}(1/k)$, after $k$ iterations, which is faster than the rate, ${\mathcal{O}}(1/\sqrt{k})$, of existing distributed subgradient-based methods. Simulation experiments on a distributed state estimation problem illustrate the excellent performance of our proposed method.
We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to global convex inequality constraints. We first transform the constrained optimization problem to an unconstrained one, using the exact penalty function method. Our transformed problem has a smaller number of variables and a simpler structure than the existing distributed primal–dual subgradient methods for constrained distributed optimization problems. Using the special structure of this problem, we then propose a distributed proximal-gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending on the number of iterations, the network topology and the number of agents. Although the transformed problem is nonsmooth by nature, our method can still achieve a convergence rate, ${\mathcal{O}}(1/k)$ , after $k$ iterations, which is faster than the rate, ${\mathcal{O}}(1/\sqrt{k})$ , of existing distributed subgradient-based methods. Simulation experiments on a distributed state estimation problem illustrate the excellent performance of our proposed method.
Author WU, ZHIYOU
WANG, XIANGYU
LONG, QIANG
WU, CHANGZHI
LI, JUEYOU
Author_xml – sequence: 1
  givenname: JUEYOU
  surname: LI
  fullname: LI, JUEYOU
  email: zywu@cqnu.edu.cn
  organization: 1School of Mathematics, Chongqing Normal University, Chongqing 400047, PR China email zywu@cqnu.edu.cn
– sequence: 2
  givenname: CHANGZHI
  surname: WU
  fullname: WU, CHANGZHI
  email: c.wu@curtin.edu.au
  organization: 3Australasian Joint Research Centre for Building Information Modelling, School of Built Environment, Curtin University, WA 6102, Australia email c.wu@curtin.edu.au
– sequence: 3
  givenname: ZHIYOU
  surname: WU
  fullname: WU, ZHIYOU
  email: zywu@cqnu.edu.cn
  organization: 1School of Mathematics, Chongqing Normal University, Chongqing 400047, PR China email zywu@cqnu.edu.cn
– sequence: 4
  givenname: QIANG
  surname: LONG
  fullname: LONG, QIANG
  email: longqiang@swust.edu.cn
  organization: 4School of Science, Southwest University of Science and Technology, Sichuan 621010, PR China email longqiang@swust.edu.cn
– sequence: 5
  givenname: XIANGYU
  surname: WANG
  fullname: WANG, XIANGYU
  email: c.wu@curtin.edu.au
  organization: 3Australasian Joint Research Centre for Building Information Modelling, School of Built Environment, Curtin University, WA 6102, Australia email c.wu@curtin.edu.au
BookMark eNp9kM1OwkAUhScGEwF9AHddukHndn4KywoFJoEWYVDURTOdDqYEWmzLwrfhWXgyS2ClCat7c-_5zklOA9XSLDUI3QN-BAzO0wwo5dAGAIoxth1yherHU6vtEFY778f_DWoUxQpjShxi19FnT8zkVDzPpdezJtNgIcbuqDWYuj3h-dIae3IY9Kx-MD3su4H_6i0O-2AixVh8uFIE_mH_JuTQEr73MndHQr5blaoydIUvZ7foeqnWhbk7zyaa9z3ZHbZGwUB0qxhNOCtbpK3BUM7tjsZxbHOuWMRA2wo7HWZ3eASUxVrx2BBGedswwnVksyUGHBnQlDTRw8l3m2ffO1OU4SYptFmvVWqyXRECd5wOUOBHqXOS6jwritwsQ52UqkyytMxVsg4Bh8c6w391ViT8Ibd5slH5z0WGnBm1ifIk_jLhKtvlaVXGBeoXq2uCPw
CitedBy_id crossref_primary_10_1007_s11590_016_1071_z
crossref_primary_10_1007_s10957_015_0757_1
crossref_primary_10_1007_s10589_016_9826_0
crossref_primary_10_3934_jimo_2017021
Cites_doi 10.1109/Allerton.2012.6483273
10.3934/jimo.2012.8.1057
10.1109/CDC.2008.4739339
10.1137/S1052623499362111
10.1016/j.sysconle.2004.02.022
10.1016/j.jprocont.2010.12.010
10.1007/s10957-009-9522-7
10.1016/j.jpdc.2006.08.010
10.1007/BF01681332
10.3934/jimo.2014.10.743
10.1137/080716542
10.3934/jimo.2010.6.895
10.3934/jimo.2012.8.705
10.1109/59.898096
10.1016/j.automatica.2013.05.027
10.1109/TAC.2008.2009515
10.1016/j.trc.2009.04.022
10.1109/TAC.2011.2167817
10.1007/978-0-8176-8216-3
10.1016/j.automatica.2013.02.052
10.1109/TAC.2010.2041686
10.1007/s10107-011-0472-0
10.1109/TAC.2011.2161027
10.3934/jimo.2009.5.585
10.1007/s10107-012-0629-5
ContentType Journal Article
Copyright Copyright © 2014 Australian Mathematical Society
Copyright_xml – notice: Copyright © 2014 Australian Mathematical Society
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1017/S1446181114000273
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Distributed proximal-gradient method
J. Li et al.
EISSN 1446-8735
EndPage 178
ExternalDocumentID 10_1017_S1446181114000273
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
23M
2WC
4.4
5VS
6J9
6~7
74X
74Y
7~V
88I
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABROB
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BQFHP
C0O
C1A
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DOHLZ
DWQXO
EBS
EGQIC
EJD
ESX
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KC5
KCGVB
KFECR
KWQ
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OK1
PTHSS
PYCCK
RAMDC
RCA
RFR
RNS
ROL
RR0
S6U
SAAAG
SJN
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~02
~V1
AAKNA
AATMM
AAYXX
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
7TB
8FD
FR3
KR7
PQGLB
ID FETCH-LOGICAL-c365t-38c1e46629c0dd266a5b51c2a0795296b145dca6de35468e536cb25f010be1c43
ISSN 1446-1811
IngestDate Thu Jul 10 22:18:43 EDT 2025
Tue Jul 01 02:30:24 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Wed Mar 13 05:39:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords proximal-gradient method
distributed algorithm
convex optimization
90C25
exact penalty function method
Language English
License https://www.cambridge.org/core/terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-38c1e46629c0dd266a5b51c2a0795296b145dca6de35468e536cb25f010be1c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7FE45FCC8FB02098BCC5A10ED14992C3/S1446181114000273a.pdf/div-class-title-distributed-proximal-gradient-method-for-convex-optimization-with-inequality-constraints-div.pdf
PQID 1677914164
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1677914164
crossref_citationtrail_10_1017_S1446181114000273
crossref_primary_10_1017_S1446181114000273
cambridge_journals_10_1017_S1446181114000273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle The ANZIAM journal
PublicationTitleAlternate ANZIAM J
PublicationYear 2014
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Zhu (S1446181114000273_r31) 2012; 57
Meng (S1446181114000273_r14) 2009; 5
Schmidt (S1446181114000273_r21) 2011
S1446181114000273_r4
S1446181114000273_r29
S1446181114000273_r28
S1446181114000273_r6
S1446181114000273_r27
S1446181114000273_r7
S1446181114000273_r8
S1446181114000273_r9
S1446181114000273_r22
S1446181114000273_r20
S1446181114000273_r26
S1446181114000273_r25
S1446181114000273_r24
S1446181114000273_r23
S1446181114000273_r1
S1446181114000273_r2
S1446181114000273_r19
S1446181114000273_r18
Bertsekas (S1446181114000273_r3) 1999
S1446181114000273_r17
S1446181114000273_r16
S1446181114000273_r10
Bertsekas (S1446181114000273_r5) 1989
S1446181114000273_r30
S1446181114000273_r15
S1446181114000273_r13
Li (S1446181114000273_r11) 2014
S1446181114000273_r12
References_xml – ident: S1446181114000273_r24
– ident: S1446181114000273_r6
  doi: 10.1109/Allerton.2012.6483273
– ident: S1446181114000273_r29
  doi: 10.3934/jimo.2012.8.1057
– ident: S1446181114000273_r10
  doi: 10.1109/CDC.2008.4739339
– ident: S1446181114000273_r16
  doi: 10.1137/S1052623499362111
– ident: S1446181114000273_r27
  doi: 10.1016/j.sysconle.2004.02.022
– ident: S1446181114000273_r15
  doi: 10.1016/j.jprocont.2010.12.010
– ident: S1446181114000273_r18
  doi: 10.1007/s10957-009-9522-7
– ident: S1446181114000273_r28
  doi: 10.1016/j.jpdc.2006.08.010
– ident: S1446181114000273_r2
  doi: 10.1007/BF01681332
– ident: S1446181114000273_r22
  doi: 10.3934/jimo.2014.10.743
– ident: S1446181114000273_r1
  doi: 10.1137/080716542
– ident: S1446181114000273_r30
  doi: 10.3934/jimo.2010.6.895
– ident: S1446181114000273_r13
  doi: 10.3934/jimo.2012.8.705
– ident: S1446181114000273_r9
  doi: 10.1109/59.898096
– ident: S1446181114000273_r12
  doi: 10.1016/j.automatica.2013.05.027
– ident: S1446181114000273_r25
– ident: S1446181114000273_r17
  doi: 10.1109/TAC.2008.2009515
– ident: S1446181114000273_r7
  doi: 10.1016/j.trc.2009.04.022
– volume: 57
  start-page: 151
  year: 2012
  ident: S1446181114000273_r31
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2011.2167817
– ident: S1446181114000273_r23
  doi: 10.1007/978-0-8176-8216-3
– start-page: 1
  year: 2014
  ident: S1446181114000273_r11
  article-title: Gradient-free method for nonsmooth distributed optimization
  publication-title: J. Global. Optim.
– ident: S1446181114000273_r26
  doi: 10.1016/j.automatica.2013.02.052
– start-page: 1458
  year: 2011
  ident: S1446181114000273_r21
  article-title: Convergence rates of inexact proximal-gradient methods for convex optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: S1446181114000273_r19
  doi: 10.1109/TAC.2010.2041686
– volume-title: Nonlinear programming
  year: 1999
  ident: S1446181114000273_r3
– volume-title: Parallel and distributed computation: numerical methods
  year: 1989
  ident: S1446181114000273_r5
– ident: S1446181114000273_r4
  doi: 10.1007/s10107-011-0472-0
– ident: S1446181114000273_r8
  doi: 10.1109/TAC.2011.2161027
– volume: 5
  start-page: 585
  year: 2009
  ident: S1446181114000273_r14
  article-title: A penalty function algorithm with objective parameters for nonlinear mathematical programming
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2009.5.585
– ident: S1446181114000273_r20
  doi: 10.1007/s10107-012-0629-5
SSID ssj0043732
Score 1.9863317
Snippet We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to...
We consider a distributed optimization problem over a multi-agent network, in which the sum of several local convex objective functions is minimized subject to...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 160
SubjectTerms Algorithms
Computer simulation
Constraints
Convergence
Inequalities
Networks
Optimization
State estimation
Title DISTRIBUTED PROXIMAL-GRADIENT METHOD FOR CONVEX OPTIMIZATION WITH INEQUALITY CONSTRAINTS
URI https://www.cambridge.org/core/product/identifier/S1446181114000273/type/journal_article
https://www.proquest.com/docview/1677914164
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaE9AIHhudQXmNm6IVgxg9Jjo9uamoxiV1aG9L0kIlk-cSkDE0u_A3-QH5Lfhkry3YcQjuUi8ezIymy9ss-pNUuQm8LkVuc910TdD01sSDU5NjCpp8LgjktsCzLdI5iGmX405iMO51frail5YJ_ED__eq_kf7gKNOCruiV7C842gwIB3oG_8AQOw_OfeHzEztJTdpiB9IGlTMZsFAzN49MAbLw47Y3CNEqOeuDmHQycg8AaJPGXcKzfk5MUpNak3KDSlK8sjXosDsHEHbL0vAetVT1lFqdnbQO2LOIcT1gw6rWnqEJ6WImILDxPskbUZ-VGbBTEx5OIbVOB0Go5TPTlqc8sqFJcVVsRNm6C2hbX3zJrR5IoAQvupwlWhe4lN7S-p9OW1FJZpxuv0Oe0RKyt6w9U2trWBYB2FEGVPUoNrX4N3Mgyc89G6zWxiDrMzZvutL2D9hzwPZwu2jsM45PTWsGrZFDlIXr9KfVhucpE_ucg7ZQd26bPtuYvzZn0Abpf-SFGoEH1EHXk_BG6N2qS-F49RhcteBk78DI0vAyA13qlobVetWG1XilIGRtIGS1IPUHZxzAdRGZVi8MULiUL0-0LW2JKHV9YeQ5W3YxwYgtnZnm-OrrnNia5mNFcugTTviQuFdwhBbj7XNoCu09Rd345l8-QIbjnEeET8GUtLAvsF6TwZxxTaStrmu6j982STSsoX02vZdM-supVnYoqr70qr_Ltpi7vmi7fdVKXmxq_qVk1BdGrztNmc3m5hClRz_Nt8Gjw89tN-QW6u_n7vETdxY-lfAW27YK_rrD2G-2DiLs
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DISTRIBUTED+PROXIMAL-GRADIENT+METHOD+FOR%C2%A0CONVEX%C2%A0OPTIMIZATION%C2%A0WITH+INEQUALITY+CONSTRAINTS&rft.jtitle=The+ANZIAM+journal&rft.au=LI%2C+JUEYOU&rft.au=WU%2C+CHANGZHI&rft.au=WU%2C+ZHIYOU&rft.au=LONG%2C+QIANG&rft.date=2014-10-01&rft.pub=Cambridge+University+Press&rft.issn=1446-1811&rft.eissn=1446-8735&rft.volume=56&rft.issue=2&rft.spage=160&rft.epage=178&rft_id=info:doi/10.1017%2FS1446181114000273&rft.externalDocID=10_1017_S1446181114000273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1446-1811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1446-1811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1446-1811&client=summon