Investigation of the decomposition reaction and dust explosion characteristics of crystalline dicumyl peroxide

▶ The DSC thermogram of decomposition reaction of 98% crystalline DCP reveals an endothermic peak around 40 °C due to the melting point and an exothermic peak around 168 °C due to the decomposition of DCP. The released heat is equal to 744.85 J/g. The activation energy E and pre-exponential factor A...

Full description

Saved in:
Bibliographic Details
Published inProcess safety and environmental protection Vol. 88; no. 5; pp. 356 - 365
Main Authors Lu, Kai-Tai, Chu, Yung-Chuan, Chen, Ting-Chi, Hu, Kwan-Hua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ▶ The DSC thermogram of decomposition reaction of 98% crystalline DCP reveals an endothermic peak around 40 °C due to the melting point and an exothermic peak around 168 °C due to the decomposition of DCP. The released heat is equal to 744.85 J/g. The activation energy E and pre-exponential factor A are 124.58 kJ/mol and 1.19E15 min −1, respectively. ▶ The 98% crystalline DCP has a MIE between 1 and 3 mJ, which indicates that it is very sensitive to static discharge. Its maximum K St value is 211 bar m/s at room temperature and atmospheric pressure. The explosion class is St-2, which indicates that its explosibility is strong. ▶ Two critical temperature points of T c is obtained from the diagram of heat generation rate and theoretical critical heat removal rate vs. temperature. One is the critical extinction temperature T C,E = 442.13 K and the other is the critical ignition temperature T C,I = 373.63 K. The dicumyl peroxide (DCP) is widely used as a polymerization initiator, catalyst and vulcanizing agent in the chemical industry. A number of accidents have been caused by its thermal instability in storage or manufacturing process. Thus, its hazard characteristics have to be clearly identified. First of all, the differential scanning calorimeter (DSC) is used to measure the heat of decomposition reaction, which can contribute to understanding the reaction characteristics of DCP. The accelerating rate calorimeter (ARC) is used to measure the rates of temperature and pressure rises of decomposition reaction, and then the kinetics parameters are estimated. Furthermore, the MIKE 3 apparatus and the 20-l-Apparatus are used to measure and analyze the dust explosion characteristics of DCP at room temperature and atmospheric pressure. Finally, Semenov's thermal explosion theory is applied to investigate the critical runaway condition and the stability criterion of decomposition reaction, and to build the relationship of critical temperature, convective heat transfer coefficient, heat transfer surface area and ambient temperature. These results contribute to improving the safety in the reaction, transportation and storage processes of DCP.
AbstractList The dicumyl peroxide (DCP) is widely used as a polymerization initiator, catalyst and vulcanizing agent in the chemical industry. A number of accidents have been caused by its thermal instability in storage or manufacturing process. Thus, its hazard characteristics have to be clearly identified. First of all, the differential scanning calorimeter (DSC) is used to measure the heat of decomposition reaction, which can contribute to understanding the reaction characteristics of DCP. The accelerating rate calorimeter (ARC) is used to measure the rates of temperature and pressure rises of decomposition reaction, and then the kinetics parameters are estimated. Furthermore, the MIKE 3 apparatus and the 20-l-Apparatus are used to measure and analyze the dust explosion characteristics of DCP at room temperature and atmospheric pressure. Finally, Semenov's thermal explosion theory is applied to investigate the critical runaway condition and the stability criterion of decomposition reaction, and to build the relationship of critical temperature, convective heat transfer coefficient, heat transfer surface area and ambient temperature. These results contribute to improving the safety in the reaction, transportation and storage processes of DCP.
▶ The DSC thermogram of decomposition reaction of 98% crystalline DCP reveals an endothermic peak around 40 °C due to the melting point and an exothermic peak around 168 °C due to the decomposition of DCP. The released heat is equal to 744.85 J/g. The activation energy E and pre-exponential factor A are 124.58 kJ/mol and 1.19E15 min −1, respectively. ▶ The 98% crystalline DCP has a MIE between 1 and 3 mJ, which indicates that it is very sensitive to static discharge. Its maximum K St value is 211 bar m/s at room temperature and atmospheric pressure. The explosion class is St-2, which indicates that its explosibility is strong. ▶ Two critical temperature points of T c is obtained from the diagram of heat generation rate and theoretical critical heat removal rate vs. temperature. One is the critical extinction temperature T C,E = 442.13 K and the other is the critical ignition temperature T C,I = 373.63 K. The dicumyl peroxide (DCP) is widely used as a polymerization initiator, catalyst and vulcanizing agent in the chemical industry. A number of accidents have been caused by its thermal instability in storage or manufacturing process. Thus, its hazard characteristics have to be clearly identified. First of all, the differential scanning calorimeter (DSC) is used to measure the heat of decomposition reaction, which can contribute to understanding the reaction characteristics of DCP. The accelerating rate calorimeter (ARC) is used to measure the rates of temperature and pressure rises of decomposition reaction, and then the kinetics parameters are estimated. Furthermore, the MIKE 3 apparatus and the 20-l-Apparatus are used to measure and analyze the dust explosion characteristics of DCP at room temperature and atmospheric pressure. Finally, Semenov's thermal explosion theory is applied to investigate the critical runaway condition and the stability criterion of decomposition reaction, and to build the relationship of critical temperature, convective heat transfer coefficient, heat transfer surface area and ambient temperature. These results contribute to improving the safety in the reaction, transportation and storage processes of DCP.
Author Lu, Kai-Tai
Hu, Kwan-Hua
Chen, Ting-Chi
Chu, Yung-Chuan
Author_xml – sequence: 1
  givenname: Kai-Tai
  surname: Lu
  fullname: Lu, Kai-Tai
  email: ktlu@ndu.edu.tw
  organization: Department of Applied Chemistry & Materials Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, ROC
– sequence: 2
  givenname: Yung-Chuan
  surname: Chu
  fullname: Chu, Yung-Chuan
  organization: Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin, Taiwan, ROC
– sequence: 3
  givenname: Ting-Chi
  surname: Chen
  fullname: Chen, Ting-Chi
  organization: Department of Applied Chemistry & Materials Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, ROC
– sequence: 4
  givenname: Kwan-Hua
  surname: Hu
  fullname: Hu, Kwan-Hua
  organization: Department of Occupational Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan, ROC
BookMark eNp9UU1P3DAQtRBILJQ_0FNu7SXLjB07idRLhdqChMQFzpaxx8WrrJ3aWcT--3pZzpxm9L6kp3fBTmOKxNhXhDUCquvNei40rzlUANQaQJywFfZd1wo5DqdsBaPsWzlwOGcXpWwAAHmPKxbv4iuVJfw1S0ixSb5ZXqhxZNN2TiW8g5mMfX9MdI3blaWht3mqbIXsi8mVpRxqiC2HAJv3ZTHTFGINCna33U_NTDm9BUdf2Jk3U6Grj3vJnn7_ery5be8f_tzd_LxvrVByaYXwUqHqrXFicMb7wVszWi499saiAq8M0cB9h-YZQPJOWMV9j9KBw-dBXLJvx9w5p3-7WlBvQ7E0TSZS2hXdy1GgGgaoyu-fKrFXHBF5N1YpP0ptTqVk8nrOYWvyXiPowwx6ow8z6MMMGpSuM1TTj6OJat3XQFkXGyhaciGTXbRL4TP7f84xleA
CitedBy_id crossref_primary_10_1002_pen_26427
crossref_primary_10_1002_app_54111
crossref_primary_10_1021_ie201659a
crossref_primary_10_1007_s10973_016_5797_8
crossref_primary_10_1016_j_tca_2013_08_029
crossref_primary_10_1088_1755_1315_680_1_012070
crossref_primary_10_1016_j_jlp_2016_08_024
crossref_primary_10_1016_j_tca_2015_07_016
crossref_primary_10_1016_j_psep_2012_07_001
crossref_primary_10_1016_j_psep_2023_12_063
crossref_primary_10_1007_s10973_014_4045_3
crossref_primary_10_1016_j_tca_2019_05_009
crossref_primary_10_4028_www_scientific_net_AMR_627_156
crossref_primary_10_1007_s10973_016_5668_3
crossref_primary_10_3390_ma16072807
crossref_primary_10_1002_aic_14122
crossref_primary_10_1155_2019_1640548
crossref_primary_10_1007_s10973_017_6717_2
crossref_primary_10_1016_j_jlp_2020_104292
crossref_primary_10_1016_j_jhazmat_2011_01_023
crossref_primary_10_1021_acs_iecr_9b02344
crossref_primary_10_1016_j_jlp_2015_11_003
crossref_primary_10_1021_acs_oprd_2c00105
Cites_doi 10.1016/S0950-4230(98)00041-2
10.1007/s10973-005-7054-4
10.1007/BF01979748
10.1016/j.jhazmat.2004.12.040
10.1016/S0040-6031(00)00587-6
10.1016/j.psep.2008.08.003
10.1016/j.jhazmat.2005.11.069
10.1016/0009-2509(88)87129-X
10.1016/j.psep.2009.06.004
10.1205/095758204322777651
10.1016/j.psep.2008.08.001
10.1007/s10973-005-6983-2
10.1016/j.tca.2005.01.051
ContentType Journal Article
Copyright 2010
Copyright_xml – notice: 2010
DBID AAYXX
CITATION
7SU
7TB
8FD
C1K
F28
FR3
KR7
7T2
7U2
DOI 10.1016/j.psep.2010.06.003
DatabaseName CrossRef
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Health and Safety Science Abstracts (Full archive)
Safety Science and Risk
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
Health & Safety Science Abstracts
Safety Science and Risk
DatabaseTitleList Civil Engineering Abstracts
Health & Safety Science Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1744-3598
EndPage 365
ExternalDocumentID 10_1016_j_psep_2010_06_003
S0957582010000662
GroupedDBID --K
--M
-QF
.~1
0R~
123
1B1
1~.
1~5
3EH
4.4
457
4G.
4P2
53G
5VS
7-5
71M
8P~
8WZ
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AHPOS
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DU5
EBS
EDH
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KCYFY
KOM
M41
ML.
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSJ
SSR
SSZ
T5K
UNMZH
XFK
ZE2
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SU
7TB
8FD
C1K
F28
FR3
KR7
7T2
7U2
ID FETCH-LOGICAL-c365t-33f56167cad38daff8fca9c25f17ac160f6aee82f41ab005243c62f715d0d1b83
IEDL.DBID .~1
ISSN 0957-5820
IngestDate Fri Aug 16 07:48:54 EDT 2024
Fri Aug 16 11:46:52 EDT 2024
Thu Sep 26 16:31:09 EDT 2024
Fri Feb 23 02:24:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Hazard characteristics
Dust explosion
Critical temperature
Dicumyl peroxide
Decomposition reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-33f56167cad38daff8fca9c25f17ac160f6aee82f41ab005243c62f715d0d1b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1762111249
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_759316880
proquest_miscellaneous_1762111249
crossref_primary_10_1016_j_psep_2010_06_003
elsevier_sciencedirect_doi_10_1016_j_psep_2010_06_003
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Process safety and environmental protection
PublicationYear 2010
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References United Nations (bib24) 2003
Wakakura, Iiduka (bib27) 1999; 12
Naskar, K., 2004, Dynamically vulcanized PP/EPDM thermoplastic elastomers: exploring novel routes for crosslinking with peroxides. Ph.D. Thesis. University of Twente, Enschede, The Netherlands, pp. 51-52, Chapter 4.
Lu, Luo, Lin, Su, Hu (bib12) 2004; 82
EI-Sayed (bib7) 2009; 87
Kohlbrand (bib10) 1989
Malow, Wehrstedt (bib14) 2005; A120
Stoessel (bib22) 2009; 87
Cesana, Siwek (bib4) 2007
Villermaux, Georgakis (bib26) 1991; 31
Wu, Hou, Shu (bib28) 2006; 83
Marco, Cuartielles, Pena, Santamaria (bib15) 2000; 362
Semenov (bib20) 1940; 23
Bartknecht (bib2) 1981
Hou, Liao, Duh, Shu (bib8) 2006; 83
Li, Koseki (bib11) 2005; 431
National Fire Protection Association (bib18) 2002
Johnson, Rudy, Unwin (bib9) 2003
Snee, Barcons, Hernandez, Zaldivar (bib21) 1992; 38
Cesana, Siwek (bib5) 2007
Traore, Dufaud, Perrin, Chazelet, Thomas (bib23) 2009; 87
Morbidelli, Varma (bib16) 1988; 43
Lu, Yang, Lin (bib13) 2006; 135
Center for Chemical Process Safety (CCPS) (bib3) 1995
ASTM E1226-88 (bib1) 1988
Semenov (bib19) 1928; 48
Eigenberger, Schuler (bib6) 1989; 29
U.S. Chemical Safety and Hazard Investigation Board (CSB), 2002. Hazard Investigation—Improving Reactive Hazard Management, Report No.2001-01-H.
Malow (10.1016/j.psep.2010.06.003_bib14) 2005; A120
Li (10.1016/j.psep.2010.06.003_bib11) 2005; 431
Center for Chemical Process Safety (CCPS) (10.1016/j.psep.2010.06.003_bib3) 1995
United Nations (10.1016/j.psep.2010.06.003_bib24) 2003
Cesana (10.1016/j.psep.2010.06.003_bib4) 2007
Traore (10.1016/j.psep.2010.06.003_bib23) 2009; 87
Lu (10.1016/j.psep.2010.06.003_bib12) 2004; 82
Semenov (10.1016/j.psep.2010.06.003_bib19) 1928; 48
EI-Sayed (10.1016/j.psep.2010.06.003_bib7) 2009; 87
Hou (10.1016/j.psep.2010.06.003_bib8) 2006; 83
Marco (10.1016/j.psep.2010.06.003_bib15) 2000; 362
Wakakura (10.1016/j.psep.2010.06.003_bib27) 1999; 12
10.1016/j.psep.2010.06.003_bib25
Semenov (10.1016/j.psep.2010.06.003_bib20) 1940; 23
Snee (10.1016/j.psep.2010.06.003_bib21) 1992; 38
Morbidelli (10.1016/j.psep.2010.06.003_bib16) 1988; 43
ASTM E1226-88 (10.1016/j.psep.2010.06.003_bib1) 1988
Cesana (10.1016/j.psep.2010.06.003_bib5) 2007
Stoessel (10.1016/j.psep.2010.06.003_bib22) 2009; 87
Wu (10.1016/j.psep.2010.06.003_bib28) 2006; 83
Lu (10.1016/j.psep.2010.06.003_bib13) 2006; 135
Kohlbrand (10.1016/j.psep.2010.06.003_bib10) 1989
National Fire Protection Association (10.1016/j.psep.2010.06.003_bib18) 2002
Villermaux (10.1016/j.psep.2010.06.003_bib26) 1991; 31
Bartknecht (10.1016/j.psep.2010.06.003_bib2) 1981
Eigenberger (10.1016/j.psep.2010.06.003_bib6) 1989; 29
10.1016/j.psep.2010.06.003_bib17
Johnson (10.1016/j.psep.2010.06.003_bib9) 2003
References_xml – year: 1988
  ident: bib1
  article-title: Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts
  contributor:
    fullname: ASTM E1226-88
– volume: A120:
  start-page: 21
  year: 2005
  end-page: 24
  ident: bib14
  article-title: Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxide from differential scanning calorimetry (DSC) measurements
  publication-title: J Hazard Mater
  contributor:
    fullname: Wehrstedt
– volume: 12
  start-page: 79
  year: 1999
  end-page: 84
  ident: bib27
  article-title: Trends in chemical hazards in Japan
  publication-title: J Loss Prevent Proc
  contributor:
    fullname: Iiduka
– year: 2002
  ident: bib18
  article-title: Code for the Storage of Organic Peroxide Formulations, NFPA 432
  contributor:
    fullname: National Fire Protection Association
– year: 2007
  ident: bib5
  article-title: Operating Instructions 20-l-Apparatus 6.0
  contributor:
    fullname: Siwek
– volume: 362
  start-page: 49
  year: 2000
  end-page: 58
  ident: bib15
  article-title: Simulation of the decomposition of di-cumyl peroxide in an ARSST unit
  publication-title: Thermochim Acta
  contributor:
    fullname: Santamaria
– volume: 87
  start-page: 293
  year: 2009
  end-page: 299
  ident: bib7
  article-title: Ignition characteristics, conditions of criticality and disappearance of criticality of cumene hydroperoxide reaction by modeling approach
  publication-title: Process Safety Environ
  contributor:
    fullname: EI-Sayed
– volume: 135
  start-page: 319
  year: 2006
  end-page: 327
  ident: bib13
  article-title: The criteria of critical runaway and stable temperatures of catalytic decomposition of hydrogen peroxide in the presence of hydrochloric acid
  publication-title: J Hazard Mater
  contributor:
    fullname: Lin
– volume: 31
  start-page: 434
  year: 1991
  end-page: 441
  ident: bib26
  article-title: Current problems concerning batch reactors
  publication-title: Int Chem Eng
  contributor:
    fullname: Georgakis
– volume: 48
  start-page: 571
  year: 1928
  ident: bib19
  article-title: The calculation of critical temperatures of thermal explosion
  publication-title: Z Phys Chem
  contributor:
    fullname: Semenov
– volume: 23
  start-page: 4
  year: 1940
  end-page: 17
  ident: bib20
  article-title: Thermal theory of combustion and explosion
  publication-title: Usp Fiz Nauk
  contributor:
    fullname: Semenov
– volume: 29
  start-page: 12
  year: 1989
  end-page: 25
  ident: bib6
  article-title: Reactor stability and safe reaction engineering
  publication-title: Int Chem Eng
  contributor:
    fullname: Schuler
– year: 2003
  ident: bib9
  article-title: Essential Practices for Managing Chemical Reactively Hazards
  contributor:
    fullname: Unwin
– volume: 38
  start-page: 2729
  year: 1992
  end-page: 2747
  ident: bib21
  article-title: Characterisation of an exothermic reaction using adiabatic and isothermal calorimetry
  publication-title: J Therm Anal Calorim
  contributor:
    fullname: Zaldivar
– year: 1981
  ident: bib2
  article-title: Explosions: Course, Prevention and Protection
  contributor:
    fullname: Bartknecht
– volume: 431
  start-page: 113
  year: 2005
  end-page: 116
  ident: bib11
  article-title: SADT prediction of autocatalytic material using isothermal calorimetry analysis
  publication-title: Thermochim Acta
  contributor:
    fullname: Koseki
– volume: 43
  start-page: 91
  year: 1988
  end-page: 102
  ident: bib16
  article-title: A generalized criterion for parametric sensitivity application to thermal explosion theory
  publication-title: Chem Eng Sci
  contributor:
    fullname: Varma
– volume: 83
  start-page: 41
  year: 2006
  end-page: 44
  ident: bib28
  article-title: Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC
  publication-title: J Therm Anal Calorim
  contributor:
    fullname: Shu
– year: 2007
  ident: bib4
  article-title: MIKE 3 Minimum Ignation Energy 3.3
  contributor:
    fullname: Siwek
– start-page: 86
  year: 1989
  end-page: 111
  ident: bib10
  article-title: The use of SimuSolv in the modeling of ARC (Accelerating Rate Calorimeter) data
  publication-title: Int Symp Runaway React
  contributor:
    fullname: Kohlbrand
– year: 2003
  ident: bib24
  article-title: Recommendations on the Transport of Dangerous Goods
  contributor:
    fullname: United Nations
– volume: 87
  start-page: 105
  year: 2009
  end-page: 112
  ident: bib22
  article-title: Planning protection measures against runaway reactions using criticality classes
  publication-title: Process Safety Environ
  contributor:
    fullname: Stoessel
– year: 1995
  ident: bib3
  article-title: Guidelines for Safe Storage and Handling of Reactive Material
  contributor:
    fullname: Center for Chemical Process Safety (CCPS)
– volume: 87
  start-page: 14
  year: 2009
  end-page: 20
  ident: bib23
  article-title: Dust explosions: how should the influence of humidity be taken into account?
  publication-title: Process Safety Environ
  contributor:
    fullname: Thomas
– volume: 83
  start-page: 167
  year: 2006
  end-page: 171
  ident: bib8
  article-title: Thermal hazard studies for dicumyl peroxide by DSC And TAM
  publication-title: J Therm Anal Calorim
  contributor:
    fullname: Shu
– volume: 82
  start-page: 37
  year: 2004
  end-page: 47
  ident: bib12
  article-title: The acid-catalyzed phenol–formaldehyde reaction critical runaway conditions and stability criterion
  publication-title: Process Safety Environ
  contributor:
    fullname: Hu
– volume: 12
  start-page: 79
  issue: 1
  year: 1999
  ident: 10.1016/j.psep.2010.06.003_bib27
  article-title: Trends in chemical hazards in Japan
  publication-title: J Loss Prevent Proc
  doi: 10.1016/S0950-4230(98)00041-2
  contributor:
    fullname: Wakakura
– volume: 83
  start-page: 167
  issue: 1
  year: 2006
  ident: 10.1016/j.psep.2010.06.003_bib8
  article-title: Thermal hazard studies for dicumyl peroxide by DSC And TAM
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-005-7054-4
  contributor:
    fullname: Hou
– volume: 38
  start-page: 2729
  issue: 12
  year: 1992
  ident: 10.1016/j.psep.2010.06.003_bib21
  article-title: Characterisation of an exothermic reaction using adiabatic and isothermal calorimetry
  publication-title: J Therm Anal Calorim
  doi: 10.1007/BF01979748
  contributor:
    fullname: Snee
– year: 2003
  ident: 10.1016/j.psep.2010.06.003_bib9
  contributor:
    fullname: Johnson
– volume: A120:
  start-page: 21
  year: 2005
  ident: 10.1016/j.psep.2010.06.003_bib14
  article-title: Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxide from differential scanning calorimetry (DSC) measurements
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2004.12.040
  contributor:
    fullname: Malow
– volume: 362
  start-page: 49
  issue: 1
  year: 2000
  ident: 10.1016/j.psep.2010.06.003_bib15
  article-title: Simulation of the decomposition of di-cumyl peroxide in an ARSST unit
  publication-title: Thermochim Acta
  doi: 10.1016/S0040-6031(00)00587-6
  contributor:
    fullname: Marco
– year: 2003
  ident: 10.1016/j.psep.2010.06.003_bib24
  contributor:
    fullname: United Nations
– volume: 31
  start-page: 434
  issue: 3
  year: 1991
  ident: 10.1016/j.psep.2010.06.003_bib26
  article-title: Current problems concerning batch reactors
  publication-title: Int Chem Eng
  contributor:
    fullname: Villermaux
– year: 1988
  ident: 10.1016/j.psep.2010.06.003_bib1
  contributor:
    fullname: ASTM E1226-88
– volume: 87
  start-page: 105
  year: 2009
  ident: 10.1016/j.psep.2010.06.003_bib22
  article-title: Planning protection measures against runaway reactions using criticality classes
  publication-title: Process Safety Environ
  doi: 10.1016/j.psep.2008.08.003
  contributor:
    fullname: Stoessel
– volume: 135
  start-page: 319
  issue: 1–3
  year: 2006
  ident: 10.1016/j.psep.2010.06.003_bib13
  article-title: The criteria of critical runaway and stable temperatures of catalytic decomposition of hydrogen peroxide in the presence of hydrochloric acid
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2005.11.069
  contributor:
    fullname: Lu
– volume: 43
  start-page: 91
  issue: 1
  year: 1988
  ident: 10.1016/j.psep.2010.06.003_bib16
  article-title: A generalized criterion for parametric sensitivity application to thermal explosion theory
  publication-title: Chem Eng Sci
  doi: 10.1016/0009-2509(88)87129-X
  contributor:
    fullname: Morbidelli
– volume: 48
  start-page: 571
  year: 1928
  ident: 10.1016/j.psep.2010.06.003_bib19
  article-title: The calculation of critical temperatures of thermal explosion
  publication-title: Z Phys Chem
  contributor:
    fullname: Semenov
– volume: 23
  start-page: 4
  year: 1940
  ident: 10.1016/j.psep.2010.06.003_bib20
  article-title: Thermal theory of combustion and explosion
  publication-title: Usp Fiz Nauk
  contributor:
    fullname: Semenov
– volume: 29
  start-page: 12
  issue: 1
  year: 1989
  ident: 10.1016/j.psep.2010.06.003_bib6
  article-title: Reactor stability and safe reaction engineering
  publication-title: Int Chem Eng
  contributor:
    fullname: Eigenberger
– volume: 87
  start-page: 293
  year: 2009
  ident: 10.1016/j.psep.2010.06.003_bib7
  article-title: Ignition characteristics, conditions of criticality and disappearance of criticality of cumene hydroperoxide reaction by modeling approach
  publication-title: Process Safety Environ
  doi: 10.1016/j.psep.2009.06.004
  contributor:
    fullname: EI-Sayed
– ident: 10.1016/j.psep.2010.06.003_bib25
– year: 1981
  ident: 10.1016/j.psep.2010.06.003_bib2
  contributor:
    fullname: Bartknecht
– ident: 10.1016/j.psep.2010.06.003_bib17
– year: 2007
  ident: 10.1016/j.psep.2010.06.003_bib4
  contributor:
    fullname: Cesana
– year: 2007
  ident: 10.1016/j.psep.2010.06.003_bib5
  contributor:
    fullname: Cesana
– year: 2002
  ident: 10.1016/j.psep.2010.06.003_bib18
  contributor:
    fullname: National Fire Protection Association
– volume: 82
  start-page: 37
  issue: 1
  year: 2004
  ident: 10.1016/j.psep.2010.06.003_bib12
  article-title: The acid-catalyzed phenol–formaldehyde reaction critical runaway conditions and stability criterion
  publication-title: Process Safety Environ
  doi: 10.1205/095758204322777651
  contributor:
    fullname: Lu
– start-page: 86
  year: 1989
  ident: 10.1016/j.psep.2010.06.003_bib10
  article-title: The use of SimuSolv in the modeling of ARC (Accelerating Rate Calorimeter) data
  publication-title: Int Symp Runaway React
  contributor:
    fullname: Kohlbrand
– year: 1995
  ident: 10.1016/j.psep.2010.06.003_bib3
  contributor:
    fullname: Center for Chemical Process Safety (CCPS)
– volume: 87
  start-page: 14
  year: 2009
  ident: 10.1016/j.psep.2010.06.003_bib23
  article-title: Dust explosions: how should the influence of humidity be taken into account?
  publication-title: Process Safety Environ
  doi: 10.1016/j.psep.2008.08.001
  contributor:
    fullname: Traore
– volume: 83
  start-page: 41
  issue: 1
  year: 2006
  ident: 10.1016/j.psep.2010.06.003_bib28
  article-title: Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-005-6983-2
  contributor:
    fullname: Wu
– volume: 431
  start-page: 113
  issue: 1–2
  year: 2005
  ident: 10.1016/j.psep.2010.06.003_bib11
  article-title: SADT prediction of autocatalytic material using isothermal calorimetry analysis
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2005.01.051
  contributor:
    fullname: Li
SSID ssj0001271
Score 2.055537
Snippet ▶ The DSC thermogram of decomposition reaction of 98% crystalline DCP reveals an endothermic peak around 40 °C due to the melting point and an exothermic peak...
The dicumyl peroxide (DCP) is widely used as a polymerization initiator, catalyst and vulcanizing agent in the chemical industry. A number of accidents have...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 356
SubjectTerms Atmospheric pressure
Construction
Critical temperature
Crystal structure
Decomposition reaction
Decomposition reactions
Dicumyl peroxide
Dust explosion
Explosions
Hazard characteristics
Triangles
Title Investigation of the decomposition reaction and dust explosion characteristics of crystalline dicumyl peroxide
URI https://dx.doi.org/10.1016/j.psep.2010.06.003
https://search.proquest.com/docview/1762111249
https://search.proquest.com/docview/759316880
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6q4AKHaWNDlLHKSLtNWZvYzo9jVbUqsCG0DYmb5fiHVARpRVsJLvztvJc4KiDBYadI0YsT-dnf-2J_7xngu3SOI9OVUVEKKqqdEg6WNrJZInzhZKINJTj_Pk-nl-L0Sl51YNTmwpCsMmB_g-k1Woc7_dCb_cVs1v-L5ADJLu3m1oGTcFhgMMIx_fNxI_OIk_qni4wjsg6JM43Ga7F0iyDvoj0J_lZwegXTdeyZfIQPgTSyYfNdn6Djqj3YfVZKcA_2x5uMNTQNU3b5GapnlTTmFZt7hpSPWUda8iDYYkgc6_QGpivL6CgP5kiaRwtpzLys6EwNmLsH5JRUzBsbmpn17cMNo3rj9zPrvsDlZPxvNI3CIQuR4alcRZx7pFBpZrTludXe597owiTSx5k2cTrwqXYuT7yIdb2ILLhJE5_F0g5sXOZ8H7aqeeUOgJWpy8qB9ugEI7jwuhDG-iLz3iJviZMu_Gh7Vy2aWhqqFZldK_KFIl-oWmnHuyBbB6gXI0Ih2L_73HHrLYVThfY_dOXm66WKEfgR2vGHswvsDZtMFnSUVz44_M_Xf4WdRmBAMrQj2Frdrd035C2rslcPzB5sD0d_fl3Q9eRsev4EiqDygQ
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB2hcGg5IKBFBGjrSr1Vq8Rrez-OKAoKBXIpSNwsrz-kVGUTkUSCf8_MrpePSvTAdWV7Vzv287P95hngh_JeINNVSVlJMtXOCAcrl7g8laH0KjWWEpwvp9nkWv66UTcbMOpyYUhWGbG_xfQGreOTQfybg8VsNviN5ADJLp3mNhMn4vCmVDmXPdg8OTufTJ8AmafNuovKJ1Qh5s60Mq_F0i-iwouOJcRb89M_SN1MP6c7sB15IztpP20XNny9B1sv3AT3YH_8nLSGReOoXX6C-oWZxrxm88CQ9THnSU4eNVsMuWOT4cBM7Rjd5sE8qfNoL43Z16bO1IC9e0BaSX7e2NDMrm8f_jKyHL-fOf8Zrk_HV6NJEu9ZSKzI1CoRIiCLynJrnCicCaEI1pQ2VYHnxvJsGDLjfZEGyU2zjyyFzdKQc-WGjleF2IdePa_9AbAq83k1NAFJgZVCBlNK60KZh-CQuvC0Dz-7v6sXrZ2G7nRmfzTFQlMsdCO2E31QXQD0q06hEe__W-97Fy2No4WOQEzt5-ul5oj9iO645uwDe6NMrkq6zasYHr7z9d_gw-Tq8kJfnE3Pj-BjqzcgVdox9FZ3a_8Facyq-hq76SNEM_Oi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+decomposition+reaction+and+dust+explosion+characteristics+of+crystalline+dicumyl+peroxide&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Lu%2C+Kai-Tai&rft.au=Chu%2C+Yung-Chuan&rft.au=Chen%2C+Ting-Chi&rft.au=Hu%2C+Kwan-Hua&rft.date=2010-09-01&rft.issn=0957-5820&rft.volume=88&rft.issue=5&rft.spage=356&rft.epage=365&rft_id=info:doi/10.1016%2Fj.psep.2010.06.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon