Entropy: A Promising EEG Biomarker Dichotomizing Subjects With Opioid Use Disorder and Healthy Controls

Electroencephalography (EEG) signals are known to be nonstationary and often multicomponential signals containing information about the condition of the brain. Since the EEG signal has complex, nonlinear, nonstationary, and highly random behaviour, numerous linear feature extraction methods related...

Full description

Saved in:
Bibliographic Details
Published inClinical EEG and neuroscience Vol. 51; no. 6; p. 373
Main Authors Erguzel, Turker Tekin, Uyulan, Caglar, Unsalver, Baris, Evrensel, Alper, Cebi, Merve, Noyan, Cemal Onur, Metin, Baris, Eryilmaz, Gul, Sayar, Gokben Hizli, Tarhan, Nevzat
Format Journal Article
LanguageEnglish
Published United States 01.11.2020
Subjects
Online AccessGet more information
ISSN2169-5202
DOI10.1177/1550059420905724

Cover

Loading…
Abstract Electroencephalography (EEG) signals are known to be nonstationary and often multicomponential signals containing information about the condition of the brain. Since the EEG signal has complex, nonlinear, nonstationary, and highly random behaviour, numerous linear feature extraction methods related to the short-time windowing technique do not satisfy higher classification accuracy. Since biosignals are highly subjective, the symptoms may appear at random in the time scale and very small variations in EEG signals may depict a definite type of brain abnormality it is valuable and vital to extract and analyze the EEG signal parameters using computers. The challenge is to design and develop signal processing algorithms that extract this subtle information and use it for diagnosis, monitoring, and treatment of subjects suffering from psychiatric disorders. For this purpose, finite impulse response-based filtering process was employed rather than traditional time and frequency domain methods. Finite impulse response subbands were analyzed further to obtain feature vectors of different entropy markers and these features were fed into a classifier namely multilayer perceptron. The performances of the classifiers were finally compared considering overall classification accuracies, area under receiver operating characteristic curve scores. Our results underline the potential benefit of the introduced methodology is promising and is to be treated as a clinical interface in dichotomizing substance use disorders subjects and for other medical data analysis studies. The results also indicate that entropy estimators can distinguish normal and opioid use disorder subjects. EEG data and theta frequency band have distinctive capability for almost all types of entropies while nonextensive Tsallis entropy outperforms compared with other types of entropies.
AbstractList Electroencephalography (EEG) signals are known to be nonstationary and often multicomponential signals containing information about the condition of the brain. Since the EEG signal has complex, nonlinear, nonstationary, and highly random behaviour, numerous linear feature extraction methods related to the short-time windowing technique do not satisfy higher classification accuracy. Since biosignals are highly subjective, the symptoms may appear at random in the time scale and very small variations in EEG signals may depict a definite type of brain abnormality it is valuable and vital to extract and analyze the EEG signal parameters using computers. The challenge is to design and develop signal processing algorithms that extract this subtle information and use it for diagnosis, monitoring, and treatment of subjects suffering from psychiatric disorders. For this purpose, finite impulse response-based filtering process was employed rather than traditional time and frequency domain methods. Finite impulse response subbands were analyzed further to obtain feature vectors of different entropy markers and these features were fed into a classifier namely multilayer perceptron. The performances of the classifiers were finally compared considering overall classification accuracies, area under receiver operating characteristic curve scores. Our results underline the potential benefit of the introduced methodology is promising and is to be treated as a clinical interface in dichotomizing substance use disorders subjects and for other medical data analysis studies. The results also indicate that entropy estimators can distinguish normal and opioid use disorder subjects. EEG data and theta frequency band have distinctive capability for almost all types of entropies while nonextensive Tsallis entropy outperforms compared with other types of entropies.
Author Uyulan, Caglar
Cebi, Merve
Unsalver, Baris
Tarhan, Nevzat
Metin, Baris
Eryilmaz, Gul
Erguzel, Turker Tekin
Noyan, Cemal Onur
Sayar, Gokben Hizli
Evrensel, Alper
Author_xml – sequence: 1
  givenname: Turker Tekin
  orcidid: 0000-0001-8438-6542
  surname: Erguzel
  fullname: Erguzel, Turker Tekin
  organization: Department of Software Engineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey
– sequence: 2
  givenname: Caglar
  orcidid: 0000-0002-6423-6720
  surname: Uyulan
  fullname: Uyulan, Caglar
  organization: Department of Mechatronics, Faculty of Engineering, Bulent Evevit University, Zonguldak, Turkey
– sequence: 3
  givenname: Baris
  surname: Unsalver
  fullname: Unsalver, Baris
  organization: NP Istanbul Brain Hospital, Istanbul, Turkey
– sequence: 4
  givenname: Alper
  surname: Evrensel
  fullname: Evrensel, Alper
  organization: NP Istanbul Brain Hospital, Istanbul, Turkey
– sequence: 5
  givenname: Merve
  surname: Cebi
  fullname: Cebi, Merve
  organization: Department of Psychology, Faculty of Humanities and Social Sciences, Uskudar University, Istanbul, Turkey
– sequence: 6
  givenname: Cemal Onur
  surname: Noyan
  fullname: Noyan, Cemal Onur
  organization: NP Istanbul Brain Hospital, Istanbul, Turkey
– sequence: 7
  givenname: Baris
  surname: Metin
  fullname: Metin, Baris
  organization: NP Istanbul Brain Hospital, Istanbul, Turkey
– sequence: 8
  givenname: Gul
  surname: Eryilmaz
  fullname: Eryilmaz, Gul
  organization: NP Istanbul Brain Hospital, Istanbul, Turkey
– sequence: 9
  givenname: Gokben Hizli
  surname: Sayar
  fullname: Sayar, Gokben Hizli
  organization: NP Istanbul Brain Hospital, Istanbul, Turkey
– sequence: 10
  givenname: Nevzat
  surname: Tarhan
  fullname: Tarhan, Nevzat
  organization: NP Istanbul Brain Hospital, Istanbul, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32043373$$D View this record in MEDLINE/PubMed
BookMark eNo1j71OwzAURi0Eoj-wMyG_QMC5vo4TttKGFqlSkaBirJzYbl3aOIrTITw9qYDpG87Rkb4Ruax8ZQi5i9lDHEv5GAvBmMgQWMaEBLwgQ4iTLBLAYEBGIewZ4wlwvCYDDgw5l3xItnnVNr7unuiEvjX-6IKrtjTP5_TZ-aNqvkxDZ67c-bZn32f2fir2pmwD_XTtjq5q552m62B6LfhG976qNF0YdWh3HZ36c_8QbsiVVYdgbv92TNYv-cd0ES1X89fpZBmVPBFtBGVhU55qozgokclEGoUorEVVMMtsAii4VVobVAqlhRSlSgtppMIYixTG5P63W5-Ko9GbunH9i27z_xh-ABOJWRk
CitedBy_id crossref_primary_10_17350_HJSE19030000277
crossref_primary_10_1016_j_compbiomed_2023_106853
crossref_primary_10_1016_j_cmpb_2021_106007
crossref_primary_10_1109_TIT_2022_3215496
crossref_primary_10_1016_j_medntd_2024_100287
crossref_primary_10_1177_15500594231208245
crossref_primary_10_3390_app13042703
crossref_primary_10_1111_adb_13362
crossref_primary_10_1186_s43045_023_00365_7
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1177/1550059420905724
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 2169-5202
ExternalDocumentID 32043373
Genre Journal Article
GroupedDBID ---
-TM
.2E
.2J
.2N
01A
0R~
29B
4.4
53G
54M
5GY
7RV
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACMV
AACTG
AADUE
AAEWN
AAGLT
AAGMC
AAJPV
AAKGS
AAPII
AAQDB
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
ABAWP
ABCCA
ABCJG
ABEIX
ABFWQ
ABIDT
ABJNI
ABJZC
ABKRH
ABLUO
ABNCE
ABPNF
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ACABN
ACARO
ACDSZ
ACDXX
ACFEJ
ACGFS
ACGZU
ACIWK
ACJER
ACJTF
ACLFY
ACLZU
ACOFE
ACOXC
ACPRK
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADNMO
ADNON
ADRRZ
ADVBO
ADYCS
ADZYD
ADZZY
AECGH
AEDTQ
AEKYL
AENEX
AEONT
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKRA
AFKRG
AFMOU
AFQAA
AFRAH
AFUIA
AFWMB
AGHKR
AGKLV
AGNHF
AGPXR
AGQPQ
AGWFA
AHDMH
AHHFK
AHMBA
AJGYC
AJUZI
AJVBE
AJXAJ
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B8M
BBRGL
BDDNI
BENPR
BKEYQ
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
BYIEH
CCPQU
CDWPY
CFDXU
CGR
CUY
CVF
DB0
DC-
DC.
DF0
DO-
DOPDO
DV7
EBS
ECM
EIF
EJD
EMOBN
EX3
F5P
FEDTE
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HMCUK
HVGLF
HZ~
J8X
K.F
M1P
NAPCQ
NPM
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
Q2X
ROL
RXW
S01
SASJQ
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
UKHRP
WOW
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZXP
ID FETCH-LOGICAL-c365t-2cbf838dea32a59767ea445ff4ab0f0f62453fadde4aa47f2847a8b7e7a414b82
IngestDate Mon Jul 21 05:59:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords opioid use disorder
artificial neural network (ANN)
entropy
signal processing
EEG
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-2cbf838dea32a59767ea445ff4ab0f0f62453fadde4aa47f2847a8b7e7a414b82
ORCID 0000-0002-6423-6720
0000-0001-8438-6542
PMID 32043373
ParticipantIDs pubmed_primary_32043373
PublicationCentury 2000
PublicationDate 2020-Nov
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical EEG and neuroscience
PublicationTitleAlternate Clin EEG Neurosci
PublicationYear 2020
SSID ssj0036234
Score 2.2945824
Snippet Electroencephalography (EEG) signals are known to be nonstationary and often multicomponential signals containing information about the condition of the brain....
SourceID pubmed
SourceType Index Database
StartPage 373
SubjectTerms Algorithms
Biomarkers
Electroencephalography
Entropy
Humans
Opioid-Related Disorders - diagnosis
Signal Processing, Computer-Assisted
Title Entropy: A Promising EEG Biomarker Dichotomizing Subjects With Opioid Use Disorder and Healthy Controls
URI https://www.ncbi.nlm.nih.gov/pubmed/32043373
Volume 51
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECWcFgiyFG3S7w9w6BaolUSKorqlhtogQJoMFpotIG0ycJvYgm0N8W_pj-0dScmOkwJJF8EQLVnQez7eHe8dCfkoZSa4sdgPj6EkJxOREjKJtChSLRO4zDWeP_4hDit-dJad9Xp_1qqWmoX-NFzeqSv5H1ThHOCKKtkHINvdFE7AZ8AXjoAwHO-FcYll5vW1V5efzqaAGUb-Zfkd95i8wsqbGRg1lFnB2NI13270L1fA8RMTsCf1eDoe7Vdz07XhdKsJXpyE1sIVss_XXdh-q6XEn8Evr7XE7FhSzi6apS8AGDTuMQbm97gjYnXdXPrMa1-B_94VCFeTuboMNaVfcXvElcM_M6id95qcOpQUh2wFhKZJl60wzqqliSgg-o1vmODQc3Z8y54yv8_JbTvvVpoxvMJ-M2lcgNvptdhrsNdXDneG8t-NG909utF5ux3aIlsQg-CmqpgJ8rM8zPuMr5a9P28-yg7Zbi_fCFic4zJ4Sp6EiIMeePo8Iz0z2SXbx6GmYo9cBBZ9oQe04xAFcGnHIXqDQ7TlEEUOUc8hChyiLYco0IIGDtGWQ89J9a0c9A-jsP1GNGQiW0TpUFvJ5MgoliqIO0VuFOeZtVzp2MZWpDxjFudHrhTPLTo6Surc5IonXMv0BXk0mU7MK0Itt3GhTapGdsS1ZipXuhjaLI8TW0iTvCYv_Ss6r32PlfP25b3558hbsrMi2Dvy2MKf2rwHD3GhPzio_gLXMGbR
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy%3A+A+Promising+EEG+Biomarker+Dichotomizing+Subjects+With+Opioid+Use+Disorder+and+Healthy+Controls&rft.jtitle=Clinical+EEG+and+neuroscience&rft.au=Erguzel%2C+Turker+Tekin&rft.au=Uyulan%2C+Caglar&rft.au=Unsalver%2C+Baris&rft.au=Evrensel%2C+Alper&rft.date=2020-11-01&rft.eissn=2169-5202&rft.volume=51&rft.issue=6&rft.spage=373&rft_id=info:doi/10.1177%2F1550059420905724&rft_id=info%3Apmid%2F32043373&rft_id=info%3Apmid%2F32043373&rft.externalDocID=32043373