Triboelectric nanogenerators: the beginning of blue dream

Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays, the utilization of water wave energy is mainly absorbed and transformed by electromagnetic generators (EMGs) in the form of mechanical energ...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of chemical science and engineering Vol. 17; no. 6; pp. 635 - 678
Main Authors Wang, Wanli, Yang, Dongfang, Yan, Xiaoran, Wang, Licheng, Hu, Han, Wang, Kai
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-0179
2095-0187
DOI10.1007/s11705-022-2271-y

Cover

Loading…
Abstract Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays, the utilization of water wave energy is mainly absorbed and transformed by electromagnetic generators (EMGs) in the form of mechanical energy. However, waves usually have low frequency and uncertainty, which means low power generation efficiency for EMGs. Fortunately, in this slow current and random direction wave case, the triboelectric nanogenerator (TENG) has a relatively stable output power, which is suitable for collecting blue energy. This article summarizes the main research results of TENG in harvesting blue energy. Firstly, based on Maxwell’s displacement current, the basic principle of the nanogenerator is expounded. Then, four working modes and three applications of TENG are introduced, especially the application of TENG in blue energy. TENG currently used in blue energy harvesting is divided into four categories and discussed in detail. After TENG harvests water wave energy, it is meaningless if it cannot be used. Therefore, the modular storage of TENG energy is discussed. The output power of a single TENG unit is relatively low, which cannot meet the demand for high power. Thus, the networking strategy of large-scale TENG is further introduced. TENG’s energy comes from water waves, and each TENG’s output has great randomness, which is very unfavorable for the energy storage after large-scale TENG integration. On this basis, this paper discusses the power management methods of TENG. In addition, in order to further prove its economic and environmental advantages, the economic benefits of TENG are also evaluated. Finally, the development potential of TENG in the field of blue energy and some problems that need to be solved urgently are briefly summarized.
AbstractList Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays, the utilization of water wave energy is mainly absorbed and transformed by electromagnetic generators (EMGs) in the form of mechanical energy. However, waves usually have low frequency and uncertainty, which means low power generation efficiency for EMGs. Fortunately, in this slow current and random direction wave case, the triboelectric nanogenerator (TENG) has a relatively stable output power, which is suitable for collecting blue energy. This article summarizes the main research results of TENG in harvesting blue energy. Firstly, based on Maxwell’s displacement current, the basic principle of the nanogenerator is expounded. Then, four working modes and three applications of TENG are introduced, especially the application of TENG in blue energy. TENG currently used in blue energy harvesting is divided into four categories and discussed in detail. After TENG harvests water wave energy, it is meaningless if it cannot be used. Therefore, the modular storage of TENG energy is discussed. The output power of a single TENG unit is relatively low, which cannot meet the demand for high power. Thus, the networking strategy of large-scale TENG is further introduced. TENG’s energy comes from water waves, and each TENG’s output has great randomness, which is very unfavorable for the energy storage after large-scale TENG integration. On this basis, this paper discusses the power management methods of TENG. In addition, in order to further prove its economic and environmental advantages, the economic benefits of TENG are also evaluated. Finally, the development potential of TENG in the field of blue energy and some problems that need to be solved urgently are briefly summarized.
Author Wang, Wanli
Yan, Xiaoran
Wang, Kai
Wang, Licheng
Yang, Dongfang
Hu, Han
Author_xml – sequence: 1
  givenname: Wanli
  surname: Wang
  fullname: Wang, Wanli
  organization: College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China)
– sequence: 2
  givenname: Dongfang
  surname: Yang
  fullname: Yang, Dongfang
  organization: Xi’an Traffic Engineering Institute
– sequence: 3
  givenname: Xiaoran
  surname: Yan
  fullname: Yan, Xiaoran
  organization: College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University
– sequence: 4
  givenname: Licheng
  surname: Wang
  fullname: Wang, Licheng
  organization: School of Information Engineering, Zhejiang University of Technology
– sequence: 5
  givenname: Han
  surname: Hu
  fullname: Hu, Han
  organization: State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China)
– sequence: 6
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  email: wkwj888@163.com
  organization: College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University
BookMark eNp9kE1LxDAQhoOs4LruD_BW8FzNpM1HvcniFyx4Wc8hbac10k3WJHvYf2-XioKgpxmG95kZnnMyc94hIZdAr4FSeRMBJOU5ZSxnTEJ-OCFzRqtxAkrOvntZnZFljLamBTBRFFLOSbUJtvY4YJOCbTJnnO_RYTDJh3ibpTfMauytc9b1me-yethj1gY02wty2pkh4vKrLsjrw_1m9ZSvXx6fV3frvCkET-NDBoyoS96WbSsEB1Y2LSJyVZjCdKVSAICs6lTLBa-ZrFFBK6pOohGGqWJBrqa9u-A_9hiTfvf74MaTmimohKCylGNKTqkm-BgDdrqxySTrXQrGDhqoPqrSkyo9qtJHVfowkvCL3AW7NeHwL8MmJo5Z12P4-elv6BNg2H1d
CitedBy_id crossref_primary_10_1016_j_nanoen_2023_109243
crossref_primary_10_3390_nano15050386
crossref_primary_10_1002_smll_202310023
crossref_primary_10_1002_admt_202300616
crossref_primary_10_1021_acsaem_4c02010
crossref_primary_10_1021_acsaelm_3c00996
crossref_primary_10_1016_j_polymer_2025_128075
crossref_primary_10_1088_2631_7990_ad7b04
crossref_primary_10_1016_j_jallcom_2024_173920
crossref_primary_10_1021_acssuschemeng_4c03742
crossref_primary_10_1002_adfm_202413359
crossref_primary_10_1021_acsaelm_4c00776
crossref_primary_10_20964_2022_12_41
crossref_primary_10_3390_s23249743
crossref_primary_10_1016_j_jallcom_2025_179623
crossref_primary_10_3390_en16176318
crossref_primary_10_3390_technologies11020060
crossref_primary_10_1063_5_0219633
crossref_primary_10_23919_PCMP_2023_000167
crossref_primary_10_1016_j_nanoen_2024_110383
crossref_primary_10_1016_j_nanoen_2024_110584
crossref_primary_10_1007_s11431_023_2540_0
crossref_primary_10_1038_s44172_024_00249_6
crossref_primary_10_1016_j_apsusc_2024_160350
crossref_primary_10_15377_2410_3624_2024_11_4
crossref_primary_10_1016_j_jallcom_2023_171555
crossref_primary_10_1186_s41601_023_00300_2
crossref_primary_10_1016_j_nanoen_2024_110617
crossref_primary_10_1088_2631_7990_ad88bd
crossref_primary_10_3390_en16073167
crossref_primary_10_1016_j_eswa_2024_125212
crossref_primary_10_1016_j_ymssp_2024_111360
crossref_primary_10_1016_j_elstat_2025_104037
crossref_primary_10_1016_j_sna_2024_115816
crossref_primary_10_1039_D4NR02973A
crossref_primary_10_3390_en16155682
crossref_primary_10_1002_ente_202300931
crossref_primary_10_1016_j_mtcomm_2023_106734
crossref_primary_10_3390_technologies11020042
crossref_primary_10_1016_j_energy_2023_128742
crossref_primary_10_1021_acsaelm_4c01729
crossref_primary_10_1016_j_nanoen_2024_109546
crossref_primary_10_3390_en16145240
crossref_primary_10_1021_acsaelm_3c01718
crossref_primary_10_1016_j_seta_2023_103442
crossref_primary_10_1177_09544062251318537
crossref_primary_10_1177_13835416251319193
crossref_primary_10_23919_PCMP_2023_000187
crossref_primary_10_3390_lubricants12080269
crossref_primary_10_1063_5_0195399
crossref_primary_10_1021_acsaelm_4c01055
crossref_primary_10_1016_j_jallcom_2024_174669
crossref_primary_10_3390_polym16101413
crossref_primary_10_1016_j_ijoes_2024_100793
crossref_primary_10_1002_smll_202408929
crossref_primary_10_1016_j_cej_2024_152417
Cites_doi 10.1126/sciadv.1501478
10.1038/nenergy.2016.138
10.1016/j.nanoen.2016.11.037
10.1038/s41467-018-06198-x
10.1002/adfm.201805216
10.1002/adma.201304619
10.1016/j.cej.2021.134002
10.1021/nn500694y
10.1016/j.nanoen.2019.104087
10.1002/aenm.202101116
10.1002/adma.202109568
10.1155/2022/7620382
10.1002/er.8709
10.1002/smll.202108091
10.1039/C4FD00159A
10.1002/aenm.202101147
10.1038/s41467-020-18086-4
10.1016/j.scib.2022.04.001
10.1039/C8NR05292A
10.1126/science.aan8285
10.1002/inf2.12262
10.1016/j.nanoen.2014.03.015
10.1021/nn403021m
10.1038/nphoton.2013.191
10.1038/s41467-021-23207-8
10.1021/nn406565k
10.1002/adma.201902549
10.1016/j.nanoen.2019.104141
10.1016/j.nanoen.2019.104197
10.1038/s41467-020-20045-y
10.1038/ncomms9401
10.1016/j.nanoen.2019.104080
10.1557/mrs.2019.209
10.1002/aenm.201901987
10.1038/s41467-021-25753-7
10.1016/j.rser.2009.11.003
10.1002/adfm.201304211
10.1002/adfm.201501331
10.1016/j.nanoen.2013.08.004
10.1002/advs.202201098
10.1016/j.nanoen.2016.01.009
10.1002/er.7545
10.1002/adma.202102765
10.1016/j.nanoen.2022.106994
10.1016/j.nanoen.2019.104016
10.1002/anie.201300437
10.1038/s41467-017-02685-9
10.1016/j.nanoen.2021.106573
10.1002/adma.201905696
10.1021/acsami.1c20984
10.1016/j.mattod.2021.10.034
10.1039/C7TC05458K
10.1002/aenm.202003616
10.1002/adma.201807795
10.1016/j.nanoen.2019.104108
10.1016/j.nanoen.2022.107050
10.1002/aenm.202003066
10.1016/j.nanoen.2019.103885
10.1002/adfm.201807241
10.1002/er.7360
10.3390/en15186665
10.1126/scirobotics.aat2516
10.1038/s41467-019-10433-4
10.1021/nn404614z
10.1016/j.est.2022.104215
10.1002/adma.201402428
10.1016/j.nanoen.2019.104210
10.1002/adma.201302397
10.1016/j.nanoen.2022.106971
10.1016/j.nanoen.2019.01.083
10.1016/j.nanoen.2019.104214
10.1002/adfm.201900327
10.1038/s41467-021-25046-z
10.1002/adfm.201500447
10.3390/en16041599
10.1021/nn4043157
10.1063/1.5030152
10.1007/s11705-018-1705-z
10.1002/adma.202104175
10.1016/j.ensm.2019.08.002
10.1021/acsnano.8b00140
10.1016/j.nanoen.2019.103920
10.1016/j.nanoen.2019.104269
10.1063/5.0092074
10.1016/j.nanoen.2022.107115
10.1021/nn506673x
10.1002/aenm.202101194
10.1002/adfm.202111775
10.1038/s41467-019-10232-x
10.1016/j.nanoen.2022.107136
10.1021/nl400738p
10.1002/adma.202200042
10.1021/nn405175z
10.1002/ente.201800035
10.1021/acssensors.9b00259
10.1016/j.nanoen.2019.104131
10.1016/j.nanoen.2018.11.043
10.1016/j.nanoen.2017.06.035
10.1002/aenm.202100038
10.1016/j.nanoen.2019.104278
10.1016/j.nanoen.2018.12.078
10.1016/j.nanoen.2022.107048
10.1021/acsami.1c22129
10.1038/ncomms9031
10.1021/nn501983s
10.1002/aenm.202103076
10.1021/acsnano.1c05685
10.1016/j.nanoen.2019.104167
10.1002/adfm.201303659
10.1016/j.nanoen.2017.04.053
10.1002/aenm.201802906
10.1016/j.nanoen.2019.104012
10.1002/adma.201606703
10.1126/science.1139366
10.1016/j.nanoen.2022.107205
10.1002/aenm.202002123
10.1126/science.1058120
10.1126/sciadv.abj9220
10.34133/2019/1091632
10.1002/adfm.201502318
10.1016/j.nanoen.2016.08.024
10.1016/j.nanoen.2013.08.002
10.1038/s41467-022-29087-w
10.1038/nnano.2008.314
10.1021/nn405209u
10.1002/adma.201404794
10.1016/j.nanoen.2018.01.004
10.1039/C4NR01934B
10.1038/249720a0
10.1002/admt.202000531
10.1007/s10854-021-06027-w
10.1038/ncomms1098
10.1002/aenm.202000965
10.1002/aenm.201900801
10.1186/s41601-020-00158-8
10.1002/adfm.201101319
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2015.01.013
10.1021/acsnano.6b01569
10.1002/adfm.201803117
10.1002/adma.202104290
10.1016/j.nanoen.2019.03.054
10.1016/j.nanoen.2019.104235
10.1039/C9NA00484J
10.1039/C5NR05514H
10.1021/acsnano.7b08674
10.1126/sciadv.abl8423
10.1038/natrevmats.2017.23
10.1002/adma.202100782
10.1038/ncomms15310
10.1016/j.nanoen.2022.107128
10.1038/s41467-020-17891-1
10.1016/j.nanoen.2018.12.054
10.1021/acsenergylett.1c01092
10.1021/nn4063616
10.3390/ma15031130
10.1016/j.nanoen.2019.104290
10.1021/nl5005652
10.1038/s41528-017-0007-8
10.1007/s12274-019-2545-y
10.1016/j.nanoen.2019.05.029
10.1016/j.nanoen.2017.04.026
10.1038/s41467-021-20919-9
10.1007/s12274-016-1040-y
10.1021/acsami.0c16489
10.1021/nn504243j
10.1021/acsaelm.2c01476
10.1002/admt.201800514
10.1016/j.mattod.2016.12.001
10.1186/s41601-021-00186-y
10.1016/j.nanoen.2016.12.004
10.1063/1.4975772
10.1002/adfm.202202048
10.1021/nn402477h
10.1002/er.3849
10.1016/j.nanoen.2022.106997
10.1063/1.5053894
10.1021/acsami.6b12798
10.1016/j.nanoen.2022.107172
10.1002/adma.201502546
10.1002/adma.202109355
10.1002/adma.202001699
10.1016/j.nanoen.2019.05.007
10.1002/advs.201700072
10.1002/adfm.201302453
10.1007/s10845-017-1385-4
10.1002/smll.201502453
10.1021/acsnano.1c09096
10.1002/aenm.202103143
10.1186/s41601-021-00219-6
10.1016/j.nanoen.2019.104150
10.1016/j.nanoen.2018.06.009
10.1038/s41467-020-19987-0
10.1016/j.nanoen.2018.12.003
10.1016/j.nanoen.2022.107118
10.1186/s41601-019-0149-x
10.1002/aenm.201501467
10.1002/adma.201606346
10.1007/s11705-019-1901-5
10.1038/s41467-021-24028-5
10.1038/ncomms9376
10.1038/s41467-019-13653-w
10.1038/nnano.2017.17
10.1016/j.nanoen.2019.104277
10.1126/sciadv.aav6437
10.1126/sciadv.1700694
10.1016/j.nanoen.2019.104205
10.1002/adma.201305303
10.1126/science.aan3997
10.1016/j.nanoen.2019.104068
10.1021/acsnano.5b06372
10.1016/j.energy.2022.123773
10.1021/acsnano.1c10680
10.1080/19475411.2013.872207
10.1038/s41467-020-15373-y
10.1021/acscatal.9b02182
10.1016/j.nanoen.2022.107282
10.1002/adma.202203073
10.1021/acsami.9b06627
10.1002/adma.201902793
10.1021/acsnano.5b00618
10.1021/acsnano.1c05127
10.1016/j.mattod.2021.11.027
10.1038/s41467-019-13166-6
10.1016/j.apcatb.2022.121422
10.1021/nn402491y
10.1016/j.nanoen.2022.106998
10.1021/am501782f
10.1186/s11671-019-3187-4
10.1038/ncomms12985
10.1039/C5NR09087C
10.1021/acsnano.2c01594
10.1038/nature06601
10.1002/aenm.202000426
10.1039/C8NR09978B
10.1039/D1CS00858G
10.1038/s41467-017-00131-4
10.1126/sciadv.1600097
10.1016/j.nanoen.2019.01.078
10.1080/14786446108643033
10.1016/j.nanoen.2015.06.006
10.1016/j.renene.2022.08.123
10.1016/j.nanoen.2019.104206
10.1016/j.jssc.2022.123081
10.1016/j.nanoen.2019.104228
10.1002/aenm.202002920
10.1039/C4EE01759E
10.1007/s12274-013-0364-0
10.1016/j.nanoen.2019.104297
10.1038/nnano.2010.46
10.1016/j.nanoen.2019.03.013
10.1016/j.energy.2022.124933
10.1002/aenm.201700103
10.1016/j.nanoen.2018.02.042
10.1038/s41467-019-14278-9
10.1186/s41601-021-00181-3
10.1016/j.nanoen.2019.04.046
10.1016/j.nanoen.2019.103948
10.1016/j.nanoen.2019.104251
10.1002/er.7905
10.1002/adma.201908072
10.1021/acsnano.5b00534
10.1016/j.nanoen.2018.12.052
10.1002/adma.202200793
10.1002/aenm.201902460
10.1016/j.nanoen.2019.104086
10.1002/aenm.202002312
10.1016/j.pmatsci.2020.100704
10.1002/aenm.201800705
10.1002/adma.202006839
10.1021/acsnano.5b02575
10.1038/ncomms4426
10.1007/s11705-020-1956-3
10.1002/adma.202109918
10.1126/sciadv.aap8576
10.1038/ncomms12744
10.1016/j.nanoen.2018.02.013
10.1126/science.1124005
10.1186/s41601-020-00167-7
10.1016/j.nanoen.2022.106926
10.1002/adma.202110363
10.1038/s41467-019-09851-1
10.1016/j.nanoen.2021.106381
10.1126/science.1092356
10.1016/j.nanoen.2018.12.076
10.1016/j.nantod.2022.101437
10.1016/j.nanoen.2017.07.045
10.1002/adom.201600623
10.1002/aenm.201602397
10.1002/adfm.201503180
10.1002/adfm.201502646
10.1002/adma.201402868
10.1039/c3tb21131b
10.1155/2022/9616124
10.1021/acsaelm.0c00022
10.1021/acsnano.7b08716
10.1002/adma.201903793
10.1016/j.nanoen.2021.106199
10.1002/adma.202004178
10.1016/j.joule.2021.04.016
10.1002/adma.202105761
10.1021/nn501732z
10.1002/aenm.201903024
10.1002/aenm.202001770
10.1038/s41467-019-12465-2
10.1038/s41467-019-09464-8
10.1002/er.8671
10.1002/aenm.201802159
10.1038/542159a
10.1038/nature13792
10.1039/C7EE00158D
10.1002/aenm.202000827
10.1002/adfm.202113005
10.1016/j.nanoen.2019.104259
10.1021/nl4013002
10.1039/C4NR06237J
10.1016/j.nanoen.2019.104266
10.1002/aenm.202000137
10.1002/adma.201802898
10.1038/ncomms10987
10.1016/j.nanoen.2019.103943
10.1002/adma.202200146
10.1038/s41467-018-06045-z
10.1002/aenm.202103654
10.1021/acsnano.1c00345
10.1126/science.1116495
10.1016/j.nanoen.2019.104148
10.1007/s40820-022-00866-w
10.1016/j.nanoen.2014.09.018
10.1016/j.nanoen.2016.12.061
10.1016/j.pmatsci.2018.10.003
10.1016/j.nanoen.2020.105625
10.1016/j.nanoen.2021.106631
10.1016/j.nanoen.2019.103908
10.1038/s41467-019-09461-x
10.1002/aenm.202000064
10.1002/aenm.201301322
ContentType Journal Article
Copyright Higher Education Press 2023
Higher Education Press 2023.
Copyright_xml – notice: Higher Education Press 2023
– notice: Higher Education Press 2023.
DBID AAYXX
CITATION
DOI 10.1007/s11705-022-2271-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2095-0187
EndPage 678
ExternalDocumentID 10_1007_s11705_022_2271_y
GroupedDBID -EM
.VR
06C
06D
0R~
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40E
5VS
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HMJXF
HRMNR
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9J
P4S
P9N
PF0
PT4
QOR
R89
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
Z7V
Z7X
Z7Y
Z7Z
ZMTXR
~A9
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
Q--
U1G
U5L
ABRTQ
ID FETCH-LOGICAL-c365t-22a1a6b45d4dd665124cdeee583a3af488111e29f8d565b27be81d69f7ea6a283
IEDL.DBID U2A
ISSN 2095-0179
IngestDate Fri Jul 25 11:02:25 EDT 2025
Tue Jul 01 02:11:21 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Fri Feb 21 02:43:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords blue energy
triboelectric nanogenerator
micro/nanoenergy
self-powered devices
water wave energy
networking strategy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-22a1a6b45d4dd665124cdeee583a3af488111e29f8d565b27be81d69f7ea6a283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2819660747
PQPubID 2044370
PageCount 44
ParticipantIDs proquest_journals_2819660747
crossref_citationtrail_10_1007_s11705_022_2271_y
crossref_primary_10_1007_s11705_022_2271_y
springer_journals_10_1007_s11705_022_2271_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of chemical science and engineering
PublicationTitleAbbrev Front. Chem. Sci. Eng
PublicationYear 2023
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Yang, Zhang, Chen, Jing, Zhou, Wen, Wang (CR132) 2013; 7
Jiang, Wu, Wang, Wang, He, Wang, Alshareef (CR336) 2018; 45
Wu, Mendel, Ham, Shui, Zhou, Mugele (CR100) 2020; 32
Liu, Mo, Wu, Song, Nie (CR107) 2022; 312
Dong, Peng, Cheng, Ning, Jiang, Zhang, Wang (CR113) 2022; 34
Zheng, Sun, Wei, Chen, Yuan, Jin, Tao, Wu (CR298) 2021; 90
Yong, Wang, Yang, Wang, Luo, Liao, Wang (CR80) 2021; 11
Zhao, Dai, Liu, Zhou, Li, Wang, Wang (CR319) 2020; 11
Zhang, Shi, Si, Li (CR188) 2019; 61
Zhang, Yang, Su, Chen, Adams, Lee, Hu, Wang (CR63) 2014; 24
Li, Wang, Duan, Li, Wang (CR207) 2022; 46
Wu, He, Shan, Wang, Fu, Tang, Guo, Du, Liu, Hu (CR114) 2022; 34
Luo, Wang, Xu, Wang, Han, Jiang, Lai, Bai, Tang, Fan, Wang (CR135) 2019; 10
Guo, Yu, Zhu, Zhao, Wang, Wang (CR326) 2022; 46
Wang, Song, Liu, Wang (CR43) 2007; 316
Hua, Sun, Liu, Bao, Yu, Zhai, Pan, Wang (CR149) 2018; 9
Wen, Wang, He, Shi, Sun, Zhu, Zhang, Cao, Dai, Zhang, Lee (CR232) 2020; 67
Ren, Liang, Liu, Li, Ping, Wang, Wang (CR9) 2021; 11
Yang, Chen, Su, Jing, Li, Yi, Wen, Wang, Wang (CR81) 2015; 27
Xu, Yang, Lu, Yang, Li, Wen, Cheng, Wang (CR10) 2021; 15
Pullano, Critello, Fiorillo (CR115) 2020; 67
Chen, Yang, Li, Fan, Zi, Jing, Guo, Wen, Pradel, Niu, Wang (CR269) 2015; 9
Yang, Yang, Zhao, Shang, Qin, Wang, Jiang, Cheng, Du (CR340) 2018; 46
Hinchet, Yoon, Ryu, Kim, Choi, Kim, Kim (CR323) 2019; 365
Li, Sun, Zhang, Xu, Meng, Qin (CR147) 2019; 4
Xia, Tang, Fu, Tian, Xu, Lu, Zhu (CR299) 2020; 67
Yang, Xu, Lin, Zhong, Bai, Luo, Chen, Wang (CR335) 2019; 60
Bowen, Taylor, LeBoulbar, Zabek, Chauhan, Vaish (CR39) 2014; 7
He, Liu, Chen, Wang, Liu, Pu, Yang, Tang, Yang, Guo, Hu (CR303) 2020; 11
Yao, Zhao, Wang, Huang, Ding, Zhang, Zhang, Wang, Li (CR124) 2022; 34
Wang, Liu, Wang, Wang, Wang, Zhang, Zhao, Xu, Wang (CR286) 2021; 15
Feng, Du, Ran, Lu, Xia, Xu, Wang, Ma (CR309) 2022; 310
Wu, Wang, Zi (CR157) 2021; 11
Ma, Ai, Shi, Wang, Su (CR289) 2020; 32
Liu, Yin, Guo, Zhou, Li, Zhang, Wang, Wang (CR219) 2019; 5
Yang, Chen, Zhu, Wen, Bai, Su, Lin, Wang (CR64) 2013; 6
Nie, Ren, Xu, Lin, Zhan, Chen, Wang (CR245) 2020; 32
Wang, Yu, Pan, Li, Yang, Yi, Wang (CR40) 2015; 6
Niu, Liu, Chen, Wang, Zhou, Lin, Xie, Wang (CR192) 2015; 12
Dong, Huang, Luo, Zhao, Fan, Tian (CR176) 2022; 95
Zhang, Zhou, Cheng, Liu, Zhang, Li, Li, Wang, Wang (CR99) 2021; 11
Lei, Zhai, Nie, Zhong, Bai, Liang, Xu, Jiang, Chen, Wang (CR266) 2019; 4
Chen, Huang, Zhang, Zou, Liu, Tao, Fan, Wang (CR222) 2016; 1
Lin, Xu, Chi Wang, Wang (CR247) 2020; 11
Hao, Wen, Gao, Nan, Pan, Yang, Chen, Wang (CR129) 2022; 16
Cui, Dai, Sun, Li, Wang, Wang (CR208) 2022; 2022
Sun, Sun, Zhao, Wang, Wang (CR202) 2022; 2022
Li, Torres, Diaz, Wang, Wu, Wang, Wang, Sepulveda (CR168) 2017; 8
Liu, Nie, Miao, Li, Cui, Wang, Zhang, Zhao, Deng, Wu, Li, Li, Wang (CR119) 2019; 31
Zhang, Yuan, Zhang, Yang, Liu, He, Wang, Wang (CR291) 2022; 32
Maxwell (CR158) 1861; 21
Lin, Zhang, Guo, Wu, Zou, Yang, Wang (CR333) 2019; 64
Xie, Wang, Niu, Lin, Jing, Yang, Wu, Wang (CR154) 2014; 26
Yang, Qin, Dai, Wang (CR165) 2009; 4
Dudem, Dharmasena, Riaz, Vivekananthan, Wijayantha, Lugli, Petti, Silva (CR226) 2022; 14
Salter (CR19) 1974; 249
Li, Shin, Henkelman (CR103) 2018; 149
Wu, Wang, Ding, Guo, Wang (CR173) 2019; 9
Liu, Wang, Zhang, Yang, Wang, Zhao, Yang, Dong, Che, Wang, Zhou (CR198) 2020; 67
Liu, Shi, Ho, Lee (CR92) 2019; 66
Cheng, Ding, Zi, Lu, Ji, Liu, Wu, Wang (CR314) 2018; 9
Xu, Bao, Di, Chen, Tan, Xie, Shao, Cai, Lin, Cheng, e, Liu, Wang (CR282) 2022; 9
Shao, Luo, Deng, Yin, Yang (CR52) 2020; 67
Feng, Liu, Guo, Tang, Pu, Chen, Wang, Xi, Hu (CR294) 2018; 47
Pan, Dai, Wang (CR162) 2001; 291
Erdiwansyah, Mahidin, Husin, Nasaruddin, Zaki, Muhibbuddin (CR3) 2021; 6
Qin, Wang, Wang (CR171) 2008; 451
Liu, Guo, Xu, Hu, Wang (CR201) 2019; 9
Jing, Zhu, Bai, Xie, Chen, Han, Wang (CR55) 2014; 8
Pu, Guo, Chen, Wang, Xi, Hu, Wang (CR197) 2017; 3
Jing, Zhu, Wu, Bai, Xie, Han, Wang (CR139) 2014; 10
Sun, Zhang, Zhang, Sun, Peng (CR324) 2017; 2
Liu, Gu, Cui, Xu, Qin, Yang (CR220) 2019; 2019
Yang, Yang, Wang, Liu, Lu, Ji, Wang, Cheng (CR300) 2021; 11
Xiao, Zhang, Wang, Ouyang, Chen, Song, Yuan, Ji, Wang, Li, Xu, Wang (CR238) 2019; 9
Meng, Zhu, Wang (CR77) 2014; 6
Wu, Zeng, Tang, Liu, Liu, Zhang, Wu, Hu, Wang (CR200) 2020; 67
Chen, Guo, Pu, Wang, Xi, Hu (CR322) 2018; 50
Lin, Cheng, Wu, Pradel, Wang (CR142) 2014; 8
Chen, Guo, Wu, Xu, Zi, Hu, Wang (CR186) 2019; 64
Zhang, Liang, Liao, Ma, Gao, Zhao, Song, Song, Xun, Zhang (CR249) 2018; 28
Wang, Wu, Dai, Zhao, Wang, Zhang, Wang (CR279) 2017; 8
Cui, Xu, Ni, Zhang, Qin (CR22) 2018; 6
Yan, Gao, Zhao, Zhang, Zhou, Deng, Li, Jiang, Jin, Tian, Yang, Chu, Xiong, Wang, Li, Yang, Chen (CR53) 2020; 67
Chang, Uy, Xiao, Chen (CR12) 2022; 98
Li, Wan, Lin, Liu, Qu, Wen, Ding, Ning, Yao (CR8) 2022; 95
Bu, Li, Yin, Pang, Wang, Wang (CR233) 2020; 2
Shi, Huang, Sun, Wu, He, Jiang (CR164) 2019; 57
Ankanahalli Shankaregowda, Sagade Muktar Ahmed, Nanjegowda, Wang, Guan, Puttaswamy, Amini, Zhang, Kong, Sannathammegowda, Wang, Cheng (CR190) 2019; 66
Jin, Li, Yuan, Du, Lai, Wu, Zhao, Sun, Gu, Wang, Feng (CR120) 2021; 33
Wu, Wang, Wang, Zi (CR330) 2021; 12
Wang, Pang, Su, Li, Li, Wang, Wang, Ibarlucea, Liu, Li, Zhou, Wang, Han, Liu, Zang, Rümmeli, Li, Liu, Hu, Cuniberti (CR228) 2022; 4
Huo, Kim, Suh, Lee, Lee, Du, Wang, Yoon, Kim (CR122) 2021; 12
Zhou, Zhu, Niu, Liu, Bai, Jing, Wang (CR137) 2014; 26
Tan, Zeng, Wang, Yuan, Luo, Zhang, Tan, Hu, Liu (CR267) 2022; 14
Jiang, Zhang, Chen, Han, Tang, Zhang, Xu, Wang (CR14) 2015; 9
Zhao, Yang, Liu, Wang (CR337) 2017; 7
Wang, Zhang, Xie, Gao, Yang, Lin (CR199) 2018; 6
Hu, Cheng, Wang, Zheng, Bai, Qin (CR23) 2016; 12
Ahn, Hwang, Kim, Nam, Ahn (CR242) 2020; 67
Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu, Wang (CR174) 2019; 10
Zheng, Cheng, Yuan, Wang, Zhang, Qin, Jing (CR145) 2014; 6
Zhang, Chen, Xuan, Huang, You, Li, Sun, Jin, Wang, Dong, Luo, Flewitt, Wang (CR128) 2020; 11
Nie, Jiang, Shao, Ren, Bai, Iwamoto, Chen, Wang (CR95) 2018; 112
Yi, Zhao, Sun, Wang, Wang, Ma (CR214) 2022; 2022
Wu, Luo, Qu, Daoud, Qi (CR191) 2019; 64
Khandelwal, Minocha, Yadav, Chandrasekhar, Maria Joseph Raj, Gupta, Kim (CR185) 2019; 65
Cheng, Guo, Wen, Zhang, Yin, Li, Liu, Song, Sun, Wang, Wang (CR271) 2019; 57
Yang, Chen, Liu, Yang, Su, Wang (CR87) 2014; 8
Li, Lin, Cheng, Wen, Liu, Niu, Wang (CR150) 2014; 8
Gao, Xu, Yu, Jing, Cheng, Wang (CR6) 2022; 16
Liu, Wang, Wang, Liu, Chen, Pu, Xi, Wang, Guo, Hu, Wang (CR278) 2019; 10
Jin, Zhang, Zhang, Yang (CR217) 2019; 66
Gai, Bai, Cao, Wang, Xue, Qu, Liu, Luo, Li (CR218) 2022; 18
Zhao, Zheng, Ouyang, Li, Yan, Shi, Li (CR285) 2016; 28
Zhao, Kuang, Wang, Zhu (CR248) 2018; 12
Lee, Rubab, Hyun, Kang, Kim, Kang, Choi, Kim (CR88) 2022; 8
Liang, Jiang, Feng, Lu, An, Wang (CR325) 2020; 10
Zhang, Wang, Xie, Yao, Yan, Huang, Chen, Pan, Wang, Su, Yang, Lin (CR78) 2016; 8
Zhang, Wang, Xia, Wang, Wang (CR308) 2023; 5
Zhou, Du, Kang, Du, Shi, Qiang, Li, Zhao (CR136) 2022; 15
Xie, Wang, Niu, Lin, Jing, Su, Wu, Wang (CR257) 2014; 6
Wang (CR175) 2014; 176
Yang, Wang, Deng, Guo, Zhang, Yang, Xi, Li, Hu, Wang (CR263) 2019; 56
Li, Guo, Shin, Wong, Henkelman (CR105) 2019; 9
Wu, Wang, Li, Zhang, Lin, Niu, Chenet, Zhang, Hao, Heinz, Hone, Wang (CR167) 2014; 514
Liang, Qi, Zhao, Zhang, Liu, Pu, Wang, Lu (CR321) 2020; 24
Zhang, Liang, Nandakumar, Qu, Shi, Alzakia, Tay, Yang, Zhang, Suresh, Lee, Wee, Tan (CR16) 2021; 12
Ye, Yang, Ren, Dong, Cao, Pei, Ling (CR62) 2022; 16
Wang (CR49) 2013; 7
Guo, Pu, Chen, Meng, Yeh, Liu, Tang, Chen, Liu, Qi, Wu, Hu, Wang, Wang (CR223) 2018; 3
Zou, Tan, Shi, Ouyang, Jiang, Liu, Li, Yu, Wang, Qu, Zhao, Fan, Wang, Li (CR127) 2019; 10
Li, Su, Kuang, Pan, Zhu, Wang (CR283) 2015; 25
Zheng, Zou, Zhang, Liu, Shi, Wang, Jin, Ouyang, Li, Wang (CR118) 2016; 2
Zhang, Zhang, Zhang, Wang, Hu, Xuan, Dong, Luo (CR181) 2019; 14
Zhang, Liu, Li, Cui, Wang, Li, Wang (CR306) 2023; 16
Yang, Chen, Jing, Yang, Wen, Su, Zhu, Bai, Wang (CR67) 2014; 24
Wang, Daoud (CR151) 2019; 66
Tantraviwat, Buarin, Suntalelat, Sripumkhai, Pattamang, Rujijanagul, Inceesungvorn (CR277) 2020; 67
Feng, Li, Wang (CR36) 2021; 13
Tao, Yi, Yang, Chang, Wu, Tang, Yang, Wang, Hu, Fu, Miao, Yuan (CR261) 2020; 67
Liang, Jiang, Liu, Xiao, Xu, Li, Xi, Zhang, Wang (CR295) 2019; 29
Peng, Kang, Snyder (CR342) 2017; 3
Liu, Yang, Zhao, Hong, Cui, Duan, Yang, Tang (CR268) 2021; 15
Xie, Wang, Lin, Jing, Lin, Niu, Wu, Wang (CR76) 2013; 7
Xu, Wang, Li, Xu, Wei, Wang, Yang (CR259) 2021; 90
Chen, Wen, Wei, Xie, Zhai, Wei, Peng, Liu, Sun, Yeow (CR241) 2019; 62
Song, Zheng, Jia, Zhao, Feng, Zhang, Wang, Zhang, Zhang (CR121) 2019; 31
Bozorg, Bracale, Caramia, Carpinelli, Carpita, De Falco (CR210) 2020; 5
Qu, Huang, Chen, An, Liu, Zhang, Wang, Liu, Yin, Li (CR18) 2022; 32
Yang, Zhu, Zhang, Chen, Zhong, Lin, Su, Bai, Wen, Wang (CR75) 2013; 7
Pan, Dong, Zhu, Niu, Yu, Yang, Liu, Wang (CR169) 2013; 7
Qin, Cheng, Zi, Gu, Zhang, Shang, Yang, Yang, Du, Wang (CR339) 2018; 28
Zi, Wang, Wang, Li, Wen, Guo, Wang (CR327) 2016; 7
Tang, Pu, Zeng, Yang, Li, Wu, Guo, Huang, Hu (CR183) 2019; 66
Li, Liu, Yang, Liu (CR235) 2022; 95
Zhou, Liu, Zhao, Li, Liu, Liu, Gao, Wang, Wang (CR316) 2020; 10
Cai, Luo, Liu, Fu, Liu, Wang, Nie (CR102) 2022; 52
Ma, Liao, Zhang, Zhang, Liang, Zhang (CR280) 2015; 25
Fu, Wang, Tian, Li, Hu (CR311) 2019; 30
Xi, Guo, Zi, Li, Wang, Deng, Li, Hu, Cao, Wang (CR33) 2017; 7
Zhao, Li, Liao, Qiao, Li, Dong, Zhang, Zhang (CR17) 2021; 89
Ahmed, Hassan, Ibn-Mohammed, Mostafa, Reaney, Koh, Zu, Wang (CR341) 2017; 10
Gu, Cui, Liu, Zheng, Bai, Qin (CR83) 2015; 7
Xiao, Wu, Yang (CR45) 2018; 42
Zhu, Yang, Zhang, Jing, Chen, Zhou, Bai, Wang (CR148) 2014; 14
Ouyang, Liu, Li, Shi, Zou, Xie, Ma, Li, Li, Zheng, Qu, Fan, Wang, Zhang, Li (CR227) 2019; 10
Liu, Zheng, Li, Wang, Zhou (CR255) 2019; 61
Zhang, Yang, Su, Chen, Hu, Wu, Liu, Wong, Bando, Wang (CR141) 2013; 2
Wang (CR159) 2017; 20
Wang (CR4) 2017; 542
Wang, Zhu, Ding, Li, Zheng, Fu, Diao, Zhang, Tian, Zi (CR292) 2019; 57
Lin, Wang, Xie, Jing, Niu, Hu, Wang (CR69) 2013; 13
Zhang, Han, Jiang, Zhou, Li, Zhang, Wang (CR276) 2016; 22
Feng, Zhang, Kang, Wang, Duan, Yin, Pang, Wang (CR304) 2021; 15
Feng, Liang, An, Jiang, Wang (CR5) 2021; 81
Li, Su, Li, Zhao, Zhang, Zhang, Ye, Li, W
Y H Wu (2271_CR191) 2019; 64
K Zhao (2271_CR337) 2017; 7
C S Wu (2271_CR173) 2019; 9
W Z Wu (2271_CR166) 2016; 1
S H Liu (2271_CR21) 2017; 29
J M Liu (2271_CR82) 2016; 8
C Cai (2271_CR102) 2022; 52
Z Q Bai (2271_CR189) 2019; 65
S Yao (2271_CR124) 2022; 34
D Li (2271_CR207) 2022; 46
Z Yang (2271_CR300) 2021; 11
Q Bai (2271_CR72) 2022; 96
C F Pan (2271_CR169) 2013; 7
S Liu (2271_CR290) 2020; 11
L Zhou (2271_CR34) 2020; 10
C Zhao (2271_CR236) 2022; 94
H M Yang (2271_CR263) 2019; 56
F Zheng (2271_CR298) 2021; 90
J Chen (2271_CR222) 2016; 1
Y Xi (2271_CR33) 2017; 7
L Zhang (2271_CR143) 2015; 25
H Sun (2271_CR202) 2022; 2022
L M Zhang (2271_CR276) 2016; 22
A Falcão (2271_CR20) 2010; 14
L Yang (2271_CR50) 2013; 1
T Jiang (2271_CR274) 2017; 31
K Dong (2271_CR109) 2020; 32
J Sun (2271_CR138) 2021; 33
Z Cui (2271_CR212) 2022; 46
L Liu (2271_CR92) 2019; 66
T Zhou (2271_CR275) 2016; 9
X Cui (2271_CR22) 2018; 6
S Abu Nahian (2271_CR180) 2017; 38
K Shrestha (2271_CR130) 2022; 32
X Xiao (2271_CR238) 2019; 9
Y Shao (2271_CR52) 2020; 67
D Tantraviwat (2271_CR277) 2020; 67
Z L Wang (2271_CR159) 2017; 20
H Cho (2271_CR256) 2022; 95
Z Yu (2271_CR29) 2022; 97
D Feng (2271_CR309) 2022; 310
H Y Shao (2271_CR193) 2017; 39
Q S Jing (2271_CR55) 2014; 8
X Li (2271_CR310) 2022; 67
Y Fu (2271_CR311) 2019; 30
J B Qi (2271_CR221) 2020; 67
J Wang (2271_CR90) 2022; 431
S Xu (2271_CR170) 2010; 1
P K Guchhait (2271_CR211) 2020; 5
R Lei (2271_CR266) 2019; 4
Z Y Huo (2271_CR122) 2021; 12
H Wu (2271_CR157) 2021; 11
W He (2271_CR303) 2020; 11
Z L Wang (2271_CR49) 2013; 7
Q Gao (2271_CR6) 2022; 16
H Li (2271_CR105) 2019; 9
J H Lee (2271_CR91) 2019; 58
H L Zhang (2271_CR63) 2014; 24
H Sun (2271_CR312) 2022; 46
G Cheng (2271_CR37) 2014; 24
X J Pu (2271_CR197) 2017; 3
K Xia (2271_CR98) 2020; 10
H Sun (2271_CR324) 2017; 2
S M Niu (2271_CR192) 2015; 12
S H Wang (2271_CR195) 2014; 26
H Ryu (2271_CR288) 2019; 31
J Lai (2271_CR152) 2022; 43
Q Zheng (2271_CR118) 2016; 2
Z Ma (2271_CR289) 2020; 32
M Zhang (2271_CR306) 2023; 16
Y Hao (2271_CR129) 2022; 16
C X Hu (2271_CR23) 2016; 12
L Lin (2271_CR69) 2013; 13
Z Wen (2271_CR296) 2015; 16
X J Zhao (2271_CR248) 2018; 12
W Q Yang (2271_CR57) 2013; 7
Y L Chen (2271_CR194) 2018; 8
L Zhang (2271_CR224) 2019; 11
X Q Zhang (2271_CR237) 2019; 29
D Li (2271_CR313) 2022; 15
Z L Wang (2271_CR133) 2020; 10
C Zhang (2271_CR262) 2020; 5
C R Liu (2271_CR198) 2020; 67
H Y Li (2271_CR283) 2015; 25
Q Zhang (2271_CR249) 2018; 28
X Liang (2271_CR295) 2019; 29
Z N Wang (2271_CR40) 2015; 6
J Peng (2271_CR342) 2017; 3
Q L Hua (2271_CR149) 2018; 9
Y B Zheng (2271_CR145) 2014; 6
G Zhu (2271_CR70) 2014; 5
P Jiang (2271_CR125) 2019; 31
F Peng (2271_CR334) 2019; 65
T Zhao (2271_CR11) 2021; 88
F Jiang (2271_CR31) 2022; 34
X Q Liang (2271_CR321) 2020; 24
M Wu (2271_CR94) 2019; 56
Y F Hu (2271_CR68) 2013; 7
Y Wang (2271_CR286) 2021; 15
Q Zhang (2271_CR293) 2017; 29
C Zhang (2271_CR99) 2021; 11
Z W Pan (2271_CR162) 2001; 291
Z Zhang (2271_CR112) 2022; 34
Y Wang (2271_CR216) 2017; 1
D H Zhang (2271_CR188) 2019; 61
P Tan (2271_CR111) 2022; 34
T Jiang (2271_CR14) 2015; 9
W Tang (2271_CR250) 2015; 25
Z Liu (2271_CR119) 2019; 31
G Zhu (2271_CR148) 2014; 14
D Y Jiang (2271_CR254) 2019; 58
F Wen (2271_CR232) 2020; 67
Y Xu (2271_CR10) 2021; 15
J Yang (2271_CR66) 2014; 4
Z Qu (2271_CR18) 2022; 32
H Wang (2271_CR318) 2020; 11
Q S Jing (2271_CR54) 2015; 6
J Chen (2271_CR186) 2019; 64
W Paosangthong (2271_CR187) 2019; 66
X Xu (2271_CR259) 2021; 90
J Hu (2271_CR74) 2019; 12
D Li (2271_CR203) 2022; 250
D Liu (2271_CR219) 2019; 5
P Cheng (2271_CR271) 2019; 57
M Noman (2271_CR13) 2021; 6
C Wang (2271_CR32) 2019; 64
P Bai (2271_CR71) 2013; 7
T Jiang (2271_CR97) 2020; 10
L M Zhao (2271_CR285) 2016; 28
N Q Minh (2271_CR1) 2019; 44
J Cheng (2271_CR314) 2018; 9
H Askari (2271_CR41) 2022; 52
C Yan (2271_CR53) 2020; 67
W Lei (2271_CR234) 2022; 95
S Wu (2271_CR123) 2022; 96
J Yang (2271_CR81) 2015; 27
J H Ahn (2271_CR242) 2020; 67
X H Li (2271_CR150) 2014; 8
Z Wen (2271_CR196) 2016; 2
J Chen (2271_CR269) 2015; 9
D Lingam (2271_CR38) 2013; 4
Y P Liu (2271_CR255) 2019; 61
L Zhou (2271_CR316) 2020; 10
W Q Yang (2271_CR64) 2013; 6
Z Ren (2271_CR9) 2021; 11
M Matsunaga (2271_CR172) 2020; 67
K Dong (2271_CR113) 2022; 34
E Pomerantseva (2271_CR328) 2019; 366
Z L Wang (2271_CR175) 2014; 176
F Yang (2271_CR229) 2020; 67
J Luo (2271_CR135) 2019; 10
J Chen (2271_CR65) 2013; 25
J Nie (2271_CR245) 2020; 32
Y L Zi (2271_CR343) 2015; 6
W Wang (2271_CR228) 2022; 4
Y Yang (2271_CR75) 2013; 7
B Zhang (2271_CR264) 2022; 14
M Y Xu (2271_CR284) 2019; 13
F Jin (2271_CR120) 2021; 33
Y N Xie (2271_CR154) 2014; 26
Q Xu (2271_CR25) 2017; 5
D Zhang (2271_CR101) 2021; 33
Z Zhao (2271_CR35) 2021; 12
C S Wu (2271_CR273) 2017; 32
Y Gai (2271_CR218) 2022; 18
L Cheng (2271_CR302) 2018; 9
G D Li (2271_CR147) 2019; 4
J W Lee (2271_CR239) 2019; 9
Y Feng (2271_CR5) 2021; 81
H Ouyang (2271_CR227) 2019; 10
C Bu (2271_CR233) 2020; 2
C Zhang (2271_CR128) 2020; 11
J Zhao (2271_CR60) 2021; 32
G B Lim (2271_CR117) 2019; 16
J Dong (2271_CR176) 2022; 95
J H Nie (2271_CR95) 2018; 112
X Zhang (2271_CR61) 2022; 96
N Y Cui (2271_CR84) 2019; 1
S H Wang (2271_CR184) 2013; 13
Q Li (2271_CR204) 2022; 50
W Li (2271_CR168) 2017; 8
X Y Huang (2271_CR47) 2019; 100
C Li (2271_CR59) 2021; 12
A Ahmed (2271_CR341) 2017; 10
C R Bowen (2271_CR39) 2014; 7
W Q Yang (2271_CR67) 2014; 24
H Y Zou (2271_CR174) 2019; 10
L Xu (2271_CR272) 2018; 12
Z M Lin (2271_CR333) 2019; 64
P X Gao (2271_CR160) 2005; 309
W Zhong (2271_CR93) 2019; 66
B Zhao (2271_CR17) 2021; 89
X D Wang (2271_CR43) 2007; 316
S H Salter (2271_CR19) 1974; 249
Y H Yu (2271_CR178) 2015; 27
Q Song (2271_CR121) 2019; 31
Z Zhao (2271_CR319) 2020; 11
X Li (2271_CR329) 2020; 10
X X Wang (2271_CR225) 2021; 115
L Liu (2271_CR268) 2021; 15
S Lin (2271_CR247) 2020; 11
X Wei (2271_CR131) 2022; 34
Z Ren (2271_CR79) 2020; 10
G Zhu (2271_CR51) 2013; 2
A Y Li (2271_CR104) 2017; 12
J M Liu (2271_CR220) 2019; 2019
R S Yang (2271_CR165) 2009; 4
A Chang (2271_CR12) 2022; 98
Erdiwansyah (2271_CR3) 2021; 6
Q Zhang (2271_CR244) 2021; 33
Y Yang (2271_CR132) 2013; 7
C Zhang (2271_CR291) 2022; 32
J Luo (2271_CR110) 2021; 33
Y Wu (2271_CR200) 2020; 67
Z Yi (2271_CR214) 2022; 2022
J Chen (2271_CR322) 2018; 50
R A Shaukat (2271_CR27) 2022; 96
H Wu (2271_CR100) 2020; 32
Y Chen (2271_CR243) 2021; 33
X Feng (2271_CR36) 2021; 13
H J Guo (2271_CR177) 2018; 12
Y S Zhou (2271_CR137) 2014; 26
G Xia (2271_CR307) 2020; 14
W Zhou (2271_CR136) 2022; 15
P Chen (2271_CR156) 2021; 11
Y Guo (2271_CR326) 2022; 46
H D Hou (2271_CR338) 2017; 4
H L Zhang (2271_CR141) 2013; 2
H Y Wang (2271_CR292) 2019; 57
D Choi (2271_CR252) 2017; 36
J W Zhong (2271_CR56) 2014; 8
G Cheng (2271_CR260) 2014; 8
X S Meng (2271_CR77) 2014; 6
Z H Lin (2271_CR142) 2014; 8
X Xia (2271_CR317) 2019; 10
Q Jiang (2271_CR336) 2018; 45
J Yang (2271_CR87) 2014; 8
Y Feng (2271_CR106) 2022; 12
L Gu (2271_CR83) 2015; 7
Y N Xie (2271_CR76) 2013; 7
D M Lee (2271_CR88) 2022; 8
J Wang (2271_CR108) 2016; 7
K Tao (2271_CR261) 2020; 67
X Feng (2271_CR304) 2021; 15
B Cheng (2271_CR58) 2020; 10
B Dudem (2271_CR226) 2022; 14
H Zhou (2271_CR251) 2022; 95
H N Huo (2271_CR116) 2020; 67
L Jin (2271_CR217) 2019; 66
H Li (2271_CR103) 2018; 149
L Zhang (2271_CR215) 2015; 7
D Z Zhang (2271_CR231) 2020; 67
R Hinchet (2271_CR323) 2019; 365
X Liu (2271_CR107) 2022; 312
Z L Wang (2271_CR42) 2006; 312
H F Qin (2271_CR339) 2018; 28
J Wang (2271_CR199) 2018; 6
W Li (2271_CR8) 2022; 95
Q Tang (2271_CR183) 2019; 66
J Wang (2271_CR279) 2017; 8
H Y Guo (2271_CR223) 2018; 3
L Xiao (2271_CR45) 2018; 42
Z Cui (2271_CR320) 2022; 259
Z Cui (2271_CR208) 2022; 2022
S M Li (2271_CR297) 2015; 9
J Kim (2271_CR315) 2020; 10
J S Kim (2271_CR7) 2022; 12
J Nie (2271_CR246) 2019; 10
X Liang (2271_CR325) 2020; 10
S Bai (2271_CR146) 2011; 21
S Ankanahalli Shankaregowda (2271_CR190) 2019; 66
L Feng (2271_CR294) 2018; 47
W Z Guo (2271_CR163) 2018; 10
C Liu (2271_CR209) 2022; 10
C Chen (2271_CR241) 2019; 62
W Liu (2271_CR331) 2020; 11
K M Shi (2271_CR164) 2019; 57
D Tan (2271_CR267) 2022; 14
Q S Jing (2271_CR139) 2014; 10
C Chen (2271_CR30) 2022; 13
C Li (2271_CR235) 2022; 95
M M Yuan (2271_CR46) 2014; 26
H L Zhang (2271_CR78) 2016; 8
W Deng (2271_CR26) 2022; 51
J C XXV Maxwell (2271_CR158) 1861; 21
T Jiang (2271_CR153) 2015; 25
S Yong (2271_CR80) 2021; 11
S Li (2271_CR126) 2022; 34
Z C Zhang (2271_CR181) 2019; 14
C Zhang (2271_CR287) 2021; 5
Z Yuan (2271_CR15) 2021; 6
P Zhuang (2271_CR301) 2020; 32
L Lin (2271_CR73) 2015; 9
G L Liu (2271_CR201) 2019; 9
J S Chun (2271_CR258) 2016; 7
M T Rahman (2271_CR182) 2019; 57
M Y Ma (2271_CR280) 2015; 25
Y Zou (2271_CR127) 2019; 10
C Ye (2271_CR62) 2022; 16
Z L Wang (2271_CR4) 2017; 542
Y Xi (2271_CR85) 2017; 38
S A Pullano (2271_CR115) 2020; 67
X Y Kong (2271_CR161) 2004; 303
W Z Wu (2271_CR167) 2014; 514
H Wu (2271_CR114) 2022; 34
G Khandelwal (2271_CR185) 2019; 65
Y Qin (2271_CR171) 2008; 451
L Cheng (2271_CR144) 2017; 5
Z L Wang (2271_CR179) 2016
Y L Zi (2271_CR327) 2016; 7
Z L Wang (2271_CR2) 2017; 39
X Fan (2271_CR86) 2015; 9
H Wu (2271_CR134) 2022; 12
C Liu (2271_CR213) 2022; 46
Z Xu (2271_CR282) 2022; 9
Z H Lin (2271_CR140) 2013; 52
W Liu (2271_CR278) 2019; 10
G Tian (2271_CR24) 2019; 59
Y L Zi (2271_CR155) 2016; 10
M Zhang (2271_CR308) 2023; 5
J Park (2271_CR89) 2022; 8
Y K Pang (2271_CR96) 2019; 66
Q K Han (2271_CR230) 2020; 67
Y N Xie (2271_CR257) 2014; 6
K Wang (2271_CR305) 2018; 12
X F Wang (2271_CR270) 2015; 5
A H Abd El-Kareem (2271_CR205) 2021; 6
S Xu (2271_CR44) 2010; 5
S K Injeti (2271_CR206) 2020; 5
L Xu (2271_CR281) 2017; 31
J J Yang (2271_CR340) 2018; 46
F R Fan (2271_CR48) 2012; 1
W Zhong (2271_CR265) 2019; 11
Z Cui (2271_CR332) 2022; 98
Q Zhang (2271_CR16) 2021; 12
H Wu (2271_CR330) 2021; 12
X Y Li (2271_CR253) 2018; 8
X D Yang (2271_CR335) 2019; 60
C C Qian (2271_CR240) 2019; 63
Y X Zhou (2271_CR28) 2022; 97
M Bozorg (2271_CR210) 2020; 5
K Q Xia (2271_CR299) 2020; 67
L Y Wang (2271_CR151) 2019; 66
References_xml – volume: 2
  start-page: e1501478
  issue: 3
  year: 2016
  ident: CR118
  article-title: Biodegradable triboelectric nanogenerator as a life-time designed implantable power source
  publication-title: Science Advances
  doi: 10.1126/sciadv.1501478
– volume: 1
  start-page: 16138
  issue: 10
  year: 2016
  ident: CR222
  article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2016.138
– volume: 31
  start-page: 351
  year: 2017
  end-page: 358
  ident: CR281
  article-title: Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.037
– volume: 9
  start-page: 3733
  issue: 1
  year: 2018
  ident: CR314
  article-title: Triboelectric microplasma powered by mechanical stimuli
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-06198-x
– volume: 28
  start-page: 1805216
  issue: 51
  year: 2018
  ident: CR339
  article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201805216
– volume: 26
  start-page: 1719
  issue: 11
  year: 2014
  end-page: 1724
  ident: CR137
  article-title: Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification
  publication-title: Advanced Materials
  doi: 10.1002/adma.201304619
– volume: 431
  start-page: 134002
  year: 2022
  ident: CR90
  article-title: Superwettable hybrid dielectric based multimodal triboelectric nanogenerator with superior durability and efficiency for biomechanical energy and hydropower harvesting
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.134002
– volume: 8
  start-page: 3836
  issue: 4
  year: 2014
  end-page: 3842
  ident: CR55
  article-title: Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion
  publication-title: ACS Nano
  doi: 10.1021/nn500694y
– volume: 66
  start-page: 104087
  year: 2019
  ident: CR183
  article-title: A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104087
– volume: 11
  start-page: 2101116
  issue: 31
  year: 2021
  ident: CR9
  article-title: Water-wave driven route avoidance warning system for wireless ocean navigation
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202101116
– volume: 34
  start-page: 2109568
  issue: 15
  year: 2022
  ident: CR124
  article-title: Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy
  publication-title: Advanced Materials
  doi: 10.1002/adma.202109568
– volume: 2022
  start-page: 7620382
  year: 2022
  ident: CR214
  article-title: Prediction of the remaining useful life of supercapacitors
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2022/7620382
– volume: 46
  start-page: 24091
  issue: 15
  year: 2022
  end-page: 24104
  ident: CR312
  article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.8709
– volume: 18
  start-page: 2108091
  issue: 14
  year: 2022
  ident: CR218
  article-title: A gyroscope nanogenerator with frequency up-conversion effect for fitness and energy harvesting
  publication-title: Small
  doi: 10.1002/smll.202108091
– volume: 176
  start-page: 447
  year: 2014
  end-page: 458
  ident: CR175
  article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives
  publication-title: Faraday Discussions
  doi: 10.1039/C4FD00159A
– volume: 11
  start-page: 2101147
  issue: 28
  year: 2021
  ident: CR300
  article-title: Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202101147
– volume: 11
  start-page: 4277
  issue: 1
  year: 2020
  ident: CR303
  article-title: Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-18086-4
– start-page: 23
  year: 2016
  end-page: 47
  ident: CR179
  publication-title: Triboelectric nanogenerator: vertical contact-separation mode. In: Triboelectric Nanogenerators
– volume: 67
  start-page: 1145
  issue: 11
  year: 2022
  end-page: 1153
  ident: CR310
  article-title: Revealing interfacial space charge storage of Li /Na /K by operando magnetometry
  publication-title: Science Bulletin
  doi: 10.1016/j.scib.2022.04.001
– volume: 10
  start-page: 17751
  issue: 37
  year: 2018
  end-page: 17760
  ident: CR163
  article-title: Wireless piezoelectric devices based on electrospun PVDF/BaTiO NW nanocomposite fibers for human motion monitoring
  publication-title: Nanoscale
  doi: 10.1039/C8NR05292A
– volume: 366
  start-page: 969
  issue: 6468
  year: 2019
  end-page: 681
  ident: CR328
  article-title: Energy storage: the future enabled by nanomaterials
  publication-title: Science
  doi: 10.1126/science.aan8285
– volume: 4
  start-page: e12262
  issue: 2
  year: 2022
  ident: CR228
  article-title: Applications of nanogenerators for biomedical engineering and healthcare systems
  publication-title: InfoMat
  doi: 10.1002/inf2.12262
– volume: 6
  start-page: 129
  year: 2014
  end-page: 136
  ident: CR257
  article-title: Multi-layered disk triboelectric nanogenerator for harvesting hydropower
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.03.015
– volume: 7
  start-page: 7342
  issue: 8
  year: 2013
  end-page: 7351
  ident: CR132
  article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403021m
– volume: 7
  start-page: 752
  issue: 9
  year: 2013
  end-page: 758
  ident: CR169
  article-title: High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array
  publication-title: Nature Photonics
  doi: 10.1038/nphoton.2013.191
– volume: 12
  start-page: 2950
  issue: 1
  year: 2021
  ident: CR59
  article-title: Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-23207-8
– volume: 8
  start-page: 1932
  issue: 2
  year: 2014
  end-page: 1939
  ident: CR260
  article-title: Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/nn406565k
– volume: 32
  start-page: 1902549
  issue: 5
  year: 2020
  ident: CR109
  article-title: Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence
  publication-title: Advanced Materials
  doi: 10.1002/adma.201902549
– volume: 66
  start-page: 104141
  year: 2019
  ident: CR190
  article-title: Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104141
– volume: 67
  start-page: 104197
  year: 2020
  ident: CR261
  article-title: Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104197
– volume: 11
  start-page: 6186
  issue: 1
  year: 2020
  ident: CR319
  article-title: Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-20045-y
– volume: 6
  start-page: 8401
  issue: 1
  year: 2015
  ident: CR40
  article-title: Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing
  publication-title: Nature Communications
  doi: 10.1038/ncomms9401
– volume: 66
  start-page: 104080
  year: 2019
  ident: CR151
  article-title: Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104080
– volume: 44
  start-page: 682
  issue: 9
  year: 2019
  end-page: 683
  ident: CR1
  article-title: Future energy, fuel cells, and solid-oxide fuel-cell technology
  publication-title: MRS Bulletin
  doi: 10.1557/mrs.2019.209
– volume: 9
  start-page: 1901987
  issue: 36
  year: 2019
  ident: CR239
  article-title: High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201901987
– volume: 12
  start-page: 5470
  issue: 1
  year: 2021
  ident: CR330
  article-title: Achieving ultrahigh instantaneous power density of 10 MW·m by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG)
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-25753-7
– volume: 14
  start-page: 899
  issue: 3
  year: 2010
  end-page: 918
  ident: CR20
  article-title: Wave energy utilization: a review of the technologies
  publication-title: Renewable & Sustainable Energy Reviews
  doi: 10.1016/j.rser.2009.11.003
– volume: 24
  start-page: 4090
  issue: 26
  year: 2014
  end-page: 4096
  ident: CR67
  article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201304211
– volume: 25
  start-page: 3718
  issue: 24
  year: 2015
  end-page: 3725
  ident: CR250
  article-title: Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201501331
– volume: 2
  start-page: 693
  issue: 5
  year: 2013
  end-page: 701
  ident: CR141
  article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.08.004
– volume: 9
  start-page: 2201098
  issue: 18
  year: 2022
  ident: CR282
  article-title: High-performance dielectric elastomer nanogenerator for efficient energy harvesting and sensing via alternative current method
  publication-title: Advanced Science
  doi: 10.1002/advs.202201098
– volume: 22
  start-page: 87
  year: 2016
  end-page: 94
  ident: CR276
  article-title: Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.01.009
– volume: 46
  start-page: 5423
  issue: 5
  year: 2022
  end-page: 5440
  ident: CR212
  article-title: A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.7545
– volume: 33
  start-page: 2102765
  issue: 34
  year: 2021
  ident: CR138
  article-title: A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis
  publication-title: Advanced Materials
  doi: 10.1002/adma.202102765
– volume: 95
  start-page: 106994
  year: 2022
  ident: CR8
  article-title: Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106994
– volume: 65
  start-page: 104016
  year: 2019
  ident: CR185
  article-title: All edible materials derived biocompatible and biodegradable triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104016
– volume: 52
  start-page: 5065
  issue: 19
  year: 2013
  end-page: 5069
  ident: CR140
  article-title: A self-powered triboelectric nanosensor for mercury ion detection
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201300437
– volume: 9
  start-page: 244
  issue: 1
  year: 2018
  ident: CR149
  article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-02685-9
– volume: 90
  start-page: 106573
  year: 2021
  ident: CR259
  article-title: A leaf-mimic rain energy harvester by liquid-solid contact electrification and piezoelectricity
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106573
– volume: 32
  start-page: 1905696
  issue: 2
  year: 2020
  ident: CR245
  article-title: Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface
  publication-title: Advanced Materials
  doi: 10.1002/adma.201905696
– volume: 14
  start-page: 5328
  issue: 4
  year: 2022
  end-page: 5337
  ident: CR226
  article-title: Wearable triboelectric nanogenerator from waste materials for autonomous information transmission via morse code
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c20984
– volume: 52
  start-page: 299
  year: 2022
  end-page: 326
  ident: CR102
  article-title: Advanced triboelectric materials for liquid energy harvesting and emerging application
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2021.10.034
– volume: 6
  start-page: 899
  issue: 4
  year: 2018
  end-page: 906
  ident: CR22
  article-title: Atomic-thick 2D MoS /insulator interjection structures for enhancing nanogenerator output
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C7TC05458K
– volume: 11
  start-page: 2003616
  issue: 12
  year: 2021
  ident: CR99
  article-title: Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202003616
– volume: 31
  start-page: 1807795
  issue: 12
  year: 2019
  ident: CR119
  article-title: Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator
  publication-title: Advanced Materials
  doi: 10.1002/adma.201807795
– volume: 66
  start-page: 104108
  year: 2019
  ident: CR93
  article-title: Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104108
– volume: 95
  start-page: 107050
  year: 2022
  ident: CR251
  article-title: The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107050
– volume: 11
  start-page: 2003066
  issue: 9
  year: 2021
  ident: CR156
  article-title: Superdurable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202003066
– volume: 63
  start-page: 103885
  year: 2019
  ident: CR240
  article-title: All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103885
– volume: 29
  start-page: 1807241
  issue: 41
  year: 2019
  ident: CR295
  article-title: Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201807241
– volume: 46
  start-page: 3034
  issue: 3
  year: 2022
  end-page: 3043
  ident: CR213
  article-title: Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.7360
– volume: 15
  start-page: 6665
  issue: 18
  year: 2022
  ident: CR313
  article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries
  publication-title: Energies
  doi: 10.3390/en15186665
– volume: 3
  start-page: eaat2516
  issue: 20
  year: 2018
  ident: CR223
  article-title: A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids
  publication-title: Science Robotics
  doi: 10.1126/scirobotics.aat2516
– volume: 10
  start-page: 2695
  issue: 1
  year: 2019
  ident: CR127
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-10433-4
– volume: 7
  start-page: 9533
  issue: 11
  year: 2013
  end-page: 9557
  ident: CR49
  article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 50
  start-page: 104215
  year: 2022
  ident: CR204
  article-title: State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2022.104215
– volume: 26
  start-page: 6599
  issue: 38
  year: 2014
  end-page: 6607
  ident: CR154
  article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
  publication-title: Advanced Materials
  doi: 10.1002/adma.201402428
– volume: 67
  start-page: 104210
  year: 2020
  ident: CR229
  article-title: Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104210
– volume: 25
  start-page: 6094
  issue: 42
  year: 2013
  end-page: 6099
  ident: CR65
  article-title: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor
  publication-title: Advanced Materials
  doi: 10.1002/adma.201302397
– volume: 95
  start-page: 106971
  year: 2022
  ident: CR176
  article-title: Supercapacitor-inspired triboelectric nanogenerator based on electrostatic double layer
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106971
– volume: 58
  start-page: 842
  year: 2019
  end-page: 851
  ident: CR254
  article-title: Conformal fluorine coated carbon paper for an energy harvesting water wheel
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.083
– volume: 67
  start-page: 104214
  year: 2020
  ident: CR277
  article-title: Highly dispersed porous polydimethylsiloxane for boosting power-generating performance of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104214
– volume: 29
  start-page: 1900327
  issue: 41
  year: 2019
  ident: CR237
  article-title: Self-powered distributed water level sensors based on liquid-solid triboelectric nanogenerators for ship draft detecting
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201900327
– volume: 12
  start-page: 4686
  issue: 1
  year: 2021
  ident: CR35
  article-title: Selection rules of triboelectric materials for direct-current triboelectric nanogenerator
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-25046-z
– volume: 25
  start-page: 2928
  issue: 19
  year: 2015
  end-page: 2938
  ident: CR153
  article-title: Theoretical study of rotary freestanding triboelectric nanogenerators
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201500447
– volume: 16
  start-page: 1599
  year: 2023
  ident: CR306
  article-title: Electrochemical impedance spectroscopy: a new chapter in the fast and accurate estimation of the state of health for lithium-ion batteries
  publication-title: Energies
  doi: 10.3390/en16041599
– volume: 13
  start-page: 1932
  issue: 2
  year: 2019
  end-page: 1939
  ident: CR284
  article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy
  publication-title: ACS Nano
– volume: 7
  start-page: 9461
  issue: 10
  year: 2013
  end-page: 9468
  ident: CR75
  article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn4043157
– volume: 112
  start-page: 183701
  issue: 18
  year: 2018
  ident: CR95
  article-title: Motion behavior of water droplets driven by triboelectric nanogenerator
  publication-title: Applied Physics Letters
  doi: 10.1063/1.5030152
– volume: 12
  start-page: 376
  issue: 3
  year: 2018
  end-page: 382
  ident: CR305
  article-title: Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation
  publication-title: Frontiers of Chemical Science and Engineering
  doi: 10.1007/s11705-018-1705-z
– volume: 33
  start-page: 2104175
  issue: 48
  year: 2021
  ident: CR120
  article-title: Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration
  publication-title: Advanced Materials
  doi: 10.1002/adma.202104175
– volume: 24
  start-page: 297
  year: 2020
  end-page: 303
  ident: CR321
  article-title: Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2019.08.002
– volume: 12
  start-page: 3461
  issue: 4
  year: 2018
  end-page: 3467
  ident: CR177
  article-title: Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00140
– volume: 64
  start-page: 103920
  year: 2019
  ident: CR186
  article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103920
– volume: 67
  start-page: 104269
  year: 2020
  ident: CR242
  article-title: Unsteady streaming flow based teng using hydrophobic film tube with different charge affinity
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104269
– volume: 10
  start-page: 061106
  issue: 6
  year: 2022
  ident: CR209
  article-title: Strong robustness and high accuracy in predicting remaining useful life of supercapacitors
  publication-title: APL Materials
  doi: 10.1063/5.0092074
– volume: 96
  start-page: 107115
  year: 2022
  ident: CR61
  article-title: Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107115
– volume: 9
  start-page: 922
  issue: 1
  year: 2015
  end-page: 930
  ident: CR73
  article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of similar to 55%
  publication-title: ACS Nano
  doi: 10.1021/nn506673x
– volume: 11
  start-page: 2101194
  issue: 26
  year: 2021
  ident: CR80
  article-title: Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202101194
– volume: 32
  start-page: 2111775
  issue: 18
  year: 2022
  ident: CR291
  article-title: High space efficiency hybrid nanogenerators for effective water wave energy harvesting
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202111775
– volume: 10
  start-page: 2264
  issue: 1
  year: 2019
  ident: CR246
  article-title: Power generation from the interaction of a liquid droplet and a liquid membrane
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-10232-x
– volume: 96
  start-page: 107136
  year: 2022
  ident: CR123
  article-title: The strategy of circuit design for high performance nanogenerator based self-powered heart rate monitor system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107136
– volume: 13
  start-page: 2226
  issue: 5
  year: 2013
  end-page: 2233
  ident: CR184
  article-title: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism
  publication-title: Nano Letters
  doi: 10.1021/nl400738p
– volume: 34
  start-page: 2200042
  issue: 17
  year: 2022
  ident: CR31
  article-title: Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting
  publication-title: Advanced Materials
  doi: 10.1002/adma.202200042
– volume: 7
  start-page: 11317
  issue: 12
  year: 2013
  end-page: 11324
  ident: CR57
  article-title: Harvesting energy from the natural vibration of human walking
  publication-title: ACS Nano
  doi: 10.1021/nn405175z
– volume: 6
  start-page: 1929
  issue: 10
  year: 2018
  end-page: 1934
  ident: CR199
  article-title: Water energy harvesting and self-powered visible light communication based on triboelectric nanogenerator
  publication-title: Energy Technology
  doi: 10.1002/ente.201800035
– volume: 4
  start-page: 1577
  issue: 6
  year: 2019
  end-page: 1585
  ident: CR147
  article-title: Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.9b00259
– volume: 66
  start-page: 104131
  year: 2019
  ident: CR96
  article-title: Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104131
– volume: 56
  start-page: 300
  year: 2019
  end-page: 306
  ident: CR263
  article-title: A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.043
– volume: 39
  start-page: 9
  year: 2017
  end-page: 23
  ident: CR2
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 11
  start-page: 2100038
  issue: 16
  year: 2021
  ident: CR157
  article-title: Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202100038
– volume: 67
  start-page: 104278
  year: 2020
  ident: CR115
  article-title: Triboelectric-induced pseudo-ICG for cardiovascular risk assessment on flexible electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104278
– volume: 57
  start-page: 616
  year: 2019
  end-page: 624
  ident: CR292
  article-title: A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.078
– volume: 95
  start-page: 107048
  year: 2022
  ident: CR256
  article-title: A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107048
– volume: 14
  start-page: 9046
  issue: 7
  year: 2022
  end-page: 9056
  ident: CR264
  article-title: Highly stable and eco-friendly marine self-charging power systems composed of conductive polymer supercapacitors with seawater as an electrolyte
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c22129
– volume: 6
  start-page: 8031
  issue: 1
  year: 2015
  ident: CR54
  article-title: Self-powered thin-film motion vector sensor
  publication-title: Nature Communications
  doi: 10.1038/ncomms9031
– volume: 8
  start-page: 6440
  issue: 6
  year: 2014
  end-page: 6448
  ident: CR142
  article-title: Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor
  publication-title: ACS Nano
  doi: 10.1021/nn501983s
– volume: 12
  start-page: 2103076
  issue: 3
  year: 2022
  ident: CR7
  article-title: Collectively exhaustive hybrid triboelectric nanogenerator based on flow-induced impacting-sliding cylinder for ocean energy harvesting
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202103076
– volume: 15
  start-page: 16368
  issue: 10
  year: 2021
  end-page: 16375
  ident: CR10
  article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05685
– volume: 66
  start-page: 104167
  year: 2019
  ident: CR92
  article-title: Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104167
– volume: 24
  start-page: 2892
  issue: 19
  year: 2014
  end-page: 2898
  ident: CR37
  article-title: Increase output energy and operation frequency of a triboelectric nanogenerator by two grounded electrodes approach
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201303659
– volume: 38
  start-page: 101
  year: 2017
  end-page: 108
  ident: CR85
  article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.053
– volume: 9
  start-page: 1802906
  issue: 1
  year: 2019
  ident: CR173
  article-title: Triboelectric nanogenerator: a foundation of the energy for the new era
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201802906
– volume: 65
  start-page: 104012
  year: 2019
  ident: CR189
  article-title: Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104012
– volume: 29
  start-page: 1606703
  issue: 17
  year: 2017
  ident: CR293
  article-title: Service behavior of multifunctional triboelectric nanogenerators
  publication-title: Advanced Materials
  doi: 10.1002/adma.201606703
– volume: 316
  start-page: 102
  issue: 5821
  year: 2007
  end-page: 105
  ident: CR43
  article-title: Direct-current nanogenerator driven by ultrasonic waves
  publication-title: Science
  doi: 10.1126/science.1139366
– volume: 97
  start-page: 107205
  year: 2022
  ident: CR29
  article-title: Integrated piezo-tribo hybrid acoustic-driven nanogenerator based on porous MWCNTs/PVDF-TrFE aerogel bulk with embedded pdms tympanum structure for broadband sound energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107205
– volume: 10
  start-page: 2002123
  issue: 40
  year: 2020
  ident: CR325
  article-title: Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202002123
– volume: 291
  start-page: 1947
  issue: 5510
  year: 2001
  end-page: 1949
  ident: CR162
  article-title: Nanobelts of semiconducting oxides
  publication-title: Science
  doi: 10.1126/science.1058120
– volume: 8
  start-page: eabj9220
  issue: 12
  year: 2022
  ident: CR89
  article-title: Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface
  publication-title: Science Advances
  doi: 10.1126/sciadv.abj9220
– volume: 2019
  start-page: 1091632
  year: 2019
  ident: CR220
  article-title: Fabric-based triboelectric nanogenerators
  publication-title: Research
  doi: 10.34133/2019/1091632
– volume: 25
  start-page: 5691
  issue: 35
  year: 2015
  end-page: 5697
  ident: CR283
  article-title: Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201502318
– volume: 28
  start-page: 172
  year: 2016
  end-page: 178
  ident: CR285
  article-title: A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.024
– volume: 2
  start-page: 688
  issue: 5
  year: 2013
  end-page: 692
  ident: CR51
  article-title: Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.08.002
– volume: 13
  start-page: 1391
  issue: 1
  year: 2022
  ident: CR30
  article-title: A method for quantitatively separating the piezoelectric component from the as-received “piezoelectric” signal
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-29087-w
– volume: 4
  start-page: 34
  issue: 1
  year: 2009
  end-page: 39
  ident: CR165
  article-title: Power generation with laterally packaged piezoelectric fine wires
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2008.314
– volume: 7
  start-page: 10424
  issue: 11
  year: 2013
  end-page: 10432
  ident: CR68
  article-title: Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester
  publication-title: ACS Nano
  doi: 10.1021/nn405209u
– volume: 27
  start-page: 1316
  issue: 8
  year: 2015
  end-page: 1326
  ident: CR81
  article-title: Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition
  publication-title: Advanced Materials
  doi: 10.1002/adma.201404794
– volume: 45
  start-page: 266
  year: 2018
  end-page: 272
  ident: CR336
  article-title: Mxene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.004
– volume: 6
  start-page: 7842
  issue: 14
  year: 2014
  end-page: 7846
  ident: CR145
  article-title: An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector
  publication-title: Nanoscale
  doi: 10.1039/C4NR01934B
– volume: 249
  start-page: 720
  issue: 5459
  year: 1974
  end-page: 724
  ident: CR19
  article-title: Wave power
  publication-title: Nature
  doi: 10.1038/249720a0
– volume: 5
  start-page: 2000531
  issue: 9
  year: 2020
  ident: CR262
  article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting
  publication-title: Advanced Materials Technologies
  doi: 10.1002/admt.202000531
– volume: 32
  start-page: 14715
  issue: 11
  year: 2021
  end-page: 14727
  ident: CR60
  article-title: Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring
  publication-title: Journal of Materials Science Materials in Electronics
  doi: 10.1007/s10854-021-06027-w
– volume: 1
  start-page: 93
  issue: 1
  year: 2010
  ident: CR170
  article-title: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics
  publication-title: Nature Communications
  doi: 10.1038/ncomms1098
– volume: 2022
  start-page: 9645892
  year: 2022
  ident: CR202
  article-title: Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation
  publication-title: Mathematical Problems in Engineering
– volume: 10
  start-page: 2000965
  issue: 24
  year: 2020
  ident: CR34
  article-title: Rationally designed dual-mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000965
– volume: 9
  start-page: 1900801
  issue: 26
  year: 2019
  ident: CR201
  article-title: Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201900801
– volume: 5
  start-page: 11
  issue: 1
  year: 2020
  ident: CR211
  article-title: Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-020-00158-8
– volume: 21
  start-page: 4464
  issue: 23
  year: 2011
  end-page: 4469
  ident: CR146
  article-title: High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201101319
– volume: 1
  start-page: 328
  issue: 12
  year: 2012
  end-page: 334
  ident: CR48
  article-title: Flexible triboelectric generator!
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 12
  start-page: 760
  year: 2015
  end-page: 774
  ident: CR192
  article-title: Theory of freestanding triboelectric-layer-based nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.013
– volume: 10
  start-page: 4797
  issue: 4
  year: 2016
  end-page: 4805
  ident: CR155
  article-title: Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01569
– volume: 28
  start-page: 1803117
  issue: 35
  year: 2018
  ident: CR249
  article-title: An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201803117
– volume: 33
  start-page: 2104290
  issue: 44
  year: 2021
  ident: CR243
  article-title: Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator
  publication-title: Advanced Materials
  doi: 10.1002/adma.202104290
– volume: 60
  start-page: 404
  year: 2019
  end-page: 412
  ident: CR335
  article-title: Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.054
– volume: 67
  start-page: 104235
  year: 2020
  ident: CR53
  article-title: A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104235
– volume: 1
  start-page: 4909
  issue: 12
  year: 2019
  end-page: 4914
  ident: CR84
  article-title: Piezoelectric nanofiber/polymer composite membrane for noise harvesting and active acoustic wave detection
  publication-title: Nanoscale Advances
  doi: 10.1039/C9NA00484J
– volume: 7
  start-page: 18049
  issue: 43
  year: 2015
  end-page: 18053
  ident: CR83
  article-title: Packaged triboelectric nanogenerator with high endurability for severe environments
  publication-title: Nanoscale
  doi: 10.1039/C5NR05514H
– volume: 12
  start-page: 1849
  issue: 2
  year: 2018
  end-page: 1858
  ident: CR272
  article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08674
– volume: 8
  start-page: eabl8423
  issue: 1
  year: 2022
  ident: CR88
  article-title: Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics
  publication-title: Science Advances
  doi: 10.1126/sciadv.abl8423
– volume: 2
  start-page: 17023
  issue: 6
  year: 2017
  ident: CR324
  article-title: Energy harvesting and storage in 1D devices
  publication-title: Nature Reviews. Materials
  doi: 10.1038/natrevmats.2017.23
– volume: 33
  start-page: 2100782
  issue: 26
  year: 2021
  ident: CR101
  article-title: Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals
  publication-title: Advanced Materials
  doi: 10.1002/adma.202100782
– volume: 8
  start-page: 15310
  issue: 1
  year: 2017
  ident: CR168
  article-title: Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics
  publication-title: Nature Communications
  doi: 10.1038/ncomms15310
– volume: 96
  start-page: 107128
  year: 2022
  ident: CR27
  article-title: Ultra-robust tribo- and piezo-electric nanogenerator based on metal organic frameworks (MOF-5) with high environmental stability
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107128
– volume: 11
  start-page: 4203
  issue: 1
  year: 2020
  ident: CR318
  article-title: Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-17891-1
– volume: 57
  start-page: 432
  year: 2019
  end-page: 439
  ident: CR271
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.054
– volume: 6
  start-page: 2809
  issue: 8
  year: 2021
  end-page: 2816
  ident: CR15
  article-title: Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.1c01092
– volume: 8
  start-page: 2649
  issue: 3
  year: 2014
  end-page: 2657
  ident: CR87
  article-title: Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing
  publication-title: ACS Nano
  doi: 10.1021/nn4063616
– volume: 15
  start-page: 1130
  issue: 3
  year: 2022
  ident: CR136
  article-title: Microstructure evolution and improved permeability of ceramic waste-based bricks
  publication-title: Materials
  doi: 10.3390/ma15031130
– volume: 67
  start-page: 104290
  year: 2020
  ident: CR52
  article-title: Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104290
– volume: 14
  start-page: 3208
  issue: 6
  year: 2014
  end-page: 3213
  ident: CR148
  article-title: Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification
  publication-title: Nano Letters
  doi: 10.1021/nl5005652
– volume: 1
  start-page: 10
  issue: 1
  year: 2017
  ident: CR216
  article-title: Triboelectric nanogenerators as flexible power sources
  publication-title: npj Flexible Electronics
  doi: 10.1038/s41528-017-0007-8
– volume: 12
  start-page: 3018
  issue: 12
  year: 2019
  end-page: 3023
  ident: CR74
  article-title: A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor
  publication-title: Nano Research
  doi: 10.1007/s12274-019-2545-y
– volume: 62
  start-page: 442
  year: 2019
  end-page: 448
  ident: CR241
  article-title: Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.029
– volume: 36
  start-page: 250
  year: 2017
  end-page: 259
  ident: CR252
  article-title: Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.026
– volume: 12
  start-page: 616
  issue: 1
  year: 2021
  ident: CR16
  article-title: Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-20919-9
– volume: 9
  start-page: 1442
  issue: 5
  year: 2016
  end-page: 1451
  ident: CR275
  article-title: Multilayered electret films based triboelectric nanogenerator
  publication-title: Nano Research
  doi: 10.1007/s12274-016-1040-y
– volume: 13
  start-page: 400
  issue: 1
  year: 2021
  end-page: 410
  ident: CR36
  article-title: Waste plastic triboelectric nanogenerators using recycled plastic bags for power generation
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.0c16489
– volume: 8
  start-page: 10674
  issue: 10
  year: 2014
  end-page: 10681
  ident: CR150
  article-title: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor
  publication-title: ACS Nano
  doi: 10.1021/nn504243j
– volume: 5
  start-page: 498
  issue: 1
  year: 2023
  end-page: 508
  ident: CR308
  article-title: Self-powered electronic skin for remote human-machine synchronization
  publication-title: ACS Applied Electronic Materials
  doi: 10.1021/acsaelm.2c01476
– volume: 4
  start-page: 1800514
  issue: 3
  year: 2019
  ident: CR266
  article-title: Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting
  publication-title: Advanced Materials Technologies
  doi: 10.1002/admt.201800514
– volume: 20
  start-page: 74
  issue: 2
  year: 2017
  end-page: 82
  ident: CR159
  article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 6
  start-page: 12
  issue: 1
  year: 2021
  ident: CR13
  article-title: Electrical control strategy for an ocean energy conversion system
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00186-y
– volume: 31
  start-page: 560
  year: 2017
  end-page: 567
  ident: CR274
  article-title: Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.004
– volume: 5
  start-page: 074101
  issue: 7
  year: 2017
  ident: CR25
  article-title: Theoretical study of enhancing the piezoelectric nanogenerator’s output power by optimizing the external force’s shape
  publication-title: APL Materials
  doi: 10.1063/1.4975772
– volume: 32
  start-page: 2202048
  issue: 29
  year: 2022
  ident: CR18
  article-title: Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202202048
– volume: 7
  start-page: 7119
  issue: 8
  year: 2013
  end-page: 7125
  ident: CR76
  article-title: Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy
  publication-title: ACS Nano
  doi: 10.1021/nn402477h
– volume: 42
  start-page: 656
  issue: 2
  year: 2018
  end-page: 672
  ident: CR45
  article-title: Parametric study on the thermoelectric conversion performance of a concentrated solar-driven thermionic-thermoelectric hybrid generator
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.3849
– volume: 95
  start-page: 106997
  year: 2022
  ident: CR234
  article-title: A method of measuring weak-charge of self-powered sensors based on triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106997
– volume: 149
  start-page: 174705
  issue: 17
  year: 2018
  ident: CR103
  article-title: Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.5053894
– volume: 8
  start-page: 32649
  issue: 48
  year: 2016
  end-page: 32654
  ident: CR78
  article-title: Self-powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.6b12798
– volume: 97
  start-page: 107172
  year: 2022
  ident: CR28
  article-title: Tungsten disulfide nanosheets for piezoelectric nanogenerator and human-machine interface applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107172
– volume: 27
  start-page: 4938
  issue: 33
  year: 2015
  end-page: 4944
  ident: CR178
  article-title: Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development
  publication-title: Advanced Materials
  doi: 10.1002/adma.201502546
– volume: 34
  start-page: 2109355
  issue: 21
  year: 2022
  ident: CR113
  article-title: Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures
  publication-title: Advanced Materials
  doi: 10.1002/adma.202109355
– volume: 32
  start-page: 2001699
  issue: 33
  year: 2020
  ident: CR100
  article-title: Charge trapping-based electricity generator (CTEG): an ultrarobust and high efficiency nanogenerator for energy harvesting from water droplets
  publication-title: Advanced Materials
  doi: 10.1002/adma.202001699
– volume: 61
  start-page: 454
  year: 2019
  end-page: 461
  ident: CR255
  article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.007
– volume: 4
  start-page: 1700072
  issue: 8
  year: 2017
  ident: CR338
  article-title: Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery
  publication-title: Advanced Science
  doi: 10.1002/advs.201700072
– volume: 24
  start-page: 1401
  issue: 10
  year: 2014
  end-page: 1407
  ident: CR63
  article-title: Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201302453
– volume: 30
  start-page: 2257
  issue: 5
  year: 2019
  end-page: 2272
  ident: CR311
  article-title: Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-017-1385-4
– volume: 12
  start-page: 1315
  issue: 10
  year: 2016
  end-page: 1321
  ident: CR23
  article-title: A transparent antipeep piezoelectric nanogenerator to harvest tapping energy on screen
  publication-title: Small
  doi: 10.1002/smll.201502453
– volume: 16
  start-page: 1271
  issue: 1
  year: 2022
  end-page: 1279
  ident: CR129
  article-title: Self-rebound cambered triboelectric nanogenerator array for self-powered sensing in kinematic analytics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09096
– volume: 12
  start-page: 2103143
  issue: 1
  year: 2022
  ident: CR106
  article-title: Blue energy for green hydrogen fuel: a self-powered electrochemical conversion system driven by triboelectric nanogenerators
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202103143
– volume: 6
  start-page: 41
  issue: 1
  year: 2021
  ident: CR205
  article-title: Effective damping of local low frequency oscillations in power systems integrated with bulk PV generation
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00219-6
– volume: 16
  start-page: 386
  issue: 7
  year: 2019
  end-page: 386
  ident: CR117
  article-title: Pacemaker powered by cardiac motion
  publication-title: Nature Reviews. Cardiology
– volume: 67
  start-page: 104150
  year: 2020
  ident: CR116
  article-title: Triboelectric nanogenerators for electro-assisted cell printing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104150
– volume: 50
  start-page: 536
  year: 2018
  end-page: 543
  ident: CR322
  article-title: Traditional weaving craft for one-piece self-charging power textile for wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.009
– volume: 11
  start-page: 6158
  issue: 1
  year: 2020
  ident: CR290
  article-title: A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-19987-0
– volume: 56
  start-page: 693
  year: 2019
  end-page: 699
  ident: CR94
  article-title: Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.003
– volume: 96
  start-page: 107118
  year: 2022
  ident: CR72
  article-title: Snap-through triboelectric nanogenerator with magnetic coupling buckled bistable mechanism for harvesting rotational energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107118
– volume: 5
  start-page: 3
  issue: 1
  year: 2020
  ident: CR206
  article-title: Optimal integration of DGs into radial distribution network in the presence of plug-in electric vehicles to minimize daily active power losses and to improve the voltage profile of the system using bio-inspired optimization algorithms
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-019-0149-x
– volume: 5
  start-page: 1501467
  issue: 24
  year: 2015
  ident: CR270
  article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201501467
– volume: 29
  start-page: 1606346
  issue: 16
  year: 2017
  ident: CR21
  article-title: Ultrasensitive 2D ZnO piezotronic transistor array for high resolution tactile imaging
  publication-title: Advanced Materials
  doi: 10.1002/adma.201606346
– volume: 14
  start-page: 1039
  issue: 6
  year: 2020
  end-page: 1051
  ident: CR307
  article-title: A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging
  publication-title: Frontiers of Chemical Science and Engineering
  doi: 10.1007/s11705-019-1901-5
– volume: 12
  start-page: 3693
  issue: 1
  year: 2021
  ident: CR122
  article-title: Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-24028-5
– volume: 6
  start-page: 8376
  issue: 1
  year: 2015
  ident: CR343
  article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators
  publication-title: Nature Communications
  doi: 10.1038/ncomms9376
– volume: 11
  start-page: 58
  issue: 1
  year: 2020
  ident: CR128
  article-title: Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-13653-w
– volume: 12
  start-page: 481
  issue: 5
  year: 2017
  end-page: 487
  ident: CR104
  article-title: Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2017.17
– volume: 67
  start-page: 104277
  year: 2020
  ident: CR230
  article-title: A triboelectric rolling ball bearing with self-powering and self-sensing capabilities
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104277
– volume: 5
  start-page: eaav6437
  issue: 4
  year: 2019
  ident: CR219
  article-title: A constant current triboelectric nanogenerator arising from electrostatic breakdown
  publication-title: Science Advances
  doi: 10.1126/sciadv.aav6437
– volume: 3
  start-page: e1700694
  issue: 7
  year: 2017
  ident: CR197
  article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator
  publication-title: Science Advances
  doi: 10.1126/sciadv.1700694
– volume: 67
  start-page: 104205
  year: 2020
  ident: CR200
  article-title: A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104205
– volume: 26
  start-page: 2818
  issue: 18
  year: 2014
  end-page: 2824
  ident: CR195
  article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
  publication-title: Advanced Materials
  doi: 10.1002/adma.201305303
– volume: 365
  start-page: 491
  issue: 6452
  year: 2019
  end-page: 494
  ident: CR323
  article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology
  publication-title: Science
  doi: 10.1126/science.aan3997
– volume: 65
  start-page: 104068
  year: 2019
  ident: CR334
  article-title: Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104068
– volume: 9
  start-page: 12562
  issue: 12
  year: 2015
  end-page: 12572
  ident: CR14
  article-title: Structural optimization of triboelectric nanogenerator for harvesting water wave energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06372
– volume: 250
  start-page: 123773
  year: 2022
  ident: CR203
  article-title: Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123773
– volume: 16
  start-page: 4415
  issue: 3
  year: 2022
  end-page: 4425
  ident: CR62
  article-title: Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10680
– volume: 4
  start-page: 229
  issue: 4
  year: 2013
  end-page: 245
  ident: CR38
  article-title: Nano/microscale pyroelectric energy harvesting: challenges and opportunities
  publication-title: International Journal of Smart and Nano Materials
  doi: 10.1080/19475411.2013.872207
– volume: 11
  start-page: 1883
  issue: 1
  year: 2020
  ident: CR331
  article-title: Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-15373-y
– volume: 9
  start-page: 7957
  issue: 9
  year: 2019
  end-page: 7966
  ident: CR105
  article-title: Design of a Pd-Au nitrite reduction catalyst by identifying and optimizing active ensembles
  publication-title: ACS Catalysis
  doi: 10.1021/acscatal.9b02182
– volume: 98
  start-page: 107282
  year: 2022
  ident: CR12
  article-title: Self-powered environmental monitoring via a triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107282
– volume: 34
  start-page: 2203073
  issue: 29
  year: 2022
  ident: CR131
  article-title: An open-environment tactile sensing system: toward simple and efficient material identification
  publication-title: Advanced Materials
  doi: 10.1002/adma.202203073
– volume: 11
  start-page: 26824
  issue: 30
  year: 2019
  end-page: 26829
  ident: CR224
  article-title: Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b06627
– volume: 31
  start-page: 1902793
  issue: 39
  year: 2019
  ident: CR125
  article-title: Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing
  publication-title: Advanced Materials
  doi: 10.1002/adma.201902793
– volume: 9
  start-page: 4236
  issue: 4
  year: 2015
  end-page: 4243
  ident: CR86
  article-title: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00618
– volume: 15
  start-page: 15700
  issue: 10
  year: 2021
  end-page: 15709
  ident: CR286
  article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05127
– volume: 52
  start-page: 188
  year: 2022
  end-page: 206
  ident: CR41
  article-title: Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2021.11.027
– volume: 10
  start-page: 5147
  issue: 1
  year: 2019
  ident: CR135
  article-title: Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-13166-6
– volume: 312
  start-page: 121422
  year: 2022
  ident: CR107
  article-title: Triboelectric pulsed direct-current enhanced radical generation for efficient degradation of organic pollutants in wastewater
  publication-title: Applied Catalysis B: Environmental
  doi: 10.1016/j.apcatb.2022.121422
– volume: 7
  start-page: 6361
  issue: 7
  year: 2013
  end-page: 6366
  ident: CR71
  article-title: Cylindrical rotating triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/nn402491y
– volume: 95
  start-page: 106998
  year: 2022
  ident: CR235
  article-title: Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106998
– volume: 6
  start-page: 8011
  issue: 11
  year: 2014
  end-page: 8016
  ident: CR77
  article-title: Robust thin-film generator based on segmented contact-electrification for harvesting wind energy
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/am501782f
– volume: 14
  start-page: 354
  issue: 1
  year: 2019
  ident: CR181
  article-title: A portable triboelectric nanogenerator for real-time respiration monitoring
  publication-title: Nanoscale Research Letters
  doi: 10.1186/s11671-019-3187-4
– volume: 7
  start-page: 12985
  issue: 1
  year: 2016
  ident: CR258
  article-title: Boosted output performance of triboelectric nanogenerator via electric double layer effect
  publication-title: Nature Communications
  doi: 10.1038/ncomms12985
– volume: 8
  start-page: 4938
  issue: 9
  year: 2016
  end-page: 4944
  ident: CR82
  article-title: A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment
  publication-title: Nanoscale
  doi: 10.1039/C5NR09087C
– volume: 16
  start-page: 6781
  issue: 4
  year: 2022
  end-page: 6788
  ident: CR6
  article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01594
– volume: 451
  start-page: 809
  issue: 7180
  year: 2008
  end-page: 813
  ident: CR171
  article-title: Microfibre-nanowire hybrid structure for energy scavenging
  publication-title: Nature
  doi: 10.1038/nature06601
– volume: 10
  start-page: 2000426
  issue: 28
  year: 2020
  ident: CR98
  article-title: Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000426
– volume: 11
  start-page: 7199
  issue: 15
  year: 2019
  end-page: 7208
  ident: CR265
  article-title: Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting
  publication-title: Nanoscale
  doi: 10.1039/C8NR09978B
– volume: 51
  start-page: 3380
  issue: 9
  year: 2022
  end-page: 3435
  ident: CR26
  article-title: Piezoelectric nanogenerators for personalized healthcare
  publication-title: Chemical Society Reviews
  doi: 10.1039/D1CS00858G
– volume: 8
  start-page: 88
  issue: 1
  year: 2017
  ident: CR279
  article-title: Achieving ultrahigh triboelectric charge density for efficient energy harvesting
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-00131-4
– volume: 2
  start-page: e1600097
  issue: 10
  year: 2016
  ident: CR196
  article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors
  publication-title: Science Advances
  doi: 10.1126/sciadv.1600097
– volume: 58
  start-page: 579
  year: 2019
  end-page: 584
  ident: CR91
  article-title: Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.078
– volume: 21
  start-page: 161
  issue: 139
  year: 1861
  end-page: 175
  ident: CR158
  article-title: On physical lines of force: Part I—The theory of molecular vortices applied to magnetic phenomena
  publication-title: London, Edinburgh and Dublin Philosophical Magazine and Journal of Science
  doi: 10.1080/14786446108643033
– volume: 16
  start-page: 38
  year: 2015
  end-page: 46
  ident: CR296
  article-title: Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.06.006
– volume: 98
  start-page: 1328
  year: 2022
  end-page: 1340
  ident: CR332
  article-title: A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2022.08.123
– volume: 67
  start-page: 104206
  year: 2020
  ident: CR221
  article-title: Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104206
– volume: 310
  start-page: 123081
  year: 2022
  ident: CR309
  article-title: Antiferroelectric stability and energy storage properties of Co-doped AgNbO ceramics
  publication-title: Journal of Solid State Chemistry
  doi: 10.1016/j.jssc.2022.123081
– volume: 67
  start-page: 104228
  year: 2020
  ident: CR198
  article-title: A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs)
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104228
– volume: 10
  start-page: 2002920
  issue: 45
  year: 2020
  ident: CR316
  article-title: Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202002920
– volume: 7
  start-page: 3836
  issue: 12
  year: 2014
  end-page: 3856
  ident: CR39
  article-title: Pyroelectric materials and devices for energy harvesting applications
  publication-title: Energy & Environmental Science
  doi: 10.1039/C4EE01759E
– volume: 6
  start-page: 880
  issue: 12
  year: 2013
  end-page: 886
  ident: CR64
  article-title: Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator
  publication-title: Nano Research
  doi: 10.1007/s12274-013-0364-0
– volume: 67
  start-page: 104297
  year: 2020
  ident: CR172
  article-title: High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104297
– volume: 5
  start-page: 366
  issue: 5
  year: 2010
  end-page: 373
  ident: CR44
  article-title: Self-powered nanowire devices
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2010.46
– volume: 59
  start-page: 574
  year: 2019
  end-page: 581
  ident: CR24
  article-title: Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.013
– volume: 259
  start-page: 124933
  year: 2022
  ident: CR320
  article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124933
– volume: 7
  start-page: 1700103
  issue: 21
  year: 2017
  ident: CR337
  article-title: Triboelectrification-enabled self-charging lithium-ion batteries
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201700103
– volume: 47
  start-page: 217
  year: 2018
  end-page: 223
  ident: CR294
  article-title: Hybridized nanogenerator based on honeycomblike three electrodes for efficient ocean wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.042
– volume: 11
  start-page: 399
  issue: 1
  year: 2020
  ident: CR247
  article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-14278-9
– volume: 6
  start-page: 3
  issue: 1
  year: 2021
  ident: CR3
  article-title: A critical review of the integration of renewable energy sources with various technologies
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00181-3
– volume: 61
  start-page: 132
  year: 2019
  end-page: 140
  ident: CR188
  article-title: Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.046
– volume: 64
  start-page: 103948
  year: 2019
  ident: CR191
  article-title: Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103948
– volume: 67
  start-page: 104251
  year: 2020
  ident: CR231
  article-title: High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104251
– volume: 46
  start-page: 10372
  issue: 8
  year: 2022
  end-page: 10388
  ident: CR207
  article-title: Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: a review
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.7905
– volume: 32
  start-page: 1908072
  issue: 14
  year: 2020
  ident: CR301
  article-title: FIB-patterned nanosupercapacitors: minimized size with ultrahigh performances
  publication-title: Advanced Materials
  doi: 10.1002/adma.201908072
– volume: 9
  start-page: 3324
  issue: 3
  year: 2015
  end-page: 3331
  ident: CR269
  article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00534
– volume: 57
  start-page: 256
  year: 2019
  end-page: 268
  ident: CR182
  article-title: Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.052
– volume: 34
  start-page: 2200793
  issue: 21
  year: 2022
  ident: CR111
  article-title: Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input
  publication-title: Advanced Materials
  doi: 10.1002/adma.202200793
– volume: 9
  start-page: 1902460
  issue: 40
  year: 2019
  ident: CR238
  article-title: Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201902460
– volume: 66
  start-page: 104086
  year: 2019
  ident: CR217
  article-title: Nanogenerator as new energy technology for self-powered intelligent transportation system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104086
– volume: 10
  start-page: 2002312
  issue: 44
  year: 2020
  ident: CR315
  article-title: Ultrahigh power output from triboelectric nanogenerator based on serrated electrode via spark discharge
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202002312
– volume: 115
  start-page: 100704
  year: 2021
  ident: CR225
  article-title: Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2020.100704
– volume: 8
  start-page: 1800705
  issue: 21
  year: 2018
  ident: CR253
  article-title: Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201800705
– volume: 32
  start-page: 2006839
  issue: 50
  year: 2020
  ident: CR289
  article-title: A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously
  publication-title: Advanced Materials
  doi: 10.1002/adma.202006839
– volume: 9
  start-page: 7479
  issue: 7
  year: 2015
  end-page: 7487
  ident: CR297
  article-title: Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02575
– volume: 5
  start-page: 3426
  issue: 1
  year: 2014
  ident: CR70
  article-title: Radial-arrayed rotary electrification for high performance triboelectric generator
  publication-title: Nature Communications
  doi: 10.1038/ncomms4426
– volume: 1
  start-page: 16031
  issue: 7
  year: 2016
  ident: CR166
  article-title: Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews
  publication-title: Materials
– volume: 15
  start-page: 238
  issue: 2
  year: 2021
  end-page: 250
  ident: CR304
  article-title: Integrated energy storage system based on triboelectric nanogenerator in electronic devices
  publication-title: Frontiers of Chemical Science and Engineering
  doi: 10.1007/s11705-020-1956-3
– volume: 34
  start-page: 2109918
  issue: 13
  year: 2022
  ident: CR114
  article-title: Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator
  publication-title: Advanced Materials
  doi: 10.1002/adma.202109918
– volume: 3
  start-page: eaap8576
  issue: 12
  year: 2017
  ident: CR342
  article-title: Optimization principles and the figure of merit for triboelectric generators
  publication-title: Science Advances
  doi: 10.1126/sciadv.aap8576
– volume: 7
  start-page: 12744
  issue: 1
  year: 2016
  ident: CR108
  article-title: Sustainably powering wearable electronics solely by biomechanical energy
  publication-title: Nature Communications
  doi: 10.1038/ncomms12744
– volume: 46
  start-page: 220
  year: 2018
  end-page: 228
  ident: CR340
  article-title: Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.013
– volume: 312
  start-page: 242
  issue: 5771
  year: 2006
  end-page: 246
  ident: CR42
  article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 5
  start-page: 21
  issue: 1
  year: 2020
  ident: CR210
  article-title: Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-020-00167-7
– volume: 94
  start-page: 106926
  year: 2022
  ident: CR236
  article-title: Highly-stretchable ropelike triboelectric nanogenerator for self-powered monitoring in marine structures
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106926
– volume: 34
  start-page: 2110363
  issue: 14
  year: 2022
  ident: CR126
  article-title: A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles
  publication-title: Advanced Materials
  doi: 10.1002/adma.202110363
– volume: 10
  start-page: 1821
  issue: 1
  year: 2019
  ident: CR227
  article-title: Symbiotic cardiac pacemaker
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-09851-1
– volume: 89
  start-page: 106381
  year: 2021
  ident: CR17
  article-title: A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106381
– volume: 303
  start-page: 1348
  issue: 5662
  year: 2004
  end-page: 1351
  ident: CR161
  article-title: Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts
  publication-title: Science
  doi: 10.1126/science.1092356
– volume: 57
  start-page: 450
  year: 2019
  end-page: 458
  ident: CR164
  article-title: Cellulose/BaTiO aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.076
– volume: 43
  start-page: 101437
  year: 2022
  ident: CR152
  article-title: Bimetallic strip based triboelectric nanogenerator for self-powered high temperature alarm system
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101437
– volume: 39
  start-page: 608
  year: 2017
  end-page: 615
  ident: CR193
  article-title: Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.045
– volume: 5
  start-page: 1600623
  issue: 1
  year: 2017
  ident: CR144
  article-title: A light sensitive nanogenerator for self-powered UV detection with two measuring ranges
  publication-title: Advanced Optical Materials
  doi: 10.1002/adom.201600623
– volume: 7
  start-page: 1602397
  issue: 12
  year: 2017
  ident: CR33
  article-title: Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201602397
– volume: 25
  start-page: 6489
  issue: 41
  year: 2015
  end-page: 6494
  ident: CR280
  article-title: Self-recovering triboelectric nanogenerator as active multifunctional sensors
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201503180
– volume: 25
  start-page: 5794
  issue: 36
  year: 2015
  end-page: 5798
  ident: CR143
  article-title: A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201502646
– volume: 26
  start-page: 7432
  issue: 44
  year: 2014
  end-page: 7437
  ident: CR46
  article-title: Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr Ti )O −0.5(Ba Ca )TiO nanowires for applications
  publication-title: Advanced Materials
  doi: 10.1002/adma.201402868
– volume: 1
  start-page: 6115
  issue: 44
  year: 2013
  end-page: 6122
  ident: CR50
  article-title: A targetable nanogenerator of nitric oxide for light-triggered cytotoxicity
  publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine
  doi: 10.1039/c3tb21131b
– volume: 2022
  start-page: 9616124
  year: 2022
  ident: CR208
  article-title: Hybrid methods using neural network and kalman filter for the state of charge estimation of lithium-ion battery
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2022/9616124
– volume: 2
  start-page: 863
  issue: 4
  year: 2020
  end-page: 878
  ident: CR233
  article-title: Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors
  publication-title: ACS Applied Electronic Materials
  doi: 10.1021/acsaelm.0c00022
– volume: 12
  start-page: 4280
  issue: 5
  year: 2018
  end-page: 4285
  ident: CR248
  article-title: Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08716
– volume: 31
  start-page: 1903793
  issue: 43
  year: 2019
  ident: CR121
  article-title: A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy
  publication-title: Advanced Materials
  doi: 10.1002/adma.201903793
– volume: 88
  start-page: 106199
  year: 2021
  ident: CR11
  article-title: Recent progress in blue energy harvesting for powering distributed sensors in ocean
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106199
– volume: 33
  start-page: 2004178
  issue: 17
  year: 2021
  ident: CR110
  article-title: The triboelectric nanogenerator as an innovative technology toward intelligent sports
  publication-title: Advanced Materials
  doi: 10.1002/adma.202004178
– volume: 5
  start-page: 1613
  issue: 6
  year: 2021
  end-page: 1623
  ident: CR287
  article-title: Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy
  publication-title: Joule
  doi: 10.1016/j.joule.2021.04.016
– volume: 33
  start-page: 2105761
  issue: 51
  year: 2021
  ident: CR244
  article-title: A single-droplet electricity generator achieves an ultrahigh output over 100 V without pre-charging
  publication-title: Advanced Materials
  doi: 10.1002/adma.202105761
– volume: 8
  start-page: 6273
  issue: 6
  year: 2014
  end-page: 6280
  ident: CR56
  article-title: Fiber-based generator for wearable electronics and mobile medication
  publication-title: ACS Nano
  doi: 10.1021/nn501732z
– volume: 10
  start-page: 1903024
  issue: 7
  year: 2020
  ident: CR329
  article-title: Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201903024
– volume: 10
  start-page: 2001770
  issue: 36
  year: 2020
  ident: CR79
  article-title: Energy harvesting from breeze wind (0.7–6 m·s ) using ultra-stretchable triboelectric nanogenerator
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202001770
– volume: 10
  start-page: 4428
  issue: 1
  year: 2019
  ident: CR317
  article-title: A universal standardized method for output capability assessment of nanogenerators
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-12465-2
– volume: 10
  start-page: 1426
  issue: 1
  year: 2019
  ident: CR278
  article-title: Integrated charge excitation triboelectric nanogenerator
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-09464-8
– volume: 46
  start-page: 23730
  issue: 15
  year: 2022
  end-page: 23745
  ident: CR326
  article-title: A state-of-health estimation method considering capacity recovery of lithium batteries
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.8671
– volume: 8
  start-page: 1802159
  issue: 29
  year: 2018
  ident: CR194
  article-title: Elastic-beam triboelectric nanogenerator for high-performance multifunctional applications: sensitive scale, acceleration/force/vibration sensor, and intelligent keyboard
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201802159
– volume: 542
  start-page: 159
  issue: 7640
  year: 2017
  end-page: 160
  ident: CR4
  article-title: New wave power
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 514
  start-page: 470
  issue: 7523
  year: 2014
  end-page: 474
  ident: CR167
  article-title: Piezoelectricity of single-atomic-layer MoS for energy conversion and piezotronics
  publication-title: Nature
  doi: 10.1038/nature13792
– volume: 10
  start-page: 653
  issue: 3
  year: 2017
  end-page: 671
  ident: CR341
  article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators
  publication-title: Energy & Environmental Science
  doi: 10.1039/C7EE00158D
– volume: 10
  start-page: 2000827
  issue: 27
  year: 2020
  ident: CR58
  article-title: Mechanically asymmetrical triboelectric nanogenerator for self-powered monitoring of microscale weak movement
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000827
– volume: 32
  start-page: 2113005
  issue: 27
  year: 2022
  ident: CR130
  article-title: A siloxene/ecoflex nanocomposite-based triboelectric nanogenerator with enhanced charge retention by MoS /LIG for self-powered touchless sensor applications
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202113005
– volume: 67
  start-page: 104259
  year: 2020
  ident: CR299
  article-title: A high strength triboelectric nanogenerator based on rigidflexible coupling design for energy storage system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104259
– volume: 13
  start-page: 2916
  issue: 6
  year: 2013
  end-page: 2923
  ident: CR69
  article-title: Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
  publication-title: Nano Letters
  doi: 10.1021/nl4013002
– volume: 7
  start-page: 1285
  issue: 4
  year: 2015
  end-page: 1289
  ident: CR215
  article-title: Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting
  publication-title: Nanoscale
  doi: 10.1039/C4NR06237J
– volume: 67
  start-page: 104266
  year: 2020
  ident: CR232
  article-title: Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104266
– volume: 10
  start-page: 2000137
  issue: 17
  year: 2020
  ident: CR133
  article-title: Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000137
– volume: 31
  start-page: 1802898
  issue: 34
  year: 2019
  ident: CR288
  article-title: Hybrid energy harvesters: toward sustainable energy harvesting
  publication-title: Advanced Materials
  doi: 10.1002/adma.201802898
– volume: 7
  start-page: 10987
  issue: 1
  year: 2016
  ident: CR327
  article-title: Effective energy storage from a triboelectric nanogenerator
  publication-title: Nature Communications
  doi: 10.1038/ncomms10987
– volume: 64
  start-page: 103943
  year: 2019
  ident: CR32
  article-title: A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103943
– volume: 34
  start-page: 2200146
  issue: 20
  year: 2022
  ident: CR112
  article-title: Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation
  publication-title: Advanced Materials
  doi: 10.1002/adma.202200146
– volume: 9
  start-page: 3773
  issue: 1
  year: 2018
  ident: CR302
  article-title: A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-06045-z
– volume: 12
  start-page: 2103654
  issue: 13
  year: 2022
  ident: CR134
  article-title: Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202103654
– volume: 15
  start-page: 9412
  issue: 6
  year: 2021
  end-page: 9421
  ident: CR268
  article-title: Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00345
– volume: 309
  start-page: 1700
  issue: 5741
  year: 2005
  end-page: 1704
  ident: CR160
  article-title: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices
  publication-title: Science
  doi: 10.1126/science.1116495
– volume: 66
  start-page: 104148
  year: 2019
  ident: CR187
  article-title: Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104148
– volume: 14
  start-page: 124
  issue: 1
  year: 2022
  ident: CR267
  article-title: Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-022-00866-w
– volume: 10
  start-page: 305
  year: 2014
  end-page: 312
  ident: CR139
  article-title: Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.09.018
– volume: 32
  start-page: 287
  year: 2017
  end-page: 293
  ident: CR273
  article-title: A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.061
– volume: 100
  start-page: 187
  year: 2019
  end-page: 225
  ident: CR47
  article-title: High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2018.10.003
– volume: 81
  start-page: 105625
  year: 2021
  ident: CR5
  article-title: Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105625
– volume: 38
  start-page: 458
  year: 2017
  end-page: 466
  ident: CR180
  article-title: A study of sustainable green current generated by the fluid-based triboelectric nanogenerator (FluTENG) with a comparison of contact and sliding mode
  publication-title: Nano Energy
– volume: 90
  start-page: 106631
  year: 2021
  ident: CR298
  article-title: A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106631
– volume: 64
  start-page: 103908
  year: 2019
  ident: CR333
  article-title: Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103908
– volume: 10
  start-page: 1427
  issue: 1
  year: 2019
  ident: CR174
  article-title: Quantifying the triboelectric series
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-09461-x
– volume: 10
  start-page: 2000064
  issue: 23
  year: 2020
  ident: CR97
  article-title: Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000064
– volume: 4
  start-page: 1301322
  issue: 6
  year: 2014
  ident: CR66
  article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201301322
– volume: 6
  start-page: 12
  issue: 1
  year: 2021
  ident: 2271_CR13
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00186-y
– volume: 67
  start-page: 104210
  year: 2020
  ident: 2271_CR229
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104210
– volume: 451
  start-page: 809
  issue: 7180
  year: 2008
  ident: 2271_CR171
  publication-title: Nature
  doi: 10.1038/nature06601
– volume: 26
  start-page: 6599
  issue: 38
  year: 2014
  ident: 2271_CR154
  publication-title: Advanced Materials
  doi: 10.1002/adma.201402428
– volume: 4
  start-page: 1700072
  issue: 8
  year: 2017
  ident: 2271_CR338
  publication-title: Advanced Science
  doi: 10.1002/advs.201700072
– volume: 1
  start-page: 328
  issue: 12
  year: 2012
  ident: 2271_CR48
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 8
  start-page: 2649
  issue: 3
  year: 2014
  ident: 2271_CR87
  publication-title: ACS Nano
  doi: 10.1021/nn4063616
– volume: 33
  start-page: 2105761
  issue: 51
  year: 2021
  ident: 2271_CR244
  publication-title: Advanced Materials
  doi: 10.1002/adma.202105761
– volume: 28
  start-page: 1803117
  issue: 35
  year: 2018
  ident: 2271_CR249
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201803117
– volume: 14
  start-page: 1039
  issue: 6
  year: 2020
  ident: 2271_CR307
  publication-title: Frontiers of Chemical Science and Engineering
  doi: 10.1007/s11705-019-1901-5
– volume: 249
  start-page: 720
  issue: 5459
  year: 1974
  ident: 2271_CR19
  publication-title: Nature
  doi: 10.1038/249720a0
– volume: 5
  start-page: eaav6437
  issue: 4
  year: 2019
  ident: 2271_CR219
  publication-title: Science Advances
  doi: 10.1126/sciadv.aav6437
– volume: 15
  start-page: 6665
  issue: 18
  year: 2022
  ident: 2271_CR313
  publication-title: Energies
  doi: 10.3390/en15186665
– volume: 8
  start-page: 3836
  issue: 4
  year: 2014
  ident: 2271_CR55
  publication-title: ACS Nano
  doi: 10.1021/nn500694y
– volume: 3
  start-page: e1700694
  issue: 7
  year: 2017
  ident: 2271_CR197
  publication-title: Science Advances
  doi: 10.1126/sciadv.1700694
– volume: 66
  start-page: 104131
  year: 2019
  ident: 2271_CR96
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104131
– volume: 15
  start-page: 16368
  issue: 10
  year: 2021
  ident: 2271_CR10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05685
– volume: 14
  start-page: 899
  issue: 3
  year: 2010
  ident: 2271_CR20
  publication-title: Renewable & Sustainable Energy Reviews
  doi: 10.1016/j.rser.2009.11.003
– volume: 34
  start-page: 2110363
  issue: 14
  year: 2022
  ident: 2271_CR126
  publication-title: Advanced Materials
  doi: 10.1002/adma.202110363
– volume: 39
  start-page: 9
  year: 2017
  ident: 2271_CR2
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 10
  start-page: 2001770
  issue: 36
  year: 2020
  ident: 2271_CR79
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202001770
– volume: 81
  start-page: 105625
  year: 2021
  ident: 2271_CR5
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105625
– volume: 26
  start-page: 7432
  issue: 44
  year: 2014
  ident: 2271_CR46
  publication-title: Advanced Materials
  doi: 10.1002/adma.201402868
– volume: 9
  start-page: 3773
  issue: 1
  year: 2018
  ident: 2271_CR302
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-06045-z
– volume: 312
  start-page: 242
  issue: 5771
  year: 2006
  ident: 2271_CR42
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 28
  start-page: 172
  year: 2016
  ident: 2271_CR285
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.024
– volume: 5
  start-page: 11
  issue: 1
  year: 2020
  ident: 2271_CR211
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-020-00158-8
– volume: 16
  start-page: 386
  issue: 7
  year: 2019
  ident: 2271_CR117
  publication-title: Nature Reviews. Cardiology
– volume: 2
  start-page: e1501478
  issue: 3
  year: 2016
  ident: 2271_CR118
  publication-title: Science Advances
  doi: 10.1126/sciadv.1501478
– volume: 50
  start-page: 104215
  year: 2022
  ident: 2271_CR204
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2022.104215
– volume: 65
  start-page: 104068
  year: 2019
  ident: 2271_CR334
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104068
– volume: 7
  start-page: 6361
  issue: 7
  year: 2013
  ident: 2271_CR71
  publication-title: ACS Nano
  doi: 10.1021/nn402491y
– volume: 11
  start-page: 2101147
  issue: 28
  year: 2021
  ident: 2271_CR300
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202101147
– volume: 45
  start-page: 266
  year: 2018
  ident: 2271_CR336
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.004
– volume: 6
  start-page: 8376
  issue: 1
  year: 2015
  ident: 2271_CR343
  publication-title: Nature Communications
  doi: 10.1038/ncomms9376
– volume: 3
  start-page: eaap8576
  issue: 12
  year: 2017
  ident: 2271_CR342
  publication-title: Science Advances
  doi: 10.1126/sciadv.aap8576
– volume: 7
  start-page: 12985
  issue: 1
  year: 2016
  ident: 2271_CR258
  publication-title: Nature Communications
  doi: 10.1038/ncomms12985
– volume: 12
  start-page: 2950
  issue: 1
  year: 2021
  ident: 2271_CR59
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-23207-8
– volume: 14
  start-page: 3208
  issue: 6
  year: 2014
  ident: 2271_CR148
  publication-title: Nano Letters
  doi: 10.1021/nl5005652
– volume: 66
  start-page: 104141
  year: 2019
  ident: 2271_CR190
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104141
– volume: 32
  start-page: 2001699
  issue: 33
  year: 2020
  ident: 2271_CR100
  publication-title: Advanced Materials
  doi: 10.1002/adma.202001699
– volume: 12
  start-page: 3693
  issue: 1
  year: 2021
  ident: 2271_CR122
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-24028-5
– volume: 58
  start-page: 579
  year: 2019
  ident: 2271_CR91
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.078
– volume: 97
  start-page: 107172
  year: 2022
  ident: 2271_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107172
– volume: 10
  start-page: 2000064
  issue: 23
  year: 2020
  ident: 2271_CR97
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000064
– volume: 25
  start-page: 5794
  issue: 36
  year: 2015
  ident: 2271_CR143
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201502646
– volume: 32
  start-page: 2202048
  issue: 29
  year: 2022
  ident: 2271_CR18
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202202048
– volume: 25
  start-page: 2928
  issue: 19
  year: 2015
  ident: 2271_CR153
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201500447
– volume: 15
  start-page: 238
  issue: 2
  year: 2021
  ident: 2271_CR304
  publication-title: Frontiers of Chemical Science and Engineering
  doi: 10.1007/s11705-020-1956-3
– volume: 8
  start-page: 6273
  issue: 6
  year: 2014
  ident: 2271_CR56
  publication-title: ACS Nano
  doi: 10.1021/nn501732z
– volume: 31
  start-page: 351
  year: 2017
  ident: 2271_CR281
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.037
– volume: 95
  start-page: 106998
  year: 2022
  ident: 2271_CR235
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106998
– volume: 365
  start-page: 491
  issue: 6452
  year: 2019
  ident: 2271_CR323
  publication-title: Science
  doi: 10.1126/science.aan3997
– volume: 26
  start-page: 1719
  issue: 11
  year: 2014
  ident: 2271_CR137
  publication-title: Advanced Materials
  doi: 10.1002/adma.201304619
– volume: 52
  start-page: 188
  year: 2022
  ident: 2271_CR41
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2021.11.027
– volume: 29
  start-page: 1807241
  issue: 41
  year: 2019
  ident: 2271_CR295
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201807241
– volume: 259
  start-page: 124933
  year: 2022
  ident: 2271_CR320
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124933
– volume: 56
  start-page: 693
  year: 2019
  ident: 2271_CR94
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.003
– volume: 7
  start-page: 752
  issue: 9
  year: 2013
  ident: 2271_CR169
  publication-title: Nature Photonics
  doi: 10.1038/nphoton.2013.191
– volume: 38
  start-page: 458
  year: 2017
  ident: 2271_CR180
  publication-title: Nano Energy
– volume: 33
  start-page: 2004178
  issue: 17
  year: 2021
  ident: 2271_CR110
  publication-title: Advanced Materials
  doi: 10.1002/adma.202004178
– volume: 67
  start-page: 104278
  year: 2020
  ident: 2271_CR115
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104278
– volume: 10
  start-page: 4797
  issue: 4
  year: 2016
  ident: 2271_CR155
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01569
– volume: 5
  start-page: 21
  issue: 1
  year: 2020
  ident: 2271_CR210
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-020-00167-7
– volume: 95
  start-page: 106971
  year: 2022
  ident: 2271_CR176
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106971
– volume: 67
  start-page: 104205
  year: 2020
  ident: 2271_CR200
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104205
– volume: 100
  start-page: 187
  year: 2019
  ident: 2271_CR47
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2018.10.003
– volume: 7
  start-page: 9461
  issue: 10
  year: 2013
  ident: 2271_CR75
  publication-title: ACS Nano
  doi: 10.1021/nn4043157
– volume: 96
  start-page: 107128
  year: 2022
  ident: 2271_CR27
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107128
– volume: 33
  start-page: 2100782
  issue: 26
  year: 2021
  ident: 2271_CR101
  publication-title: Advanced Materials
  doi: 10.1002/adma.202100782
– volume: 12
  start-page: 2103143
  issue: 1
  year: 2022
  ident: 2271_CR106
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202103143
– volume: 16
  start-page: 6781
  issue: 4
  year: 2022
  ident: 2271_CR6
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01594
– volume: 64
  start-page: 103943
  year: 2019
  ident: 2271_CR32
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103943
– volume: 9
  start-page: 2201098
  issue: 18
  year: 2022
  ident: 2271_CR282
  publication-title: Advanced Science
  doi: 10.1002/advs.202201098
– volume: 9
  start-page: 244
  issue: 1
  year: 2018
  ident: 2271_CR149
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-02685-9
– volume: 8
  start-page: 10674
  issue: 10
  year: 2014
  ident: 2271_CR150
  publication-title: ACS Nano
  doi: 10.1021/nn504243j
– volume: 56
  start-page: 300
  year: 2019
  ident: 2271_CR263
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.043
– volume: 10
  start-page: 2002920
  issue: 45
  year: 2020
  ident: 2271_CR316
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202002920
– volume: 34
  start-page: 2200042
  issue: 17
  year: 2022
  ident: 2271_CR31
  publication-title: Advanced Materials
  doi: 10.1002/adma.202200042
– volume: 33
  start-page: 2104175
  issue: 48
  year: 2021
  ident: 2271_CR120
  publication-title: Advanced Materials
  doi: 10.1002/adma.202104175
– volume: 12
  start-page: 5470
  issue: 1
  year: 2021
  ident: 2271_CR330
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-25753-7
– volume: 66
  start-page: 104148
  year: 2019
  ident: 2271_CR187
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104148
– volume: 12
  start-page: 1315
  issue: 10
  year: 2016
  ident: 2271_CR23
  publication-title: Small
  doi: 10.1002/smll.201502453
– volume: 32
  start-page: 2111775
  issue: 18
  year: 2022
  ident: 2271_CR291
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202111775
– volume: 2019
  start-page: 1091632
  year: 2019
  ident: 2271_CR220
  publication-title: Research
  doi: 10.34133/2019/1091632
– volume: 16
  start-page: 1599
  year: 2023
  ident: 2271_CR306
  publication-title: Energies
  doi: 10.3390/en16041599
– volume: 6
  start-page: 899
  issue: 4
  year: 2018
  ident: 2271_CR22
  publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices
  doi: 10.1039/C7TC05458K
– volume: 38
  start-page: 101
  year: 2017
  ident: 2271_CR85
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.053
– volume: 11
  start-page: 1883
  issue: 1
  year: 2020
  ident: 2271_CR331
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-15373-y
– volume: 4
  start-page: 1577
  issue: 6
  year: 2019
  ident: 2271_CR147
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.9b00259
– volume: 61
  start-page: 132
  year: 2019
  ident: 2271_CR188
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.046
– volume: 7
  start-page: 1285
  issue: 4
  year: 2015
  ident: 2271_CR215
  publication-title: Nanoscale
  doi: 10.1039/C4NR06237J
– volume: 16
  start-page: 1271
  issue: 1
  year: 2022
  ident: 2271_CR129
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09096
– volume: 10
  start-page: 17751
  issue: 37
  year: 2018
  ident: 2271_CR163
  publication-title: Nanoscale
  doi: 10.1039/C8NR05292A
– volume: 6
  start-page: 129
  year: 2014
  ident: 2271_CR257
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.03.015
– volume: 7
  start-page: 1700103
  issue: 21
  year: 2017
  ident: 2271_CR337
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201700103
– volume: 4
  start-page: e12262
  issue: 2
  year: 2022
  ident: 2271_CR228
  publication-title: InfoMat
  doi: 10.1002/inf2.12262
– volume: 43
  start-page: 101437
  year: 2022
  ident: 2271_CR152
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101437
– volume: 9
  start-page: 7957
  issue: 9
  year: 2019
  ident: 2271_CR105
  publication-title: ACS Catalysis
  doi: 10.1021/acscatal.9b02182
– volume: 64
  start-page: 103920
  year: 2019
  ident: 2271_CR186
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103920
– volume: 66
  start-page: 104108
  year: 2019
  ident: 2271_CR93
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104108
– volume: 12
  start-page: 3461
  issue: 4
  year: 2018
  ident: 2271_CR177
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00140
– volume: 5
  start-page: 366
  issue: 5
  year: 2010
  ident: 2271_CR44
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2010.46
– volume: 67
  start-page: 104150
  year: 2020
  ident: 2271_CR116
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104150
– volume: 5
  start-page: 3
  issue: 1
  year: 2020
  ident: 2271_CR206
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-019-0149-x
– volume: 24
  start-page: 4090
  issue: 26
  year: 2014
  ident: 2271_CR67
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201304211
– volume: 7
  start-page: 12744
  issue: 1
  year: 2016
  ident: 2271_CR108
  publication-title: Nature Communications
  doi: 10.1038/ncomms12744
– volume: 52
  start-page: 5065
  issue: 19
  year: 2013
  ident: 2271_CR140
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201300437
– volume: 14
  start-page: 354
  issue: 1
  year: 2019
  ident: 2271_CR181
  publication-title: Nanoscale Research Letters
  doi: 10.1186/s11671-019-3187-4
– volume: 26
  start-page: 2818
  issue: 18
  year: 2014
  ident: 2271_CR195
  publication-title: Advanced Materials
  doi: 10.1002/adma.201305303
– volume: 32
  start-page: 14715
  issue: 11
  year: 2021
  ident: 2271_CR60
  publication-title: Journal of Materials Science Materials in Electronics
  doi: 10.1007/s10854-021-06027-w
– volume: 66
  start-page: 104086
  year: 2019
  ident: 2271_CR217
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104086
– start-page: 23
  volume-title: Triboelectric nanogenerator: vertical contact-separation mode. In: Triboelectric Nanogenerators
  year: 2016
  ident: 2271_CR179
– volume: 11
  start-page: 6158
  issue: 1
  year: 2020
  ident: 2271_CR290
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-19987-0
– volume: 67
  start-page: 104206
  year: 2020
  ident: 2271_CR221
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104206
– volume: 29
  start-page: 1900327
  issue: 41
  year: 2019
  ident: 2271_CR237
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201900327
– volume: 2
  start-page: 17023
  issue: 6
  year: 2017
  ident: 2271_CR324
  publication-title: Nature Reviews. Materials
  doi: 10.1038/natrevmats.2017.23
– volume: 96
  start-page: 107136
  year: 2022
  ident: 2271_CR123
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107136
– volume: 12
  start-page: 481
  issue: 5
  year: 2017
  ident: 2271_CR104
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2017.17
– volume: 34
  start-page: 2109568
  issue: 15
  year: 2022
  ident: 2271_CR124
  publication-title: Advanced Materials
  doi: 10.1002/adma.202109568
– volume: 46
  start-page: 220
  year: 2018
  ident: 2271_CR340
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.013
– volume: 16
  start-page: 4415
  issue: 3
  year: 2022
  ident: 2271_CR62
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10680
– volume: 9
  start-page: 12562
  issue: 12
  year: 2015
  ident: 2271_CR14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06372
– volume: 316
  start-page: 102
  issue: 5821
  year: 2007
  ident: 2271_CR43
  publication-title: Science
  doi: 10.1126/science.1139366
– volume: 10
  start-page: 4428
  issue: 1
  year: 2019
  ident: 2271_CR317
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-12465-2
– volume: 31
  start-page: 1903793
  issue: 43
  year: 2019
  ident: 2271_CR121
  publication-title: Advanced Materials
  doi: 10.1002/adma.201903793
– volume: 94
  start-page: 106926
  year: 2022
  ident: 2271_CR236
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106926
– volume: 67
  start-page: 104259
  year: 2020
  ident: 2271_CR299
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104259
– volume: 8
  start-page: 32649
  issue: 48
  year: 2016
  ident: 2271_CR78
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.6b12798
– volume: 7
  start-page: 3836
  issue: 12
  year: 2014
  ident: 2271_CR39
  publication-title: Energy & Environmental Science
  doi: 10.1039/C4EE01759E
– volume: 64
  start-page: 103948
  year: 2019
  ident: 2271_CR191
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103948
– volume: 98
  start-page: 1328
  year: 2022
  ident: 2271_CR332
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2022.08.123
– volume: 60
  start-page: 404
  year: 2019
  ident: 2271_CR335
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.054
– volume: 46
  start-page: 3034
  issue: 3
  year: 2022
  ident: 2271_CR213
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.7360
– volume: 10
  start-page: 1426
  issue: 1
  year: 2019
  ident: 2271_CR278
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-09464-8
– volume: 28
  start-page: 1805216
  issue: 51
  year: 2018
  ident: 2271_CR339
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201805216
– volume: 9
  start-page: 3324
  issue: 3
  year: 2015
  ident: 2271_CR269
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00534
– volume: 95
  start-page: 107048
  year: 2022
  ident: 2271_CR256
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107048
– volume: 22
  start-page: 87
  year: 2016
  ident: 2271_CR276
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.01.009
– volume: 6
  start-page: 7842
  issue: 14
  year: 2014
  ident: 2271_CR145
  publication-title: Nanoscale
  doi: 10.1039/C4NR01934B
– volume: 50
  start-page: 536
  year: 2018
  ident: 2271_CR322
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.009
– volume: 7
  start-page: 11317
  issue: 12
  year: 2013
  ident: 2271_CR57
  publication-title: ACS Nano
  doi: 10.1021/nn405175z
– volume: 15
  start-page: 9412
  issue: 6
  year: 2021
  ident: 2271_CR268
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00345
– volume: 20
  start-page: 74
  issue: 2
  year: 2017
  ident: 2271_CR159
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 6
  start-page: 3
  issue: 1
  year: 2021
  ident: 2271_CR3
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00181-3
– volume: 514
  start-page: 470
  issue: 7523
  year: 2014
  ident: 2271_CR167
  publication-title: Nature
  doi: 10.1038/nature13792
– volume: 11
  start-page: 26824
  issue: 30
  year: 2019
  ident: 2271_CR224
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b06627
– volume: 89
  start-page: 106381
  year: 2021
  ident: 2271_CR17
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106381
– volume: 1
  start-page: 10
  issue: 1
  year: 2017
  ident: 2271_CR216
  publication-title: npj Flexible Electronics
  doi: 10.1038/s41528-017-0007-8
– volume: 31
  start-page: 1807795
  issue: 12
  year: 2019
  ident: 2271_CR119
  publication-title: Advanced Materials
  doi: 10.1002/adma.201807795
– volume: 366
  start-page: 969
  issue: 6468
  year: 2019
  ident: 2271_CR328
  publication-title: Science
  doi: 10.1126/science.aan8285
– volume: 95
  start-page: 107050
  year: 2022
  ident: 2271_CR251
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107050
– volume: 11
  start-page: 2101116
  issue: 31
  year: 2021
  ident: 2271_CR9
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202101116
– volume: 24
  start-page: 2892
  issue: 19
  year: 2014
  ident: 2271_CR37
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201303659
– volume: 9
  start-page: 922
  issue: 1
  year: 2015
  ident: 2271_CR73
  publication-title: ACS Nano
  doi: 10.1021/nn506673x
– volume: 46
  start-page: 10372
  issue: 8
  year: 2022
  ident: 2271_CR207
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.7905
– volume: 46
  start-page: 24091
  issue: 15
  year: 2022
  ident: 2271_CR312
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.8709
– volume: 32
  start-page: 1908072
  issue: 14
  year: 2020
  ident: 2271_CR301
  publication-title: Advanced Materials
  doi: 10.1002/adma.201908072
– volume: 57
  start-page: 450
  year: 2019
  ident: 2271_CR164
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.076
– volume: 67
  start-page: 104235
  year: 2020
  ident: 2271_CR53
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104235
– volume: 312
  start-page: 121422
  year: 2022
  ident: 2271_CR107
  publication-title: Applied Catalysis B: Environmental
  doi: 10.1016/j.apcatb.2022.121422
– volume: 6
  start-page: 8401
  issue: 1
  year: 2015
  ident: 2271_CR40
  publication-title: Nature Communications
  doi: 10.1038/ncomms9401
– volume: 10
  start-page: 061106
  issue: 6
  year: 2022
  ident: 2271_CR209
  publication-title: APL Materials
  doi: 10.1063/5.0092074
– volume: 11
  start-page: 399
  issue: 1
  year: 2020
  ident: 2271_CR247
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-14278-9
– volume: 4
  start-page: 1800514
  issue: 3
  year: 2019
  ident: 2271_CR266
  publication-title: Advanced Materials Technologies
  doi: 10.1002/admt.201800514
– volume: 12
  start-page: 376
  issue: 3
  year: 2018
  ident: 2271_CR305
  publication-title: Frontiers of Chemical Science and Engineering
  doi: 10.1007/s11705-018-1705-z
– volume: 29
  start-page: 1606346
  issue: 16
  year: 2017
  ident: 2271_CR21
  publication-title: Advanced Materials
  doi: 10.1002/adma.201606346
– volume: 13
  start-page: 1932
  issue: 2
  year: 2019
  ident: 2271_CR284
  publication-title: ACS Nano
– volume: 11
  start-page: 4203
  issue: 1
  year: 2020
  ident: 2271_CR318
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-17891-1
– volume: 1
  start-page: 16138
  issue: 10
  year: 2016
  ident: 2271_CR222
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2016.138
– volume: 18
  start-page: 2108091
  issue: 14
  year: 2022
  ident: 2271_CR218
  publication-title: Small
  doi: 10.1002/smll.202108091
– volume: 33
  start-page: 2104290
  issue: 44
  year: 2021
  ident: 2271_CR243
  publication-title: Advanced Materials
  doi: 10.1002/adma.202104290
– volume: 7
  start-page: 10987
  issue: 1
  year: 2016
  ident: 2271_CR327
  publication-title: Nature Communications
  doi: 10.1038/ncomms10987
– volume: 7
  start-page: 7342
  issue: 8
  year: 2013
  ident: 2271_CR132
  publication-title: ACS Nano
  doi: 10.1021/nn403021m
– volume: 63
  start-page: 103885
  year: 2019
  ident: 2271_CR240
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103885
– volume: 21
  start-page: 161
  issue: 139
  year: 1861
  ident: 2271_CR158
  publication-title: London, Edinburgh and Dublin Philosophical Magazine and Journal of Science
  doi: 10.1080/14786446108643033
– volume: 32
  start-page: 287
  year: 2017
  ident: 2271_CR273
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.061
– volume: 32
  start-page: 1905696
  issue: 2
  year: 2020
  ident: 2271_CR245
  publication-title: Advanced Materials
  doi: 10.1002/adma.201905696
– volume: 67
  start-page: 104214
  year: 2020
  ident: 2271_CR277
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104214
– volume: 32
  start-page: 2006839
  issue: 50
  year: 2020
  ident: 2271_CR289
  publication-title: Advanced Materials
  doi: 10.1002/adma.202006839
– volume: 10
  start-page: 2002123
  issue: 40
  year: 2020
  ident: 2271_CR325
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202002123
– volume: 12
  start-page: 616
  issue: 1
  year: 2021
  ident: 2271_CR16
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-20919-9
– volume: 4
  start-page: 34
  issue: 1
  year: 2009
  ident: 2271_CR165
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2008.314
– volume: 13
  start-page: 2226
  issue: 5
  year: 2013
  ident: 2271_CR184
  publication-title: Nano Letters
  doi: 10.1021/nl400738p
– volume: 7
  start-page: 7119
  issue: 8
  year: 2013
  ident: 2271_CR76
  publication-title: ACS Nano
  doi: 10.1021/nn402477h
– volume: 6
  start-page: 41
  issue: 1
  year: 2021
  ident: 2271_CR205
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00219-6
– volume: 31
  start-page: 1902793
  issue: 39
  year: 2019
  ident: 2271_CR125
  publication-title: Advanced Materials
  doi: 10.1002/adma.201902793
– volume: 7
  start-page: 9533
  issue: 11
  year: 2013
  ident: 2271_CR49
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 10
  start-page: 2264
  issue: 1
  year: 2019
  ident: 2271_CR246
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-10232-x
– volume: 65
  start-page: 104016
  year: 2019
  ident: 2271_CR185
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104016
– volume: 431
  start-page: 134002
  year: 2022
  ident: 2271_CR90
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.134002
– volume: 10
  start-page: 2695
  issue: 1
  year: 2019
  ident: 2271_CR127
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-10433-4
– volume: 67
  start-page: 104269
  year: 2020
  ident: 2271_CR242
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104269
– volume: 34
  start-page: 2109918
  issue: 13
  year: 2022
  ident: 2271_CR114
  publication-title: Advanced Materials
  doi: 10.1002/adma.202109918
– volume: 67
  start-page: 104228
  year: 2020
  ident: 2271_CR198
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104228
– volume: 67
  start-page: 104251
  year: 2020
  ident: 2271_CR231
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104251
– volume: 10
  start-page: 2000827
  issue: 27
  year: 2020
  ident: 2271_CR58
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000827
– volume: 34
  start-page: 2203073
  issue: 29
  year: 2022
  ident: 2271_CR131
  publication-title: Advanced Materials
  doi: 10.1002/adma.202203073
– volume: 11
  start-page: 7199
  issue: 15
  year: 2019
  ident: 2271_CR265
  publication-title: Nanoscale
  doi: 10.1039/C8NR09978B
– volume: 8
  start-page: 15310
  issue: 1
  year: 2017
  ident: 2271_CR168
  publication-title: Nature Communications
  doi: 10.1038/ncomms15310
– volume: 57
  start-page: 256
  year: 2019
  ident: 2271_CR182
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.052
– volume: 96
  start-page: 107118
  year: 2022
  ident: 2271_CR72
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107118
– volume: 149
  start-page: 174705
  issue: 17
  year: 2018
  ident: 2271_CR103
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.5053894
– volume: 4
  start-page: 229
  issue: 4
  year: 2013
  ident: 2271_CR38
  publication-title: International Journal of Smart and Nano Materials
  doi: 10.1080/19475411.2013.872207
– volume: 9
  start-page: 4236
  issue: 4
  year: 2015
  ident: 2271_CR86
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00618
– volume: 309
  start-page: 1700
  issue: 5741
  year: 2005
  ident: 2271_CR160
  publication-title: Science
  doi: 10.1126/science.1116495
– volume: 31
  start-page: 1802898
  issue: 34
  year: 2019
  ident: 2271_CR288
  publication-title: Advanced Materials
  doi: 10.1002/adma.201802898
– volume: 13
  start-page: 1391
  issue: 1
  year: 2022
  ident: 2271_CR30
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-29087-w
– volume: 1
  start-page: 16031
  issue: 7
  year: 2016
  ident: 2271_CR166
  publication-title: Materials
– volume: 57
  start-page: 432
  year: 2019
  ident: 2271_CR271
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.054
– volume: 11
  start-page: 58
  issue: 1
  year: 2020
  ident: 2271_CR128
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-13653-w
– volume: 15
  start-page: 1130
  issue: 3
  year: 2022
  ident: 2271_CR136
  publication-title: Materials
  doi: 10.3390/ma15031130
– volume: 2022
  start-page: 9645892
  year: 2022
  ident: 2271_CR202
  publication-title: Mathematical Problems in Engineering
– volume: 46
  start-page: 5423
  issue: 5
  year: 2022
  ident: 2271_CR212
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.7545
– volume: 62
  start-page: 442
  year: 2019
  ident: 2271_CR241
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.029
– volume: 36
  start-page: 250
  year: 2017
  ident: 2271_CR252
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.026
– volume: 58
  start-page: 842
  year: 2019
  ident: 2271_CR254
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.083
– volume: 90
  start-page: 106631
  year: 2021
  ident: 2271_CR298
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106631
– volume: 2
  start-page: 688
  issue: 5
  year: 2013
  ident: 2271_CR51
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.08.002
– volume: 115
  start-page: 100704
  year: 2021
  ident: 2271_CR225
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2020.100704
– volume: 10
  start-page: 2002312
  issue: 44
  year: 2020
  ident: 2271_CR315
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202002312
– volume: 7
  start-page: 1602397
  issue: 12
  year: 2017
  ident: 2271_CR33
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201602397
– volume: 12
  start-page: 3018
  issue: 12
  year: 2019
  ident: 2271_CR74
  publication-title: Nano Research
  doi: 10.1007/s12274-019-2545-y
– volume: 27
  start-page: 4938
  issue: 33
  year: 2015
  ident: 2271_CR178
  publication-title: Advanced Materials
  doi: 10.1002/adma.201502546
– volume: 3
  start-page: eaat2516
  issue: 20
  year: 2018
  ident: 2271_CR223
  publication-title: Science Robotics
  doi: 10.1126/scirobotics.aat2516
– volume: 97
  start-page: 107205
  year: 2022
  ident: 2271_CR29
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107205
– volume: 46
  start-page: 23730
  issue: 15
  year: 2022
  ident: 2271_CR326
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.8671
– volume: 24
  start-page: 1401
  issue: 10
  year: 2014
  ident: 2271_CR63
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201302453
– volume: 67
  start-page: 1145
  issue: 11
  year: 2022
  ident: 2271_CR310
  publication-title: Science Bulletin
  doi: 10.1016/j.scib.2022.04.001
– volume: 303
  start-page: 1348
  issue: 5662
  year: 2004
  ident: 2271_CR161
  publication-title: Science
  doi: 10.1126/science.1092356
– volume: 52
  start-page: 299
  year: 2022
  ident: 2271_CR102
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2021.10.034
– volume: 8
  start-page: 1800705
  issue: 21
  year: 2018
  ident: 2271_CR253
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201800705
– volume: 176
  start-page: 447
  year: 2014
  ident: 2271_CR175
  publication-title: Faraday Discussions
  doi: 10.1039/C4FD00159A
– volume: 2022
  start-page: 7620382
  year: 2022
  ident: 2271_CR214
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2022/7620382
– volume: 5
  start-page: 074101
  issue: 7
  year: 2017
  ident: 2271_CR25
  publication-title: APL Materials
  doi: 10.1063/1.4975772
– volume: 67
  start-page: 104277
  year: 2020
  ident: 2271_CR230
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104277
– volume: 21
  start-page: 4464
  issue: 23
  year: 2011
  ident: 2271_CR146
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201101319
– volume: 2
  start-page: e1600097
  issue: 10
  year: 2016
  ident: 2271_CR196
  publication-title: Science Advances
  doi: 10.1126/sciadv.1600097
– volume: 9
  start-page: 1902460
  issue: 40
  year: 2019
  ident: 2271_CR238
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201902460
– volume: 34
  start-page: 2200146
  issue: 20
  year: 2022
  ident: 2271_CR112
  publication-title: Advanced Materials
  doi: 10.1002/adma.202200146
– volume: 10
  start-page: 2000137
  issue: 17
  year: 2020
  ident: 2271_CR133
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000137
– volume: 10
  start-page: 1427
  issue: 1
  year: 2019
  ident: 2271_CR174
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-09461-x
– volume: 33
  start-page: 2102765
  issue: 34
  year: 2021
  ident: 2271_CR138
  publication-title: Advanced Materials
  doi: 10.1002/adma.202102765
– volume: 6
  start-page: 2809
  issue: 8
  year: 2021
  ident: 2271_CR15
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.1c01092
– volume: 25
  start-page: 6094
  issue: 42
  year: 2013
  ident: 2271_CR65
  publication-title: Advanced Materials
  doi: 10.1002/adma.201302397
– volume: 67
  start-page: 104297
  year: 2020
  ident: 2271_CR172
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104297
– volume: 11
  start-page: 2100038
  issue: 16
  year: 2021
  ident: 2271_CR157
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202100038
– volume: 88
  start-page: 106199
  year: 2021
  ident: 2271_CR11
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106199
– volume: 12
  start-page: 4280
  issue: 5
  year: 2018
  ident: 2271_CR248
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08716
– volume: 14
  start-page: 9046
  issue: 7
  year: 2022
  ident: 2271_CR264
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c22129
– volume: 25
  start-page: 3718
  issue: 24
  year: 2015
  ident: 2271_CR250
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201501331
– volume: 12
  start-page: 4686
  issue: 1
  year: 2021
  ident: 2271_CR35
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-25046-z
– volume: 9
  start-page: 1901987
  issue: 36
  year: 2019
  ident: 2271_CR239
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201901987
– volume: 10
  start-page: 2000426
  issue: 28
  year: 2020
  ident: 2271_CR98
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000426
– volume: 8
  start-page: 1802159
  issue: 29
  year: 2018
  ident: 2271_CR194
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201802159
– volume: 5
  start-page: 3426
  issue: 1
  year: 2014
  ident: 2271_CR70
  publication-title: Nature Communications
  doi: 10.1038/ncomms4426
– volume: 291
  start-page: 1947
  issue: 5510
  year: 2001
  ident: 2271_CR162
  publication-title: Science
  doi: 10.1126/science.1058120
– volume: 6
  start-page: 880
  issue: 12
  year: 2013
  ident: 2271_CR64
  publication-title: Nano Research
  doi: 10.1007/s12274-013-0364-0
– volume: 5
  start-page: 1501467
  issue: 24
  year: 2015
  ident: 2271_CR270
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201501467
– volume: 1
  start-page: 4909
  issue: 12
  year: 2019
  ident: 2271_CR84
  publication-title: Nanoscale Advances
  doi: 10.1039/C9NA00484J
– volume: 90
  start-page: 106573
  year: 2021
  ident: 2271_CR259
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106573
– volume: 10
  start-page: 653
  issue: 3
  year: 2017
  ident: 2271_CR341
  publication-title: Energy & Environmental Science
  doi: 10.1039/C7EE00158D
– volume: 2
  start-page: 863
  issue: 4
  year: 2020
  ident: 2271_CR233
  publication-title: ACS Applied Electronic Materials
  doi: 10.1021/acsaelm.0c00022
– volume: 44
  start-page: 682
  issue: 9
  year: 2019
  ident: 2271_CR1
  publication-title: MRS Bulletin
  doi: 10.1557/mrs.2019.209
– volume: 11
  start-page: 2003616
  issue: 12
  year: 2021
  ident: 2271_CR99
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202003616
– volume: 7
  start-page: 10424
  issue: 11
  year: 2013
  ident: 2271_CR68
  publication-title: ACS Nano
  doi: 10.1021/nn405209u
– volume: 57
  start-page: 616
  year: 2019
  ident: 2271_CR292
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.078
– volume: 95
  start-page: 106994
  year: 2022
  ident: 2271_CR8
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106994
– volume: 2022
  start-page: 9616124
  year: 2022
  ident: 2271_CR208
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2022/9616124
– volume: 9
  start-page: 3733
  issue: 1
  year: 2018
  ident: 2271_CR314
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-06198-x
– volume: 14
  start-page: 5328
  issue: 4
  year: 2022
  ident: 2271_CR226
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c20984
– volume: 5
  start-page: 498
  issue: 1
  year: 2023
  ident: 2271_CR308
  publication-title: ACS Applied Electronic Materials
  doi: 10.1021/acsaelm.2c01476
– volume: 11
  start-page: 6186
  issue: 1
  year: 2020
  ident: 2271_CR319
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-20045-y
– volume: 12
  start-page: 1849
  issue: 2
  year: 2018
  ident: 2271_CR272
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08674
– volume: 13
  start-page: 2916
  issue: 6
  year: 2013
  ident: 2271_CR69
  publication-title: Nano Letters
  doi: 10.1021/nl4013002
– volume: 95
  start-page: 106997
  year: 2022
  ident: 2271_CR234
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106997
– volume: 67
  start-page: 104197
  year: 2020
  ident: 2271_CR261
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104197
– volume: 12
  start-page: 760
  year: 2015
  ident: 2271_CR192
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.013
– volume: 8
  start-page: eabl8423
  issue: 1
  year: 2022
  ident: 2271_CR88
  publication-title: Science Advances
  doi: 10.1126/sciadv.abl8423
– volume: 5
  start-page: 1613
  issue: 6
  year: 2021
  ident: 2271_CR287
  publication-title: Joule
  doi: 10.1016/j.joule.2021.04.016
– volume: 1
  start-page: 93
  issue: 1
  year: 2010
  ident: 2271_CR170
  publication-title: Nature Communications
  doi: 10.1038/ncomms1098
– volume: 32
  start-page: 1902549
  issue: 5
  year: 2020
  ident: 2271_CR109
  publication-title: Advanced Materials
  doi: 10.1002/adma.201902549
– volume: 27
  start-page: 1316
  issue: 8
  year: 2015
  ident: 2271_CR81
  publication-title: Advanced Materials
  doi: 10.1002/adma.201404794
– volume: 32
  start-page: 2113005
  issue: 27
  year: 2022
  ident: 2271_CR130
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202113005
– volume: 10
  start-page: 1821
  issue: 1
  year: 2019
  ident: 2271_CR227
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-09851-1
– volume: 14
  start-page: 124
  issue: 1
  year: 2022
  ident: 2271_CR267
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-022-00866-w
– volume: 25
  start-page: 5691
  issue: 35
  year: 2015
  ident: 2271_CR283
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201502318
– volume: 542
  start-page: 159
  issue: 7640
  year: 2017
  ident: 2271_CR4
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 9
  start-page: 1802906
  issue: 1
  year: 2019
  ident: 2271_CR173
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201802906
– volume: 112
  start-page: 183701
  issue: 18
  year: 2018
  ident: 2271_CR95
  publication-title: Applied Physics Letters
  doi: 10.1063/1.5030152
– volume: 61
  start-page: 454
  year: 2019
  ident: 2271_CR255
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.007
– volume: 8
  start-page: eabj9220
  issue: 12
  year: 2022
  ident: 2271_CR89
  publication-title: Science Advances
  doi: 10.1126/sciadv.abj9220
– volume: 13
  start-page: 400
  issue: 1
  year: 2021
  ident: 2271_CR36
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.0c16489
– volume: 6
  start-page: 8011
  issue: 11
  year: 2014
  ident: 2271_CR77
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/am501782f
– volume: 34
  start-page: 2200793
  issue: 21
  year: 2022
  ident: 2271_CR111
  publication-title: Advanced Materials
  doi: 10.1002/adma.202200793
– volume: 31
  start-page: 560
  year: 2017
  ident: 2271_CR274
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.004
– volume: 8
  start-page: 6440
  issue: 6
  year: 2014
  ident: 2271_CR142
  publication-title: ACS Nano
  doi: 10.1021/nn501983s
– volume: 66
  start-page: 104087
  year: 2019
  ident: 2271_CR183
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104087
– volume: 1
  start-page: 6115
  issue: 44
  year: 2013
  ident: 2271_CR50
  publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine
  doi: 10.1039/c3tb21131b
– volume: 11
  start-page: 4277
  issue: 1
  year: 2020
  ident: 2271_CR303
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-18086-4
– volume: 98
  start-page: 107282
  year: 2022
  ident: 2271_CR12
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107282
– volume: 34
  start-page: 2109355
  issue: 21
  year: 2022
  ident: 2271_CR113
  publication-title: Advanced Materials
  doi: 10.1002/adma.202109355
– volume: 12
  start-page: 2103654
  issue: 13
  year: 2022
  ident: 2271_CR134
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202103654
– volume: 96
  start-page: 107115
  year: 2022
  ident: 2271_CR61
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107115
– volume: 30
  start-page: 2257
  issue: 5
  year: 2019
  ident: 2271_CR311
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-017-1385-4
– volume: 9
  start-page: 1900801
  issue: 26
  year: 2019
  ident: 2271_CR201
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201900801
– volume: 250
  start-page: 123773
  year: 2022
  ident: 2271_CR203
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123773
– volume: 310
  start-page: 123081
  year: 2022
  ident: 2271_CR309
  publication-title: Journal of Solid State Chemistry
  doi: 10.1016/j.jssc.2022.123081
– volume: 67
  start-page: 104266
  year: 2020
  ident: 2271_CR232
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104266
– volume: 9
  start-page: 7479
  issue: 7
  year: 2015
  ident: 2271_CR297
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02575
– volume: 9
  start-page: 1442
  issue: 5
  year: 2016
  ident: 2271_CR275
  publication-title: Nano Research
  doi: 10.1007/s12274-016-1040-y
– volume: 25
  start-page: 6489
  issue: 41
  year: 2015
  ident: 2271_CR280
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201503180
– volume: 59
  start-page: 574
  year: 2019
  ident: 2271_CR24
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.013
– volume: 5
  start-page: 2000531
  issue: 9
  year: 2020
  ident: 2271_CR262
  publication-title: Advanced Materials Technologies
  doi: 10.1002/admt.202000531
– volume: 4
  start-page: 1301322
  issue: 6
  year: 2014
  ident: 2271_CR66
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201301322
– volume: 10
  start-page: 1903024
  issue: 7
  year: 2020
  ident: 2271_CR329
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201903024
– volume: 10
  start-page: 2000965
  issue: 24
  year: 2020
  ident: 2271_CR34
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202000965
– volume: 42
  start-page: 656
  issue: 2
  year: 2018
  ident: 2271_CR45
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.3849
– volume: 11
  start-page: 2101194
  issue: 26
  year: 2021
  ident: 2271_CR80
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202101194
– volume: 64
  start-page: 103908
  year: 2019
  ident: 2271_CR333
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103908
– volume: 51
  start-page: 3380
  issue: 9
  year: 2022
  ident: 2271_CR26
  publication-title: Chemical Society Reviews
  doi: 10.1039/D1CS00858G
– volume: 67
  start-page: 104290
  year: 2020
  ident: 2271_CR52
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104290
– volume: 66
  start-page: 104167
  year: 2019
  ident: 2271_CR92
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104167
– volume: 5
  start-page: 1600623
  issue: 1
  year: 2017
  ident: 2271_CR144
  publication-title: Advanced Optical Materials
  doi: 10.1002/adom.201600623
– volume: 66
  start-page: 104080
  year: 2019
  ident: 2271_CR151
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104080
– volume: 8
  start-page: 4938
  issue: 9
  year: 2016
  ident: 2271_CR82
  publication-title: Nanoscale
  doi: 10.1039/C5NR09087C
– volume: 11
  start-page: 2003066
  issue: 9
  year: 2021
  ident: 2271_CR156
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202003066
– volume: 6
  start-page: 8031
  issue: 1
  year: 2015
  ident: 2271_CR54
  publication-title: Nature Communications
  doi: 10.1038/ncomms9031
– volume: 10
  start-page: 5147
  issue: 1
  year: 2019
  ident: 2271_CR135
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-13166-6
– volume: 2
  start-page: 693
  issue: 5
  year: 2013
  ident: 2271_CR141
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.08.004
– volume: 47
  start-page: 217
  year: 2018
  ident: 2271_CR294
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.042
– volume: 39
  start-page: 608
  year: 2017
  ident: 2271_CR193
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.045
– volume: 6
  start-page: 1929
  issue: 10
  year: 2018
  ident: 2271_CR199
  publication-title: Energy Technology
  doi: 10.1002/ente.201800035
– volume: 65
  start-page: 104012
  year: 2019
  ident: 2271_CR189
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104012
– volume: 10
  start-page: 305
  year: 2014
  ident: 2271_CR139
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.09.018
– volume: 24
  start-page: 297
  year: 2020
  ident: 2271_CR321
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2019.08.002
– volume: 7
  start-page: 18049
  issue: 43
  year: 2015
  ident: 2271_CR83
  publication-title: Nanoscale
  doi: 10.1039/C5NR05514H
– volume: 16
  start-page: 38
  year: 2015
  ident: 2271_CR296
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.06.006
– volume: 15
  start-page: 15700
  issue: 10
  year: 2021
  ident: 2271_CR286
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05127
– volume: 29
  start-page: 1606703
  issue: 17
  year: 2017
  ident: 2271_CR293
  publication-title: Advanced Materials
  doi: 10.1002/adma.201606703
– volume: 12
  start-page: 2103076
  issue: 3
  year: 2022
  ident: 2271_CR7
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202103076
– volume: 8
  start-page: 1932
  issue: 2
  year: 2014
  ident: 2271_CR260
  publication-title: ACS Nano
  doi: 10.1021/nn406565k
– volume: 8
  start-page: 88
  issue: 1
  year: 2017
  ident: 2271_CR279
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-00131-4
SSID ssib031263377
ssib011451075
ssib014623632
ssj0001844256
ssib020093015
ssib058688259
Score 2.5228882
SecondaryResourceType review_article
Snippet Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 635
SubjectTerms Chemistry
Chemistry and Materials Science
Energy
Energy harvesting
Energy sources
Energy storage
Industrial Chemistry/Chemical Engineering
Management methods
Nanogenerators
Nanotechnology
Power management
Review Article
Water waves
Wave power
Title Triboelectric nanogenerators: the beginning of blue dream
URI https://link.springer.com/article/10.1007/s11705-022-2271-y
https://www.proquest.com/docview/2819660747
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFH7R7aAejE6N07lw8KQhgbYU8LYs00WjJ5fME2lpMSYTjNsO--99BSrTqIknDhTSPF77ffT9-ADOGUJCyGXselRwlzEduIhyxCVKKy9OI8HK8rH7Bz6esNtpMK3ruOc2292GJMuduil2M51fXJN9Tkjou6tNaAfm1x2deEIG1ol8Iz3rNZiIOwGhvCmeNNEAuoaB1Cec0roYszyYiRj6cSlK55nqZfRYGw39aRZf8awhqd_iqiVcXe_Bbs0znUHlGPuwofMObA2tvFsHdtY6ER5AbDqIFJUmzkvq5CIvnsuG1EaM58pBluhII-FgTlGcInPkbKkdhYTz9RAm16PH4ditVRXclPJggdMWvuCSBYopxTkCPkuV1jqIqKAiwwWN258mcRYpJHuShFIjp-VxFmrBBbKRI2jlRa6PwQlUzMMwjaQfZozilfuSUKQIiiLwhbQLnrVNktYtx43yxSxpmiUbcyZozsSYM1l14eLzkbeq38Zfg3vW4Em99OaJiQxybnQBunBpP0Jz-9eXnfxr9ClsG-H5KmmsB63F-1KfIT1ZyD60BzdPd6N-6ZYffGLT7w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oPEwPolNxOrUHT0qhTdK09TaGY-q20wa7laRJRZituO2w_96X_rBTVPDUQ9MSXl7yfeT9-ACuGUKCz2VoO1RwmzHt2YhyxCZKKyeMA8Hy8rHRmA-m7HHmzco67kWV7V6FJPOTui52M51fbJN9Tojv2utt2EEuEJg8rinpVk7kGulZp8ZEPAkI5XXxpIkG0A0MpC7hlJbFmPnFTMDQj3NROsdUL6PHVtHQn2bxFc9qkvotrprDVf8A9kueaXULxziELZ22oNmr5N1asLfRifAIQtNBJCs0cV5iKxVp9pw3pDZiPHcWskRLGgkHc4tiZYkl5yttKSScr8cw7d9PegO7VFWwY8q9JU5buIJL5immFOcI-CxWWmsvoIKKBDc0Hn-ahEmgkOxJ4kuNnJaHia8FF8hGTqCRZqk-BctTIff9OJCunzCKT-5KQpEiKIrA59M2OJVtorhsOW6UL-ZR3SzZmDNCc0bGnNG6DTefn7wV_Tb-GtypDB6VW28Rmcgg50YXoA231SLUr3_92dm_Rl9BczAZDaPhw_jpHHaNCH2RQNaBxvJ9pS-QqizlZe6aH_gK1U4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50BR8H0VVxffbgSSm2SZq23mR18Y0HF7yVpElFWLuLu3vw3zvTh1VRwVMPfRCmk3wfmcz3ARwIhIRQ6tj1uJKuEDZwEeWYy4w1XpxGShTtY7d38qIvrh6Dx8rndFyfdq9LkmVPA6k05ZPjkcmOm8Y3UoFx6SQ6Y6Hvvs3CHK7GPqV1n53WCeWTDa3X4COuCozLppGSKgP8Ex5yn0nOq8bMYpMmEpjThUGdR53MmL11ZfSnUXzFtoawfquxFtDVW4HlinM6p2WSrMKMzduw0K2t3tqw9EmVcA1iUhMZlv44z6mTq3z4VIhTkzHPiYOM0dFk50A7Ks4wc_Rgah2D5PNlHfq984fuhVs5LLgpl8EEh618JbUIjDBGSgR_kRprbRBxxVWGkxuXQsviLDJI_DQLtUV-K-MstEoqZCYb0MqHud0EJzCxDMM00n6YCY5X6WvGkS4YjiAY8g54dWyStJIfJxeMQdIIJ1M4EwxnQuFM3jpw-PHKqNTe-OvhnTrgSTUNxwlVCaUkj4AOHNU_obn968e2_vX0Pszfn_WSm8u7621YJD_68izZDrQmr1O7i6xloveKzHwH6eXZig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+nanogenerators%3A+the+beginning+of+blue+dream&rft.jtitle=Frontiers+of+chemical+science+and+engineering&rft.au=Wang%2C+Wanli&rft.au=Yang%2C+Dongfang&rft.au=Yan+Xiaoran&rft.au=Wang%2C+Licheng&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-0179&rft.eissn=2095-0187&rft.volume=17&rft.issue=6&rft.spage=635&rft.epage=678&rft_id=info:doi/10.1007%2Fs11705-022-2271-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-0179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-0179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-0179&client=summon