Triboelectric nanogenerators: the beginning of blue dream
Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays, the utilization of water wave energy is mainly absorbed and transformed by electromagnetic generators (EMGs) in the form of mechanical energ...
Saved in:
Published in | Frontiers of chemical science and engineering Vol. 17; no. 6; pp. 635 - 678 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-0179 2095-0187 |
DOI | 10.1007/s11705-022-2271-y |
Cover
Loading…
Abstract | Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays, the utilization of water wave energy is mainly absorbed and transformed by electromagnetic generators (EMGs) in the form of mechanical energy. However, waves usually have low frequency and uncertainty, which means low power generation efficiency for EMGs. Fortunately, in this slow current and random direction wave case, the triboelectric nanogenerator (TENG) has a relatively stable output power, which is suitable for collecting blue energy. This article summarizes the main research results of TENG in harvesting blue energy. Firstly, based on Maxwell’s displacement current, the basic principle of the nanogenerator is expounded. Then, four working modes and three applications of TENG are introduced, especially the application of TENG in blue energy. TENG currently used in blue energy harvesting is divided into four categories and discussed in detail. After TENG harvests water wave energy, it is meaningless if it cannot be used. Therefore, the modular storage of TENG energy is discussed. The output power of a single TENG unit is relatively low, which cannot meet the demand for high power. Thus, the networking strategy of large-scale TENG is further introduced. TENG’s energy comes from water waves, and each TENG’s output has great randomness, which is very unfavorable for the energy storage after large-scale TENG integration. On this basis, this paper discusses the power management methods of TENG. In addition, in order to further prove its economic and environmental advantages, the economic benefits of TENG are also evaluated. Finally, the development potential of TENG in the field of blue energy and some problems that need to be solved urgently are briefly summarized. |
---|---|
AbstractList | Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays, the utilization of water wave energy is mainly absorbed and transformed by electromagnetic generators (EMGs) in the form of mechanical energy. However, waves usually have low frequency and uncertainty, which means low power generation efficiency for EMGs. Fortunately, in this slow current and random direction wave case, the triboelectric nanogenerator (TENG) has a relatively stable output power, which is suitable for collecting blue energy. This article summarizes the main research results of TENG in harvesting blue energy. Firstly, based on Maxwell’s displacement current, the basic principle of the nanogenerator is expounded. Then, four working modes and three applications of TENG are introduced, especially the application of TENG in blue energy. TENG currently used in blue energy harvesting is divided into four categories and discussed in detail. After TENG harvests water wave energy, it is meaningless if it cannot be used. Therefore, the modular storage of TENG energy is discussed. The output power of a single TENG unit is relatively low, which cannot meet the demand for high power. Thus, the networking strategy of large-scale TENG is further introduced. TENG’s energy comes from water waves, and each TENG’s output has great randomness, which is very unfavorable for the energy storage after large-scale TENG integration. On this basis, this paper discusses the power management methods of TENG. In addition, in order to further prove its economic and environmental advantages, the economic benefits of TENG are also evaluated. Finally, the development potential of TENG in the field of blue energy and some problems that need to be solved urgently are briefly summarized. |
Author | Wang, Wanli Yan, Xiaoran Wang, Kai Wang, Licheng Yang, Dongfang Hu, Han |
Author_xml | – sequence: 1 givenname: Wanli surname: Wang fullname: Wang, Wanli organization: College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China) – sequence: 2 givenname: Dongfang surname: Yang fullname: Yang, Dongfang organization: Xi’an Traffic Engineering Institute – sequence: 3 givenname: Xiaoran surname: Yan fullname: Yan, Xiaoran organization: College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University – sequence: 4 givenname: Licheng surname: Wang fullname: Wang, Licheng organization: School of Information Engineering, Zhejiang University of Technology – sequence: 5 givenname: Han surname: Hu fullname: Hu, Han organization: State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China) – sequence: 6 givenname: Kai surname: Wang fullname: Wang, Kai email: wkwj888@163.com organization: College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University |
BookMark | eNp9kE1LxDAQhoOs4LruD_BW8FzNpM1HvcniFyx4Wc8hbac10k3WJHvYf2-XioKgpxmG95kZnnMyc94hIZdAr4FSeRMBJOU5ZSxnTEJ-OCFzRqtxAkrOvntZnZFljLamBTBRFFLOSbUJtvY4YJOCbTJnnO_RYTDJh3ibpTfMauytc9b1me-yethj1gY02wty2pkh4vKrLsjrw_1m9ZSvXx6fV3frvCkET-NDBoyoS96WbSsEB1Y2LSJyVZjCdKVSAICs6lTLBa-ZrFFBK6pOohGGqWJBrqa9u-A_9hiTfvf74MaTmimohKCylGNKTqkm-BgDdrqxySTrXQrGDhqoPqrSkyo9qtJHVfowkvCL3AW7NeHwL8MmJo5Z12P4-elv6BNg2H1d |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2023_109243 crossref_primary_10_3390_nano15050386 crossref_primary_10_1002_smll_202310023 crossref_primary_10_1002_admt_202300616 crossref_primary_10_1021_acsaem_4c02010 crossref_primary_10_1021_acsaelm_3c00996 crossref_primary_10_1016_j_polymer_2025_128075 crossref_primary_10_1088_2631_7990_ad7b04 crossref_primary_10_1016_j_jallcom_2024_173920 crossref_primary_10_1021_acssuschemeng_4c03742 crossref_primary_10_1002_adfm_202413359 crossref_primary_10_1021_acsaelm_4c00776 crossref_primary_10_20964_2022_12_41 crossref_primary_10_3390_s23249743 crossref_primary_10_1016_j_jallcom_2025_179623 crossref_primary_10_3390_en16176318 crossref_primary_10_3390_technologies11020060 crossref_primary_10_1063_5_0219633 crossref_primary_10_23919_PCMP_2023_000167 crossref_primary_10_1016_j_nanoen_2024_110383 crossref_primary_10_1016_j_nanoen_2024_110584 crossref_primary_10_1007_s11431_023_2540_0 crossref_primary_10_1038_s44172_024_00249_6 crossref_primary_10_1016_j_apsusc_2024_160350 crossref_primary_10_15377_2410_3624_2024_11_4 crossref_primary_10_1016_j_jallcom_2023_171555 crossref_primary_10_1186_s41601_023_00300_2 crossref_primary_10_1016_j_nanoen_2024_110617 crossref_primary_10_1088_2631_7990_ad88bd crossref_primary_10_3390_en16073167 crossref_primary_10_1016_j_eswa_2024_125212 crossref_primary_10_1016_j_ymssp_2024_111360 crossref_primary_10_1016_j_elstat_2025_104037 crossref_primary_10_1016_j_sna_2024_115816 crossref_primary_10_1039_D4NR02973A crossref_primary_10_3390_en16155682 crossref_primary_10_1002_ente_202300931 crossref_primary_10_1016_j_mtcomm_2023_106734 crossref_primary_10_3390_technologies11020042 crossref_primary_10_1016_j_energy_2023_128742 crossref_primary_10_1021_acsaelm_4c01729 crossref_primary_10_1016_j_nanoen_2024_109546 crossref_primary_10_3390_en16145240 crossref_primary_10_1021_acsaelm_3c01718 crossref_primary_10_1016_j_seta_2023_103442 crossref_primary_10_1177_09544062251318537 crossref_primary_10_1177_13835416251319193 crossref_primary_10_23919_PCMP_2023_000187 crossref_primary_10_3390_lubricants12080269 crossref_primary_10_1063_5_0195399 crossref_primary_10_1021_acsaelm_4c01055 crossref_primary_10_1016_j_jallcom_2024_174669 crossref_primary_10_3390_polym16101413 crossref_primary_10_1016_j_ijoes_2024_100793 crossref_primary_10_1002_smll_202408929 crossref_primary_10_1016_j_cej_2024_152417 |
Cites_doi | 10.1126/sciadv.1501478 10.1038/nenergy.2016.138 10.1016/j.nanoen.2016.11.037 10.1038/s41467-018-06198-x 10.1002/adfm.201805216 10.1002/adma.201304619 10.1016/j.cej.2021.134002 10.1021/nn500694y 10.1016/j.nanoen.2019.104087 10.1002/aenm.202101116 10.1002/adma.202109568 10.1155/2022/7620382 10.1002/er.8709 10.1002/smll.202108091 10.1039/C4FD00159A 10.1002/aenm.202101147 10.1038/s41467-020-18086-4 10.1016/j.scib.2022.04.001 10.1039/C8NR05292A 10.1126/science.aan8285 10.1002/inf2.12262 10.1016/j.nanoen.2014.03.015 10.1021/nn403021m 10.1038/nphoton.2013.191 10.1038/s41467-021-23207-8 10.1021/nn406565k 10.1002/adma.201902549 10.1016/j.nanoen.2019.104141 10.1016/j.nanoen.2019.104197 10.1038/s41467-020-20045-y 10.1038/ncomms9401 10.1016/j.nanoen.2019.104080 10.1557/mrs.2019.209 10.1002/aenm.201901987 10.1038/s41467-021-25753-7 10.1016/j.rser.2009.11.003 10.1002/adfm.201304211 10.1002/adfm.201501331 10.1016/j.nanoen.2013.08.004 10.1002/advs.202201098 10.1016/j.nanoen.2016.01.009 10.1002/er.7545 10.1002/adma.202102765 10.1016/j.nanoen.2022.106994 10.1016/j.nanoen.2019.104016 10.1002/anie.201300437 10.1038/s41467-017-02685-9 10.1016/j.nanoen.2021.106573 10.1002/adma.201905696 10.1021/acsami.1c20984 10.1016/j.mattod.2021.10.034 10.1039/C7TC05458K 10.1002/aenm.202003616 10.1002/adma.201807795 10.1016/j.nanoen.2019.104108 10.1016/j.nanoen.2022.107050 10.1002/aenm.202003066 10.1016/j.nanoen.2019.103885 10.1002/adfm.201807241 10.1002/er.7360 10.3390/en15186665 10.1126/scirobotics.aat2516 10.1038/s41467-019-10433-4 10.1021/nn404614z 10.1016/j.est.2022.104215 10.1002/adma.201402428 10.1016/j.nanoen.2019.104210 10.1002/adma.201302397 10.1016/j.nanoen.2022.106971 10.1016/j.nanoen.2019.01.083 10.1016/j.nanoen.2019.104214 10.1002/adfm.201900327 10.1038/s41467-021-25046-z 10.1002/adfm.201500447 10.3390/en16041599 10.1021/nn4043157 10.1063/1.5030152 10.1007/s11705-018-1705-z 10.1002/adma.202104175 10.1016/j.ensm.2019.08.002 10.1021/acsnano.8b00140 10.1016/j.nanoen.2019.103920 10.1016/j.nanoen.2019.104269 10.1063/5.0092074 10.1016/j.nanoen.2022.107115 10.1021/nn506673x 10.1002/aenm.202101194 10.1002/adfm.202111775 10.1038/s41467-019-10232-x 10.1016/j.nanoen.2022.107136 10.1021/nl400738p 10.1002/adma.202200042 10.1021/nn405175z 10.1002/ente.201800035 10.1021/acssensors.9b00259 10.1016/j.nanoen.2019.104131 10.1016/j.nanoen.2018.11.043 10.1016/j.nanoen.2017.06.035 10.1002/aenm.202100038 10.1016/j.nanoen.2019.104278 10.1016/j.nanoen.2018.12.078 10.1016/j.nanoen.2022.107048 10.1021/acsami.1c22129 10.1038/ncomms9031 10.1021/nn501983s 10.1002/aenm.202103076 10.1021/acsnano.1c05685 10.1016/j.nanoen.2019.104167 10.1002/adfm.201303659 10.1016/j.nanoen.2017.04.053 10.1002/aenm.201802906 10.1016/j.nanoen.2019.104012 10.1002/adma.201606703 10.1126/science.1139366 10.1016/j.nanoen.2022.107205 10.1002/aenm.202002123 10.1126/science.1058120 10.1126/sciadv.abj9220 10.34133/2019/1091632 10.1002/adfm.201502318 10.1016/j.nanoen.2016.08.024 10.1016/j.nanoen.2013.08.002 10.1038/s41467-022-29087-w 10.1038/nnano.2008.314 10.1021/nn405209u 10.1002/adma.201404794 10.1016/j.nanoen.2018.01.004 10.1039/C4NR01934B 10.1038/249720a0 10.1002/admt.202000531 10.1007/s10854-021-06027-w 10.1038/ncomms1098 10.1002/aenm.202000965 10.1002/aenm.201900801 10.1186/s41601-020-00158-8 10.1002/adfm.201101319 10.1016/j.nanoen.2012.01.004 10.1016/j.nanoen.2015.01.013 10.1021/acsnano.6b01569 10.1002/adfm.201803117 10.1002/adma.202104290 10.1016/j.nanoen.2019.03.054 10.1016/j.nanoen.2019.104235 10.1039/C9NA00484J 10.1039/C5NR05514H 10.1021/acsnano.7b08674 10.1126/sciadv.abl8423 10.1038/natrevmats.2017.23 10.1002/adma.202100782 10.1038/ncomms15310 10.1016/j.nanoen.2022.107128 10.1038/s41467-020-17891-1 10.1016/j.nanoen.2018.12.054 10.1021/acsenergylett.1c01092 10.1021/nn4063616 10.3390/ma15031130 10.1016/j.nanoen.2019.104290 10.1021/nl5005652 10.1038/s41528-017-0007-8 10.1007/s12274-019-2545-y 10.1016/j.nanoen.2019.05.029 10.1016/j.nanoen.2017.04.026 10.1038/s41467-021-20919-9 10.1007/s12274-016-1040-y 10.1021/acsami.0c16489 10.1021/nn504243j 10.1021/acsaelm.2c01476 10.1002/admt.201800514 10.1016/j.mattod.2016.12.001 10.1186/s41601-021-00186-y 10.1016/j.nanoen.2016.12.004 10.1063/1.4975772 10.1002/adfm.202202048 10.1021/nn402477h 10.1002/er.3849 10.1016/j.nanoen.2022.106997 10.1063/1.5053894 10.1021/acsami.6b12798 10.1016/j.nanoen.2022.107172 10.1002/adma.201502546 10.1002/adma.202109355 10.1002/adma.202001699 10.1016/j.nanoen.2019.05.007 10.1002/advs.201700072 10.1002/adfm.201302453 10.1007/s10845-017-1385-4 10.1002/smll.201502453 10.1021/acsnano.1c09096 10.1002/aenm.202103143 10.1186/s41601-021-00219-6 10.1016/j.nanoen.2019.104150 10.1016/j.nanoen.2018.06.009 10.1038/s41467-020-19987-0 10.1016/j.nanoen.2018.12.003 10.1016/j.nanoen.2022.107118 10.1186/s41601-019-0149-x 10.1002/aenm.201501467 10.1002/adma.201606346 10.1007/s11705-019-1901-5 10.1038/s41467-021-24028-5 10.1038/ncomms9376 10.1038/s41467-019-13653-w 10.1038/nnano.2017.17 10.1016/j.nanoen.2019.104277 10.1126/sciadv.aav6437 10.1126/sciadv.1700694 10.1016/j.nanoen.2019.104205 10.1002/adma.201305303 10.1126/science.aan3997 10.1016/j.nanoen.2019.104068 10.1021/acsnano.5b06372 10.1016/j.energy.2022.123773 10.1021/acsnano.1c10680 10.1080/19475411.2013.872207 10.1038/s41467-020-15373-y 10.1021/acscatal.9b02182 10.1016/j.nanoen.2022.107282 10.1002/adma.202203073 10.1021/acsami.9b06627 10.1002/adma.201902793 10.1021/acsnano.5b00618 10.1021/acsnano.1c05127 10.1016/j.mattod.2021.11.027 10.1038/s41467-019-13166-6 10.1016/j.apcatb.2022.121422 10.1021/nn402491y 10.1016/j.nanoen.2022.106998 10.1021/am501782f 10.1186/s11671-019-3187-4 10.1038/ncomms12985 10.1039/C5NR09087C 10.1021/acsnano.2c01594 10.1038/nature06601 10.1002/aenm.202000426 10.1039/C8NR09978B 10.1039/D1CS00858G 10.1038/s41467-017-00131-4 10.1126/sciadv.1600097 10.1016/j.nanoen.2019.01.078 10.1080/14786446108643033 10.1016/j.nanoen.2015.06.006 10.1016/j.renene.2022.08.123 10.1016/j.nanoen.2019.104206 10.1016/j.jssc.2022.123081 10.1016/j.nanoen.2019.104228 10.1002/aenm.202002920 10.1039/C4EE01759E 10.1007/s12274-013-0364-0 10.1016/j.nanoen.2019.104297 10.1038/nnano.2010.46 10.1016/j.nanoen.2019.03.013 10.1016/j.energy.2022.124933 10.1002/aenm.201700103 10.1016/j.nanoen.2018.02.042 10.1038/s41467-019-14278-9 10.1186/s41601-021-00181-3 10.1016/j.nanoen.2019.04.046 10.1016/j.nanoen.2019.103948 10.1016/j.nanoen.2019.104251 10.1002/er.7905 10.1002/adma.201908072 10.1021/acsnano.5b00534 10.1016/j.nanoen.2018.12.052 10.1002/adma.202200793 10.1002/aenm.201902460 10.1016/j.nanoen.2019.104086 10.1002/aenm.202002312 10.1016/j.pmatsci.2020.100704 10.1002/aenm.201800705 10.1002/adma.202006839 10.1021/acsnano.5b02575 10.1038/ncomms4426 10.1007/s11705-020-1956-3 10.1002/adma.202109918 10.1126/sciadv.aap8576 10.1038/ncomms12744 10.1016/j.nanoen.2018.02.013 10.1126/science.1124005 10.1186/s41601-020-00167-7 10.1016/j.nanoen.2022.106926 10.1002/adma.202110363 10.1038/s41467-019-09851-1 10.1016/j.nanoen.2021.106381 10.1126/science.1092356 10.1016/j.nanoen.2018.12.076 10.1016/j.nantod.2022.101437 10.1016/j.nanoen.2017.07.045 10.1002/adom.201600623 10.1002/aenm.201602397 10.1002/adfm.201503180 10.1002/adfm.201502646 10.1002/adma.201402868 10.1039/c3tb21131b 10.1155/2022/9616124 10.1021/acsaelm.0c00022 10.1021/acsnano.7b08716 10.1002/adma.201903793 10.1016/j.nanoen.2021.106199 10.1002/adma.202004178 10.1016/j.joule.2021.04.016 10.1002/adma.202105761 10.1021/nn501732z 10.1002/aenm.201903024 10.1002/aenm.202001770 10.1038/s41467-019-12465-2 10.1038/s41467-019-09464-8 10.1002/er.8671 10.1002/aenm.201802159 10.1038/542159a 10.1038/nature13792 10.1039/C7EE00158D 10.1002/aenm.202000827 10.1002/adfm.202113005 10.1016/j.nanoen.2019.104259 10.1021/nl4013002 10.1039/C4NR06237J 10.1016/j.nanoen.2019.104266 10.1002/aenm.202000137 10.1002/adma.201802898 10.1038/ncomms10987 10.1016/j.nanoen.2019.103943 10.1002/adma.202200146 10.1038/s41467-018-06045-z 10.1002/aenm.202103654 10.1021/acsnano.1c00345 10.1126/science.1116495 10.1016/j.nanoen.2019.104148 10.1007/s40820-022-00866-w 10.1016/j.nanoen.2014.09.018 10.1016/j.nanoen.2016.12.061 10.1016/j.pmatsci.2018.10.003 10.1016/j.nanoen.2020.105625 10.1016/j.nanoen.2021.106631 10.1016/j.nanoen.2019.103908 10.1038/s41467-019-09461-x 10.1002/aenm.202000064 10.1002/aenm.201301322 |
ContentType | Journal Article |
Copyright | Higher Education Press 2023 Higher Education Press 2023. |
Copyright_xml | – notice: Higher Education Press 2023 – notice: Higher Education Press 2023. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11705-022-2271-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2095-0187 |
EndPage | 678 |
ExternalDocumentID | 10_1007_s11705_022_2271_y |
GroupedDBID | -EM .VR 06C 06D 0R~ 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 8UJ 95- 95. 95~ 96X AABHQ AACDK AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HMJXF HRMNR IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9J P4S P9N PF0 PT4 QOR R89 ROL RSV S16 S3B SAP SCL SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R Z7V Z7X Z7Y Z7Z ZMTXR ~A9 -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION Q-- U1G U5L ABRTQ |
ID | FETCH-LOGICAL-c365t-22a1a6b45d4dd665124cdeee583a3af488111e29f8d565b27be81d69f7ea6a283 |
IEDL.DBID | U2A |
ISSN | 2095-0179 |
IngestDate | Fri Jul 25 11:02:25 EDT 2025 Tue Jul 01 02:11:21 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Fri Feb 21 02:43:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | blue energy triboelectric nanogenerator micro/nanoenergy self-powered devices water wave energy networking strategy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-22a1a6b45d4dd665124cdeee583a3af488111e29f8d565b27be81d69f7ea6a283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2819660747 |
PQPubID | 2044370 |
PageCount | 44 |
ParticipantIDs | proquest_journals_2819660747 crossref_citationtrail_10_1007_s11705_022_2271_y crossref_primary_10_1007_s11705_022_2271_y springer_journals_10_1007_s11705_022_2271_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of chemical science and engineering |
PublicationTitleAbbrev | Front. Chem. Sci. Eng |
PublicationYear | 2023 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Yang, Zhang, Chen, Jing, Zhou, Wen, Wang (CR132) 2013; 7 Jiang, Wu, Wang, Wang, He, Wang, Alshareef (CR336) 2018; 45 Wu, Mendel, Ham, Shui, Zhou, Mugele (CR100) 2020; 32 Liu, Mo, Wu, Song, Nie (CR107) 2022; 312 Dong, Peng, Cheng, Ning, Jiang, Zhang, Wang (CR113) 2022; 34 Zheng, Sun, Wei, Chen, Yuan, Jin, Tao, Wu (CR298) 2021; 90 Yong, Wang, Yang, Wang, Luo, Liao, Wang (CR80) 2021; 11 Zhao, Dai, Liu, Zhou, Li, Wang, Wang (CR319) 2020; 11 Zhang, Shi, Si, Li (CR188) 2019; 61 Zhang, Yang, Su, Chen, Adams, Lee, Hu, Wang (CR63) 2014; 24 Li, Wang, Duan, Li, Wang (CR207) 2022; 46 Wu, He, Shan, Wang, Fu, Tang, Guo, Du, Liu, Hu (CR114) 2022; 34 Luo, Wang, Xu, Wang, Han, Jiang, Lai, Bai, Tang, Fan, Wang (CR135) 2019; 10 Guo, Yu, Zhu, Zhao, Wang, Wang (CR326) 2022; 46 Wang, Song, Liu, Wang (CR43) 2007; 316 Hua, Sun, Liu, Bao, Yu, Zhai, Pan, Wang (CR149) 2018; 9 Wen, Wang, He, Shi, Sun, Zhu, Zhang, Cao, Dai, Zhang, Lee (CR232) 2020; 67 Ren, Liang, Liu, Li, Ping, Wang, Wang (CR9) 2021; 11 Yang, Chen, Su, Jing, Li, Yi, Wen, Wang, Wang (CR81) 2015; 27 Xu, Yang, Lu, Yang, Li, Wen, Cheng, Wang (CR10) 2021; 15 Pullano, Critello, Fiorillo (CR115) 2020; 67 Chen, Yang, Li, Fan, Zi, Jing, Guo, Wen, Pradel, Niu, Wang (CR269) 2015; 9 Yang, Yang, Zhao, Shang, Qin, Wang, Jiang, Cheng, Du (CR340) 2018; 46 Hinchet, Yoon, Ryu, Kim, Choi, Kim, Kim (CR323) 2019; 365 Li, Sun, Zhang, Xu, Meng, Qin (CR147) 2019; 4 Xia, Tang, Fu, Tian, Xu, Lu, Zhu (CR299) 2020; 67 Yang, Xu, Lin, Zhong, Bai, Luo, Chen, Wang (CR335) 2019; 60 Bowen, Taylor, LeBoulbar, Zabek, Chauhan, Vaish (CR39) 2014; 7 He, Liu, Chen, Wang, Liu, Pu, Yang, Tang, Yang, Guo, Hu (CR303) 2020; 11 Yao, Zhao, Wang, Huang, Ding, Zhang, Zhang, Wang, Li (CR124) 2022; 34 Wang, Liu, Wang, Wang, Wang, Zhang, Zhao, Xu, Wang (CR286) 2021; 15 Feng, Du, Ran, Lu, Xia, Xu, Wang, Ma (CR309) 2022; 310 Wu, Wang, Zi (CR157) 2021; 11 Ma, Ai, Shi, Wang, Su (CR289) 2020; 32 Liu, Yin, Guo, Zhou, Li, Zhang, Wang, Wang (CR219) 2019; 5 Yang, Chen, Zhu, Wen, Bai, Su, Lin, Wang (CR64) 2013; 6 Nie, Ren, Xu, Lin, Zhan, Chen, Wang (CR245) 2020; 32 Wang, Yu, Pan, Li, Yang, Yi, Wang (CR40) 2015; 6 Niu, Liu, Chen, Wang, Zhou, Lin, Xie, Wang (CR192) 2015; 12 Dong, Huang, Luo, Zhao, Fan, Tian (CR176) 2022; 95 Zhang, Zhou, Cheng, Liu, Zhang, Li, Li, Wang, Wang (CR99) 2021; 11 Lei, Zhai, Nie, Zhong, Bai, Liang, Xu, Jiang, Chen, Wang (CR266) 2019; 4 Chen, Huang, Zhang, Zou, Liu, Tao, Fan, Wang (CR222) 2016; 1 Lin, Xu, Chi Wang, Wang (CR247) 2020; 11 Hao, Wen, Gao, Nan, Pan, Yang, Chen, Wang (CR129) 2022; 16 Cui, Dai, Sun, Li, Wang, Wang (CR208) 2022; 2022 Sun, Sun, Zhao, Wang, Wang (CR202) 2022; 2022 Li, Torres, Diaz, Wang, Wu, Wang, Wang, Sepulveda (CR168) 2017; 8 Liu, Nie, Miao, Li, Cui, Wang, Zhang, Zhao, Deng, Wu, Li, Li, Wang (CR119) 2019; 31 Zhang, Yuan, Zhang, Yang, Liu, He, Wang, Wang (CR291) 2022; 32 Maxwell (CR158) 1861; 21 Lin, Zhang, Guo, Wu, Zou, Yang, Wang (CR333) 2019; 64 Xie, Wang, Niu, Lin, Jing, Yang, Wu, Wang (CR154) 2014; 26 Yang, Qin, Dai, Wang (CR165) 2009; 4 Dudem, Dharmasena, Riaz, Vivekananthan, Wijayantha, Lugli, Petti, Silva (CR226) 2022; 14 Salter (CR19) 1974; 249 Li, Shin, Henkelman (CR103) 2018; 149 Wu, Wang, Ding, Guo, Wang (CR173) 2019; 9 Liu, Wang, Zhang, Yang, Wang, Zhao, Yang, Dong, Che, Wang, Zhou (CR198) 2020; 67 Liu, Shi, Ho, Lee (CR92) 2019; 66 Cheng, Ding, Zi, Lu, Ji, Liu, Wu, Wang (CR314) 2018; 9 Xu, Bao, Di, Chen, Tan, Xie, Shao, Cai, Lin, Cheng, e, Liu, Wang (CR282) 2022; 9 Shao, Luo, Deng, Yin, Yang (CR52) 2020; 67 Feng, Liu, Guo, Tang, Pu, Chen, Wang, Xi, Hu (CR294) 2018; 47 Pan, Dai, Wang (CR162) 2001; 291 Erdiwansyah, Mahidin, Husin, Nasaruddin, Zaki, Muhibbuddin (CR3) 2021; 6 Qin, Wang, Wang (CR171) 2008; 451 Liu, Guo, Xu, Hu, Wang (CR201) 2019; 9 Jing, Zhu, Bai, Xie, Chen, Han, Wang (CR55) 2014; 8 Pu, Guo, Chen, Wang, Xi, Hu, Wang (CR197) 2017; 3 Jing, Zhu, Wu, Bai, Xie, Han, Wang (CR139) 2014; 10 Sun, Zhang, Zhang, Sun, Peng (CR324) 2017; 2 Liu, Gu, Cui, Xu, Qin, Yang (CR220) 2019; 2019 Yang, Yang, Wang, Liu, Lu, Ji, Wang, Cheng (CR300) 2021; 11 Xiao, Zhang, Wang, Ouyang, Chen, Song, Yuan, Ji, Wang, Li, Xu, Wang (CR238) 2019; 9 Meng, Zhu, Wang (CR77) 2014; 6 Wu, Zeng, Tang, Liu, Liu, Zhang, Wu, Hu, Wang (CR200) 2020; 67 Chen, Guo, Pu, Wang, Xi, Hu (CR322) 2018; 50 Lin, Cheng, Wu, Pradel, Wang (CR142) 2014; 8 Chen, Guo, Wu, Xu, Zi, Hu, Wang (CR186) 2019; 64 Zhang, Liang, Liao, Ma, Gao, Zhao, Song, Song, Xun, Zhang (CR249) 2018; 28 Wang, Wu, Dai, Zhao, Wang, Zhang, Wang (CR279) 2017; 8 Cui, Xu, Ni, Zhang, Qin (CR22) 2018; 6 Yan, Gao, Zhao, Zhang, Zhou, Deng, Li, Jiang, Jin, Tian, Yang, Chu, Xiong, Wang, Li, Yang, Chen (CR53) 2020; 67 Chang, Uy, Xiao, Chen (CR12) 2022; 98 Li, Wan, Lin, Liu, Qu, Wen, Ding, Ning, Yao (CR8) 2022; 95 Bu, Li, Yin, Pang, Wang, Wang (CR233) 2020; 2 Shi, Huang, Sun, Wu, He, Jiang (CR164) 2019; 57 Ankanahalli Shankaregowda, Sagade Muktar Ahmed, Nanjegowda, Wang, Guan, Puttaswamy, Amini, Zhang, Kong, Sannathammegowda, Wang, Cheng (CR190) 2019; 66 Jin, Li, Yuan, Du, Lai, Wu, Zhao, Sun, Gu, Wang, Feng (CR120) 2021; 33 Wu, Wang, Wang, Zi (CR330) 2021; 12 Wang, Pang, Su, Li, Li, Wang, Wang, Ibarlucea, Liu, Li, Zhou, Wang, Han, Liu, Zang, Rümmeli, Li, Liu, Hu, Cuniberti (CR228) 2022; 4 Huo, Kim, Suh, Lee, Lee, Du, Wang, Yoon, Kim (CR122) 2021; 12 Zhou, Zhu, Niu, Liu, Bai, Jing, Wang (CR137) 2014; 26 Tan, Zeng, Wang, Yuan, Luo, Zhang, Tan, Hu, Liu (CR267) 2022; 14 Jiang, Zhang, Chen, Han, Tang, Zhang, Xu, Wang (CR14) 2015; 9 Zhao, Yang, Liu, Wang (CR337) 2017; 7 Wang, Zhang, Xie, Gao, Yang, Lin (CR199) 2018; 6 Hu, Cheng, Wang, Zheng, Bai, Qin (CR23) 2016; 12 Ahn, Hwang, Kim, Nam, Ahn (CR242) 2020; 67 Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu, Wang (CR174) 2019; 10 Zheng, Cheng, Yuan, Wang, Zhang, Qin, Jing (CR145) 2014; 6 Zhang, Chen, Xuan, Huang, You, Li, Sun, Jin, Wang, Dong, Luo, Flewitt, Wang (CR128) 2020; 11 Nie, Jiang, Shao, Ren, Bai, Iwamoto, Chen, Wang (CR95) 2018; 112 Yi, Zhao, Sun, Wang, Wang, Ma (CR214) 2022; 2022 Wu, Luo, Qu, Daoud, Qi (CR191) 2019; 64 Khandelwal, Minocha, Yadav, Chandrasekhar, Maria Joseph Raj, Gupta, Kim (CR185) 2019; 65 Cheng, Guo, Wen, Zhang, Yin, Li, Liu, Song, Sun, Wang, Wang (CR271) 2019; 57 Yang, Chen, Liu, Yang, Su, Wang (CR87) 2014; 8 Li, Lin, Cheng, Wen, Liu, Niu, Wang (CR150) 2014; 8 Gao, Xu, Yu, Jing, Cheng, Wang (CR6) 2022; 16 Liu, Wang, Wang, Liu, Chen, Pu, Xi, Wang, Guo, Hu, Wang (CR278) 2019; 10 Jin, Zhang, Zhang, Yang (CR217) 2019; 66 Gai, Bai, Cao, Wang, Xue, Qu, Liu, Luo, Li (CR218) 2022; 18 Zhao, Zheng, Ouyang, Li, Yan, Shi, Li (CR285) 2016; 28 Zhao, Kuang, Wang, Zhu (CR248) 2018; 12 Lee, Rubab, Hyun, Kang, Kim, Kang, Choi, Kim (CR88) 2022; 8 Liang, Jiang, Feng, Lu, An, Wang (CR325) 2020; 10 Zhang, Wang, Xie, Yao, Yan, Huang, Chen, Pan, Wang, Su, Yang, Lin (CR78) 2016; 8 Zhang, Wang, Xia, Wang, Wang (CR308) 2023; 5 Zhou, Du, Kang, Du, Shi, Qiang, Li, Zhao (CR136) 2022; 15 Xie, Wang, Niu, Lin, Jing, Su, Wu, Wang (CR257) 2014; 6 Wang (CR175) 2014; 176 Yang, Wang, Deng, Guo, Zhang, Yang, Xi, Li, Hu, Wang (CR263) 2019; 56 Li, Guo, Shin, Wong, Henkelman (CR105) 2019; 9 Wu, Wang, Li, Zhang, Lin, Niu, Chenet, Zhang, Hao, Heinz, Hone, Wang (CR167) 2014; 514 Liang, Qi, Zhao, Zhang, Liu, Pu, Wang, Lu (CR321) 2020; 24 Zhang, Liang, Nandakumar, Qu, Shi, Alzakia, Tay, Yang, Zhang, Suresh, Lee, Wee, Tan (CR16) 2021; 12 Ye, Yang, Ren, Dong, Cao, Pei, Ling (CR62) 2022; 16 Wang (CR49) 2013; 7 Guo, Pu, Chen, Meng, Yeh, Liu, Tang, Chen, Liu, Qi, Wu, Hu, Wang, Wang (CR223) 2018; 3 Zou, Tan, Shi, Ouyang, Jiang, Liu, Li, Yu, Wang, Qu, Zhao, Fan, Wang, Li (CR127) 2019; 10 Li, Su, Kuang, Pan, Zhu, Wang (CR283) 2015; 25 Zheng, Zou, Zhang, Liu, Shi, Wang, Jin, Ouyang, Li, Wang (CR118) 2016; 2 Zhang, Zhang, Zhang, Wang, Hu, Xuan, Dong, Luo (CR181) 2019; 14 Zhang, Liu, Li, Cui, Wang, Li, Wang (CR306) 2023; 16 Yang, Chen, Jing, Yang, Wen, Su, Zhu, Bai, Wang (CR67) 2014; 24 Wang, Daoud (CR151) 2019; 66 Tantraviwat, Buarin, Suntalelat, Sripumkhai, Pattamang, Rujijanagul, Inceesungvorn (CR277) 2020; 67 Feng, Li, Wang (CR36) 2021; 13 Tao, Yi, Yang, Chang, Wu, Tang, Yang, Wang, Hu, Fu, Miao, Yuan (CR261) 2020; 67 Liang, Jiang, Liu, Xiao, Xu, Li, Xi, Zhang, Wang (CR295) 2019; 29 Peng, Kang, Snyder (CR342) 2017; 3 Liu, Yang, Zhao, Hong, Cui, Duan, Yang, Tang (CR268) 2021; 15 Xie, Wang, Lin, Jing, Lin, Niu, Wu, Wang (CR76) 2013; 7 Xu, Wang, Li, Xu, Wei, Wang, Yang (CR259) 2021; 90 Chen, Wen, Wei, Xie, Zhai, Wei, Peng, Liu, Sun, Yeow (CR241) 2019; 62 Song, Zheng, Jia, Zhao, Feng, Zhang, Wang, Zhang, Zhang (CR121) 2019; 31 Bozorg, Bracale, Caramia, Carpinelli, Carpita, De Falco (CR210) 2020; 5 Qu, Huang, Chen, An, Liu, Zhang, Wang, Liu, Yin, Li (CR18) 2022; 32 Yang, Zhu, Zhang, Chen, Zhong, Lin, Su, Bai, Wen, Wang (CR75) 2013; 7 Pan, Dong, Zhu, Niu, Yu, Yang, Liu, Wang (CR169) 2013; 7 Qin, Cheng, Zi, Gu, Zhang, Shang, Yang, Yang, Du, Wang (CR339) 2018; 28 Zi, Wang, Wang, Li, Wen, Guo, Wang (CR327) 2016; 7 Tang, Pu, Zeng, Yang, Li, Wu, Guo, Huang, Hu (CR183) 2019; 66 Li, Liu, Yang, Liu (CR235) 2022; 95 Zhou, Liu, Zhao, Li, Liu, Liu, Gao, Wang, Wang (CR316) 2020; 10 Cai, Luo, Liu, Fu, Liu, Wang, Nie (CR102) 2022; 52 Ma, Liao, Zhang, Zhang, Liang, Zhang (CR280) 2015; 25 Fu, Wang, Tian, Li, Hu (CR311) 2019; 30 Xi, Guo, Zi, Li, Wang, Deng, Li, Hu, Cao, Wang (CR33) 2017; 7 Zhao, Li, Liao, Qiao, Li, Dong, Zhang, Zhang (CR17) 2021; 89 Ahmed, Hassan, Ibn-Mohammed, Mostafa, Reaney, Koh, Zu, Wang (CR341) 2017; 10 Gu, Cui, Liu, Zheng, Bai, Qin (CR83) 2015; 7 Xiao, Wu, Yang (CR45) 2018; 42 Zhu, Yang, Zhang, Jing, Chen, Zhou, Bai, Wang (CR148) 2014; 14 Ouyang, Liu, Li, Shi, Zou, Xie, Ma, Li, Li, Zheng, Qu, Fan, Wang, Zhang, Li (CR227) 2019; 10 Liu, Zheng, Li, Wang, Zhou (CR255) 2019; 61 Zhang, Yang, Su, Chen, Hu, Wu, Liu, Wong, Bando, Wang (CR141) 2013; 2 Wang (CR159) 2017; 20 Wang (CR4) 2017; 542 Wang, Zhu, Ding, Li, Zheng, Fu, Diao, Zhang, Tian, Zi (CR292) 2019; 57 Lin, Wang, Xie, Jing, Niu, Hu, Wang (CR69) 2013; 13 Zhang, Han, Jiang, Zhou, Li, Zhang, Wang (CR276) 2016; 22 Feng, Zhang, Kang, Wang, Duan, Yin, Pang, Wang (CR304) 2021; 15 Feng, Liang, An, Jiang, Wang (CR5) 2021; 81 Li, Su, Li, Zhao, Zhang, Zhang, Ye, Li, W Y H Wu (2271_CR191) 2019; 64 K Zhao (2271_CR337) 2017; 7 C S Wu (2271_CR173) 2019; 9 W Z Wu (2271_CR166) 2016; 1 S H Liu (2271_CR21) 2017; 29 J M Liu (2271_CR82) 2016; 8 C Cai (2271_CR102) 2022; 52 Z Q Bai (2271_CR189) 2019; 65 S Yao (2271_CR124) 2022; 34 D Li (2271_CR207) 2022; 46 Z Yang (2271_CR300) 2021; 11 Q Bai (2271_CR72) 2022; 96 C F Pan (2271_CR169) 2013; 7 S Liu (2271_CR290) 2020; 11 L Zhou (2271_CR34) 2020; 10 C Zhao (2271_CR236) 2022; 94 H M Yang (2271_CR263) 2019; 56 F Zheng (2271_CR298) 2021; 90 J Chen (2271_CR222) 2016; 1 Y Xi (2271_CR33) 2017; 7 L Zhang (2271_CR143) 2015; 25 H Sun (2271_CR202) 2022; 2022 L M Zhang (2271_CR276) 2016; 22 A Falcão (2271_CR20) 2010; 14 L Yang (2271_CR50) 2013; 1 T Jiang (2271_CR274) 2017; 31 K Dong (2271_CR109) 2020; 32 J Sun (2271_CR138) 2021; 33 Z Cui (2271_CR212) 2022; 46 L Liu (2271_CR92) 2019; 66 T Zhou (2271_CR275) 2016; 9 X Cui (2271_CR22) 2018; 6 S Abu Nahian (2271_CR180) 2017; 38 K Shrestha (2271_CR130) 2022; 32 X Xiao (2271_CR238) 2019; 9 Y Shao (2271_CR52) 2020; 67 D Tantraviwat (2271_CR277) 2020; 67 Z L Wang (2271_CR159) 2017; 20 H Cho (2271_CR256) 2022; 95 Z Yu (2271_CR29) 2022; 97 D Feng (2271_CR309) 2022; 310 H Y Shao (2271_CR193) 2017; 39 Q S Jing (2271_CR55) 2014; 8 X Li (2271_CR310) 2022; 67 Y Fu (2271_CR311) 2019; 30 J B Qi (2271_CR221) 2020; 67 J Wang (2271_CR90) 2022; 431 S Xu (2271_CR170) 2010; 1 P K Guchhait (2271_CR211) 2020; 5 R Lei (2271_CR266) 2019; 4 Z Y Huo (2271_CR122) 2021; 12 H Wu (2271_CR157) 2021; 11 W He (2271_CR303) 2020; 11 Z L Wang (2271_CR49) 2013; 7 Q Gao (2271_CR6) 2022; 16 H Li (2271_CR105) 2019; 9 J H Lee (2271_CR91) 2019; 58 H L Zhang (2271_CR63) 2014; 24 H Sun (2271_CR312) 2022; 46 G Cheng (2271_CR37) 2014; 24 X J Pu (2271_CR197) 2017; 3 K Xia (2271_CR98) 2020; 10 H Sun (2271_CR324) 2017; 2 S M Niu (2271_CR192) 2015; 12 S H Wang (2271_CR195) 2014; 26 H Ryu (2271_CR288) 2019; 31 J Lai (2271_CR152) 2022; 43 Q Zheng (2271_CR118) 2016; 2 Z Ma (2271_CR289) 2020; 32 M Zhang (2271_CR306) 2023; 16 Y Hao (2271_CR129) 2022; 16 C X Hu (2271_CR23) 2016; 12 L Lin (2271_CR69) 2013; 13 Z Wen (2271_CR296) 2015; 16 X J Zhao (2271_CR248) 2018; 12 W Q Yang (2271_CR57) 2013; 7 Y L Chen (2271_CR194) 2018; 8 L Zhang (2271_CR224) 2019; 11 X Q Zhang (2271_CR237) 2019; 29 D Li (2271_CR313) 2022; 15 Z L Wang (2271_CR133) 2020; 10 C Zhang (2271_CR262) 2020; 5 C R Liu (2271_CR198) 2020; 67 H Y Li (2271_CR283) 2015; 25 Q Zhang (2271_CR249) 2018; 28 X Liang (2271_CR295) 2019; 29 Z N Wang (2271_CR40) 2015; 6 J Peng (2271_CR342) 2017; 3 Q L Hua (2271_CR149) 2018; 9 Y B Zheng (2271_CR145) 2014; 6 G Zhu (2271_CR70) 2014; 5 P Jiang (2271_CR125) 2019; 31 F Peng (2271_CR334) 2019; 65 T Zhao (2271_CR11) 2021; 88 F Jiang (2271_CR31) 2022; 34 X Q Liang (2271_CR321) 2020; 24 M Wu (2271_CR94) 2019; 56 Y F Hu (2271_CR68) 2013; 7 Y Wang (2271_CR286) 2021; 15 Q Zhang (2271_CR293) 2017; 29 C Zhang (2271_CR99) 2021; 11 Z W Pan (2271_CR162) 2001; 291 Z Zhang (2271_CR112) 2022; 34 Y Wang (2271_CR216) 2017; 1 D H Zhang (2271_CR188) 2019; 61 P Tan (2271_CR111) 2022; 34 T Jiang (2271_CR14) 2015; 9 W Tang (2271_CR250) 2015; 25 Z Liu (2271_CR119) 2019; 31 G Zhu (2271_CR148) 2014; 14 D Y Jiang (2271_CR254) 2019; 58 F Wen (2271_CR232) 2020; 67 Y Xu (2271_CR10) 2021; 15 J Yang (2271_CR66) 2014; 4 Z Qu (2271_CR18) 2022; 32 H Wang (2271_CR318) 2020; 11 Q S Jing (2271_CR54) 2015; 6 J Chen (2271_CR186) 2019; 64 W Paosangthong (2271_CR187) 2019; 66 X Xu (2271_CR259) 2021; 90 J Hu (2271_CR74) 2019; 12 D Li (2271_CR203) 2022; 250 D Liu (2271_CR219) 2019; 5 P Cheng (2271_CR271) 2019; 57 M Noman (2271_CR13) 2021; 6 C Wang (2271_CR32) 2019; 64 P Bai (2271_CR71) 2013; 7 T Jiang (2271_CR97) 2020; 10 L M Zhao (2271_CR285) 2016; 28 N Q Minh (2271_CR1) 2019; 44 J Cheng (2271_CR314) 2018; 9 H Askari (2271_CR41) 2022; 52 C Yan (2271_CR53) 2020; 67 W Lei (2271_CR234) 2022; 95 S Wu (2271_CR123) 2022; 96 J Yang (2271_CR81) 2015; 27 J H Ahn (2271_CR242) 2020; 67 X H Li (2271_CR150) 2014; 8 Z Wen (2271_CR196) 2016; 2 J Chen (2271_CR269) 2015; 9 D Lingam (2271_CR38) 2013; 4 Y P Liu (2271_CR255) 2019; 61 L Zhou (2271_CR316) 2020; 10 W Q Yang (2271_CR64) 2013; 6 Z Ren (2271_CR9) 2021; 11 M Matsunaga (2271_CR172) 2020; 67 K Dong (2271_CR113) 2022; 34 E Pomerantseva (2271_CR328) 2019; 366 Z L Wang (2271_CR175) 2014; 176 F Yang (2271_CR229) 2020; 67 J Luo (2271_CR135) 2019; 10 J Chen (2271_CR65) 2013; 25 J Nie (2271_CR245) 2020; 32 Y L Zi (2271_CR343) 2015; 6 W Wang (2271_CR228) 2022; 4 Y Yang (2271_CR75) 2013; 7 B Zhang (2271_CR264) 2022; 14 M Y Xu (2271_CR284) 2019; 13 F Jin (2271_CR120) 2021; 33 Y N Xie (2271_CR154) 2014; 26 Q Xu (2271_CR25) 2017; 5 D Zhang (2271_CR101) 2021; 33 Z Zhao (2271_CR35) 2021; 12 C S Wu (2271_CR273) 2017; 32 Y Gai (2271_CR218) 2022; 18 L Cheng (2271_CR302) 2018; 9 G D Li (2271_CR147) 2019; 4 J W Lee (2271_CR239) 2019; 9 Y Feng (2271_CR5) 2021; 81 H Ouyang (2271_CR227) 2019; 10 C Bu (2271_CR233) 2020; 2 C Zhang (2271_CR128) 2020; 11 J Zhao (2271_CR60) 2021; 32 G B Lim (2271_CR117) 2019; 16 J Dong (2271_CR176) 2022; 95 J H Nie (2271_CR95) 2018; 112 X Zhang (2271_CR61) 2022; 96 N Y Cui (2271_CR84) 2019; 1 S H Wang (2271_CR184) 2013; 13 Q Li (2271_CR204) 2022; 50 W Li (2271_CR168) 2017; 8 X Y Huang (2271_CR47) 2019; 100 C Li (2271_CR59) 2021; 12 A Ahmed (2271_CR341) 2017; 10 C R Bowen (2271_CR39) 2014; 7 W Q Yang (2271_CR67) 2014; 24 H Y Zou (2271_CR174) 2019; 10 L Xu (2271_CR272) 2018; 12 Z M Lin (2271_CR333) 2019; 64 P X Gao (2271_CR160) 2005; 309 W Zhong (2271_CR93) 2019; 66 B Zhao (2271_CR17) 2021; 89 X D Wang (2271_CR43) 2007; 316 S H Salter (2271_CR19) 1974; 249 Y H Yu (2271_CR178) 2015; 27 Q Song (2271_CR121) 2019; 31 Z Zhao (2271_CR319) 2020; 11 X Li (2271_CR329) 2020; 10 X X Wang (2271_CR225) 2021; 115 L Liu (2271_CR268) 2021; 15 S Lin (2271_CR247) 2020; 11 X Wei (2271_CR131) 2022; 34 Z Ren (2271_CR79) 2020; 10 G Zhu (2271_CR51) 2013; 2 A Y Li (2271_CR104) 2017; 12 J M Liu (2271_CR220) 2019; 2019 R S Yang (2271_CR165) 2009; 4 A Chang (2271_CR12) 2022; 98 Erdiwansyah (2271_CR3) 2021; 6 Q Zhang (2271_CR244) 2021; 33 Y Yang (2271_CR132) 2013; 7 C Zhang (2271_CR291) 2022; 32 J Luo (2271_CR110) 2021; 33 Y Wu (2271_CR200) 2020; 67 Z Yi (2271_CR214) 2022; 2022 J Chen (2271_CR322) 2018; 50 R A Shaukat (2271_CR27) 2022; 96 H Wu (2271_CR100) 2020; 32 Y Chen (2271_CR243) 2021; 33 X Feng (2271_CR36) 2021; 13 H J Guo (2271_CR177) 2018; 12 Y S Zhou (2271_CR137) 2014; 26 G Xia (2271_CR307) 2020; 14 W Zhou (2271_CR136) 2022; 15 P Chen (2271_CR156) 2021; 11 Y Guo (2271_CR326) 2022; 46 H D Hou (2271_CR338) 2017; 4 H L Zhang (2271_CR141) 2013; 2 H Y Wang (2271_CR292) 2019; 57 D Choi (2271_CR252) 2017; 36 J W Zhong (2271_CR56) 2014; 8 G Cheng (2271_CR260) 2014; 8 X S Meng (2271_CR77) 2014; 6 Z H Lin (2271_CR142) 2014; 8 X Xia (2271_CR317) 2019; 10 Q Jiang (2271_CR336) 2018; 45 J Yang (2271_CR87) 2014; 8 Y Feng (2271_CR106) 2022; 12 L Gu (2271_CR83) 2015; 7 Y N Xie (2271_CR76) 2013; 7 D M Lee (2271_CR88) 2022; 8 J Wang (2271_CR108) 2016; 7 K Tao (2271_CR261) 2020; 67 X Feng (2271_CR304) 2021; 15 B Cheng (2271_CR58) 2020; 10 B Dudem (2271_CR226) 2022; 14 H Zhou (2271_CR251) 2022; 95 H N Huo (2271_CR116) 2020; 67 L Jin (2271_CR217) 2019; 66 H Li (2271_CR103) 2018; 149 L Zhang (2271_CR215) 2015; 7 D Z Zhang (2271_CR231) 2020; 67 R Hinchet (2271_CR323) 2019; 365 X Liu (2271_CR107) 2022; 312 Z L Wang (2271_CR42) 2006; 312 H F Qin (2271_CR339) 2018; 28 J Wang (2271_CR199) 2018; 6 W Li (2271_CR8) 2022; 95 Q Tang (2271_CR183) 2019; 66 J Wang (2271_CR279) 2017; 8 H Y Guo (2271_CR223) 2018; 3 L Xiao (2271_CR45) 2018; 42 Z Cui (2271_CR320) 2022; 259 Z Cui (2271_CR208) 2022; 2022 S M Li (2271_CR297) 2015; 9 J Kim (2271_CR315) 2020; 10 J S Kim (2271_CR7) 2022; 12 J Nie (2271_CR246) 2019; 10 X Liang (2271_CR325) 2020; 10 S Bai (2271_CR146) 2011; 21 S Ankanahalli Shankaregowda (2271_CR190) 2019; 66 L Feng (2271_CR294) 2018; 47 W Z Guo (2271_CR163) 2018; 10 C Liu (2271_CR209) 2022; 10 C Chen (2271_CR241) 2019; 62 W Liu (2271_CR331) 2020; 11 K M Shi (2271_CR164) 2019; 57 D Tan (2271_CR267) 2022; 14 Q S Jing (2271_CR139) 2014; 10 C Chen (2271_CR30) 2022; 13 C Li (2271_CR235) 2022; 95 M M Yuan (2271_CR46) 2014; 26 H L Zhang (2271_CR78) 2016; 8 W Deng (2271_CR26) 2022; 51 J C XXV Maxwell (2271_CR158) 1861; 21 T Jiang (2271_CR153) 2015; 25 S Yong (2271_CR80) 2021; 11 S Li (2271_CR126) 2022; 34 Z C Zhang (2271_CR181) 2019; 14 C Zhang (2271_CR287) 2021; 5 Z Yuan (2271_CR15) 2021; 6 P Zhuang (2271_CR301) 2020; 32 L Lin (2271_CR73) 2015; 9 G L Liu (2271_CR201) 2019; 9 J S Chun (2271_CR258) 2016; 7 M T Rahman (2271_CR182) 2019; 57 M Y Ma (2271_CR280) 2015; 25 Y Zou (2271_CR127) 2019; 10 C Ye (2271_CR62) 2022; 16 Z L Wang (2271_CR4) 2017; 542 Y Xi (2271_CR85) 2017; 38 S A Pullano (2271_CR115) 2020; 67 X Y Kong (2271_CR161) 2004; 303 W Z Wu (2271_CR167) 2014; 514 H Wu (2271_CR114) 2022; 34 G Khandelwal (2271_CR185) 2019; 65 Y Qin (2271_CR171) 2008; 451 L Cheng (2271_CR144) 2017; 5 Z L Wang (2271_CR179) 2016 Y L Zi (2271_CR327) 2016; 7 Z L Wang (2271_CR2) 2017; 39 X Fan (2271_CR86) 2015; 9 H Wu (2271_CR134) 2022; 12 C Liu (2271_CR213) 2022; 46 Z Xu (2271_CR282) 2022; 9 Z H Lin (2271_CR140) 2013; 52 W Liu (2271_CR278) 2019; 10 G Tian (2271_CR24) 2019; 59 Y L Zi (2271_CR155) 2016; 10 M Zhang (2271_CR308) 2023; 5 J Park (2271_CR89) 2022; 8 Y K Pang (2271_CR96) 2019; 66 Q K Han (2271_CR230) 2020; 67 Y N Xie (2271_CR257) 2014; 6 K Wang (2271_CR305) 2018; 12 X F Wang (2271_CR270) 2015; 5 A H Abd El-Kareem (2271_CR205) 2021; 6 S Xu (2271_CR44) 2010; 5 S K Injeti (2271_CR206) 2020; 5 L Xu (2271_CR281) 2017; 31 J J Yang (2271_CR340) 2018; 46 F R Fan (2271_CR48) 2012; 1 W Zhong (2271_CR265) 2019; 11 Z Cui (2271_CR332) 2022; 98 Q Zhang (2271_CR16) 2021; 12 H Wu (2271_CR330) 2021; 12 X Y Li (2271_CR253) 2018; 8 X D Yang (2271_CR335) 2019; 60 C C Qian (2271_CR240) 2019; 63 Y X Zhou (2271_CR28) 2022; 97 M Bozorg (2271_CR210) 2020; 5 K Q Xia (2271_CR299) 2020; 67 L Y Wang (2271_CR151) 2019; 66 |
References_xml | – volume: 2 start-page: e1501478 issue: 3 year: 2016 ident: CR118 article-title: Biodegradable triboelectric nanogenerator as a life-time designed implantable power source publication-title: Science Advances doi: 10.1126/sciadv.1501478 – volume: 1 start-page: 16138 issue: 10 year: 2016 ident: CR222 article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy publication-title: Nature Energy doi: 10.1038/nenergy.2016.138 – volume: 31 start-page: 351 year: 2017 end-page: 358 ident: CR281 article-title: Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.037 – volume: 9 start-page: 3733 issue: 1 year: 2018 ident: CR314 article-title: Triboelectric microplasma powered by mechanical stimuli publication-title: Nature Communications doi: 10.1038/s41467-018-06198-x – volume: 28 start-page: 1805216 issue: 51 year: 2018 ident: CR339 article-title: High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits publication-title: Advanced Functional Materials doi: 10.1002/adfm.201805216 – volume: 26 start-page: 1719 issue: 11 year: 2014 end-page: 1724 ident: CR137 article-title: Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification publication-title: Advanced Materials doi: 10.1002/adma.201304619 – volume: 431 start-page: 134002 year: 2022 ident: CR90 article-title: Superwettable hybrid dielectric based multimodal triboelectric nanogenerator with superior durability and efficiency for biomechanical energy and hydropower harvesting publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.134002 – volume: 8 start-page: 3836 issue: 4 year: 2014 end-page: 3842 ident: CR55 article-title: Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion publication-title: ACS Nano doi: 10.1021/nn500694y – volume: 66 start-page: 104087 year: 2019 ident: CR183 article-title: A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104087 – volume: 11 start-page: 2101116 issue: 31 year: 2021 ident: CR9 article-title: Water-wave driven route avoidance warning system for wireless ocean navigation publication-title: Advanced Energy Materials doi: 10.1002/aenm.202101116 – volume: 34 start-page: 2109568 issue: 15 year: 2022 ident: CR124 article-title: Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy publication-title: Advanced Materials doi: 10.1002/adma.202109568 – volume: 2022 start-page: 7620382 year: 2022 ident: CR214 article-title: Prediction of the remaining useful life of supercapacitors publication-title: Mathematical Problems in Engineering doi: 10.1155/2022/7620382 – volume: 46 start-page: 24091 issue: 15 year: 2022 end-page: 24104 ident: CR312 article-title: A method for estimating the aging state of lithium-ion batteries based on a multi-linear integrated model publication-title: International Journal of Energy Research doi: 10.1002/er.8709 – volume: 18 start-page: 2108091 issue: 14 year: 2022 ident: CR218 article-title: A gyroscope nanogenerator with frequency up-conversion effect for fitness and energy harvesting publication-title: Small doi: 10.1002/smll.202108091 – volume: 176 start-page: 447 year: 2014 end-page: 458 ident: CR175 article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives publication-title: Faraday Discussions doi: 10.1039/C4FD00159A – volume: 11 start-page: 2101147 issue: 28 year: 2021 ident: CR300 article-title: Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current publication-title: Advanced Energy Materials doi: 10.1002/aenm.202101147 – volume: 11 start-page: 4277 issue: 1 year: 2020 ident: CR303 article-title: Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect publication-title: Nature Communications doi: 10.1038/s41467-020-18086-4 – start-page: 23 year: 2016 end-page: 47 ident: CR179 publication-title: Triboelectric nanogenerator: vertical contact-separation mode. In: Triboelectric Nanogenerators – volume: 67 start-page: 1145 issue: 11 year: 2022 end-page: 1153 ident: CR310 article-title: Revealing interfacial space charge storage of Li /Na /K by operando magnetometry publication-title: Science Bulletin doi: 10.1016/j.scib.2022.04.001 – volume: 10 start-page: 17751 issue: 37 year: 2018 end-page: 17760 ident: CR163 article-title: Wireless piezoelectric devices based on electrospun PVDF/BaTiO NW nanocomposite fibers for human motion monitoring publication-title: Nanoscale doi: 10.1039/C8NR05292A – volume: 366 start-page: 969 issue: 6468 year: 2019 end-page: 681 ident: CR328 article-title: Energy storage: the future enabled by nanomaterials publication-title: Science doi: 10.1126/science.aan8285 – volume: 4 start-page: e12262 issue: 2 year: 2022 ident: CR228 article-title: Applications of nanogenerators for biomedical engineering and healthcare systems publication-title: InfoMat doi: 10.1002/inf2.12262 – volume: 6 start-page: 129 year: 2014 end-page: 136 ident: CR257 article-title: Multi-layered disk triboelectric nanogenerator for harvesting hydropower publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.03.015 – volume: 7 start-page: 7342 issue: 8 year: 2013 end-page: 7351 ident: CR132 article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system publication-title: ACS Nano doi: 10.1021/nn403021m – volume: 7 start-page: 752 issue: 9 year: 2013 end-page: 758 ident: CR169 article-title: High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array publication-title: Nature Photonics doi: 10.1038/nphoton.2013.191 – volume: 12 start-page: 2950 issue: 1 year: 2021 ident: CR59 article-title: Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel publication-title: Nature Communications doi: 10.1038/s41467-021-23207-8 – volume: 8 start-page: 1932 issue: 2 year: 2014 end-page: 1939 ident: CR260 article-title: Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/nn406565k – volume: 32 start-page: 1902549 issue: 5 year: 2020 ident: CR109 article-title: Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Advanced Materials doi: 10.1002/adma.201902549 – volume: 66 start-page: 104141 year: 2019 ident: CR190 article-title: Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104141 – volume: 67 start-page: 104197 year: 2020 ident: CR261 article-title: Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104197 – volume: 11 start-page: 6186 issue: 1 year: 2020 ident: CR319 article-title: Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density publication-title: Nature Communications doi: 10.1038/s41467-020-20045-y – volume: 6 start-page: 8401 issue: 1 year: 2015 ident: CR40 article-title: Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing publication-title: Nature Communications doi: 10.1038/ncomms9401 – volume: 66 start-page: 104080 year: 2019 ident: CR151 article-title: Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104080 – volume: 44 start-page: 682 issue: 9 year: 2019 end-page: 683 ident: CR1 article-title: Future energy, fuel cells, and solid-oxide fuel-cell technology publication-title: MRS Bulletin doi: 10.1557/mrs.2019.209 – volume: 9 start-page: 1901987 issue: 36 year: 2019 ident: CR239 article-title: High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems publication-title: Advanced Energy Materials doi: 10.1002/aenm.201901987 – volume: 12 start-page: 5470 issue: 1 year: 2021 ident: CR330 article-title: Achieving ultrahigh instantaneous power density of 10 MW·m by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG) publication-title: Nature Communications doi: 10.1038/s41467-021-25753-7 – volume: 14 start-page: 899 issue: 3 year: 2010 end-page: 918 ident: CR20 article-title: Wave energy utilization: a review of the technologies publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2009.11.003 – volume: 24 start-page: 4090 issue: 26 year: 2014 end-page: 4096 ident: CR67 article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy publication-title: Advanced Functional Materials doi: 10.1002/adfm.201304211 – volume: 25 start-page: 3718 issue: 24 year: 2015 end-page: 3725 ident: CR250 article-title: Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6% publication-title: Advanced Functional Materials doi: 10.1002/adfm.201501331 – volume: 2 start-page: 693 issue: 5 year: 2013 end-page: 701 ident: CR141 article-title: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.08.004 – volume: 9 start-page: 2201098 issue: 18 year: 2022 ident: CR282 article-title: High-performance dielectric elastomer nanogenerator for efficient energy harvesting and sensing via alternative current method publication-title: Advanced Science doi: 10.1002/advs.202201098 – volume: 22 start-page: 87 year: 2016 end-page: 94 ident: CR276 article-title: Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.01.009 – volume: 46 start-page: 5423 issue: 5 year: 2022 end-page: 5440 ident: CR212 article-title: A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network publication-title: International Journal of Energy Research doi: 10.1002/er.7545 – volume: 33 start-page: 2102765 issue: 34 year: 2021 ident: CR138 article-title: A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis publication-title: Advanced Materials doi: 10.1002/adma.202102765 – volume: 95 start-page: 106994 year: 2022 ident: CR8 article-title: Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106994 – volume: 65 start-page: 104016 year: 2019 ident: CR185 article-title: All edible materials derived biocompatible and biodegradable triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104016 – volume: 52 start-page: 5065 issue: 19 year: 2013 end-page: 5069 ident: CR140 article-title: A self-powered triboelectric nanosensor for mercury ion detection publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201300437 – volume: 9 start-page: 244 issue: 1 year: 2018 ident: CR149 article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing publication-title: Nature Communications doi: 10.1038/s41467-017-02685-9 – volume: 90 start-page: 106573 year: 2021 ident: CR259 article-title: A leaf-mimic rain energy harvester by liquid-solid contact electrification and piezoelectricity publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106573 – volume: 32 start-page: 1905696 issue: 2 year: 2020 ident: CR245 article-title: Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface publication-title: Advanced Materials doi: 10.1002/adma.201905696 – volume: 14 start-page: 5328 issue: 4 year: 2022 end-page: 5337 ident: CR226 article-title: Wearable triboelectric nanogenerator from waste materials for autonomous information transmission via morse code publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c20984 – volume: 52 start-page: 299 year: 2022 end-page: 326 ident: CR102 article-title: Advanced triboelectric materials for liquid energy harvesting and emerging application publication-title: Materials Today doi: 10.1016/j.mattod.2021.10.034 – volume: 6 start-page: 899 issue: 4 year: 2018 end-page: 906 ident: CR22 article-title: Atomic-thick 2D MoS /insulator interjection structures for enhancing nanogenerator output publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C7TC05458K – volume: 11 start-page: 2003616 issue: 12 year: 2021 ident: CR99 article-title: Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting publication-title: Advanced Energy Materials doi: 10.1002/aenm.202003616 – volume: 31 start-page: 1807795 issue: 12 year: 2019 ident: CR119 article-title: Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator publication-title: Advanced Materials doi: 10.1002/adma.201807795 – volume: 66 start-page: 104108 year: 2019 ident: CR93 article-title: Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104108 – volume: 95 start-page: 107050 year: 2022 ident: CR251 article-title: The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107050 – volume: 11 start-page: 2003066 issue: 9 year: 2021 ident: CR156 article-title: Superdurable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture publication-title: Advanced Energy Materials doi: 10.1002/aenm.202003066 – volume: 63 start-page: 103885 year: 2019 ident: CR240 article-title: All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103885 – volume: 29 start-page: 1807241 issue: 41 year: 2019 ident: CR295 article-title: Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting publication-title: Advanced Functional Materials doi: 10.1002/adfm.201807241 – volume: 46 start-page: 3034 issue: 3 year: 2022 end-page: 3043 ident: CR213 article-title: Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor publication-title: International Journal of Energy Research doi: 10.1002/er.7360 – volume: 15 start-page: 6665 issue: 18 year: 2022 ident: CR313 article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries publication-title: Energies doi: 10.3390/en15186665 – volume: 3 start-page: eaat2516 issue: 20 year: 2018 ident: CR223 article-title: A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids publication-title: Science Robotics doi: 10.1126/scirobotics.aat2516 – volume: 10 start-page: 2695 issue: 1 year: 2019 ident: CR127 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nature Communications doi: 10.1038/s41467-019-10433-4 – volume: 7 start-page: 9533 issue: 11 year: 2013 end-page: 9557 ident: CR49 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 50 start-page: 104215 year: 2022 ident: CR204 article-title: State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression publication-title: Journal of Energy Storage doi: 10.1016/j.est.2022.104215 – volume: 26 start-page: 6599 issue: 38 year: 2014 end-page: 6607 ident: CR154 article-title: Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency publication-title: Advanced Materials doi: 10.1002/adma.201402428 – volume: 67 start-page: 104210 year: 2020 ident: CR229 article-title: Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104210 – volume: 25 start-page: 6094 issue: 42 year: 2013 end-page: 6099 ident: CR65 article-title: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor publication-title: Advanced Materials doi: 10.1002/adma.201302397 – volume: 95 start-page: 106971 year: 2022 ident: CR176 article-title: Supercapacitor-inspired triboelectric nanogenerator based on electrostatic double layer publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106971 – volume: 58 start-page: 842 year: 2019 end-page: 851 ident: CR254 article-title: Conformal fluorine coated carbon paper for an energy harvesting water wheel publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.083 – volume: 67 start-page: 104214 year: 2020 ident: CR277 article-title: Highly dispersed porous polydimethylsiloxane for boosting power-generating performance of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104214 – volume: 29 start-page: 1900327 issue: 41 year: 2019 ident: CR237 article-title: Self-powered distributed water level sensors based on liquid-solid triboelectric nanogenerators for ship draft detecting publication-title: Advanced Functional Materials doi: 10.1002/adfm.201900327 – volume: 12 start-page: 4686 issue: 1 year: 2021 ident: CR35 article-title: Selection rules of triboelectric materials for direct-current triboelectric nanogenerator publication-title: Nature Communications doi: 10.1038/s41467-021-25046-z – volume: 25 start-page: 2928 issue: 19 year: 2015 end-page: 2938 ident: CR153 article-title: Theoretical study of rotary freestanding triboelectric nanogenerators publication-title: Advanced Functional Materials doi: 10.1002/adfm.201500447 – volume: 16 start-page: 1599 year: 2023 ident: CR306 article-title: Electrochemical impedance spectroscopy: a new chapter in the fast and accurate estimation of the state of health for lithium-ion batteries publication-title: Energies doi: 10.3390/en16041599 – volume: 13 start-page: 1932 issue: 2 year: 2019 end-page: 1939 ident: CR284 article-title: High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy publication-title: ACS Nano – volume: 7 start-page: 9461 issue: 10 year: 2013 end-page: 9468 ident: CR75 article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system publication-title: ACS Nano doi: 10.1021/nn4043157 – volume: 112 start-page: 183701 issue: 18 year: 2018 ident: CR95 article-title: Motion behavior of water droplets driven by triboelectric nanogenerator publication-title: Applied Physics Letters doi: 10.1063/1.5030152 – volume: 12 start-page: 376 issue: 3 year: 2018 end-page: 382 ident: CR305 article-title: Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation publication-title: Frontiers of Chemical Science and Engineering doi: 10.1007/s11705-018-1705-z – volume: 33 start-page: 2104175 issue: 48 year: 2021 ident: CR120 article-title: Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration publication-title: Advanced Materials doi: 10.1002/adma.202104175 – volume: 24 start-page: 297 year: 2020 end-page: 303 ident: CR321 article-title: Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2019.08.002 – volume: 12 start-page: 3461 issue: 4 year: 2018 end-page: 3467 ident: CR177 article-title: Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning publication-title: ACS Nano doi: 10.1021/acsnano.8b00140 – volume: 64 start-page: 103920 year: 2019 ident: CR186 article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103920 – volume: 67 start-page: 104269 year: 2020 ident: CR242 article-title: Unsteady streaming flow based teng using hydrophobic film tube with different charge affinity publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104269 – volume: 10 start-page: 061106 issue: 6 year: 2022 ident: CR209 article-title: Strong robustness and high accuracy in predicting remaining useful life of supercapacitors publication-title: APL Materials doi: 10.1063/5.0092074 – volume: 96 start-page: 107115 year: 2022 ident: CR61 article-title: Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107115 – volume: 9 start-page: 922 issue: 1 year: 2015 end-page: 930 ident: CR73 article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of similar to 55% publication-title: ACS Nano doi: 10.1021/nn506673x – volume: 11 start-page: 2101194 issue: 26 year: 2021 ident: CR80 article-title: Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator publication-title: Advanced Energy Materials doi: 10.1002/aenm.202101194 – volume: 32 start-page: 2111775 issue: 18 year: 2022 ident: CR291 article-title: High space efficiency hybrid nanogenerators for effective water wave energy harvesting publication-title: Advanced Functional Materials doi: 10.1002/adfm.202111775 – volume: 10 start-page: 2264 issue: 1 year: 2019 ident: CR246 article-title: Power generation from the interaction of a liquid droplet and a liquid membrane publication-title: Nature Communications doi: 10.1038/s41467-019-10232-x – volume: 96 start-page: 107136 year: 2022 ident: CR123 article-title: The strategy of circuit design for high performance nanogenerator based self-powered heart rate monitor system publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107136 – volume: 13 start-page: 2226 issue: 5 year: 2013 end-page: 2233 ident: CR184 article-title: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism publication-title: Nano Letters doi: 10.1021/nl400738p – volume: 34 start-page: 2200042 issue: 17 year: 2022 ident: CR31 article-title: Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting publication-title: Advanced Materials doi: 10.1002/adma.202200042 – volume: 7 start-page: 11317 issue: 12 year: 2013 end-page: 11324 ident: CR57 article-title: Harvesting energy from the natural vibration of human walking publication-title: ACS Nano doi: 10.1021/nn405175z – volume: 6 start-page: 1929 issue: 10 year: 2018 end-page: 1934 ident: CR199 article-title: Water energy harvesting and self-powered visible light communication based on triboelectric nanogenerator publication-title: Energy Technology doi: 10.1002/ente.201800035 – volume: 4 start-page: 1577 issue: 6 year: 2019 end-page: 1585 ident: CR147 article-title: Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination publication-title: ACS Sensors doi: 10.1021/acssensors.9b00259 – volume: 66 start-page: 104131 year: 2019 ident: CR96 article-title: Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104131 – volume: 56 start-page: 300 year: 2019 end-page: 306 ident: CR263 article-title: A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.043 – volume: 39 start-page: 9 year: 2017 end-page: 23 ident: CR2 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 11 start-page: 2100038 issue: 16 year: 2021 ident: CR157 article-title: Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density publication-title: Advanced Energy Materials doi: 10.1002/aenm.202100038 – volume: 67 start-page: 104278 year: 2020 ident: CR115 article-title: Triboelectric-induced pseudo-ICG for cardiovascular risk assessment on flexible electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104278 – volume: 57 start-page: 616 year: 2019 end-page: 624 ident: CR292 article-title: A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.078 – volume: 95 start-page: 107048 year: 2022 ident: CR256 article-title: A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107048 – volume: 14 start-page: 9046 issue: 7 year: 2022 end-page: 9056 ident: CR264 article-title: Highly stable and eco-friendly marine self-charging power systems composed of conductive polymer supercapacitors with seawater as an electrolyte publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c22129 – volume: 6 start-page: 8031 issue: 1 year: 2015 ident: CR54 article-title: Self-powered thin-film motion vector sensor publication-title: Nature Communications doi: 10.1038/ncomms9031 – volume: 8 start-page: 6440 issue: 6 year: 2014 end-page: 6448 ident: CR142 article-title: Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor publication-title: ACS Nano doi: 10.1021/nn501983s – volume: 12 start-page: 2103076 issue: 3 year: 2022 ident: CR7 article-title: Collectively exhaustive hybrid triboelectric nanogenerator based on flow-induced impacting-sliding cylinder for ocean energy harvesting publication-title: Advanced Energy Materials doi: 10.1002/aenm.202103076 – volume: 15 start-page: 16368 issue: 10 year: 2021 end-page: 16375 ident: CR10 article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring publication-title: ACS Nano doi: 10.1021/acsnano.1c05685 – volume: 66 start-page: 104167 year: 2019 ident: CR92 article-title: Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104167 – volume: 24 start-page: 2892 issue: 19 year: 2014 end-page: 2898 ident: CR37 article-title: Increase output energy and operation frequency of a triboelectric nanogenerator by two grounded electrodes approach publication-title: Advanced Functional Materials doi: 10.1002/adfm.201303659 – volume: 38 start-page: 101 year: 2017 end-page: 108 ident: CR85 article-title: High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.053 – volume: 9 start-page: 1802906 issue: 1 year: 2019 ident: CR173 article-title: Triboelectric nanogenerator: a foundation of the energy for the new era publication-title: Advanced Energy Materials doi: 10.1002/aenm.201802906 – volume: 65 start-page: 104012 year: 2019 ident: CR189 article-title: Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104012 – volume: 29 start-page: 1606703 issue: 17 year: 2017 ident: CR293 article-title: Service behavior of multifunctional triboelectric nanogenerators publication-title: Advanced Materials doi: 10.1002/adma.201606703 – volume: 316 start-page: 102 issue: 5821 year: 2007 end-page: 105 ident: CR43 article-title: Direct-current nanogenerator driven by ultrasonic waves publication-title: Science doi: 10.1126/science.1139366 – volume: 97 start-page: 107205 year: 2022 ident: CR29 article-title: Integrated piezo-tribo hybrid acoustic-driven nanogenerator based on porous MWCNTs/PVDF-TrFE aerogel bulk with embedded pdms tympanum structure for broadband sound energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107205 – volume: 10 start-page: 2002123 issue: 40 year: 2020 ident: CR325 article-title: Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting publication-title: Advanced Energy Materials doi: 10.1002/aenm.202002123 – volume: 291 start-page: 1947 issue: 5510 year: 2001 end-page: 1949 ident: CR162 article-title: Nanobelts of semiconducting oxides publication-title: Science doi: 10.1126/science.1058120 – volume: 8 start-page: eabj9220 issue: 12 year: 2022 ident: CR89 article-title: Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface publication-title: Science Advances doi: 10.1126/sciadv.abj9220 – volume: 2019 start-page: 1091632 year: 2019 ident: CR220 article-title: Fabric-based triboelectric nanogenerators publication-title: Research doi: 10.34133/2019/1091632 – volume: 25 start-page: 5691 issue: 35 year: 2015 end-page: 5697 ident: CR283 article-title: Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy publication-title: Advanced Functional Materials doi: 10.1002/adfm.201502318 – volume: 28 start-page: 172 year: 2016 end-page: 178 ident: CR285 article-title: A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.024 – volume: 2 start-page: 688 issue: 5 year: 2013 end-page: 692 ident: CR51 article-title: Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.08.002 – volume: 13 start-page: 1391 issue: 1 year: 2022 ident: CR30 article-title: A method for quantitatively separating the piezoelectric component from the as-received “piezoelectric” signal publication-title: Nature Communications doi: 10.1038/s41467-022-29087-w – volume: 4 start-page: 34 issue: 1 year: 2009 end-page: 39 ident: CR165 article-title: Power generation with laterally packaged piezoelectric fine wires publication-title: Nature Nanotechnology doi: 10.1038/nnano.2008.314 – volume: 7 start-page: 10424 issue: 11 year: 2013 end-page: 10432 ident: CR68 article-title: Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester publication-title: ACS Nano doi: 10.1021/nn405209u – volume: 27 start-page: 1316 issue: 8 year: 2015 end-page: 1326 ident: CR81 article-title: Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition publication-title: Advanced Materials doi: 10.1002/adma.201404794 – volume: 45 start-page: 266 year: 2018 end-page: 272 ident: CR336 article-title: Mxene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.004 – volume: 6 start-page: 7842 issue: 14 year: 2014 end-page: 7846 ident: CR145 article-title: An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector publication-title: Nanoscale doi: 10.1039/C4NR01934B – volume: 249 start-page: 720 issue: 5459 year: 1974 end-page: 724 ident: CR19 article-title: Wave power publication-title: Nature doi: 10.1038/249720a0 – volume: 5 start-page: 2000531 issue: 9 year: 2020 ident: CR262 article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting publication-title: Advanced Materials Technologies doi: 10.1002/admt.202000531 – volume: 32 start-page: 14715 issue: 11 year: 2021 end-page: 14727 ident: CR60 article-title: Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring publication-title: Journal of Materials Science Materials in Electronics doi: 10.1007/s10854-021-06027-w – volume: 1 start-page: 93 issue: 1 year: 2010 ident: CR170 article-title: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics publication-title: Nature Communications doi: 10.1038/ncomms1098 – volume: 2022 start-page: 9645892 year: 2022 ident: CR202 article-title: Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation publication-title: Mathematical Problems in Engineering – volume: 10 start-page: 2000965 issue: 24 year: 2020 ident: CR34 article-title: Rationally designed dual-mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000965 – volume: 9 start-page: 1900801 issue: 26 year: 2019 ident: CR201 article-title: Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting publication-title: Advanced Energy Materials doi: 10.1002/aenm.201900801 – volume: 5 start-page: 11 issue: 1 year: 2020 ident: CR211 article-title: Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-020-00158-8 – volume: 21 start-page: 4464 issue: 23 year: 2011 end-page: 4469 ident: CR146 article-title: High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates publication-title: Advanced Functional Materials doi: 10.1002/adfm.201101319 – volume: 1 start-page: 328 issue: 12 year: 2012 end-page: 334 ident: CR48 article-title: Flexible triboelectric generator! publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 12 start-page: 760 year: 2015 end-page: 774 ident: CR192 article-title: Theory of freestanding triboelectric-layer-based nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.013 – volume: 10 start-page: 4797 issue: 4 year: 2016 end-page: 4805 ident: CR155 article-title: Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b01569 – volume: 28 start-page: 1803117 issue: 35 year: 2018 ident: CR249 article-title: An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system publication-title: Advanced Functional Materials doi: 10.1002/adfm.201803117 – volume: 33 start-page: 2104290 issue: 44 year: 2021 ident: CR243 article-title: Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator publication-title: Advanced Materials doi: 10.1002/adma.202104290 – volume: 60 start-page: 404 year: 2019 end-page: 412 ident: CR335 article-title: Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.054 – volume: 67 start-page: 104235 year: 2020 ident: CR53 article-title: A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104235 – volume: 1 start-page: 4909 issue: 12 year: 2019 end-page: 4914 ident: CR84 article-title: Piezoelectric nanofiber/polymer composite membrane for noise harvesting and active acoustic wave detection publication-title: Nanoscale Advances doi: 10.1039/C9NA00484J – volume: 7 start-page: 18049 issue: 43 year: 2015 end-page: 18053 ident: CR83 article-title: Packaged triboelectric nanogenerator with high endurability for severe environments publication-title: Nanoscale doi: 10.1039/C5NR05514H – volume: 12 start-page: 1849 issue: 2 year: 2018 end-page: 1858 ident: CR272 article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.7b08674 – volume: 8 start-page: eabl8423 issue: 1 year: 2022 ident: CR88 article-title: Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics publication-title: Science Advances doi: 10.1126/sciadv.abl8423 – volume: 2 start-page: 17023 issue: 6 year: 2017 ident: CR324 article-title: Energy harvesting and storage in 1D devices publication-title: Nature Reviews. Materials doi: 10.1038/natrevmats.2017.23 – volume: 33 start-page: 2100782 issue: 26 year: 2021 ident: CR101 article-title: Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals publication-title: Advanced Materials doi: 10.1002/adma.202100782 – volume: 8 start-page: 15310 issue: 1 year: 2017 ident: CR168 article-title: Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics publication-title: Nature Communications doi: 10.1038/ncomms15310 – volume: 96 start-page: 107128 year: 2022 ident: CR27 article-title: Ultra-robust tribo- and piezo-electric nanogenerator based on metal organic frameworks (MOF-5) with high environmental stability publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107128 – volume: 11 start-page: 4203 issue: 1 year: 2020 ident: CR318 article-title: Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling publication-title: Nature Communications doi: 10.1038/s41467-020-17891-1 – volume: 57 start-page: 432 year: 2019 end-page: 439 ident: CR271 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.054 – volume: 6 start-page: 2809 issue: 8 year: 2021 end-page: 2816 ident: CR15 article-title: Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.1c01092 – volume: 8 start-page: 2649 issue: 3 year: 2014 end-page: 2657 ident: CR87 article-title: Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing publication-title: ACS Nano doi: 10.1021/nn4063616 – volume: 15 start-page: 1130 issue: 3 year: 2022 ident: CR136 article-title: Microstructure evolution and improved permeability of ceramic waste-based bricks publication-title: Materials doi: 10.3390/ma15031130 – volume: 67 start-page: 104290 year: 2020 ident: CR52 article-title: Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104290 – volume: 14 start-page: 3208 issue: 6 year: 2014 end-page: 3213 ident: CR148 article-title: Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification publication-title: Nano Letters doi: 10.1021/nl5005652 – volume: 1 start-page: 10 issue: 1 year: 2017 ident: CR216 article-title: Triboelectric nanogenerators as flexible power sources publication-title: npj Flexible Electronics doi: 10.1038/s41528-017-0007-8 – volume: 12 start-page: 3018 issue: 12 year: 2019 end-page: 3023 ident: CR74 article-title: A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor publication-title: Nano Research doi: 10.1007/s12274-019-2545-y – volume: 62 start-page: 442 year: 2019 end-page: 448 ident: CR241 article-title: Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.029 – volume: 36 start-page: 250 year: 2017 end-page: 259 ident: CR252 article-title: Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.026 – volume: 12 start-page: 616 issue: 1 year: 2021 ident: CR16 article-title: Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean publication-title: Nature Communications doi: 10.1038/s41467-021-20919-9 – volume: 9 start-page: 1442 issue: 5 year: 2016 end-page: 1451 ident: CR275 article-title: Multilayered electret films based triboelectric nanogenerator publication-title: Nano Research doi: 10.1007/s12274-016-1040-y – volume: 13 start-page: 400 issue: 1 year: 2021 end-page: 410 ident: CR36 article-title: Waste plastic triboelectric nanogenerators using recycled plastic bags for power generation publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.0c16489 – volume: 8 start-page: 10674 issue: 10 year: 2014 end-page: 10681 ident: CR150 article-title: 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor publication-title: ACS Nano doi: 10.1021/nn504243j – volume: 5 start-page: 498 issue: 1 year: 2023 end-page: 508 ident: CR308 article-title: Self-powered electronic skin for remote human-machine synchronization publication-title: ACS Applied Electronic Materials doi: 10.1021/acsaelm.2c01476 – volume: 4 start-page: 1800514 issue: 3 year: 2019 ident: CR266 article-title: Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting publication-title: Advanced Materials Technologies doi: 10.1002/admt.201800514 – volume: 20 start-page: 74 issue: 2 year: 2017 end-page: 82 ident: CR159 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Materials Today doi: 10.1016/j.mattod.2016.12.001 – volume: 6 start-page: 12 issue: 1 year: 2021 ident: CR13 article-title: Electrical control strategy for an ocean energy conversion system publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00186-y – volume: 31 start-page: 560 year: 2017 end-page: 567 ident: CR274 article-title: Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.004 – volume: 5 start-page: 074101 issue: 7 year: 2017 ident: CR25 article-title: Theoretical study of enhancing the piezoelectric nanogenerator’s output power by optimizing the external force’s shape publication-title: APL Materials doi: 10.1063/1.4975772 – volume: 32 start-page: 2202048 issue: 29 year: 2022 ident: CR18 article-title: Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting publication-title: Advanced Functional Materials doi: 10.1002/adfm.202202048 – volume: 7 start-page: 7119 issue: 8 year: 2013 end-page: 7125 ident: CR76 article-title: Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy publication-title: ACS Nano doi: 10.1021/nn402477h – volume: 42 start-page: 656 issue: 2 year: 2018 end-page: 672 ident: CR45 article-title: Parametric study on the thermoelectric conversion performance of a concentrated solar-driven thermionic-thermoelectric hybrid generator publication-title: International Journal of Energy Research doi: 10.1002/er.3849 – volume: 95 start-page: 106997 year: 2022 ident: CR234 article-title: A method of measuring weak-charge of self-powered sensors based on triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106997 – volume: 149 start-page: 174705 issue: 17 year: 2018 ident: CR103 article-title: Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces publication-title: Journal of Chemical Physics doi: 10.1063/1.5053894 – volume: 8 start-page: 32649 issue: 48 year: 2016 end-page: 32654 ident: CR78 article-title: Self-powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b12798 – volume: 97 start-page: 107172 year: 2022 ident: CR28 article-title: Tungsten disulfide nanosheets for piezoelectric nanogenerator and human-machine interface applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107172 – volume: 27 start-page: 4938 issue: 33 year: 2015 end-page: 4944 ident: CR178 article-title: Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development publication-title: Advanced Materials doi: 10.1002/adma.201502546 – volume: 34 start-page: 2109355 issue: 21 year: 2022 ident: CR113 article-title: Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures publication-title: Advanced Materials doi: 10.1002/adma.202109355 – volume: 32 start-page: 2001699 issue: 33 year: 2020 ident: CR100 article-title: Charge trapping-based electricity generator (CTEG): an ultrarobust and high efficiency nanogenerator for energy harvesting from water droplets publication-title: Advanced Materials doi: 10.1002/adma.202001699 – volume: 61 start-page: 454 year: 2019 end-page: 461 ident: CR255 article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.007 – volume: 4 start-page: 1700072 issue: 8 year: 2017 ident: CR338 article-title: Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery publication-title: Advanced Science doi: 10.1002/advs.201700072 – volume: 24 start-page: 1401 issue: 10 year: 2014 end-page: 1407 ident: CR63 article-title: Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor publication-title: Advanced Functional Materials doi: 10.1002/adfm.201302453 – volume: 30 start-page: 2257 issue: 5 year: 2019 end-page: 2272 ident: CR311 article-title: Two-agent stochastic flow shop deteriorating scheduling via a hybrid multi-objective evolutionary algorithm publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-017-1385-4 – volume: 12 start-page: 1315 issue: 10 year: 2016 end-page: 1321 ident: CR23 article-title: A transparent antipeep piezoelectric nanogenerator to harvest tapping energy on screen publication-title: Small doi: 10.1002/smll.201502453 – volume: 16 start-page: 1271 issue: 1 year: 2022 end-page: 1279 ident: CR129 article-title: Self-rebound cambered triboelectric nanogenerator array for self-powered sensing in kinematic analytics publication-title: ACS Nano doi: 10.1021/acsnano.1c09096 – volume: 12 start-page: 2103143 issue: 1 year: 2022 ident: CR106 article-title: Blue energy for green hydrogen fuel: a self-powered electrochemical conversion system driven by triboelectric nanogenerators publication-title: Advanced Energy Materials doi: 10.1002/aenm.202103143 – volume: 6 start-page: 41 issue: 1 year: 2021 ident: CR205 article-title: Effective damping of local low frequency oscillations in power systems integrated with bulk PV generation publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00219-6 – volume: 16 start-page: 386 issue: 7 year: 2019 end-page: 386 ident: CR117 article-title: Pacemaker powered by cardiac motion publication-title: Nature Reviews. Cardiology – volume: 67 start-page: 104150 year: 2020 ident: CR116 article-title: Triboelectric nanogenerators for electro-assisted cell printing publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104150 – volume: 50 start-page: 536 year: 2018 end-page: 543 ident: CR322 article-title: Traditional weaving craft for one-piece self-charging power textile for wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.009 – volume: 11 start-page: 6158 issue: 1 year: 2020 ident: CR290 article-title: A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator publication-title: Nature Communications doi: 10.1038/s41467-020-19987-0 – volume: 56 start-page: 693 year: 2019 end-page: 699 ident: CR94 article-title: Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.003 – volume: 96 start-page: 107118 year: 2022 ident: CR72 article-title: Snap-through triboelectric nanogenerator with magnetic coupling buckled bistable mechanism for harvesting rotational energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107118 – volume: 5 start-page: 3 issue: 1 year: 2020 ident: CR206 article-title: Optimal integration of DGs into radial distribution network in the presence of plug-in electric vehicles to minimize daily active power losses and to improve the voltage profile of the system using bio-inspired optimization algorithms publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-019-0149-x – volume: 5 start-page: 1501467 issue: 24 year: 2015 ident: CR270 article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy publication-title: Advanced Energy Materials doi: 10.1002/aenm.201501467 – volume: 29 start-page: 1606346 issue: 16 year: 2017 ident: CR21 article-title: Ultrasensitive 2D ZnO piezotronic transistor array for high resolution tactile imaging publication-title: Advanced Materials doi: 10.1002/adma.201606346 – volume: 14 start-page: 1039 issue: 6 year: 2020 end-page: 1051 ident: CR307 article-title: A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging publication-title: Frontiers of Chemical Science and Engineering doi: 10.1007/s11705-019-1901-5 – volume: 12 start-page: 3693 issue: 1 year: 2021 ident: CR122 article-title: Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field publication-title: Nature Communications doi: 10.1038/s41467-021-24028-5 – volume: 6 start-page: 8376 issue: 1 year: 2015 ident: CR343 article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators publication-title: Nature Communications doi: 10.1038/ncomms9376 – volume: 11 start-page: 58 issue: 1 year: 2020 ident: CR128 article-title: Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors publication-title: Nature Communications doi: 10.1038/s41467-019-13653-w – volume: 12 start-page: 481 issue: 5 year: 2017 end-page: 487 ident: CR104 article-title: Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry publication-title: Nature Nanotechnology doi: 10.1038/nnano.2017.17 – volume: 67 start-page: 104277 year: 2020 ident: CR230 article-title: A triboelectric rolling ball bearing with self-powering and self-sensing capabilities publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104277 – volume: 5 start-page: eaav6437 issue: 4 year: 2019 ident: CR219 article-title: A constant current triboelectric nanogenerator arising from electrostatic breakdown publication-title: Science Advances doi: 10.1126/sciadv.aav6437 – volume: 3 start-page: e1700694 issue: 7 year: 2017 ident: CR197 article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator publication-title: Science Advances doi: 10.1126/sciadv.1700694 – volume: 67 start-page: 104205 year: 2020 ident: CR200 article-title: A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104205 – volume: 26 start-page: 2818 issue: 18 year: 2014 end-page: 2824 ident: CR195 article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes publication-title: Advanced Materials doi: 10.1002/adma.201305303 – volume: 365 start-page: 491 issue: 6452 year: 2019 end-page: 494 ident: CR323 article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology publication-title: Science doi: 10.1126/science.aan3997 – volume: 65 start-page: 104068 year: 2019 ident: CR334 article-title: Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104068 – volume: 9 start-page: 12562 issue: 12 year: 2015 end-page: 12572 ident: CR14 article-title: Structural optimization of triboelectric nanogenerator for harvesting water wave energy publication-title: ACS Nano doi: 10.1021/acsnano.5b06372 – volume: 250 start-page: 123773 year: 2022 ident: CR203 article-title: Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2022.123773 – volume: 16 start-page: 4415 issue: 3 year: 2022 end-page: 4425 ident: CR62 article-title: Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception publication-title: ACS Nano doi: 10.1021/acsnano.1c10680 – volume: 4 start-page: 229 issue: 4 year: 2013 end-page: 245 ident: CR38 article-title: Nano/microscale pyroelectric energy harvesting: challenges and opportunities publication-title: International Journal of Smart and Nano Materials doi: 10.1080/19475411.2013.872207 – volume: 11 start-page: 1883 issue: 1 year: 2020 ident: CR331 article-title: Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator publication-title: Nature Communications doi: 10.1038/s41467-020-15373-y – volume: 9 start-page: 7957 issue: 9 year: 2019 end-page: 7966 ident: CR105 article-title: Design of a Pd-Au nitrite reduction catalyst by identifying and optimizing active ensembles publication-title: ACS Catalysis doi: 10.1021/acscatal.9b02182 – volume: 98 start-page: 107282 year: 2022 ident: CR12 article-title: Self-powered environmental monitoring via a triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107282 – volume: 34 start-page: 2203073 issue: 29 year: 2022 ident: CR131 article-title: An open-environment tactile sensing system: toward simple and efficient material identification publication-title: Advanced Materials doi: 10.1002/adma.202203073 – volume: 11 start-page: 26824 issue: 30 year: 2019 end-page: 26829 ident: CR224 article-title: Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b06627 – volume: 31 start-page: 1902793 issue: 39 year: 2019 ident: CR125 article-title: Signal output of triboelectric nanogenerator at oil-water-solid multiphase interfaces and its application for dual-signal chemical sensing publication-title: Advanced Materials doi: 10.1002/adma.201902793 – volume: 9 start-page: 4236 issue: 4 year: 2015 end-page: 4243 ident: CR86 article-title: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording publication-title: ACS Nano doi: 10.1021/acsnano.5b00618 – volume: 15 start-page: 15700 issue: 10 year: 2021 end-page: 15709 ident: CR286 article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things publication-title: ACS Nano doi: 10.1021/acsnano.1c05127 – volume: 52 start-page: 188 year: 2022 end-page: 206 ident: CR41 article-title: Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators publication-title: Materials Today doi: 10.1016/j.mattod.2021.11.027 – volume: 10 start-page: 5147 issue: 1 year: 2019 ident: CR135 article-title: Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics publication-title: Nature Communications doi: 10.1038/s41467-019-13166-6 – volume: 312 start-page: 121422 year: 2022 ident: CR107 article-title: Triboelectric pulsed direct-current enhanced radical generation for efficient degradation of organic pollutants in wastewater publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2022.121422 – volume: 7 start-page: 6361 issue: 7 year: 2013 end-page: 6366 ident: CR71 article-title: Cylindrical rotating triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/nn402491y – volume: 95 start-page: 106998 year: 2022 ident: CR235 article-title: Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106998 – volume: 6 start-page: 8011 issue: 11 year: 2014 end-page: 8016 ident: CR77 article-title: Robust thin-film generator based on segmented contact-electrification for harvesting wind energy publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am501782f – volume: 14 start-page: 354 issue: 1 year: 2019 ident: CR181 article-title: A portable triboelectric nanogenerator for real-time respiration monitoring publication-title: Nanoscale Research Letters doi: 10.1186/s11671-019-3187-4 – volume: 7 start-page: 12985 issue: 1 year: 2016 ident: CR258 article-title: Boosted output performance of triboelectric nanogenerator via electric double layer effect publication-title: Nature Communications doi: 10.1038/ncomms12985 – volume: 8 start-page: 4938 issue: 9 year: 2016 end-page: 4944 ident: CR82 article-title: A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment publication-title: Nanoscale doi: 10.1039/C5NR09087C – volume: 16 start-page: 6781 issue: 4 year: 2022 end-page: 6788 ident: CR6 article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy publication-title: ACS Nano doi: 10.1021/acsnano.2c01594 – volume: 451 start-page: 809 issue: 7180 year: 2008 end-page: 813 ident: CR171 article-title: Microfibre-nanowire hybrid structure for energy scavenging publication-title: Nature doi: 10.1038/nature06601 – volume: 10 start-page: 2000426 issue: 28 year: 2020 ident: CR98 article-title: Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000426 – volume: 11 start-page: 7199 issue: 15 year: 2019 end-page: 7208 ident: CR265 article-title: Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting publication-title: Nanoscale doi: 10.1039/C8NR09978B – volume: 51 start-page: 3380 issue: 9 year: 2022 end-page: 3435 ident: CR26 article-title: Piezoelectric nanogenerators for personalized healthcare publication-title: Chemical Society Reviews doi: 10.1039/D1CS00858G – volume: 8 start-page: 88 issue: 1 year: 2017 ident: CR279 article-title: Achieving ultrahigh triboelectric charge density for efficient energy harvesting publication-title: Nature Communications doi: 10.1038/s41467-017-00131-4 – volume: 2 start-page: e1600097 issue: 10 year: 2016 ident: CR196 article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors publication-title: Science Advances doi: 10.1126/sciadv.1600097 – volume: 58 start-page: 579 year: 2019 end-page: 584 ident: CR91 article-title: Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.078 – volume: 21 start-page: 161 issue: 139 year: 1861 end-page: 175 ident: CR158 article-title: On physical lines of force: Part I—The theory of molecular vortices applied to magnetic phenomena publication-title: London, Edinburgh and Dublin Philosophical Magazine and Journal of Science doi: 10.1080/14786446108643033 – volume: 16 start-page: 38 year: 2015 end-page: 46 ident: CR296 article-title: Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.06.006 – volume: 98 start-page: 1328 year: 2022 end-page: 1340 ident: CR332 article-title: A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures publication-title: Renewable Energy doi: 10.1016/j.renene.2022.08.123 – volume: 67 start-page: 104206 year: 2020 ident: CR221 article-title: Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104206 – volume: 310 start-page: 123081 year: 2022 ident: CR309 article-title: Antiferroelectric stability and energy storage properties of Co-doped AgNbO ceramics publication-title: Journal of Solid State Chemistry doi: 10.1016/j.jssc.2022.123081 – volume: 67 start-page: 104228 year: 2020 ident: CR198 article-title: A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs) publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104228 – volume: 10 start-page: 2002920 issue: 45 year: 2020 ident: CR316 article-title: Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication publication-title: Advanced Energy Materials doi: 10.1002/aenm.202002920 – volume: 7 start-page: 3836 issue: 12 year: 2014 end-page: 3856 ident: CR39 article-title: Pyroelectric materials and devices for energy harvesting applications publication-title: Energy & Environmental Science doi: 10.1039/C4EE01759E – volume: 6 start-page: 880 issue: 12 year: 2013 end-page: 886 ident: CR64 article-title: Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator publication-title: Nano Research doi: 10.1007/s12274-013-0364-0 – volume: 67 start-page: 104297 year: 2020 ident: CR172 article-title: High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104297 – volume: 5 start-page: 366 issue: 5 year: 2010 end-page: 373 ident: CR44 article-title: Self-powered nanowire devices publication-title: Nature Nanotechnology doi: 10.1038/nnano.2010.46 – volume: 59 start-page: 574 year: 2019 end-page: 581 ident: CR24 article-title: Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.013 – volume: 259 start-page: 124933 year: 2022 ident: CR320 article-title: A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF publication-title: Energy doi: 10.1016/j.energy.2022.124933 – volume: 7 start-page: 1700103 issue: 21 year: 2017 ident: CR337 article-title: Triboelectrification-enabled self-charging lithium-ion batteries publication-title: Advanced Energy Materials doi: 10.1002/aenm.201700103 – volume: 47 start-page: 217 year: 2018 end-page: 223 ident: CR294 article-title: Hybridized nanogenerator based on honeycomblike three electrodes for efficient ocean wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.042 – volume: 11 start-page: 399 issue: 1 year: 2020 ident: CR247 article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer publication-title: Nature Communications doi: 10.1038/s41467-019-14278-9 – volume: 6 start-page: 3 issue: 1 year: 2021 ident: CR3 article-title: A critical review of the integration of renewable energy sources with various technologies publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00181-3 – volume: 61 start-page: 132 year: 2019 end-page: 140 ident: CR188 article-title: Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.046 – volume: 64 start-page: 103948 year: 2019 ident: CR191 article-title: Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103948 – volume: 67 start-page: 104251 year: 2020 ident: CR231 article-title: High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104251 – volume: 46 start-page: 10372 issue: 8 year: 2022 end-page: 10388 ident: CR207 article-title: Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: a review publication-title: International Journal of Energy Research doi: 10.1002/er.7905 – volume: 32 start-page: 1908072 issue: 14 year: 2020 ident: CR301 article-title: FIB-patterned nanosupercapacitors: minimized size with ultrahigh performances publication-title: Advanced Materials doi: 10.1002/adma.201908072 – volume: 9 start-page: 3324 issue: 3 year: 2015 end-page: 3331 ident: CR269 article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy publication-title: ACS Nano doi: 10.1021/acsnano.5b00534 – volume: 57 start-page: 256 year: 2019 end-page: 268 ident: CR182 article-title: Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.052 – volume: 34 start-page: 2200793 issue: 21 year: 2022 ident: CR111 article-title: Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input publication-title: Advanced Materials doi: 10.1002/adma.202200793 – volume: 9 start-page: 1902460 issue: 40 year: 2019 ident: CR238 article-title: Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring publication-title: Advanced Energy Materials doi: 10.1002/aenm.201902460 – volume: 66 start-page: 104086 year: 2019 ident: CR217 article-title: Nanogenerator as new energy technology for self-powered intelligent transportation system publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104086 – volume: 10 start-page: 2002312 issue: 44 year: 2020 ident: CR315 article-title: Ultrahigh power output from triboelectric nanogenerator based on serrated electrode via spark discharge publication-title: Advanced Energy Materials doi: 10.1002/aenm.202002312 – volume: 115 start-page: 100704 year: 2021 ident: CR225 article-title: Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2020.100704 – volume: 8 start-page: 1800705 issue: 21 year: 2018 ident: CR253 article-title: Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy publication-title: Advanced Energy Materials doi: 10.1002/aenm.201800705 – volume: 32 start-page: 2006839 issue: 50 year: 2020 ident: CR289 article-title: A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously publication-title: Advanced Materials doi: 10.1002/adma.202006839 – volume: 9 start-page: 7479 issue: 7 year: 2015 end-page: 7487 ident: CR297 article-title: Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states publication-title: ACS Nano doi: 10.1021/acsnano.5b02575 – volume: 5 start-page: 3426 issue: 1 year: 2014 ident: CR70 article-title: Radial-arrayed rotary electrification for high performance triboelectric generator publication-title: Nature Communications doi: 10.1038/ncomms4426 – volume: 1 start-page: 16031 issue: 7 year: 2016 ident: CR166 article-title: Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews publication-title: Materials – volume: 15 start-page: 238 issue: 2 year: 2021 end-page: 250 ident: CR304 article-title: Integrated energy storage system based on triboelectric nanogenerator in electronic devices publication-title: Frontiers of Chemical Science and Engineering doi: 10.1007/s11705-020-1956-3 – volume: 34 start-page: 2109918 issue: 13 year: 2022 ident: CR114 article-title: Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator publication-title: Advanced Materials doi: 10.1002/adma.202109918 – volume: 3 start-page: eaap8576 issue: 12 year: 2017 ident: CR342 article-title: Optimization principles and the figure of merit for triboelectric generators publication-title: Science Advances doi: 10.1126/sciadv.aap8576 – volume: 7 start-page: 12744 issue: 1 year: 2016 ident: CR108 article-title: Sustainably powering wearable electronics solely by biomechanical energy publication-title: Nature Communications doi: 10.1038/ncomms12744 – volume: 46 start-page: 220 year: 2018 end-page: 228 ident: CR340 article-title: Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.013 – volume: 312 start-page: 242 issue: 5771 year: 2006 end-page: 246 ident: CR42 article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays publication-title: Science doi: 10.1126/science.1124005 – volume: 5 start-page: 21 issue: 1 year: 2020 ident: CR210 article-title: Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-020-00167-7 – volume: 94 start-page: 106926 year: 2022 ident: CR236 article-title: Highly-stretchable ropelike triboelectric nanogenerator for self-powered monitoring in marine structures publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106926 – volume: 34 start-page: 2110363 issue: 14 year: 2022 ident: CR126 article-title: A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles publication-title: Advanced Materials doi: 10.1002/adma.202110363 – volume: 10 start-page: 1821 issue: 1 year: 2019 ident: CR227 article-title: Symbiotic cardiac pacemaker publication-title: Nature Communications doi: 10.1038/s41467-019-09851-1 – volume: 89 start-page: 106381 year: 2021 ident: CR17 article-title: A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106381 – volume: 303 start-page: 1348 issue: 5662 year: 2004 end-page: 1351 ident: CR161 article-title: Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts publication-title: Science doi: 10.1126/science.1092356 – volume: 57 start-page: 450 year: 2019 end-page: 458 ident: CR164 article-title: Cellulose/BaTiO aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.076 – volume: 43 start-page: 101437 year: 2022 ident: CR152 article-title: Bimetallic strip based triboelectric nanogenerator for self-powered high temperature alarm system publication-title: Nano Today doi: 10.1016/j.nantod.2022.101437 – volume: 39 start-page: 608 year: 2017 end-page: 615 ident: CR193 article-title: Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.045 – volume: 5 start-page: 1600623 issue: 1 year: 2017 ident: CR144 article-title: A light sensitive nanogenerator for self-powered UV detection with two measuring ranges publication-title: Advanced Optical Materials doi: 10.1002/adom.201600623 – volume: 7 start-page: 1602397 issue: 12 year: 2017 ident: CR33 article-title: Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor publication-title: Advanced Energy Materials doi: 10.1002/aenm.201602397 – volume: 25 start-page: 6489 issue: 41 year: 2015 end-page: 6494 ident: CR280 article-title: Self-recovering triboelectric nanogenerator as active multifunctional sensors publication-title: Advanced Functional Materials doi: 10.1002/adfm.201503180 – volume: 25 start-page: 5794 issue: 36 year: 2015 end-page: 5798 ident: CR143 article-title: A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection publication-title: Advanced Functional Materials doi: 10.1002/adfm.201502646 – volume: 26 start-page: 7432 issue: 44 year: 2014 end-page: 7437 ident: CR46 article-title: Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr Ti )O −0.5(Ba Ca )TiO nanowires for applications publication-title: Advanced Materials doi: 10.1002/adma.201402868 – volume: 1 start-page: 6115 issue: 44 year: 2013 end-page: 6122 ident: CR50 article-title: A targetable nanogenerator of nitric oxide for light-triggered cytotoxicity publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine doi: 10.1039/c3tb21131b – volume: 2022 start-page: 9616124 year: 2022 ident: CR208 article-title: Hybrid methods using neural network and kalman filter for the state of charge estimation of lithium-ion battery publication-title: Mathematical Problems in Engineering doi: 10.1155/2022/9616124 – volume: 2 start-page: 863 issue: 4 year: 2020 end-page: 878 ident: CR233 article-title: Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors publication-title: ACS Applied Electronic Materials doi: 10.1021/acsaelm.0c00022 – volume: 12 start-page: 4280 issue: 5 year: 2018 end-page: 4285 ident: CR248 article-title: Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy publication-title: ACS Nano doi: 10.1021/acsnano.7b08716 – volume: 31 start-page: 1903793 issue: 43 year: 2019 ident: CR121 article-title: A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy publication-title: Advanced Materials doi: 10.1002/adma.201903793 – volume: 88 start-page: 106199 year: 2021 ident: CR11 article-title: Recent progress in blue energy harvesting for powering distributed sensors in ocean publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106199 – volume: 33 start-page: 2004178 issue: 17 year: 2021 ident: CR110 article-title: The triboelectric nanogenerator as an innovative technology toward intelligent sports publication-title: Advanced Materials doi: 10.1002/adma.202004178 – volume: 5 start-page: 1613 issue: 6 year: 2021 end-page: 1623 ident: CR287 article-title: Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy publication-title: Joule doi: 10.1016/j.joule.2021.04.016 – volume: 33 start-page: 2105761 issue: 51 year: 2021 ident: CR244 article-title: A single-droplet electricity generator achieves an ultrahigh output over 100 V without pre-charging publication-title: Advanced Materials doi: 10.1002/adma.202105761 – volume: 8 start-page: 6273 issue: 6 year: 2014 end-page: 6280 ident: CR56 article-title: Fiber-based generator for wearable electronics and mobile medication publication-title: ACS Nano doi: 10.1021/nn501732z – volume: 10 start-page: 1903024 issue: 7 year: 2020 ident: CR329 article-title: Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor publication-title: Advanced Energy Materials doi: 10.1002/aenm.201903024 – volume: 10 start-page: 2001770 issue: 36 year: 2020 ident: CR79 article-title: Energy harvesting from breeze wind (0.7–6 m·s ) using ultra-stretchable triboelectric nanogenerator publication-title: Advanced Energy Materials doi: 10.1002/aenm.202001770 – volume: 10 start-page: 4428 issue: 1 year: 2019 ident: CR317 article-title: A universal standardized method for output capability assessment of nanogenerators publication-title: Nature Communications doi: 10.1038/s41467-019-12465-2 – volume: 10 start-page: 1426 issue: 1 year: 2019 ident: CR278 article-title: Integrated charge excitation triboelectric nanogenerator publication-title: Nature Communications doi: 10.1038/s41467-019-09464-8 – volume: 46 start-page: 23730 issue: 15 year: 2022 end-page: 23745 ident: CR326 article-title: A state-of-health estimation method considering capacity recovery of lithium batteries publication-title: International Journal of Energy Research doi: 10.1002/er.8671 – volume: 8 start-page: 1802159 issue: 29 year: 2018 ident: CR194 article-title: Elastic-beam triboelectric nanogenerator for high-performance multifunctional applications: sensitive scale, acceleration/force/vibration sensor, and intelligent keyboard publication-title: Advanced Energy Materials doi: 10.1002/aenm.201802159 – volume: 542 start-page: 159 issue: 7640 year: 2017 end-page: 160 ident: CR4 article-title: New wave power publication-title: Nature doi: 10.1038/542159a – volume: 514 start-page: 470 issue: 7523 year: 2014 end-page: 474 ident: CR167 article-title: Piezoelectricity of single-atomic-layer MoS for energy conversion and piezotronics publication-title: Nature doi: 10.1038/nature13792 – volume: 10 start-page: 653 issue: 3 year: 2017 end-page: 671 ident: CR341 article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators publication-title: Energy & Environmental Science doi: 10.1039/C7EE00158D – volume: 10 start-page: 2000827 issue: 27 year: 2020 ident: CR58 article-title: Mechanically asymmetrical triboelectric nanogenerator for self-powered monitoring of microscale weak movement publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000827 – volume: 32 start-page: 2113005 issue: 27 year: 2022 ident: CR130 article-title: A siloxene/ecoflex nanocomposite-based triboelectric nanogenerator with enhanced charge retention by MoS /LIG for self-powered touchless sensor applications publication-title: Advanced Functional Materials doi: 10.1002/adfm.202113005 – volume: 67 start-page: 104259 year: 2020 ident: CR299 article-title: A high strength triboelectric nanogenerator based on rigidflexible coupling design for energy storage system publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104259 – volume: 13 start-page: 2916 issue: 6 year: 2013 end-page: 2923 ident: CR69 article-title: Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy publication-title: Nano Letters doi: 10.1021/nl4013002 – volume: 7 start-page: 1285 issue: 4 year: 2015 end-page: 1289 ident: CR215 article-title: Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting publication-title: Nanoscale doi: 10.1039/C4NR06237J – volume: 67 start-page: 104266 year: 2020 ident: CR232 article-title: Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104266 – volume: 10 start-page: 2000137 issue: 17 year: 2020 ident: CR133 article-title: Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000137 – volume: 31 start-page: 1802898 issue: 34 year: 2019 ident: CR288 article-title: Hybrid energy harvesters: toward sustainable energy harvesting publication-title: Advanced Materials doi: 10.1002/adma.201802898 – volume: 7 start-page: 10987 issue: 1 year: 2016 ident: CR327 article-title: Effective energy storage from a triboelectric nanogenerator publication-title: Nature Communications doi: 10.1038/ncomms10987 – volume: 64 start-page: 103943 year: 2019 ident: CR32 article-title: A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103943 – volume: 34 start-page: 2200146 issue: 20 year: 2022 ident: CR112 article-title: Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation publication-title: Advanced Materials doi: 10.1002/adma.202200146 – volume: 9 start-page: 3773 issue: 1 year: 2018 ident: CR302 article-title: A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed publication-title: Nature Communications doi: 10.1038/s41467-018-06045-z – volume: 12 start-page: 2103654 issue: 13 year: 2022 ident: CR134 article-title: Multi-parameter optimized triboelectric nanogenerator based self-powered sensor network for broadband aeolian vibration online-monitoring of transmission lines publication-title: Advanced Energy Materials doi: 10.1002/aenm.202103654 – volume: 15 start-page: 9412 issue: 6 year: 2021 end-page: 9421 ident: CR268 article-title: Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.1c00345 – volume: 309 start-page: 1700 issue: 5741 year: 2005 end-page: 1704 ident: CR160 article-title: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices publication-title: Science doi: 10.1126/science.1116495 – volume: 66 start-page: 104148 year: 2019 ident: CR187 article-title: Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104148 – volume: 14 start-page: 124 issue: 1 year: 2022 ident: CR267 article-title: Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting publication-title: Nano-Micro Letters doi: 10.1007/s40820-022-00866-w – volume: 10 start-page: 305 year: 2014 end-page: 312 ident: CR139 article-title: Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.09.018 – volume: 32 start-page: 287 year: 2017 end-page: 293 ident: CR273 article-title: A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.061 – volume: 100 start-page: 187 year: 2019 end-page: 225 ident: CR47 article-title: High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2018.10.003 – volume: 81 start-page: 105625 year: 2021 ident: CR5 article-title: Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105625 – volume: 38 start-page: 458 year: 2017 end-page: 466 ident: CR180 article-title: A study of sustainable green current generated by the fluid-based triboelectric nanogenerator (FluTENG) with a comparison of contact and sliding mode publication-title: Nano Energy – volume: 90 start-page: 106631 year: 2021 ident: CR298 article-title: A hybridized water wave energy harvester with a swing magnetic structure toward intelligent fishing ground publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106631 – volume: 64 start-page: 103908 year: 2019 ident: CR333 article-title: Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103908 – volume: 10 start-page: 1427 issue: 1 year: 2019 ident: CR174 article-title: Quantifying the triboelectric series publication-title: Nature Communications doi: 10.1038/s41467-019-09461-x – volume: 10 start-page: 2000064 issue: 23 year: 2020 ident: CR97 article-title: Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000064 – volume: 4 start-page: 1301322 issue: 6 year: 2014 ident: CR66 article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator publication-title: Advanced Energy Materials doi: 10.1002/aenm.201301322 – volume: 6 start-page: 12 issue: 1 year: 2021 ident: 2271_CR13 publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00186-y – volume: 67 start-page: 104210 year: 2020 ident: 2271_CR229 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104210 – volume: 451 start-page: 809 issue: 7180 year: 2008 ident: 2271_CR171 publication-title: Nature doi: 10.1038/nature06601 – volume: 26 start-page: 6599 issue: 38 year: 2014 ident: 2271_CR154 publication-title: Advanced Materials doi: 10.1002/adma.201402428 – volume: 4 start-page: 1700072 issue: 8 year: 2017 ident: 2271_CR338 publication-title: Advanced Science doi: 10.1002/advs.201700072 – volume: 1 start-page: 328 issue: 12 year: 2012 ident: 2271_CR48 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 8 start-page: 2649 issue: 3 year: 2014 ident: 2271_CR87 publication-title: ACS Nano doi: 10.1021/nn4063616 – volume: 33 start-page: 2105761 issue: 51 year: 2021 ident: 2271_CR244 publication-title: Advanced Materials doi: 10.1002/adma.202105761 – volume: 28 start-page: 1803117 issue: 35 year: 2018 ident: 2271_CR249 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201803117 – volume: 14 start-page: 1039 issue: 6 year: 2020 ident: 2271_CR307 publication-title: Frontiers of Chemical Science and Engineering doi: 10.1007/s11705-019-1901-5 – volume: 249 start-page: 720 issue: 5459 year: 1974 ident: 2271_CR19 publication-title: Nature doi: 10.1038/249720a0 – volume: 5 start-page: eaav6437 issue: 4 year: 2019 ident: 2271_CR219 publication-title: Science Advances doi: 10.1126/sciadv.aav6437 – volume: 15 start-page: 6665 issue: 18 year: 2022 ident: 2271_CR313 publication-title: Energies doi: 10.3390/en15186665 – volume: 8 start-page: 3836 issue: 4 year: 2014 ident: 2271_CR55 publication-title: ACS Nano doi: 10.1021/nn500694y – volume: 3 start-page: e1700694 issue: 7 year: 2017 ident: 2271_CR197 publication-title: Science Advances doi: 10.1126/sciadv.1700694 – volume: 66 start-page: 104131 year: 2019 ident: 2271_CR96 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104131 – volume: 15 start-page: 16368 issue: 10 year: 2021 ident: 2271_CR10 publication-title: ACS Nano doi: 10.1021/acsnano.1c05685 – volume: 14 start-page: 899 issue: 3 year: 2010 ident: 2271_CR20 publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2009.11.003 – volume: 34 start-page: 2110363 issue: 14 year: 2022 ident: 2271_CR126 publication-title: Advanced Materials doi: 10.1002/adma.202110363 – volume: 39 start-page: 9 year: 2017 ident: 2271_CR2 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 10 start-page: 2001770 issue: 36 year: 2020 ident: 2271_CR79 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202001770 – volume: 81 start-page: 105625 year: 2021 ident: 2271_CR5 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105625 – volume: 26 start-page: 7432 issue: 44 year: 2014 ident: 2271_CR46 publication-title: Advanced Materials doi: 10.1002/adma.201402868 – volume: 9 start-page: 3773 issue: 1 year: 2018 ident: 2271_CR302 publication-title: Nature Communications doi: 10.1038/s41467-018-06045-z – volume: 312 start-page: 242 issue: 5771 year: 2006 ident: 2271_CR42 publication-title: Science doi: 10.1126/science.1124005 – volume: 28 start-page: 172 year: 2016 ident: 2271_CR285 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.024 – volume: 5 start-page: 11 issue: 1 year: 2020 ident: 2271_CR211 publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-020-00158-8 – volume: 16 start-page: 386 issue: 7 year: 2019 ident: 2271_CR117 publication-title: Nature Reviews. Cardiology – volume: 2 start-page: e1501478 issue: 3 year: 2016 ident: 2271_CR118 publication-title: Science Advances doi: 10.1126/sciadv.1501478 – volume: 50 start-page: 104215 year: 2022 ident: 2271_CR204 publication-title: Journal of Energy Storage doi: 10.1016/j.est.2022.104215 – volume: 65 start-page: 104068 year: 2019 ident: 2271_CR334 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104068 – volume: 7 start-page: 6361 issue: 7 year: 2013 ident: 2271_CR71 publication-title: ACS Nano doi: 10.1021/nn402491y – volume: 11 start-page: 2101147 issue: 28 year: 2021 ident: 2271_CR300 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202101147 – volume: 45 start-page: 266 year: 2018 ident: 2271_CR336 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.004 – volume: 6 start-page: 8376 issue: 1 year: 2015 ident: 2271_CR343 publication-title: Nature Communications doi: 10.1038/ncomms9376 – volume: 3 start-page: eaap8576 issue: 12 year: 2017 ident: 2271_CR342 publication-title: Science Advances doi: 10.1126/sciadv.aap8576 – volume: 7 start-page: 12985 issue: 1 year: 2016 ident: 2271_CR258 publication-title: Nature Communications doi: 10.1038/ncomms12985 – volume: 12 start-page: 2950 issue: 1 year: 2021 ident: 2271_CR59 publication-title: Nature Communications doi: 10.1038/s41467-021-23207-8 – volume: 14 start-page: 3208 issue: 6 year: 2014 ident: 2271_CR148 publication-title: Nano Letters doi: 10.1021/nl5005652 – volume: 66 start-page: 104141 year: 2019 ident: 2271_CR190 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104141 – volume: 32 start-page: 2001699 issue: 33 year: 2020 ident: 2271_CR100 publication-title: Advanced Materials doi: 10.1002/adma.202001699 – volume: 12 start-page: 3693 issue: 1 year: 2021 ident: 2271_CR122 publication-title: Nature Communications doi: 10.1038/s41467-021-24028-5 – volume: 58 start-page: 579 year: 2019 ident: 2271_CR91 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.078 – volume: 97 start-page: 107172 year: 2022 ident: 2271_CR28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107172 – volume: 10 start-page: 2000064 issue: 23 year: 2020 ident: 2271_CR97 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000064 – volume: 25 start-page: 5794 issue: 36 year: 2015 ident: 2271_CR143 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201502646 – volume: 32 start-page: 2202048 issue: 29 year: 2022 ident: 2271_CR18 publication-title: Advanced Functional Materials doi: 10.1002/adfm.202202048 – volume: 25 start-page: 2928 issue: 19 year: 2015 ident: 2271_CR153 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201500447 – volume: 15 start-page: 238 issue: 2 year: 2021 ident: 2271_CR304 publication-title: Frontiers of Chemical Science and Engineering doi: 10.1007/s11705-020-1956-3 – volume: 8 start-page: 6273 issue: 6 year: 2014 ident: 2271_CR56 publication-title: ACS Nano doi: 10.1021/nn501732z – volume: 31 start-page: 351 year: 2017 ident: 2271_CR281 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.037 – volume: 95 start-page: 106998 year: 2022 ident: 2271_CR235 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106998 – volume: 365 start-page: 491 issue: 6452 year: 2019 ident: 2271_CR323 publication-title: Science doi: 10.1126/science.aan3997 – volume: 26 start-page: 1719 issue: 11 year: 2014 ident: 2271_CR137 publication-title: Advanced Materials doi: 10.1002/adma.201304619 – volume: 52 start-page: 188 year: 2022 ident: 2271_CR41 publication-title: Materials Today doi: 10.1016/j.mattod.2021.11.027 – volume: 29 start-page: 1807241 issue: 41 year: 2019 ident: 2271_CR295 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201807241 – volume: 259 start-page: 124933 year: 2022 ident: 2271_CR320 publication-title: Energy doi: 10.1016/j.energy.2022.124933 – volume: 56 start-page: 693 year: 2019 ident: 2271_CR94 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.003 – volume: 7 start-page: 752 issue: 9 year: 2013 ident: 2271_CR169 publication-title: Nature Photonics doi: 10.1038/nphoton.2013.191 – volume: 38 start-page: 458 year: 2017 ident: 2271_CR180 publication-title: Nano Energy – volume: 33 start-page: 2004178 issue: 17 year: 2021 ident: 2271_CR110 publication-title: Advanced Materials doi: 10.1002/adma.202004178 – volume: 67 start-page: 104278 year: 2020 ident: 2271_CR115 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104278 – volume: 10 start-page: 4797 issue: 4 year: 2016 ident: 2271_CR155 publication-title: ACS Nano doi: 10.1021/acsnano.6b01569 – volume: 5 start-page: 21 issue: 1 year: 2020 ident: 2271_CR210 publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-020-00167-7 – volume: 95 start-page: 106971 year: 2022 ident: 2271_CR176 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106971 – volume: 67 start-page: 104205 year: 2020 ident: 2271_CR200 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104205 – volume: 100 start-page: 187 year: 2019 ident: 2271_CR47 publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2018.10.003 – volume: 7 start-page: 9461 issue: 10 year: 2013 ident: 2271_CR75 publication-title: ACS Nano doi: 10.1021/nn4043157 – volume: 96 start-page: 107128 year: 2022 ident: 2271_CR27 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107128 – volume: 33 start-page: 2100782 issue: 26 year: 2021 ident: 2271_CR101 publication-title: Advanced Materials doi: 10.1002/adma.202100782 – volume: 12 start-page: 2103143 issue: 1 year: 2022 ident: 2271_CR106 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202103143 – volume: 16 start-page: 6781 issue: 4 year: 2022 ident: 2271_CR6 publication-title: ACS Nano doi: 10.1021/acsnano.2c01594 – volume: 64 start-page: 103943 year: 2019 ident: 2271_CR32 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103943 – volume: 9 start-page: 2201098 issue: 18 year: 2022 ident: 2271_CR282 publication-title: Advanced Science doi: 10.1002/advs.202201098 – volume: 9 start-page: 244 issue: 1 year: 2018 ident: 2271_CR149 publication-title: Nature Communications doi: 10.1038/s41467-017-02685-9 – volume: 8 start-page: 10674 issue: 10 year: 2014 ident: 2271_CR150 publication-title: ACS Nano doi: 10.1021/nn504243j – volume: 56 start-page: 300 year: 2019 ident: 2271_CR263 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.043 – volume: 10 start-page: 2002920 issue: 45 year: 2020 ident: 2271_CR316 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202002920 – volume: 34 start-page: 2200042 issue: 17 year: 2022 ident: 2271_CR31 publication-title: Advanced Materials doi: 10.1002/adma.202200042 – volume: 33 start-page: 2104175 issue: 48 year: 2021 ident: 2271_CR120 publication-title: Advanced Materials doi: 10.1002/adma.202104175 – volume: 12 start-page: 5470 issue: 1 year: 2021 ident: 2271_CR330 publication-title: Nature Communications doi: 10.1038/s41467-021-25753-7 – volume: 66 start-page: 104148 year: 2019 ident: 2271_CR187 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104148 – volume: 12 start-page: 1315 issue: 10 year: 2016 ident: 2271_CR23 publication-title: Small doi: 10.1002/smll.201502453 – volume: 32 start-page: 2111775 issue: 18 year: 2022 ident: 2271_CR291 publication-title: Advanced Functional Materials doi: 10.1002/adfm.202111775 – volume: 2019 start-page: 1091632 year: 2019 ident: 2271_CR220 publication-title: Research doi: 10.34133/2019/1091632 – volume: 16 start-page: 1599 year: 2023 ident: 2271_CR306 publication-title: Energies doi: 10.3390/en16041599 – volume: 6 start-page: 899 issue: 4 year: 2018 ident: 2271_CR22 publication-title: Journal of Materials Chemistry C: Materials for Optical and Electronic Devices doi: 10.1039/C7TC05458K – volume: 38 start-page: 101 year: 2017 ident: 2271_CR85 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.053 – volume: 11 start-page: 1883 issue: 1 year: 2020 ident: 2271_CR331 publication-title: Nature Communications doi: 10.1038/s41467-020-15373-y – volume: 4 start-page: 1577 issue: 6 year: 2019 ident: 2271_CR147 publication-title: ACS Sensors doi: 10.1021/acssensors.9b00259 – volume: 61 start-page: 132 year: 2019 ident: 2271_CR188 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.046 – volume: 7 start-page: 1285 issue: 4 year: 2015 ident: 2271_CR215 publication-title: Nanoscale doi: 10.1039/C4NR06237J – volume: 16 start-page: 1271 issue: 1 year: 2022 ident: 2271_CR129 publication-title: ACS Nano doi: 10.1021/acsnano.1c09096 – volume: 10 start-page: 17751 issue: 37 year: 2018 ident: 2271_CR163 publication-title: Nanoscale doi: 10.1039/C8NR05292A – volume: 6 start-page: 129 year: 2014 ident: 2271_CR257 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.03.015 – volume: 7 start-page: 1700103 issue: 21 year: 2017 ident: 2271_CR337 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201700103 – volume: 4 start-page: e12262 issue: 2 year: 2022 ident: 2271_CR228 publication-title: InfoMat doi: 10.1002/inf2.12262 – volume: 43 start-page: 101437 year: 2022 ident: 2271_CR152 publication-title: Nano Today doi: 10.1016/j.nantod.2022.101437 – volume: 9 start-page: 7957 issue: 9 year: 2019 ident: 2271_CR105 publication-title: ACS Catalysis doi: 10.1021/acscatal.9b02182 – volume: 64 start-page: 103920 year: 2019 ident: 2271_CR186 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103920 – volume: 66 start-page: 104108 year: 2019 ident: 2271_CR93 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104108 – volume: 12 start-page: 3461 issue: 4 year: 2018 ident: 2271_CR177 publication-title: ACS Nano doi: 10.1021/acsnano.8b00140 – volume: 5 start-page: 366 issue: 5 year: 2010 ident: 2271_CR44 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2010.46 – volume: 67 start-page: 104150 year: 2020 ident: 2271_CR116 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104150 – volume: 5 start-page: 3 issue: 1 year: 2020 ident: 2271_CR206 publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-019-0149-x – volume: 24 start-page: 4090 issue: 26 year: 2014 ident: 2271_CR67 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201304211 – volume: 7 start-page: 12744 issue: 1 year: 2016 ident: 2271_CR108 publication-title: Nature Communications doi: 10.1038/ncomms12744 – volume: 52 start-page: 5065 issue: 19 year: 2013 ident: 2271_CR140 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201300437 – volume: 14 start-page: 354 issue: 1 year: 2019 ident: 2271_CR181 publication-title: Nanoscale Research Letters doi: 10.1186/s11671-019-3187-4 – volume: 26 start-page: 2818 issue: 18 year: 2014 ident: 2271_CR195 publication-title: Advanced Materials doi: 10.1002/adma.201305303 – volume: 32 start-page: 14715 issue: 11 year: 2021 ident: 2271_CR60 publication-title: Journal of Materials Science Materials in Electronics doi: 10.1007/s10854-021-06027-w – volume: 66 start-page: 104086 year: 2019 ident: 2271_CR217 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104086 – start-page: 23 volume-title: Triboelectric nanogenerator: vertical contact-separation mode. In: Triboelectric Nanogenerators year: 2016 ident: 2271_CR179 – volume: 11 start-page: 6158 issue: 1 year: 2020 ident: 2271_CR290 publication-title: Nature Communications doi: 10.1038/s41467-020-19987-0 – volume: 67 start-page: 104206 year: 2020 ident: 2271_CR221 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104206 – volume: 29 start-page: 1900327 issue: 41 year: 2019 ident: 2271_CR237 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201900327 – volume: 2 start-page: 17023 issue: 6 year: 2017 ident: 2271_CR324 publication-title: Nature Reviews. Materials doi: 10.1038/natrevmats.2017.23 – volume: 96 start-page: 107136 year: 2022 ident: 2271_CR123 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107136 – volume: 12 start-page: 481 issue: 5 year: 2017 ident: 2271_CR104 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2017.17 – volume: 34 start-page: 2109568 issue: 15 year: 2022 ident: 2271_CR124 publication-title: Advanced Materials doi: 10.1002/adma.202109568 – volume: 46 start-page: 220 year: 2018 ident: 2271_CR340 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.013 – volume: 16 start-page: 4415 issue: 3 year: 2022 ident: 2271_CR62 publication-title: ACS Nano doi: 10.1021/acsnano.1c10680 – volume: 9 start-page: 12562 issue: 12 year: 2015 ident: 2271_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.5b06372 – volume: 316 start-page: 102 issue: 5821 year: 2007 ident: 2271_CR43 publication-title: Science doi: 10.1126/science.1139366 – volume: 10 start-page: 4428 issue: 1 year: 2019 ident: 2271_CR317 publication-title: Nature Communications doi: 10.1038/s41467-019-12465-2 – volume: 31 start-page: 1903793 issue: 43 year: 2019 ident: 2271_CR121 publication-title: Advanced Materials doi: 10.1002/adma.201903793 – volume: 94 start-page: 106926 year: 2022 ident: 2271_CR236 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106926 – volume: 67 start-page: 104259 year: 2020 ident: 2271_CR299 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104259 – volume: 8 start-page: 32649 issue: 48 year: 2016 ident: 2271_CR78 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b12798 – volume: 7 start-page: 3836 issue: 12 year: 2014 ident: 2271_CR39 publication-title: Energy & Environmental Science doi: 10.1039/C4EE01759E – volume: 64 start-page: 103948 year: 2019 ident: 2271_CR191 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103948 – volume: 98 start-page: 1328 year: 2022 ident: 2271_CR332 publication-title: Renewable Energy doi: 10.1016/j.renene.2022.08.123 – volume: 60 start-page: 404 year: 2019 ident: 2271_CR335 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.054 – volume: 46 start-page: 3034 issue: 3 year: 2022 ident: 2271_CR213 publication-title: International Journal of Energy Research doi: 10.1002/er.7360 – volume: 10 start-page: 1426 issue: 1 year: 2019 ident: 2271_CR278 publication-title: Nature Communications doi: 10.1038/s41467-019-09464-8 – volume: 28 start-page: 1805216 issue: 51 year: 2018 ident: 2271_CR339 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201805216 – volume: 9 start-page: 3324 issue: 3 year: 2015 ident: 2271_CR269 publication-title: ACS Nano doi: 10.1021/acsnano.5b00534 – volume: 95 start-page: 107048 year: 2022 ident: 2271_CR256 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107048 – volume: 22 start-page: 87 year: 2016 ident: 2271_CR276 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.01.009 – volume: 6 start-page: 7842 issue: 14 year: 2014 ident: 2271_CR145 publication-title: Nanoscale doi: 10.1039/C4NR01934B – volume: 50 start-page: 536 year: 2018 ident: 2271_CR322 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.009 – volume: 7 start-page: 11317 issue: 12 year: 2013 ident: 2271_CR57 publication-title: ACS Nano doi: 10.1021/nn405175z – volume: 15 start-page: 9412 issue: 6 year: 2021 ident: 2271_CR268 publication-title: ACS Nano doi: 10.1021/acsnano.1c00345 – volume: 20 start-page: 74 issue: 2 year: 2017 ident: 2271_CR159 publication-title: Materials Today doi: 10.1016/j.mattod.2016.12.001 – volume: 6 start-page: 3 issue: 1 year: 2021 ident: 2271_CR3 publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00181-3 – volume: 514 start-page: 470 issue: 7523 year: 2014 ident: 2271_CR167 publication-title: Nature doi: 10.1038/nature13792 – volume: 11 start-page: 26824 issue: 30 year: 2019 ident: 2271_CR224 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b06627 – volume: 89 start-page: 106381 year: 2021 ident: 2271_CR17 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106381 – volume: 1 start-page: 10 issue: 1 year: 2017 ident: 2271_CR216 publication-title: npj Flexible Electronics doi: 10.1038/s41528-017-0007-8 – volume: 31 start-page: 1807795 issue: 12 year: 2019 ident: 2271_CR119 publication-title: Advanced Materials doi: 10.1002/adma.201807795 – volume: 366 start-page: 969 issue: 6468 year: 2019 ident: 2271_CR328 publication-title: Science doi: 10.1126/science.aan8285 – volume: 95 start-page: 107050 year: 2022 ident: 2271_CR251 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107050 – volume: 11 start-page: 2101116 issue: 31 year: 2021 ident: 2271_CR9 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202101116 – volume: 24 start-page: 2892 issue: 19 year: 2014 ident: 2271_CR37 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201303659 – volume: 9 start-page: 922 issue: 1 year: 2015 ident: 2271_CR73 publication-title: ACS Nano doi: 10.1021/nn506673x – volume: 46 start-page: 10372 issue: 8 year: 2022 ident: 2271_CR207 publication-title: International Journal of Energy Research doi: 10.1002/er.7905 – volume: 46 start-page: 24091 issue: 15 year: 2022 ident: 2271_CR312 publication-title: International Journal of Energy Research doi: 10.1002/er.8709 – volume: 32 start-page: 1908072 issue: 14 year: 2020 ident: 2271_CR301 publication-title: Advanced Materials doi: 10.1002/adma.201908072 – volume: 57 start-page: 450 year: 2019 ident: 2271_CR164 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.076 – volume: 67 start-page: 104235 year: 2020 ident: 2271_CR53 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104235 – volume: 312 start-page: 121422 year: 2022 ident: 2271_CR107 publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2022.121422 – volume: 6 start-page: 8401 issue: 1 year: 2015 ident: 2271_CR40 publication-title: Nature Communications doi: 10.1038/ncomms9401 – volume: 10 start-page: 061106 issue: 6 year: 2022 ident: 2271_CR209 publication-title: APL Materials doi: 10.1063/5.0092074 – volume: 11 start-page: 399 issue: 1 year: 2020 ident: 2271_CR247 publication-title: Nature Communications doi: 10.1038/s41467-019-14278-9 – volume: 4 start-page: 1800514 issue: 3 year: 2019 ident: 2271_CR266 publication-title: Advanced Materials Technologies doi: 10.1002/admt.201800514 – volume: 12 start-page: 376 issue: 3 year: 2018 ident: 2271_CR305 publication-title: Frontiers of Chemical Science and Engineering doi: 10.1007/s11705-018-1705-z – volume: 29 start-page: 1606346 issue: 16 year: 2017 ident: 2271_CR21 publication-title: Advanced Materials doi: 10.1002/adma.201606346 – volume: 13 start-page: 1932 issue: 2 year: 2019 ident: 2271_CR284 publication-title: ACS Nano – volume: 11 start-page: 4203 issue: 1 year: 2020 ident: 2271_CR318 publication-title: Nature Communications doi: 10.1038/s41467-020-17891-1 – volume: 1 start-page: 16138 issue: 10 year: 2016 ident: 2271_CR222 publication-title: Nature Energy doi: 10.1038/nenergy.2016.138 – volume: 18 start-page: 2108091 issue: 14 year: 2022 ident: 2271_CR218 publication-title: Small doi: 10.1002/smll.202108091 – volume: 33 start-page: 2104290 issue: 44 year: 2021 ident: 2271_CR243 publication-title: Advanced Materials doi: 10.1002/adma.202104290 – volume: 7 start-page: 10987 issue: 1 year: 2016 ident: 2271_CR327 publication-title: Nature Communications doi: 10.1038/ncomms10987 – volume: 7 start-page: 7342 issue: 8 year: 2013 ident: 2271_CR132 publication-title: ACS Nano doi: 10.1021/nn403021m – volume: 63 start-page: 103885 year: 2019 ident: 2271_CR240 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103885 – volume: 21 start-page: 161 issue: 139 year: 1861 ident: 2271_CR158 publication-title: London, Edinburgh and Dublin Philosophical Magazine and Journal of Science doi: 10.1080/14786446108643033 – volume: 32 start-page: 287 year: 2017 ident: 2271_CR273 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.061 – volume: 32 start-page: 1905696 issue: 2 year: 2020 ident: 2271_CR245 publication-title: Advanced Materials doi: 10.1002/adma.201905696 – volume: 67 start-page: 104214 year: 2020 ident: 2271_CR277 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104214 – volume: 32 start-page: 2006839 issue: 50 year: 2020 ident: 2271_CR289 publication-title: Advanced Materials doi: 10.1002/adma.202006839 – volume: 10 start-page: 2002123 issue: 40 year: 2020 ident: 2271_CR325 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202002123 – volume: 12 start-page: 616 issue: 1 year: 2021 ident: 2271_CR16 publication-title: Nature Communications doi: 10.1038/s41467-021-20919-9 – volume: 4 start-page: 34 issue: 1 year: 2009 ident: 2271_CR165 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2008.314 – volume: 13 start-page: 2226 issue: 5 year: 2013 ident: 2271_CR184 publication-title: Nano Letters doi: 10.1021/nl400738p – volume: 7 start-page: 7119 issue: 8 year: 2013 ident: 2271_CR76 publication-title: ACS Nano doi: 10.1021/nn402477h – volume: 6 start-page: 41 issue: 1 year: 2021 ident: 2271_CR205 publication-title: Protection and Control of Modern Power Systems doi: 10.1186/s41601-021-00219-6 – volume: 31 start-page: 1902793 issue: 39 year: 2019 ident: 2271_CR125 publication-title: Advanced Materials doi: 10.1002/adma.201902793 – volume: 7 start-page: 9533 issue: 11 year: 2013 ident: 2271_CR49 publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 10 start-page: 2264 issue: 1 year: 2019 ident: 2271_CR246 publication-title: Nature Communications doi: 10.1038/s41467-019-10232-x – volume: 65 start-page: 104016 year: 2019 ident: 2271_CR185 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104016 – volume: 431 start-page: 134002 year: 2022 ident: 2271_CR90 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.134002 – volume: 10 start-page: 2695 issue: 1 year: 2019 ident: 2271_CR127 publication-title: Nature Communications doi: 10.1038/s41467-019-10433-4 – volume: 67 start-page: 104269 year: 2020 ident: 2271_CR242 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104269 – volume: 34 start-page: 2109918 issue: 13 year: 2022 ident: 2271_CR114 publication-title: Advanced Materials doi: 10.1002/adma.202109918 – volume: 67 start-page: 104228 year: 2020 ident: 2271_CR198 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104228 – volume: 67 start-page: 104251 year: 2020 ident: 2271_CR231 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104251 – volume: 10 start-page: 2000827 issue: 27 year: 2020 ident: 2271_CR58 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000827 – volume: 34 start-page: 2203073 issue: 29 year: 2022 ident: 2271_CR131 publication-title: Advanced Materials doi: 10.1002/adma.202203073 – volume: 11 start-page: 7199 issue: 15 year: 2019 ident: 2271_CR265 publication-title: Nanoscale doi: 10.1039/C8NR09978B – volume: 8 start-page: 15310 issue: 1 year: 2017 ident: 2271_CR168 publication-title: Nature Communications doi: 10.1038/ncomms15310 – volume: 57 start-page: 256 year: 2019 ident: 2271_CR182 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.052 – volume: 96 start-page: 107118 year: 2022 ident: 2271_CR72 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107118 – volume: 149 start-page: 174705 issue: 17 year: 2018 ident: 2271_CR103 publication-title: Journal of Chemical Physics doi: 10.1063/1.5053894 – volume: 4 start-page: 229 issue: 4 year: 2013 ident: 2271_CR38 publication-title: International Journal of Smart and Nano Materials doi: 10.1080/19475411.2013.872207 – volume: 9 start-page: 4236 issue: 4 year: 2015 ident: 2271_CR86 publication-title: ACS Nano doi: 10.1021/acsnano.5b00618 – volume: 309 start-page: 1700 issue: 5741 year: 2005 ident: 2271_CR160 publication-title: Science doi: 10.1126/science.1116495 – volume: 31 start-page: 1802898 issue: 34 year: 2019 ident: 2271_CR288 publication-title: Advanced Materials doi: 10.1002/adma.201802898 – volume: 13 start-page: 1391 issue: 1 year: 2022 ident: 2271_CR30 publication-title: Nature Communications doi: 10.1038/s41467-022-29087-w – volume: 1 start-page: 16031 issue: 7 year: 2016 ident: 2271_CR166 publication-title: Materials – volume: 57 start-page: 432 year: 2019 ident: 2271_CR271 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.054 – volume: 11 start-page: 58 issue: 1 year: 2020 ident: 2271_CR128 publication-title: Nature Communications doi: 10.1038/s41467-019-13653-w – volume: 15 start-page: 1130 issue: 3 year: 2022 ident: 2271_CR136 publication-title: Materials doi: 10.3390/ma15031130 – volume: 2022 start-page: 9645892 year: 2022 ident: 2271_CR202 publication-title: Mathematical Problems in Engineering – volume: 46 start-page: 5423 issue: 5 year: 2022 ident: 2271_CR212 publication-title: International Journal of Energy Research doi: 10.1002/er.7545 – volume: 62 start-page: 442 year: 2019 ident: 2271_CR241 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.029 – volume: 36 start-page: 250 year: 2017 ident: 2271_CR252 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.026 – volume: 58 start-page: 842 year: 2019 ident: 2271_CR254 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.083 – volume: 90 start-page: 106631 year: 2021 ident: 2271_CR298 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106631 – volume: 2 start-page: 688 issue: 5 year: 2013 ident: 2271_CR51 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.08.002 – volume: 115 start-page: 100704 year: 2021 ident: 2271_CR225 publication-title: Progress in Materials Science doi: 10.1016/j.pmatsci.2020.100704 – volume: 10 start-page: 2002312 issue: 44 year: 2020 ident: 2271_CR315 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202002312 – volume: 7 start-page: 1602397 issue: 12 year: 2017 ident: 2271_CR33 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201602397 – volume: 12 start-page: 3018 issue: 12 year: 2019 ident: 2271_CR74 publication-title: Nano Research doi: 10.1007/s12274-019-2545-y – volume: 27 start-page: 4938 issue: 33 year: 2015 ident: 2271_CR178 publication-title: Advanced Materials doi: 10.1002/adma.201502546 – volume: 3 start-page: eaat2516 issue: 20 year: 2018 ident: 2271_CR223 publication-title: Science Robotics doi: 10.1126/scirobotics.aat2516 – volume: 97 start-page: 107205 year: 2022 ident: 2271_CR29 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107205 – volume: 46 start-page: 23730 issue: 15 year: 2022 ident: 2271_CR326 publication-title: International Journal of Energy Research doi: 10.1002/er.8671 – volume: 24 start-page: 1401 issue: 10 year: 2014 ident: 2271_CR63 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201302453 – volume: 67 start-page: 1145 issue: 11 year: 2022 ident: 2271_CR310 publication-title: Science Bulletin doi: 10.1016/j.scib.2022.04.001 – volume: 303 start-page: 1348 issue: 5662 year: 2004 ident: 2271_CR161 publication-title: Science doi: 10.1126/science.1092356 – volume: 52 start-page: 299 year: 2022 ident: 2271_CR102 publication-title: Materials Today doi: 10.1016/j.mattod.2021.10.034 – volume: 8 start-page: 1800705 issue: 21 year: 2018 ident: 2271_CR253 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201800705 – volume: 176 start-page: 447 year: 2014 ident: 2271_CR175 publication-title: Faraday Discussions doi: 10.1039/C4FD00159A – volume: 2022 start-page: 7620382 year: 2022 ident: 2271_CR214 publication-title: Mathematical Problems in Engineering doi: 10.1155/2022/7620382 – volume: 5 start-page: 074101 issue: 7 year: 2017 ident: 2271_CR25 publication-title: APL Materials doi: 10.1063/1.4975772 – volume: 67 start-page: 104277 year: 2020 ident: 2271_CR230 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104277 – volume: 21 start-page: 4464 issue: 23 year: 2011 ident: 2271_CR146 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201101319 – volume: 2 start-page: e1600097 issue: 10 year: 2016 ident: 2271_CR196 publication-title: Science Advances doi: 10.1126/sciadv.1600097 – volume: 9 start-page: 1902460 issue: 40 year: 2019 ident: 2271_CR238 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201902460 – volume: 34 start-page: 2200146 issue: 20 year: 2022 ident: 2271_CR112 publication-title: Advanced Materials doi: 10.1002/adma.202200146 – volume: 10 start-page: 2000137 issue: 17 year: 2020 ident: 2271_CR133 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000137 – volume: 10 start-page: 1427 issue: 1 year: 2019 ident: 2271_CR174 publication-title: Nature Communications doi: 10.1038/s41467-019-09461-x – volume: 33 start-page: 2102765 issue: 34 year: 2021 ident: 2271_CR138 publication-title: Advanced Materials doi: 10.1002/adma.202102765 – volume: 6 start-page: 2809 issue: 8 year: 2021 ident: 2271_CR15 publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.1c01092 – volume: 25 start-page: 6094 issue: 42 year: 2013 ident: 2271_CR65 publication-title: Advanced Materials doi: 10.1002/adma.201302397 – volume: 67 start-page: 104297 year: 2020 ident: 2271_CR172 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104297 – volume: 11 start-page: 2100038 issue: 16 year: 2021 ident: 2271_CR157 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202100038 – volume: 88 start-page: 106199 year: 2021 ident: 2271_CR11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106199 – volume: 12 start-page: 4280 issue: 5 year: 2018 ident: 2271_CR248 publication-title: ACS Nano doi: 10.1021/acsnano.7b08716 – volume: 14 start-page: 9046 issue: 7 year: 2022 ident: 2271_CR264 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c22129 – volume: 25 start-page: 3718 issue: 24 year: 2015 ident: 2271_CR250 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201501331 – volume: 12 start-page: 4686 issue: 1 year: 2021 ident: 2271_CR35 publication-title: Nature Communications doi: 10.1038/s41467-021-25046-z – volume: 9 start-page: 1901987 issue: 36 year: 2019 ident: 2271_CR239 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201901987 – volume: 10 start-page: 2000426 issue: 28 year: 2020 ident: 2271_CR98 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000426 – volume: 8 start-page: 1802159 issue: 29 year: 2018 ident: 2271_CR194 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201802159 – volume: 5 start-page: 3426 issue: 1 year: 2014 ident: 2271_CR70 publication-title: Nature Communications doi: 10.1038/ncomms4426 – volume: 291 start-page: 1947 issue: 5510 year: 2001 ident: 2271_CR162 publication-title: Science doi: 10.1126/science.1058120 – volume: 6 start-page: 880 issue: 12 year: 2013 ident: 2271_CR64 publication-title: Nano Research doi: 10.1007/s12274-013-0364-0 – volume: 5 start-page: 1501467 issue: 24 year: 2015 ident: 2271_CR270 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201501467 – volume: 1 start-page: 4909 issue: 12 year: 2019 ident: 2271_CR84 publication-title: Nanoscale Advances doi: 10.1039/C9NA00484J – volume: 90 start-page: 106573 year: 2021 ident: 2271_CR259 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106573 – volume: 10 start-page: 653 issue: 3 year: 2017 ident: 2271_CR341 publication-title: Energy & Environmental Science doi: 10.1039/C7EE00158D – volume: 2 start-page: 863 issue: 4 year: 2020 ident: 2271_CR233 publication-title: ACS Applied Electronic Materials doi: 10.1021/acsaelm.0c00022 – volume: 44 start-page: 682 issue: 9 year: 2019 ident: 2271_CR1 publication-title: MRS Bulletin doi: 10.1557/mrs.2019.209 – volume: 11 start-page: 2003616 issue: 12 year: 2021 ident: 2271_CR99 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202003616 – volume: 7 start-page: 10424 issue: 11 year: 2013 ident: 2271_CR68 publication-title: ACS Nano doi: 10.1021/nn405209u – volume: 57 start-page: 616 year: 2019 ident: 2271_CR292 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.078 – volume: 95 start-page: 106994 year: 2022 ident: 2271_CR8 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106994 – volume: 2022 start-page: 9616124 year: 2022 ident: 2271_CR208 publication-title: Mathematical Problems in Engineering doi: 10.1155/2022/9616124 – volume: 9 start-page: 3733 issue: 1 year: 2018 ident: 2271_CR314 publication-title: Nature Communications doi: 10.1038/s41467-018-06198-x – volume: 14 start-page: 5328 issue: 4 year: 2022 ident: 2271_CR226 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c20984 – volume: 5 start-page: 498 issue: 1 year: 2023 ident: 2271_CR308 publication-title: ACS Applied Electronic Materials doi: 10.1021/acsaelm.2c01476 – volume: 11 start-page: 6186 issue: 1 year: 2020 ident: 2271_CR319 publication-title: Nature Communications doi: 10.1038/s41467-020-20045-y – volume: 12 start-page: 1849 issue: 2 year: 2018 ident: 2271_CR272 publication-title: ACS Nano doi: 10.1021/acsnano.7b08674 – volume: 13 start-page: 2916 issue: 6 year: 2013 ident: 2271_CR69 publication-title: Nano Letters doi: 10.1021/nl4013002 – volume: 95 start-page: 106997 year: 2022 ident: 2271_CR234 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106997 – volume: 67 start-page: 104197 year: 2020 ident: 2271_CR261 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104197 – volume: 12 start-page: 760 year: 2015 ident: 2271_CR192 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.013 – volume: 8 start-page: eabl8423 issue: 1 year: 2022 ident: 2271_CR88 publication-title: Science Advances doi: 10.1126/sciadv.abl8423 – volume: 5 start-page: 1613 issue: 6 year: 2021 ident: 2271_CR287 publication-title: Joule doi: 10.1016/j.joule.2021.04.016 – volume: 1 start-page: 93 issue: 1 year: 2010 ident: 2271_CR170 publication-title: Nature Communications doi: 10.1038/ncomms1098 – volume: 32 start-page: 1902549 issue: 5 year: 2020 ident: 2271_CR109 publication-title: Advanced Materials doi: 10.1002/adma.201902549 – volume: 27 start-page: 1316 issue: 8 year: 2015 ident: 2271_CR81 publication-title: Advanced Materials doi: 10.1002/adma.201404794 – volume: 32 start-page: 2113005 issue: 27 year: 2022 ident: 2271_CR130 publication-title: Advanced Functional Materials doi: 10.1002/adfm.202113005 – volume: 10 start-page: 1821 issue: 1 year: 2019 ident: 2271_CR227 publication-title: Nature Communications doi: 10.1038/s41467-019-09851-1 – volume: 14 start-page: 124 issue: 1 year: 2022 ident: 2271_CR267 publication-title: Nano-Micro Letters doi: 10.1007/s40820-022-00866-w – volume: 25 start-page: 5691 issue: 35 year: 2015 ident: 2271_CR283 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201502318 – volume: 542 start-page: 159 issue: 7640 year: 2017 ident: 2271_CR4 publication-title: Nature doi: 10.1038/542159a – volume: 9 start-page: 1802906 issue: 1 year: 2019 ident: 2271_CR173 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201802906 – volume: 112 start-page: 183701 issue: 18 year: 2018 ident: 2271_CR95 publication-title: Applied Physics Letters doi: 10.1063/1.5030152 – volume: 61 start-page: 454 year: 2019 ident: 2271_CR255 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.007 – volume: 8 start-page: eabj9220 issue: 12 year: 2022 ident: 2271_CR89 publication-title: Science Advances doi: 10.1126/sciadv.abj9220 – volume: 13 start-page: 400 issue: 1 year: 2021 ident: 2271_CR36 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.0c16489 – volume: 6 start-page: 8011 issue: 11 year: 2014 ident: 2271_CR77 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am501782f – volume: 34 start-page: 2200793 issue: 21 year: 2022 ident: 2271_CR111 publication-title: Advanced Materials doi: 10.1002/adma.202200793 – volume: 31 start-page: 560 year: 2017 ident: 2271_CR274 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.004 – volume: 8 start-page: 6440 issue: 6 year: 2014 ident: 2271_CR142 publication-title: ACS Nano doi: 10.1021/nn501983s – volume: 66 start-page: 104087 year: 2019 ident: 2271_CR183 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104087 – volume: 1 start-page: 6115 issue: 44 year: 2013 ident: 2271_CR50 publication-title: Journal of Materials Chemistry B: Materials for Biology and Medicine doi: 10.1039/c3tb21131b – volume: 11 start-page: 4277 issue: 1 year: 2020 ident: 2271_CR303 publication-title: Nature Communications doi: 10.1038/s41467-020-18086-4 – volume: 98 start-page: 107282 year: 2022 ident: 2271_CR12 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107282 – volume: 34 start-page: 2109355 issue: 21 year: 2022 ident: 2271_CR113 publication-title: Advanced Materials doi: 10.1002/adma.202109355 – volume: 12 start-page: 2103654 issue: 13 year: 2022 ident: 2271_CR134 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202103654 – volume: 96 start-page: 107115 year: 2022 ident: 2271_CR61 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107115 – volume: 30 start-page: 2257 issue: 5 year: 2019 ident: 2271_CR311 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-017-1385-4 – volume: 9 start-page: 1900801 issue: 26 year: 2019 ident: 2271_CR201 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201900801 – volume: 250 start-page: 123773 year: 2022 ident: 2271_CR203 publication-title: Energy doi: 10.1016/j.energy.2022.123773 – volume: 310 start-page: 123081 year: 2022 ident: 2271_CR309 publication-title: Journal of Solid State Chemistry doi: 10.1016/j.jssc.2022.123081 – volume: 67 start-page: 104266 year: 2020 ident: 2271_CR232 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104266 – volume: 9 start-page: 7479 issue: 7 year: 2015 ident: 2271_CR297 publication-title: ACS Nano doi: 10.1021/acsnano.5b02575 – volume: 9 start-page: 1442 issue: 5 year: 2016 ident: 2271_CR275 publication-title: Nano Research doi: 10.1007/s12274-016-1040-y – volume: 25 start-page: 6489 issue: 41 year: 2015 ident: 2271_CR280 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201503180 – volume: 59 start-page: 574 year: 2019 ident: 2271_CR24 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.013 – volume: 5 start-page: 2000531 issue: 9 year: 2020 ident: 2271_CR262 publication-title: Advanced Materials Technologies doi: 10.1002/admt.202000531 – volume: 4 start-page: 1301322 issue: 6 year: 2014 ident: 2271_CR66 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201301322 – volume: 10 start-page: 1903024 issue: 7 year: 2020 ident: 2271_CR329 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201903024 – volume: 10 start-page: 2000965 issue: 24 year: 2020 ident: 2271_CR34 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202000965 – volume: 42 start-page: 656 issue: 2 year: 2018 ident: 2271_CR45 publication-title: International Journal of Energy Research doi: 10.1002/er.3849 – volume: 11 start-page: 2101194 issue: 26 year: 2021 ident: 2271_CR80 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202101194 – volume: 64 start-page: 103908 year: 2019 ident: 2271_CR333 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103908 – volume: 51 start-page: 3380 issue: 9 year: 2022 ident: 2271_CR26 publication-title: Chemical Society Reviews doi: 10.1039/D1CS00858G – volume: 67 start-page: 104290 year: 2020 ident: 2271_CR52 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104290 – volume: 66 start-page: 104167 year: 2019 ident: 2271_CR92 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104167 – volume: 5 start-page: 1600623 issue: 1 year: 2017 ident: 2271_CR144 publication-title: Advanced Optical Materials doi: 10.1002/adom.201600623 – volume: 66 start-page: 104080 year: 2019 ident: 2271_CR151 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104080 – volume: 8 start-page: 4938 issue: 9 year: 2016 ident: 2271_CR82 publication-title: Nanoscale doi: 10.1039/C5NR09087C – volume: 11 start-page: 2003066 issue: 9 year: 2021 ident: 2271_CR156 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202003066 – volume: 6 start-page: 8031 issue: 1 year: 2015 ident: 2271_CR54 publication-title: Nature Communications doi: 10.1038/ncomms9031 – volume: 10 start-page: 5147 issue: 1 year: 2019 ident: 2271_CR135 publication-title: Nature Communications doi: 10.1038/s41467-019-13166-6 – volume: 2 start-page: 693 issue: 5 year: 2013 ident: 2271_CR141 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.08.004 – volume: 47 start-page: 217 year: 2018 ident: 2271_CR294 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.042 – volume: 39 start-page: 608 year: 2017 ident: 2271_CR193 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.045 – volume: 6 start-page: 1929 issue: 10 year: 2018 ident: 2271_CR199 publication-title: Energy Technology doi: 10.1002/ente.201800035 – volume: 65 start-page: 104012 year: 2019 ident: 2271_CR189 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104012 – volume: 10 start-page: 305 year: 2014 ident: 2271_CR139 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.09.018 – volume: 24 start-page: 297 year: 2020 ident: 2271_CR321 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2019.08.002 – volume: 7 start-page: 18049 issue: 43 year: 2015 ident: 2271_CR83 publication-title: Nanoscale doi: 10.1039/C5NR05514H – volume: 16 start-page: 38 year: 2015 ident: 2271_CR296 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.06.006 – volume: 15 start-page: 15700 issue: 10 year: 2021 ident: 2271_CR286 publication-title: ACS Nano doi: 10.1021/acsnano.1c05127 – volume: 29 start-page: 1606703 issue: 17 year: 2017 ident: 2271_CR293 publication-title: Advanced Materials doi: 10.1002/adma.201606703 – volume: 12 start-page: 2103076 issue: 3 year: 2022 ident: 2271_CR7 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202103076 – volume: 8 start-page: 1932 issue: 2 year: 2014 ident: 2271_CR260 publication-title: ACS Nano doi: 10.1021/nn406565k – volume: 8 start-page: 88 issue: 1 year: 2017 ident: 2271_CR279 publication-title: Nature Communications doi: 10.1038/s41467-017-00131-4 |
SSID | ssib031263377 ssib011451075 ssib014623632 ssj0001844256 ssib020093015 ssib058688259 |
Score | 2.5228882 |
SecondaryResourceType | review_article |
Snippet | Wave energy is inexhaustible renewable energy. Making full use of the huge ocean wave energy resources is the dream of mankind for hundreds of years. Nowadays,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 635 |
SubjectTerms | Chemistry Chemistry and Materials Science Energy Energy harvesting Energy sources Energy storage Industrial Chemistry/Chemical Engineering Management methods Nanogenerators Nanotechnology Power management Review Article Water waves Wave power |
Title | Triboelectric nanogenerators: the beginning of blue dream |
URI | https://link.springer.com/article/10.1007/s11705-022-2271-y https://www.proquest.com/docview/2819660747 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFH7R7aAejE6N07lw8KQhgbYU8LYs00WjJ5fME2lpMSYTjNsO--99BSrTqIknDhTSPF77ffT9-ADOGUJCyGXselRwlzEduIhyxCVKKy9OI8HK8rH7Bz6esNtpMK3ruOc2292GJMuduil2M51fXJN9Tkjou6tNaAfm1x2deEIG1ol8Iz3rNZiIOwGhvCmeNNEAuoaB1Cec0roYszyYiRj6cSlK55nqZfRYGw39aRZf8awhqd_iqiVcXe_Bbs0znUHlGPuwofMObA2tvFsHdtY6ER5AbDqIFJUmzkvq5CIvnsuG1EaM58pBluhII-FgTlGcInPkbKkdhYTz9RAm16PH4ditVRXclPJggdMWvuCSBYopxTkCPkuV1jqIqKAiwwWN258mcRYpJHuShFIjp-VxFmrBBbKRI2jlRa6PwQlUzMMwjaQfZozilfuSUKQIiiLwhbQLnrVNktYtx43yxSxpmiUbcyZozsSYM1l14eLzkbeq38Zfg3vW4Em99OaJiQxybnQBunBpP0Jz-9eXnfxr9ClsG-H5KmmsB63F-1KfIT1ZyD60BzdPd6N-6ZYffGLT7w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oPEwPolNxOrUHT0qhTdK09TaGY-q20wa7laRJRZituO2w_96X_rBTVPDUQ9MSXl7yfeT9-ACuGUKCz2VoO1RwmzHt2YhyxCZKKyeMA8Hy8rHRmA-m7HHmzco67kWV7V6FJPOTui52M51fbJN9Tojv2utt2EEuEJg8rinpVk7kGulZp8ZEPAkI5XXxpIkG0A0MpC7hlJbFmPnFTMDQj3NROsdUL6PHVtHQn2bxFc9qkvotrprDVf8A9kueaXULxziELZ22oNmr5N1asLfRifAIQtNBJCs0cV5iKxVp9pw3pDZiPHcWskRLGgkHc4tiZYkl5yttKSScr8cw7d9PegO7VFWwY8q9JU5buIJL5immFOcI-CxWWmsvoIKKBDc0Hn-ahEmgkOxJ4kuNnJaHia8FF8hGTqCRZqk-BctTIff9OJCunzCKT-5KQpEiKIrA59M2OJVtorhsOW6UL-ZR3SzZmDNCc0bGnNG6DTefn7wV_Tb-GtypDB6VW28Rmcgg50YXoA231SLUr3_92dm_Rl9BczAZDaPhw_jpHHaNCH2RQNaBxvJ9pS-QqizlZe6aH_gK1U4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50BR8H0VVxffbgSSm2SZq23mR18Y0HF7yVpElFWLuLu3vw3zvTh1VRwVMPfRCmk3wfmcz3ARwIhIRQ6tj1uJKuEDZwEeWYy4w1XpxGShTtY7d38qIvrh6Dx8rndFyfdq9LkmVPA6k05ZPjkcmOm8Y3UoFx6SQ6Y6Hvvs3CHK7GPqV1n53WCeWTDa3X4COuCozLppGSKgP8Ex5yn0nOq8bMYpMmEpjThUGdR53MmL11ZfSnUXzFtoawfquxFtDVW4HlinM6p2WSrMKMzduw0K2t3tqw9EmVcA1iUhMZlv44z6mTq3z4VIhTkzHPiYOM0dFk50A7Ks4wc_Rgah2D5PNlHfq984fuhVs5LLgpl8EEh618JbUIjDBGSgR_kRprbRBxxVWGkxuXQsviLDJI_DQLtUV-K-MstEoqZCYb0MqHud0EJzCxDMM00n6YCY5X6WvGkS4YjiAY8g54dWyStJIfJxeMQdIIJ1M4EwxnQuFM3jpw-PHKqNTe-OvhnTrgSTUNxwlVCaUkj4AOHNU_obn968e2_vX0Pszfn_WSm8u7621YJD_68izZDrQmr1O7i6xloveKzHwH6eXZig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+nanogenerators%3A+the+beginning+of+blue+dream&rft.jtitle=Frontiers+of+chemical+science+and+engineering&rft.au=Wang%2C+Wanli&rft.au=Yang%2C+Dongfang&rft.au=Yan+Xiaoran&rft.au=Wang%2C+Licheng&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-0179&rft.eissn=2095-0187&rft.volume=17&rft.issue=6&rft.spage=635&rft.epage=678&rft_id=info:doi/10.1007%2Fs11705-022-2271-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-0179&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-0179&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-0179&client=summon |