Effects of fly ash on the properties and microstructure of alkali-activated FA/BFS repairing mortar

•The CAP and PSD of FA were defined as the major factors effecting properties of mortar.•The mechanical and bond strength depend more on CAP of FA.•The PSD of FA effected the flow value and shrinkage of mortar more apparently. This article presents the effects of fly ash (FA) on the properties and m...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 256; p. 115919
Main Authors Wang, Jixiang, Huang, Tianyong, Cheng, Guodong, Liu, Ze, Li, Siqi, Wang, Dongmin
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.11.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The CAP and PSD of FA were defined as the major factors effecting properties of mortar.•The mechanical and bond strength depend more on CAP of FA.•The PSD of FA effected the flow value and shrinkage of mortar more apparently. This article presents the effects of fly ash (FA) on the properties and microstructures of alkali-activated FA/BFS repairing mortars. Firstly, the characteristics (chemical and mineral compositions, particle size distribution or specific surface area) of FAs were investigated. Two factors (the content of amorphous phases (CAP) and particle size distribution (PSD) or specific surface area) were defined as the two major variables and its effects on the properties (mechanical strength, flow value, and shrinkage) of alkali-activated FA/BFS repairing mortars were studied. The results indicated that the mechanical strength of alkali-activated FA/BFS mortar depended more on the content of amorphous phases since it facilitated the degree of geopolymerization reaction and the formation of products. IIFA/BFS exhibited the highest compressive, flexural, and interfacial flexural-tensile strength due to its higher content of amorphous phases. However, the particle size distribution of FA had little contribution on mechanical strength but effected the flow value and drying shrinkage more apparently. Additionally, it’s also found that except the mechanical interlocking and Van der Waals forces, the chemical bonding also presented between the repairing systems and substrate. That’s why the alkali-activated FA/BFS mortar exhibited higher bonding strength and was suitable for repairing concrete.
AbstractList •The CAP and PSD of FA were defined as the major factors effecting properties of mortar.•The mechanical and bond strength depend more on CAP of FA.•The PSD of FA effected the flow value and shrinkage of mortar more apparently. This article presents the effects of fly ash (FA) on the properties and microstructures of alkali-activated FA/BFS repairing mortars. Firstly, the characteristics (chemical and mineral compositions, particle size distribution or specific surface area) of FAs were investigated. Two factors (the content of amorphous phases (CAP) and particle size distribution (PSD) or specific surface area) were defined as the two major variables and its effects on the properties (mechanical strength, flow value, and shrinkage) of alkali-activated FA/BFS repairing mortars were studied. The results indicated that the mechanical strength of alkali-activated FA/BFS mortar depended more on the content of amorphous phases since it facilitated the degree of geopolymerization reaction and the formation of products. IIFA/BFS exhibited the highest compressive, flexural, and interfacial flexural-tensile strength due to its higher content of amorphous phases. However, the particle size distribution of FA had little contribution on mechanical strength but effected the flow value and drying shrinkage more apparently. Additionally, it’s also found that except the mechanical interlocking and Van der Waals forces, the chemical bonding also presented between the repairing systems and substrate. That’s why the alkali-activated FA/BFS mortar exhibited higher bonding strength and was suitable for repairing concrete.
This article presents the effects of fly ash (FA) on the properties and microstructures of alkali-activated FA/BFS repairing mortars. Firstly, the characteristics (chemical and mineral compositions, particle size distribution or specific surface area) of FAs were investigated. Two factors (the content of amorphous phases (CAP) and particle size distribution (PSD) or specific surface area) were defined as the two major variables and its effects on the properties (mechanical strength, flow value, and shrinkage) of alkali-activated FA/BFS repairing mortars were studied. The results indicated that the mechanical strength of alkali-activated FA/BFS mortar depended more on the content of amorphous phases since it facilitated the degree of geopolymerization reaction and the formation of products. IIFA/BFS exhibited the highest compressive, flexural, and interfacial flexural-tensile strength due to its higher content of amorphous phases. However, the particle size distribution of FA had little contribution on mechanical strength but effected the flow value and drying shrinkage more apparently. Additionally, it's also found that except the mechanical interlocking and Van der Waals forces, the chemical bonding also presented between the repairing systems and substrate. That's why the alkali-activated FA/BFS mortar exhibited higher bonding strength and was suitable for repairing concrete.
ArticleNumber 115919
Author Li, Siqi
Cheng, Guodong
Wang, Jixiang
Liu, Ze
Wang, Dongmin
Huang, Tianyong
Author_xml – sequence: 1
  givenname: Jixiang
  surname: Wang
  fullname: Wang, Jixiang
  organization: State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing 100041, China
– sequence: 2
  givenname: Tianyong
  surname: Huang
  fullname: Huang, Tianyong
  email: hatty555@163.com
  organization: State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing 100041, China
– sequence: 3
  givenname: Guodong
  surname: Cheng
  fullname: Cheng, Guodong
  organization: Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China
– sequence: 4
  givenname: Ze
  surname: Liu
  fullname: Liu, Ze
  email: lzk1227@sina.com
  organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
– sequence: 5
  givenname: Siqi
  surname: Li
  fullname: Li, Siqi
  organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
– sequence: 6
  givenname: Dongmin
  surname: Wang
  fullname: Wang, Dongmin
  organization: School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
BookMark eNp9kLFOwzAQhi1UJNrCCzBZYk5rJ3EcSyylagGpEgMwW45zpi5pXGynUt-eRGVi6HTL_93d_03QqHUtIHRPyYwSWsx3M9NBM0sJFTNKmaDiCo1pybOEU5aN0Jj0qSTNCnqDJiHsCCG8ZPkY6ZUxoGPAzmDTnLAKW-xaHLeAD94dwEcLAau2xnurvQvRdzp2Hoa8ar5VYxOloz2qCDVeL-ZP63fs4aCst-0X3jsflb9F10Y1Ae7-5hR9rlcfy5dk8_b8ulxsEp0VLCa0VsCrHCArBAHNtCmE4YRUjKq6yKFgnJE056xSWaXLnIMSGaGal7osucmzKXo47-0__-kgRLlznW_7kzJNRSpyWgrRp8pzaqgTPBipbVTRujZ6ZRtJiRyUyp0clMpBqTwr7dH0H3rwdq_86TL0eIagr3604GXQFloNtfW9eVk7ewn_BZbOkig
CitedBy_id crossref_primary_10_1016_j_fuel_2023_130194
crossref_primary_10_1016_j_cscm_2022_e01162
crossref_primary_10_1016_j_ceramint_2021_07_190
crossref_primary_10_1016_j_jobe_2022_104056
crossref_primary_10_3390_ma16051889
crossref_primary_10_1016_j_ceramint_2022_04_297
crossref_primary_10_1016_j_compositesb_2024_111712
crossref_primary_10_1016_j_conbuildmat_2020_118533
crossref_primary_10_1016_j_conbuildmat_2020_120403
crossref_primary_10_1016_j_istruc_2023_105398
crossref_primary_10_1016_j_jobe_2025_112163
crossref_primary_10_1016_j_enbuild_2023_113676
crossref_primary_10_1016_j_conbuildmat_2021_123952
crossref_primary_10_1016_j_conbuildmat_2020_121091
crossref_primary_10_1016_j_jclepro_2024_141924
crossref_primary_10_1016_j_conbuildmat_2021_125993
crossref_primary_10_1016_j_jobe_2024_109399
crossref_primary_10_3390_gels8010053
crossref_primary_10_1016_j_jclepro_2020_124363
crossref_primary_10_1016_j_jclepro_2024_143463
crossref_primary_10_1007_s10853_025_10605_2
crossref_primary_10_1016_j_dibe_2023_100253
crossref_primary_10_3390_su15064933
crossref_primary_10_1016_j_petsci_2023_09_010
crossref_primary_10_1016_j_conbuildmat_2020_118489
crossref_primary_10_1016_j_conbuildmat_2024_135046
crossref_primary_10_3390_buildings12112025
crossref_primary_10_1016_j_jece_2023_110837
crossref_primary_10_1016_j_jobe_2023_106577
crossref_primary_10_1016_j_conbuildmat_2020_121328
crossref_primary_10_1016_j_jobe_2023_106450
crossref_primary_10_1080_21650373_2021_1913659
crossref_primary_10_1038_s41598_022_19830_0
crossref_primary_10_1016_j_conbuildmat_2021_122805
crossref_primary_10_1016_j_jobe_2020_101234
crossref_primary_10_1016_j_apt_2021_06_008
crossref_primary_10_1016_j_clema_2021_100010
crossref_primary_10_1016_j_conbuildmat_2024_137471
crossref_primary_10_1080_21650373_2021_1989633
crossref_primary_10_1016_j_envres_2024_120570
crossref_primary_10_1016_j_conbuildmat_2020_121757
crossref_primary_10_2139_ssrn_4193492
crossref_primary_10_1016_j_jobe_2022_105177
crossref_primary_10_1016_j_rineng_2023_101322
crossref_primary_10_1016_j_conbuildmat_2022_128661
crossref_primary_10_1016_j_jobe_2025_112028
crossref_primary_10_1016_j_conbuildmat_2020_121543
crossref_primary_10_1061__ASCE_MT_1943_5533_0004266
crossref_primary_10_1016_j_conbuildmat_2021_125886
crossref_primary_10_1061_JMCEE7_MTENG_18560
crossref_primary_10_1080_10298436_2023_2252156
Cites_doi 10.1016/j.jclepro.2019.04.018
10.1016/j.cemconcomp.2013.11.005
10.1016/j.cemconcomp.2013.09.006
10.1016/j.cemconres.2007.01.003
10.1016/j.ceramint.2017.02.075
10.1016/j.fuel.2006.04.006
10.1016/j.conbuildmat.2018.04.034
10.1107/S0021889887087090
10.1016/j.conbuildmat.2015.08.139
10.1016/j.cemconres.2010.11.016
10.1016/j.conbuildmat.2014.05.020
10.1021/acs.jpcc.8b00697
10.1016/j.colsurfa.2015.04.024
10.1080/10426919008953291
10.1680/adcr.1995.7.27.93
10.1016/j.conbuildmat.2007.10.011
10.1016/S0008-8846(97)00219-6
10.1016/j.micromeso.2007.05.062
10.1016/j.conbuildmat.2019.02.149
10.1007/s12649-010-9015-9
10.1016/j.fuel.2005.08.014
10.1016/j.conbuildmat.2015.05.001
10.1016/j.tca.2012.03.021
10.1016/j.cemconres.2011.08.005
10.1016/j.ceramint.2015.08.096
10.1016/j.cemconres.2004.06.031
10.1016/0008-8846(95)00126-W
10.1016/S0008-8846(01)00745-1
10.1016/j.cemconcomp.2014.07.007
10.1007/BF02479291
10.1007/s10064-016-0964-5
10.1680/adcr.1999.11.4.189
10.1016/j.cemconcomp.2007.04.004
10.1016/j.cemconres.2018.07.005
10.1007/BF02481698
10.1016/S0008-8846(99)00154-4
10.1016/S0950-0618(00)00016-7
10.1016/j.micromeso.2007.02.055
10.1016/j.tca.2013.01.040
10.1016/j.cemconres.2004.10.042
10.1016/j.conbuildmat.2018.07.205
10.1007/BF02533583
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Nov 15, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 15, 2019
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2019.115919
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2019_115919
S0016236119312712
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
SSH
VH1
WUQ
XPP
ZY4
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c365t-1dae7b4ee3690ec5cf69f700b51ad64e657502475ba3bc847ea9301c78c887f43
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Wed Aug 13 04:08:04 EDT 2025
Tue Jul 01 03:27:31 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Fri Feb 23 02:23:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bond strength
Fly ash
Amorphous phase content
Repairing mortar
Alkali-activated FA/BFS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-1dae7b4ee3690ec5cf69f700b51ad64e657502475ba3bc847ea9301c78c887f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2292941899
PQPubID 2045474
ParticipantIDs proquest_journals_2292941899
crossref_citationtrail_10_1016_j_fuel_2019_115919
crossref_primary_10_1016_j_fuel_2019_115919
elsevier_sciencedirect_doi_10_1016_j_fuel_2019_115919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Liu, Wang, Jiang, Cheng, Li, Kang (b0075) 2019; 225
Liu, Wang, Liu, Hu (b0115) 2014; 66
Fernández-Jiménez, Palomo, Puertas (b0045) 1999; 29
Zhang, Wang, Xie (b0095) 2019; 207
Ben Haha, Le Saout, Winnefeld, Lothenbach (b0175) 2011; 41
Thompson, Cox, Hastings (b0060) 1987; 20
Courard (b0135) 2002; 35
Abdel Gawwad, Abd El-Aleem, Ouda (b0010) 2016; 42
Bakharev (b0150) 2005; 35
Phoo-ngernkham, Maegawa, Mishima, Hatanaka, Chindaprasirt (b0100) 2015; 91
Tanaka, Suzuki, Ono, Koishi (b0080) 1998; 28
Szemerey-Kiss, Török (b0120) 2017; 76
Ismail, Bernal, Provis, San Nicolas, Hamdan, van Deventer (b0085) 2014; 45
Phoo-ngernkham, Sata, Hanjitsuwan, Ridtirud, Hatanaka, Chindaprasirt (b0030) 2015; 98
Hu, Wang, Zhang, Ding (b0035) 2008; 30
Lee, Jang, Lee (b0205) 2014; 53
Karen Scrivener, Lothenbach (b0180) 2016
Zhang, Li, Li (b0020) 2015; 481
Abu-Tair, Lavery, Nadjai, Rigden, Ahmed (b0130) 2000; 14
Coppola, Coffetti, Crotti (b0055) 2018; 173
Shi, Shi, Wan, Li, Zhang (b0170) 2018; 113
Zhang, Deskins, Zhang, Cygan, Tao (b0015) 2018; 122
Duran Atiş, Bilim, Çelik, Karahan (b0040) 2009; 23
Courard (b0140) 2000; 33
Yip, Lukey, van Deventer (b0145) 2005; 35
Fernández-Jiménez, Puertas (b0050) 2002; 32
Fernández-Jimenez, Palomo, López-Olmo, Alonso, Aranda (b0065) 2006; 85
Zhang, Wang, Provis, Bullen, Reid, Zhu (b0195) 2012; 539
Wang, Pu, Scrivener, Pratt (b0210) 1995; 7
Silva, Sagoe-Crenstil, Sirivivatnanon (b0110) 2007; 37
Criado, Fernández-Jiménez, Palomo (b0165) 2007; 106
Courard, Piotrowski, Garbacz (b0125) 2014; 46
Criado, Fernández-Jiménez, Palomo, Sobrados, Sanz (b0160) 2008; 109
Fernández-Jiménez, de la Torre, Palomo, López-Olmo, Alonso, Aranda (b0070) 2006; 85
Shi, Day (b0105) 1999; 11
Shi, Day (b0190) 1995; 25
Haha, Lothenbach, Le Saout, Winnefeld (b0155) 2012; 42
Dean JA. Lange’s handbook of chemistry; 1990.
van Deventer, Provis, Duxson, Brice (b0005) 2010; 1
Zhang, Wang, Liu, Xie (b0090) 2018; 187
Zhang, Provis, Wang, Bullen, Reid (b0200) 2013; 565
Zhang, Li, Li (b0025) 2017; 43
Van Balen, Papayianni, Van Hees, Binda, Waldum (b0215) 2005; 38
Coppola (10.1016/j.fuel.2019.115919_b0055) 2018; 173
Tanaka (10.1016/j.fuel.2019.115919_b0080) 1998; 28
Zhang (10.1016/j.fuel.2019.115919_b0200) 2013; 565
van Deventer (10.1016/j.fuel.2019.115919_b0005) 2010; 1
Courard (10.1016/j.fuel.2019.115919_b0125) 2014; 46
Karen Scrivener (10.1016/j.fuel.2019.115919_b0180) 2016
Zhang (10.1016/j.fuel.2019.115919_b0025) 2017; 43
Abdel Gawwad (10.1016/j.fuel.2019.115919_b0010) 2016; 42
Zhang (10.1016/j.fuel.2019.115919_b0020) 2015; 481
Fernández-Jimenez (10.1016/j.fuel.2019.115919_b0065) 2006; 85
Courard (10.1016/j.fuel.2019.115919_b0135) 2002; 35
Yip (10.1016/j.fuel.2019.115919_b0145) 2005; 35
Silva (10.1016/j.fuel.2019.115919_b0110) 2007; 37
Shi (10.1016/j.fuel.2019.115919_b0190) 1995; 25
Van Balen (10.1016/j.fuel.2019.115919_b0215) 2005; 38
Criado (10.1016/j.fuel.2019.115919_b0160) 2008; 109
Zhang (10.1016/j.fuel.2019.115919_b0090) 2018; 187
10.1016/j.fuel.2019.115919_b0185
Zhang (10.1016/j.fuel.2019.115919_b0195) 2012; 539
Wang (10.1016/j.fuel.2019.115919_b0210) 1995; 7
Phoo-ngernkham (10.1016/j.fuel.2019.115919_b0100) 2015; 91
Ben Haha (10.1016/j.fuel.2019.115919_b0175) 2011; 41
Haha (10.1016/j.fuel.2019.115919_b0155) 2012; 42
Phoo-ngernkham (10.1016/j.fuel.2019.115919_b0030) 2015; 98
Courard (10.1016/j.fuel.2019.115919_b0140) 2000; 33
Szemerey-Kiss (10.1016/j.fuel.2019.115919_b0120) 2017; 76
Liu (10.1016/j.fuel.2019.115919_b0115) 2014; 66
Fernández-Jiménez (10.1016/j.fuel.2019.115919_b0070) 2006; 85
Shi (10.1016/j.fuel.2019.115919_b0170) 2018; 113
Abu-Tair (10.1016/j.fuel.2019.115919_b0130) 2000; 14
Hu (10.1016/j.fuel.2019.115919_b0035) 2008; 30
Thompson (10.1016/j.fuel.2019.115919_b0060) 1987; 20
Shi (10.1016/j.fuel.2019.115919_b0105) 1999; 11
Duran Atiş (10.1016/j.fuel.2019.115919_b0040) 2009; 23
Criado (10.1016/j.fuel.2019.115919_b0165) 2007; 106
Fernández-Jiménez (10.1016/j.fuel.2019.115919_b0045) 1999; 29
Bakharev (10.1016/j.fuel.2019.115919_b0150) 2005; 35
Zhang (10.1016/j.fuel.2019.115919_b0015) 2018; 122
Ismail (10.1016/j.fuel.2019.115919_b0085) 2014; 45
Liu (10.1016/j.fuel.2019.115919_b0075) 2019; 225
Fernández-Jiménez (10.1016/j.fuel.2019.115919_b0050) 2002; 32
Lee (10.1016/j.fuel.2019.115919_b0205) 2014; 53
Zhang (10.1016/j.fuel.2019.115919_b0095) 2019; 207
References_xml – volume: 45
  start-page: 125
  year: 2014
  end-page: 135
  ident: b0085
  article-title: Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash
  publication-title: Cem Concr Compos
– volume: 42
  start-page: 74
  year: 2012
  end-page: 83
  ident: b0155
  article-title: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: effect of Al2O3
  publication-title: Cem Concr Res
– volume: 25
  start-page: 1333
  year: 1995
  end-page: 1346
  ident: b0190
  article-title: A calorimetric study of early hydration of alkali-slag cements
  publication-title: Cem Concr Res
– volume: 20
  start-page: 79
  year: 1987
  end-page: 83
  ident: b0060
  article-title: Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3
  publication-title: J Appl Crystallogr
– volume: 173
  start-page: 111
  year: 2018
  end-page: 117
  ident: b0055
  article-title: Pre-packed alkali activated cement-free mortars for repair of existing masonry buildings and concrete structures
  publication-title: Constr Build Mater
– volume: 1
  start-page: 145
  year: 2010
  end-page: 155
  ident: b0005
  article-title: Chemical research and climate change as drivers in the commercial adoption of alkali activated materials
  publication-title: Waste Biomass Valoriz
– volume: 11
  start-page: 189
  year: 1999
  end-page: 196
  ident: b0105
  article-title: Early strength development and hydration of alkali-activated blast furnace slag/fly ash blends
  publication-title: Adv Cem Res
– volume: 98
  start-page: 482
  year: 2015
  end-page: 488
  ident: b0030
  article-title: High calcium fly ash geopolymer mortar containing Portland cement for use as repair material
  publication-title: Constr Build Mater
– volume: 91
  start-page: 1
  year: 2015
  end-page: 8
  ident: b0100
  article-title: Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer
  publication-title: Constr Build Mater
– volume: 38
  start-page: 781
  year: 2005
  end-page: 785
  ident: b0215
  article-title: Introduction to requirements for and functions and properties of repair mortars
  publication-title: Mater Struct
– volume: 122
  start-page: 6760
  year: 2018
  end-page: 6773
  ident: b0015
  article-title: Modeling the polymerization process for geopolymer synthesis through reactive molecular dynamics simulations
  publication-title: J Phys Chem C
– volume: 106
  start-page: 180
  year: 2007
  end-page: 191
  ident: b0165
  article-title: Alkali activation of fly ash: Effect of the SiO2/Na2O ratio, Part I: FTIR study
  publication-title: Microporous Mesoporous Mater
– volume: 14
  start-page: 171
  year: 2000
  end-page: 176
  ident: b0130
  article-title: A new method for evaluating the surface roughness of concrete cut for repair or strengthening
  publication-title: Constr Build Mater
– volume: 565
  start-page: 163
  year: 2013
  end-page: 171
  ident: b0200
  article-title: Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin
  publication-title: Thermochim Acta
– volume: 35
  start-page: 1224
  year: 2005
  end-page: 1232
  ident: b0150
  article-title: Geopolymeric materials prepared using Class F fly ash and elevated temperature curing
  publication-title: Cem Concr Res
– volume: 187
  start-page: 674
  year: 2018
  end-page: 680
  ident: b0090
  article-title: Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content
  publication-title: Constr Build Mater
– volume: 113
  start-page: 55
  year: 2018
  end-page: 64
  ident: b0170
  article-title: Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars
  publication-title: Cem Concr Res
– volume: 23
  start-page: 548
  year: 2009
  end-page: 555
  ident: b0040
  article-title: Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar
  publication-title: Constr Build Mater
– volume: 30
  start-page: 239
  year: 2008
  end-page: 244
  ident: b0035
  article-title: Bonding and abrasion resistance of geopolymeric repair material made with steel slag
  publication-title: Cem Concr Compos
– volume: 29
  start-page: 1313
  year: 1999
  end-page: 1321
  ident: b0045
  article-title: Alkali-activated slag mortars: mechanical strength behaviour
  publication-title: Cem Concr Res
– volume: 32
  start-page: 1019
  year: 2002
  end-page: 1024
  ident: b0050
  article-title: The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate
  publication-title: Cem Concr Res
– volume: 225
  start-page: 1184
  year: 2019
  end-page: 1193
  ident: b0075
  article-title: A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag
  publication-title: J Cleaner Prod
– volume: 28
  start-page: 63
  year: 1998
  end-page: 74
  ident: b0080
  article-title: Fluidity of spherical cement and mechanism for creating high fluidity
  publication-title: Cem Concr Res
– volume: 46
  start-page: 73
  year: 2014
  end-page: 80
  ident: b0125
  article-title: Near-to-surface properties affecting bond strength in concrete repair
  publication-title: Cem Concr Compos
– year: 2016
  ident: b0180
  article-title: A practical guide to microstructural analysis of cementitious materials
– volume: 207
  start-page: 284
  year: 2019
  end-page: 290
  ident: b0095
  article-title: Microrheology of fresh geopolymer pastes with different NaOH amounts at room temperature
  publication-title: Constr Build Mater
– volume: 85
  start-page: 1960
  year: 2006
  end-page: 1969
  ident: b0070
  article-title: Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction
  publication-title: Fuel
– volume: 42
  start-page: 220
  year: 2016
  end-page: 228
  ident: b0010
  article-title: Preparation and characterization of one-part non-Portland cement
  publication-title: Ceram Int
– volume: 109
  start-page: 525
  year: 2008
  end-page: 534
  ident: b0160
  article-title: Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey
  publication-title: Microporous Mesoporous Mater
– volume: 7
  start-page: 93
  year: 1995
  end-page: 102
  ident: b0210
  article-title: Alkali-activated slag cement and concrete: a review of properties and problems
  publication-title: Adv Cem Res
– volume: 85
  start-page: 625
  year: 2006
  end-page: 634
  ident: b0065
  article-title: Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity
  publication-title: Fuel
– volume: 66
  start-page: 125
  year: 2014
  end-page: 131
  ident: b0115
  article-title: A microstructural approach to adherence mechanism of cement and asphalt mortar (CA mortar) to repair materials
  publication-title: Constr Build Mater
– volume: 41
  start-page: 301
  year: 2011
  end-page: 310
  ident: b0175
  article-title: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags
  publication-title: Cem Concr Res
– volume: 35
  start-page: 149
  year: 2002
  end-page: 155
  ident: b0135
  article-title: Evaluation of thermodynamic properties of concrete substrates and cement slurries modified with admixtures
  publication-title: Mater Struct
– volume: 539
  start-page: 23
  year: 2012
  end-page: 33
  ident: b0195
  article-title: Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide
  publication-title: Thermochim Acta
– volume: 481
  start-page: 1
  year: 2015
  end-page: 6
  ident: b0020
  article-title: Effects of metal ions with different valences on colloidal aggregation in low-concentration silica colloidal systems characterized by continuous online zeta potential analysis
  publication-title: Colloids Surf, A
– volume: 76
  start-page: 159
  year: 2017
  end-page: 167
  ident: b0120
  article-title: Failure mechanisms of repair mortar stone interface assessed by pull-off strength tests
  publication-title: Bull Eng Geol Environ
– reference: Dean JA. Lange’s handbook of chemistry; 1990.
– volume: 43
  start-page: 6532
  year: 2017
  end-page: 6541
  ident: b0025
  article-title: Preparation of Al–Si composite from high-alumina coal fly ash by mechanical–chemical synergistic activation
  publication-title: Ceram Int
– volume: 33
  start-page: 65
  year: 2000
  ident: b0140
  article-title: Parametric study for the creation of the interface between concrete and repair products
  publication-title: Mater Struct
– volume: 37
  start-page: 512
  year: 2007
  end-page: 518
  ident: b0110
  article-title: Kinetics of geopolymerization: role of Al2O3 and SiO2
  publication-title: Cem Concr Res
– volume: 35
  start-page: 1688
  year: 2005
  end-page: 1697
  ident: b0145
  article-title: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation
  publication-title: Cem Concr Res
– volume: 53
  start-page: 239
  year: 2014
  end-page: 248
  ident: b0205
  article-title: Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages
  publication-title: Cem Concr Compos
– volume: 225
  start-page: 1184
  year: 2019
  ident: 10.1016/j.fuel.2019.115919_b0075
  article-title: A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2019.04.018
– volume: 46
  start-page: 73
  year: 2014
  ident: 10.1016/j.fuel.2019.115919_b0125
  article-title: Near-to-surface properties affecting bond strength in concrete repair
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2013.11.005
– volume: 45
  start-page: 125
  year: 2014
  ident: 10.1016/j.fuel.2019.115919_b0085
  article-title: Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2013.09.006
– volume: 37
  start-page: 512
  year: 2007
  ident: 10.1016/j.fuel.2019.115919_b0110
  article-title: Kinetics of geopolymerization: role of Al2O3 and SiO2
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2007.01.003
– volume: 43
  start-page: 6532
  issue: 8
  year: 2017
  ident: 10.1016/j.fuel.2019.115919_b0025
  article-title: Preparation of Al–Si composite from high-alumina coal fly ash by mechanical–chemical synergistic activation
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2017.02.075
– volume: 85
  start-page: 1960
  year: 2006
  ident: 10.1016/j.fuel.2019.115919_b0070
  article-title: Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.04.006
– volume: 173
  start-page: 111
  year: 2018
  ident: 10.1016/j.fuel.2019.115919_b0055
  article-title: Pre-packed alkali activated cement-free mortars for repair of existing masonry buildings and concrete structures
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.04.034
– volume: 20
  start-page: 79
  year: 1987
  ident: 10.1016/j.fuel.2019.115919_b0060
  article-title: Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889887087090
– volume: 98
  start-page: 482
  year: 2015
  ident: 10.1016/j.fuel.2019.115919_b0030
  article-title: High calcium fly ash geopolymer mortar containing Portland cement for use as repair material
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.08.139
– volume: 41
  start-page: 301
  year: 2011
  ident: 10.1016/j.fuel.2019.115919_b0175
  article-title: Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2010.11.016
– volume: 66
  start-page: 125
  year: 2014
  ident: 10.1016/j.fuel.2019.115919_b0115
  article-title: A microstructural approach to adherence mechanism of cement and asphalt mortar (CA mortar) to repair materials
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2014.05.020
– volume: 122
  start-page: 6760
  year: 2018
  ident: 10.1016/j.fuel.2019.115919_b0015
  article-title: Modeling the polymerization process for geopolymer synthesis through reactive molecular dynamics simulations
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.8b00697
– volume: 481
  start-page: 1
  year: 2015
  ident: 10.1016/j.fuel.2019.115919_b0020
  article-title: Effects of metal ions with different valences on colloidal aggregation in low-concentration silica colloidal systems characterized by continuous online zeta potential analysis
  publication-title: Colloids Surf, A
  doi: 10.1016/j.colsurfa.2015.04.024
– ident: 10.1016/j.fuel.2019.115919_b0185
  doi: 10.1080/10426919008953291
– volume: 7
  start-page: 93
  year: 1995
  ident: 10.1016/j.fuel.2019.115919_b0210
  article-title: Alkali-activated slag cement and concrete: a review of properties and problems
  publication-title: Adv Cem Res
  doi: 10.1680/adcr.1995.7.27.93
– volume: 23
  start-page: 548
  year: 2009
  ident: 10.1016/j.fuel.2019.115919_b0040
  article-title: Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2007.10.011
– volume: 28
  start-page: 63
  year: 1998
  ident: 10.1016/j.fuel.2019.115919_b0080
  article-title: Fluidity of spherical cement and mechanism for creating high fluidity
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(97)00219-6
– volume: 109
  start-page: 525
  year: 2008
  ident: 10.1016/j.fuel.2019.115919_b0160
  article-title: Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2007.05.062
– volume: 207
  start-page: 284
  year: 2019
  ident: 10.1016/j.fuel.2019.115919_b0095
  article-title: Microrheology of fresh geopolymer pastes with different NaOH amounts at room temperature
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.02.149
– volume: 1
  start-page: 145
  year: 2010
  ident: 10.1016/j.fuel.2019.115919_b0005
  article-title: Chemical research and climate change as drivers in the commercial adoption of alkali activated materials
  publication-title: Waste Biomass Valoriz
  doi: 10.1007/s12649-010-9015-9
– volume: 85
  start-page: 625
  year: 2006
  ident: 10.1016/j.fuel.2019.115919_b0065
  article-title: Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity
  publication-title: Fuel
  doi: 10.1016/j.fuel.2005.08.014
– volume: 91
  start-page: 1
  year: 2015
  ident: 10.1016/j.fuel.2019.115919_b0100
  article-title: Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2015.05.001
– volume: 539
  start-page: 23
  year: 2012
  ident: 10.1016/j.fuel.2019.115919_b0195
  article-title: Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2012.03.021
– volume: 42
  start-page: 74
  year: 2012
  ident: 10.1016/j.fuel.2019.115919_b0155
  article-title: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: effect of Al2O3
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2011.08.005
– volume: 42
  start-page: 220
  year: 2016
  ident: 10.1016/j.fuel.2019.115919_b0010
  article-title: Preparation and characterization of one-part non-Portland cement
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2015.08.096
– volume: 35
  start-page: 1224
  year: 2005
  ident: 10.1016/j.fuel.2019.115919_b0150
  article-title: Geopolymeric materials prepared using Class F fly ash and elevated temperature curing
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.06.031
– volume: 25
  start-page: 1333
  year: 1995
  ident: 10.1016/j.fuel.2019.115919_b0190
  article-title: A calorimetric study of early hydration of alkali-slag cements
  publication-title: Cem Concr Res
  doi: 10.1016/0008-8846(95)00126-W
– volume: 32
  start-page: 1019
  year: 2002
  ident: 10.1016/j.fuel.2019.115919_b0050
  article-title: The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(01)00745-1
– volume: 53
  start-page: 239
  year: 2014
  ident: 10.1016/j.fuel.2019.115919_b0205
  article-title: Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2014.07.007
– volume: 38
  start-page: 781
  year: 2005
  ident: 10.1016/j.fuel.2019.115919_b0215
  article-title: Introduction to requirements for and functions and properties of repair mortars
  publication-title: Mater Struct
  doi: 10.1007/BF02479291
– volume: 76
  start-page: 159
  year: 2017
  ident: 10.1016/j.fuel.2019.115919_b0120
  article-title: Failure mechanisms of repair mortar stone interface assessed by pull-off strength tests
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-016-0964-5
– volume: 11
  start-page: 189
  year: 1999
  ident: 10.1016/j.fuel.2019.115919_b0105
  article-title: Early strength development and hydration of alkali-activated blast furnace slag/fly ash blends
  publication-title: Adv Cem Res
  doi: 10.1680/adcr.1999.11.4.189
– volume: 30
  start-page: 239
  year: 2008
  ident: 10.1016/j.fuel.2019.115919_b0035
  article-title: Bonding and abrasion resistance of geopolymeric repair material made with steel slag
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2007.04.004
– volume: 113
  start-page: 55
  year: 2018
  ident: 10.1016/j.fuel.2019.115919_b0170
  article-title: Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2018.07.005
– volume: 33
  start-page: 65
  year: 2000
  ident: 10.1016/j.fuel.2019.115919_b0140
  article-title: Parametric study for the creation of the interface between concrete and repair products
  publication-title: Mater Struct
  doi: 10.1007/BF02481698
– volume: 29
  start-page: 1313
  year: 1999
  ident: 10.1016/j.fuel.2019.115919_b0045
  article-title: Alkali-activated slag mortars: mechanical strength behaviour
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(99)00154-4
– volume: 14
  start-page: 171
  year: 2000
  ident: 10.1016/j.fuel.2019.115919_b0130
  article-title: A new method for evaluating the surface roughness of concrete cut for repair or strengthening
  publication-title: Constr Build Mater
  doi: 10.1016/S0950-0618(00)00016-7
– volume: 106
  start-page: 180
  year: 2007
  ident: 10.1016/j.fuel.2019.115919_b0165
  article-title: Alkali activation of fly ash: Effect of the SiO2/Na2O ratio, Part I: FTIR study
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2007.02.055
– volume: 565
  start-page: 163
  year: 2013
  ident: 10.1016/j.fuel.2019.115919_b0200
  article-title: Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2013.01.040
– volume: 35
  start-page: 1688
  year: 2005
  ident: 10.1016/j.fuel.2019.115919_b0145
  article-title: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.10.042
– volume: 187
  start-page: 674
  year: 2018
  ident: 10.1016/j.fuel.2019.115919_b0090
  article-title: Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.07.205
– year: 2016
  ident: 10.1016/j.fuel.2019.115919_b0180
– volume: 35
  start-page: 149
  year: 2002
  ident: 10.1016/j.fuel.2019.115919_b0135
  article-title: Evaluation of thermodynamic properties of concrete substrates and cement slurries modified with admixtures
  publication-title: Mater Struct
  doi: 10.1007/BF02533583
SSID ssj0007854
Score 2.5276227
Snippet •The CAP and PSD of FA were defined as the major factors effecting properties of mortar.•The mechanical and bond strength depend more on CAP of FA.•The PSD of...
This article presents the effects of fly ash (FA) on the properties and microstructures of alkali-activated FA/BFS repairing mortars. Firstly, the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115919
SubjectTerms Alkali-activated FA/BFS
Amorphous phase content
Bond strength
Bonding strength
Chemical bonds
Chemical composition
Compressive strength
Drying
Fly ash
Maintenance
Mechanical properties
Mortars (material)
Organic chemistry
Particle size
Particle size distribution
Phases
Properties (attributes)
Repairing mortar
Shrinkage
Size distribution
Specific surface
Substrates
Surface area
Van der Waals forces
Title Effects of fly ash on the properties and microstructure of alkali-activated FA/BFS repairing mortar
URI https://dx.doi.org/10.1016/j.fuel.2019.115919
https://www.proquest.com/docview/2292941899
Volume 256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWjVB7YUGid-NGMpaIqILpApW5W7NiiUNKqpUgs_Hbu8uAlxMCYyLaiu_Pdd_HdZ0JOHPc-juI0SFXsA24cRz8og9RLiCcWLMZgc_LNQPaH_GokRjXSrXphsKyy9P2FT8-9dfmmWUqzORuPsceXSaQOAQjCQpXfNMy5Qis_e_ss81BtUTAxwwfg6LJxpqjx8kuHxw8sBs8hYmTb-T04_XDTeezpbZKNEjTSTvFdW6Tmsm2y_oVKcIfYgoZ4Qaee-skrTRb3dJpRgHd0hv_b50icSpMspU9YglfQxi7nDscnk0dA4wG2OLwA9Expr9M8793SOYSqMS5PnxCkz3fJsHdx1-0H5QUKgY2keA5YmjhluHMR5MDOCutl7FWrZQRLUskdHrpAjFbCJJGxEKdcEsOGt6oNSlKeR3tkJZtmbp9QZZgJ82QwNLzljJFxKk3bY4IbCasOCKskp23JLo6XXEx0VUb2oFHaGqWtC2kfkNOPObOCW-PP0aJSiP5mIRqc_5_z6pX2dLk_FzoMARZyBsnm4T-XPSJr-IRtiUzUyQqozR0DPnk2jdwAG2S1c3ndH7wDbuPj9w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIry9MCGQuvEj2YERFUe7QJI3azYsUWhTas-kFj47dw1CS-hDqyJbUV39t138d13hJw47n0cxWmQqtgH3DiOdlAGqZfgTyzsGIPFya22bD7ym47oLJDLshYG0yoL25_b9Jm1Lp5UC2lWh90u1vgyidQhAEFYqLDT8BKH44ttDM7ev_I8VF3kVMzwBTi8qJzJk7z81OH9A4vBdIgY6Xb-9k6_7PTM-TTWyVqBGul5_mEbZMFlm2T1G5fgFrE5D_GYDjz1vTeajJ_oIKOA7-gQf7iPkDmVJllK-5iDl_PGTkcOxye9F4DjAdY4vAL2TGnjvHrRuKcj8FVdXJ72EaWPtslj4-rhshkUHRQCG0kxCViaOGW4cxEEwc4K62XsVa1mBEtSyR3euoCTVsIkkbHgqFwSw4m3qg5aUp5HO2QxG2Rul1BlmAln0WBoeM0ZI-NUmrrHCDcSVlUIKyWnbUEvjl0uerrMI3vWKG2N0ta5tCvk9HPOMCfXmDtalArRP7aIBus_d95BqT1dHNCxDkPAhZxBtLn3z2WPyXLzoXWn767bt_tkBd9gjSITB2QRVOgOAaxMzNFsM34AuUflhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+fly+ash+on+the+properties+and+microstructure+of+alkali-activated+FA%2FBFS+repairing+mortar&rft.jtitle=Fuel+%28Guildford%29&rft.au=Wang%2C+Jixiang&rft.au=Huang%2C+Tianyong&rft.au=Cheng%2C+Guodong&rft.au=Liu%2C+Ze&rft.date=2019-11-15&rft.pub=Elsevier+BV&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=256&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fuel.2019.115919&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon