Design and synthesis of highly fluorescent and stable fullerene nanoparticles as probes for folic acid detection and targeted cancer cell imaging
Rational design and construction of fullerene derivatives play significant roles in the development of applications for sensing, marking and imaging in biomedical fields. In the present work, a novel type of C 60 fluorescent nanoparticle (C 60 FNP) was synthesized by a combination of thiol–ene chemi...
Saved in:
Published in | Nanotechnology Vol. 32; no. 19; p. 195501 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
07.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rational design and construction of fullerene derivatives play significant roles in the development of applications for sensing, marking and imaging in biomedical fields. In the present work, a novel type of C
60
fluorescent nanoparticle (C
60
FNP) was synthesized by a combination of thiol–ene chemistry and modification with folic acid (FA). The as-prepared C
60
FNPs exhibited intense blue luminescence with a relatively high quantum yield of 26%, which is higher than that of any other reported fluorescent fullerene-based nanomaterial. Moreover, they revealed superior photobleaching resistance under constant UV lamp illumination for 5 h and excellent photostablity after 9 months of storage in water. Due to the mutual hydrogen bond interaction, the obtained C
60
FNPs were capable of acting as a sensitive and specific probe for FA detection and quantification, with a liner range of 0 to 80
μ
M and a detection limit of 0.24
μ
M. Satisfactory recoveries (95.4%–105.2%) were obtained from a series of actual samples, further confirming the feasibility of this nanoprobe. Additionally, taking advantage of the FA moiety, the C
60
FNPs had easy access to penetrate into cancer cells with higher expression levels of folate receptors, thereby achieving the function of targeted cellular imaging. |
---|---|
AbstractList | Rational design and construction of fullerene derivatives play significant roles in the development of applications for sensing, marking and imaging in biomedical fields. In the present work, a novel type of C60 fluorescent nanoparticle (C60 FNP) was synthesized by a combination of thiol-ene chemistry and modification with folic acid (FA). The as-prepared C60 FNPs exhibited intense blue luminescence with a relatively high quantum yield of 26%, which is higher than that of any other reported fluorescent fullerene-based nanomaterial. Moreover, they revealed superior photobleaching resistance under constant UV lamp illumination for 5 h and excellent photostablity after 9 months of storage in water. Due to the mutual hydrogen bond interaction, the obtained C60 FNPs were capable of acting as a sensitive and specific probe for FA detection and quantification, with a liner range of 0 to 80 μM and a detection limit of 0.24 μM. Satisfactory recoveries (95.4%-105.2%) were obtained from a series of actual samples, further confirming the feasibility of this nanoprobe. Additionally, taking advantage of the FA moiety, the C60 FNPs had easy access to penetrate into cancer cells with higher expression levels of folate receptors, thereby achieving the function of targeted cellular imaging.Rational design and construction of fullerene derivatives play significant roles in the development of applications for sensing, marking and imaging in biomedical fields. In the present work, a novel type of C60 fluorescent nanoparticle (C60 FNP) was synthesized by a combination of thiol-ene chemistry and modification with folic acid (FA). The as-prepared C60 FNPs exhibited intense blue luminescence with a relatively high quantum yield of 26%, which is higher than that of any other reported fluorescent fullerene-based nanomaterial. Moreover, they revealed superior photobleaching resistance under constant UV lamp illumination for 5 h and excellent photostablity after 9 months of storage in water. Due to the mutual hydrogen bond interaction, the obtained C60 FNPs were capable of acting as a sensitive and specific probe for FA detection and quantification, with a liner range of 0 to 80 μM and a detection limit of 0.24 μM. Satisfactory recoveries (95.4%-105.2%) were obtained from a series of actual samples, further confirming the feasibility of this nanoprobe. Additionally, taking advantage of the FA moiety, the C60 FNPs had easy access to penetrate into cancer cells with higher expression levels of folate receptors, thereby achieving the function of targeted cellular imaging. Rational design and construction of fullerene derivatives play significant roles in the development of applications for sensing, marking and imaging in biomedical fields. In the present work, a novel type of C fluorescent nanoparticle (C FNP) was synthesized by a combination of thiol-ene chemistry and modification with folic acid (FA). The as-prepared C FNPs exhibited intense blue luminescence with a relatively high quantum yield of 26%, which is higher than that of any other reported fluorescent fullerene-based nanomaterial. Moreover, they revealed superior photobleaching resistance under constant UV lamp illumination for 5 h and excellent photostablity after 9 months of storage in water. Due to the mutual hydrogen bond interaction, the obtained C FNPs were capable of acting as a sensitive and specific probe for FA detection and quantification, with a liner range of 0 to 80 μM and a detection limit of 0.24 μM. Satisfactory recoveries (95.4%-105.2%) were obtained from a series of actual samples, further confirming the feasibility of this nanoprobe. Additionally, taking advantage of the FA moiety, the C FNPs had easy access to penetrate into cancer cells with higher expression levels of folate receptors, thereby achieving the function of targeted cellular imaging. Rational design and construction of fullerene derivatives play significant roles in the development of applications for sensing, marking and imaging in biomedical fields. In the present work, a novel type of C 60 fluorescent nanoparticle (C 60 FNP) was synthesized by a combination of thiol–ene chemistry and modification with folic acid (FA). The as-prepared C 60 FNPs exhibited intense blue luminescence with a relatively high quantum yield of 26%, which is higher than that of any other reported fluorescent fullerene-based nanomaterial. Moreover, they revealed superior photobleaching resistance under constant UV lamp illumination for 5 h and excellent photostablity after 9 months of storage in water. Due to the mutual hydrogen bond interaction, the obtained C 60 FNPs were capable of acting as a sensitive and specific probe for FA detection and quantification, with a liner range of 0 to 80 μ M and a detection limit of 0.24 μ M. Satisfactory recoveries (95.4%–105.2%) were obtained from a series of actual samples, further confirming the feasibility of this nanoprobe. Additionally, taking advantage of the FA moiety, the C 60 FNPs had easy access to penetrate into cancer cells with higher expression levels of folate receptors, thereby achieving the function of targeted cellular imaging. |
Author | Ma, Yihan Fu, Sheng Zhang, Aiqing Tan, Yixuan |
Author_xml | – sequence: 1 givenname: Yihan orcidid: 0000-0003-2082-4544 surname: Ma fullname: Ma, Yihan – sequence: 2 givenname: Sheng surname: Fu fullname: Fu, Sheng – sequence: 3 givenname: Yixuan surname: Tan fullname: Tan, Yixuan – sequence: 4 givenname: Aiqing surname: Zhang fullname: Zhang, Aiqing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33482659$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9vFSEUxYlpY1-re1eGpZuxMPx5zNJUrSZN3NQ1YeAyD8NjnsAs3sfwG8tkWhdNXBDg5nfuPXCu0UWaEyD0jpKPlCh1S5mknRS9ujWj86R_hXb_ShdoRwax7zhX_Apdl_KLEEpVT1-jK8a46qUYdujPZyhhStgkh8s51UO7Fjx7fAjTIZ6xj8ucoVhIdWOqGSNgv8QIGRLgZNJ8MrkGG6FgU_Apz2M7-Tm3FYPFxgaHHVSwNczbpGry1AoOW5MsZGwhRhyOZgppeoMuvYkF3j7tN-jn1y-Pd9-6hx_33-8-PXSWSVE7OgB3zNleKMOtYl4pJQfludoL4UfOgFpnJPPOEc8FjKNylu8FlaMyYAd2gz5sfZvh3wuUqo-hrEZMgnkpuueK9HtGhWzo-yd0GY_g9Ck3r_msn7-xAXIDbJ5LyeC1DdWsz63ZhKgp0Wteeg1Hr-HoLa8mJC-Ez73_K_kLdbabrw |
CitedBy_id | crossref_primary_10_1016_j_talanta_2021_122650 crossref_primary_10_1021_acsabm_3c00639 crossref_primary_10_3390_ma15155404 crossref_primary_10_1002_adma_202210732 crossref_primary_10_1021_acs_chemrev_3c00186 crossref_primary_10_1088_1361_6528_ac385b crossref_primary_10_1039_D1RA04592J crossref_primary_10_1039_D2CE01608G crossref_primary_10_1016_j_microc_2023_108470 crossref_primary_10_3390_molecules29153482 |
Cites_doi | 10.1016/j.ab.2005.09.017 10.1039/C8MH00966J 10.1017/S1462399409000969 10.1016/j.jiec.2019.09.025 10.1088/1361-6528/ab437c 10.1039/c2jm31191g 10.1088/1361-6528/ab9395 10.1021/acsanm.8b00084 10.1039/C5CC02887F 10.1016/j.talanta.2020.121019 10.1038/nature12327 10.1016/j.bios.2014.08.052 10.1021/am400037s 10.1016/j.snb.2018.01.227 10.1088/1361-6528/ab5f7f 10.1016/j.talanta.2015.05.071 10.1016/j.aca.2018.08.010 10.3390/s18051496 10.1016/j.snb.2019.126739 10.1002/aenm.201601251 10.1016/S0140-6736(06)68582-6 10.1016/j.chroma.2005.11.052 10.1021/acsami.9b18807 10.1039/C4CS00306C 10.1039/C5CC07754K 10.1016/j.jtice.2018.02.004 10.3945/ajcn.111.013433 10.1002/smll.201905767 10.1016/j.jssc.2016.06.014 10.1039/C9AN00161A 10.1021/jf063647x 10.1021/acs.chemrev.9b00099 10.1039/C0JM02492A 10.1002/adma.201104772 10.1016/j.electacta.2016.03.198 10.1016/j.drudis.2019.01.013 10.1021/acsami.6b10163 10.1016/j.mattod.2017.03.017 10.1002/smll.201501611 10.1301/nr.2004.jun.S3-S12 10.1002/adma.201802368 10.1016/j.bios.2008.10.020 10.1016/j.ab.2016.07.002 10.1021/acs.chemrev.5b00321 10.1016/j.talanta.2018.02.009 10.1039/C7TB00855D 10.1016/j.jcis.2018.01.085 10.1016/j.progsolidstchem.2019.100255 10.1021/acssensors.9b00514 10.1039/C6NR00605A |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1361-6528/abdf02 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6528 |
ExternalDocumentID | 33482659 10_1088_1361_6528_abdf02 |
Genre | Journal Article |
GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAYXX ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT CGR CUY CVF ECM EIF HAK NPM 7X8 |
ID | FETCH-LOGICAL-c365t-19e4d3dc258a4c83f888698f48755fb43e1cda63fdd0f45ebb8dc47516b8aec93 |
ISSN | 0957-4484 1361-6528 |
IngestDate | Fri Jul 11 12:41:54 EDT 2025 Thu Jan 02 22:56:30 EST 2025 Tue Jul 01 01:27:13 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-19e4d3dc258a4c83f888698f48755fb43e1cda63fdd0f45ebb8dc47516b8aec93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2082-4544 |
PMID | 33482659 |
PQID | 2480273156 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2480273156 pubmed_primary_33482659 crossref_citationtrail_10_1088_1361_6528_abdf02 crossref_primary_10_1088_1361_6528_abdf02 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-07 |
PublicationDateYYYYMMDD | 2021-05-07 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanotechnology |
PublicationTitleAlternate | Nanotechnology |
PublicationYear | 2021 |
References | Yücel (nanoabdf02bib34) 2020; 31 Li (nanoabdf02bib44) 2016; 8 Quinlivan (nanoabdf02bib30) 2006; 348 Zhang (nanoabdf02bib35) 2018; 183 Chen (nanoabdf02bib14) 2015; 11 Zhao (nanoabdf02bib27) 2006; 1107 Zhao (nanoabdf02bib23) 2009; 11 Kazemzadeh (nanoabdf02bib11) 2019; 24 Xie (nanoabdf02bib19) 2016; 201 Akbar (nanoabdf02bib28) 2016; 510 Ciotta (nanoabdf02bib15) 2018; 18 Peng (nanoabdf02bib16) 2019; 11 Stover (nanoabdf02bib21) 2004; 62 Feng (nanoabdf02bib36) 2020; 31 Huang (nanoabdf02bib40) 2018; 86 Eichholzer (nanoabdf02bib22) 2006; 367 Liu (nanoabdf02bib13) 2013; 5 Bartelmess (nanoabdf02bib1) 2015; 44 Liu (nanoabdf02bib47) 2015; 64 Chinen (nanoabdf02bib50) 2015; 115 Dhenadhayalan (nanoabdf02bib8) 2020; 16 Cayuela (nanoabdf02bib5) 2016; 52 Qian (nanoabdf02bib31) 2018; 262 Guo (nanoabdf02bib37) 2019; 297 Liu (nanoabdf02bib39) 2019; 30 Castro (nanoabdf02bib9) 2017; 5 Lin (nanoabdf02bib46) 2012; 22 Jiang (nanoabdf02bib43) 2019; 144 Panwar (nanoabdf02bib4) 2019; 119 Lan (nanoabdf02bib20) 2015; 144 E Y F (nanoabdf02bib18) 2011; 21 Yang (nanoabdf02bib45) 2020; 217 Lermo (nanoabdf02bib29) 2009; 24 Patel (nanoabdf02bib7) 2019; 6 Nghia (nanoabdf02bib26) 2020; 81 Gan (nanoabdf02bib42) 2016; 8 Loh (nanoabdf02bib3) 2018; 30 Jeong (nanoabdf02bib17) 2012; 24 Wang (nanoabdf02bib32) 2018; 1040 Goyer (nanoabdf02bib24) 2007; 55 Dong (nanoabdf02bib38) 2018; 1 Wen (nanoabdf02bib2) 2015; 51 Liu (nanoabdf02bib49) 2016; 241 Xu (nanoabdf02bib41) 2018; 516 Kalmbach (nanoabdf02bib25) 2011; 94 Li (nanoabdf02bib6) 2019; 4 Pochkaeva (nanoabdf02bib12) 2020; 57 Goodarzi (nanoabdf02bib10) 2017; 20 Cui (nanoabdf02bib48) 2016; 7 Chen (nanoabdf02bib33) 2013; 500 |
References_xml | – volume: 348 start-page: 163 year: 2006 ident: nanoabdf02bib30 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2005.09.017 – volume: 6 start-page: 434 year: 2019 ident: nanoabdf02bib7 publication-title: Mater. Horizons doi: 10.1039/C8MH00966J – volume: 11 start-page: e4 year: 2009 ident: nanoabdf02bib23 publication-title: Expert Rev. Mol. Med. doi: 10.1017/S1462399409000969 – volume: 81 start-page: 352 year: 2020 ident: nanoabdf02bib26 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.09.025 – volume: 30 year: 2019 ident: nanoabdf02bib39 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab437c – volume: 22 start-page: 11801 year: 2012 ident: nanoabdf02bib46 publication-title: J. Mater Chem. doi: 10.1039/c2jm31191g – volume: 31 year: 2020 ident: nanoabdf02bib34 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab9395 – volume: 1 start-page: 1009 year: 2018 ident: nanoabdf02bib38 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00084 – volume: 51 start-page: 11346 year: 2015 ident: nanoabdf02bib2 publication-title: Chem. Commun. doi: 10.1039/C5CC02887F – volume: 217 year: 2020 ident: nanoabdf02bib45 publication-title: Talanta doi: 10.1016/j.talanta.2020.121019 – volume: 500 start-page: 486 year: 2013 ident: nanoabdf02bib33 publication-title: Nature doi: 10.1038/nature12327 – volume: 64 start-page: 119 year: 2015 ident: nanoabdf02bib47 publication-title: Biosensors Bioelectron. doi: 10.1016/j.bios.2014.08.052 – volume: 5 start-page: 680 year: 2013 ident: nanoabdf02bib13 publication-title: ACS Appl. Mater Inter. doi: 10.1021/am400037s – volume: 262 start-page: 444 year: 2018 ident: nanoabdf02bib31 publication-title: Sensors Actuators B doi: 10.1016/j.snb.2018.01.227 – volume: 31 year: 2020 ident: nanoabdf02bib36 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab5f7f – volume: 144 start-page: 93 year: 2015 ident: nanoabdf02bib20 publication-title: Talanta doi: 10.1016/j.talanta.2015.05.071 – volume: 1040 start-page: 136 year: 2018 ident: nanoabdf02bib32 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.08.010 – volume: 18 start-page: 1496 year: 2018 ident: nanoabdf02bib15 publication-title: Sensors doi: 10.3390/s18051496 – volume: 297 year: 2019 ident: nanoabdf02bib37 publication-title: Sensors Actuators B doi: 10.1016/j.snb.2019.126739 – volume: 7 year: 2016 ident: nanoabdf02bib48 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601251 – volume: 367 start-page: 1352 year: 2006 ident: nanoabdf02bib22 publication-title: Lancet doi: 10.1016/S0140-6736(06)68582-6 – volume: 1107 start-page: 290 year: 2006 ident: nanoabdf02bib27 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2005.11.052 – volume: 11 start-page: 46637 year: 2019 ident: nanoabdf02bib16 publication-title: ACS Appl. Mater Inter. doi: 10.1021/acsami.9b18807 – volume: 44 start-page: 4672 year: 2015 ident: nanoabdf02bib1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00306C – volume: 52 start-page: 1311 year: 2016 ident: nanoabdf02bib5 publication-title: Chem. Commun. doi: 10.1039/C5CC07754K – volume: 86 start-page: 192 year: 2018 ident: nanoabdf02bib40 publication-title: J. Taiwan Inst. Chem E doi: 10.1016/j.jtice.2018.02.004 – volume: 94 start-page: 343S year: 2011 ident: nanoabdf02bib25 publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.111.013433 – volume: 16 year: 2020 ident: nanoabdf02bib8 publication-title: Small doi: 10.1002/smll.201905767 – volume: 241 start-page: 164 year: 2016 ident: nanoabdf02bib49 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2016.06.014 – volume: 144 start-page: 2662 year: 2019 ident: nanoabdf02bib43 publication-title: Analyst doi: 10.1039/C9AN00161A – volume: 55 start-page: 3523 year: 2007 ident: nanoabdf02bib24 publication-title: J. Agric. Food Chem. doi: 10.1021/jf063647x – volume: 119 start-page: 9559 year: 2019 ident: nanoabdf02bib4 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00099 – volume: 21 start-page: 819 year: 2011 ident: nanoabdf02bib18 publication-title: J. Mater Chem. doi: 10.1039/C0JM02492A – volume: 24 start-page: 1999 year: 2012 ident: nanoabdf02bib17 publication-title: Adv. Mater. doi: 10.1002/adma.201104772 – volume: 201 start-page: 220 year: 2016 ident: nanoabdf02bib19 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.198 – volume: 24 start-page: 898 year: 2019 ident: nanoabdf02bib11 publication-title: Drug. Discov. Today doi: 10.1016/j.drudis.2019.01.013 – volume: 8 start-page: 31832 year: 2016 ident: nanoabdf02bib44 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10163 – volume: 20 start-page: 460 year: 2017 ident: nanoabdf02bib10 publication-title: Mater. Today doi: 10.1016/j.mattod.2017.03.017 – volume: 11 start-page: 5296 year: 2015 ident: nanoabdf02bib14 publication-title: Small doi: 10.1002/smll.201501611 – volume: 62 start-page: 3 year: 2004 ident: nanoabdf02bib21 publication-title: Nutr. Rev. doi: 10.1301/nr.2004.jun.S3-S12 – volume: 30 year: 2018 ident: nanoabdf02bib3 publication-title: Adv. Mater. doi: 10.1002/adma.201802368 – volume: 24 start-page: 2057 year: 2009 ident: nanoabdf02bib29 publication-title: Biosensors Bioelectron. doi: 10.1016/j.bios.2008.10.020 – volume: 510 start-page: 98 year: 2016 ident: nanoabdf02bib28 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2016.07.002 – volume: 115 start-page: 10530 year: 2015 ident: nanoabdf02bib50 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00321 – volume: 183 start-page: 39 year: 2018 ident: nanoabdf02bib35 publication-title: Talanta doi: 10.1016/j.talanta.2018.02.009 – volume: 5 start-page: 6523 year: 2017 ident: nanoabdf02bib9 publication-title: J. Mater. Chem. B doi: 10.1039/C7TB00855D – volume: 516 start-page: 392 year: 2018 ident: nanoabdf02bib41 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.01.085 – volume: 57 year: 2020 ident: nanoabdf02bib12 publication-title: Prog. Solid State Chem. doi: 10.1016/j.progsolidstchem.2019.100255 – volume: 4 start-page: 1732 year: 2019 ident: nanoabdf02bib6 publication-title: ACS Sensors doi: 10.1021/acssensors.9b00514 – volume: 8 start-page: 7794 year: 2016 ident: nanoabdf02bib42 publication-title: Nanoscale doi: 10.1039/C6NR00605A |
SSID | ssj0011821 |
Score | 2.4192019 |
Snippet | Rational design and construction of fullerene derivatives play significant roles in the development of applications for sensing, marking and imaging in... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 195501 |
SubjectTerms | Animals Chlorocebus aethiops COS Cells Drug Stability Fluorescent Dyes - analysis Fluorescent Dyes - chemistry Fluorescent Dyes - metabolism Folic Acid - analysis Fullerenes - analysis Fullerenes - chemistry Fullerenes - metabolism HeLa Cells Humans Microscopy, Fluorescence Neoplasms - chemistry Neoplasms - metabolism Particle Size |
Title | Design and synthesis of highly fluorescent and stable fullerene nanoparticles as probes for folic acid detection and targeted cancer cell imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33482659 https://www.proquest.com/docview/2480273156 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBI8IBiXlZuMxAuqQuckdpzHCZgmpAEPmzSeosR2tEpdwtpEYvwL_gK_lHNs51LYEOOhURU5J03O13PzuRDySjPFE2NMEBa6DOI0ZIEshQiinCW5TMBQElg7fPhRHBzHH074yWTyc5S11DbFG_X90rqS_-EqnAO-YpXsNTjbE4UT8B34C0fgMBz_icfvbPqFjf-vLyow5Xx3EexBvLyYlcu2Xrl2TW5NY-ukMOJuZ6LMqrwCn9mnxuHEGRwvY2yHBvhg--tcLfRMm8b4ieKYbmlzx8FOVQiY1QxD_7PFmZ12NDZ1QW7XzR-B-0NrrH5ZnA6o3G9tCPbU-OttHKFyy761w7o-tr23OO_u5eMVwHvMDkw2Ao9JELsOpqCBnNiNBAsE92XiXi4PcU_EXzqSsiwFv4pdqgBAaGIsoqOHmg5AuBsO6q7b4v9NC_a5iXZXXsoMaWRII3MUbpCbIbgitkj00-d-pwr8M-b6Obqn8lvhQGHe_4q5o7Bp-lzhz1i75ugeuesdErrnUHCfTEy1Te6M2lRuk1s2TVitH5AfDnEUcEB7xNG6pA5xdIQ4t8YijvaIoxuIo_maOsRRQBy1iKOIONojzlLpEEcd4igijnrEPSTH---P3h4EfqhHoCLBm4ClJtaRViGXeaxkVEopRSpLdJx5WcSRYUrnIiq13i1jbopCahUnnIlC5kal0SOyVdWV2SFUAgV4-yBWRBEbsD0Fuv-aFZHUecnllMy7950p3_EeB68ss6t4PCWv-yu-um4vf1n7smNhBiIZHz2vTN2uszCW2CWKcTEljx1ve2pY-B4Knj65xp2ektvDH-kZ2WpWrXkOpnBTvLBY_AUA-bcX |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+synthesis+of+highly+fluorescent+and+stable+fullerene+nanoparticles+as+probes+for+folic+acid+detection+and+targeted+cancer+cell+imaging&rft.jtitle=Nanotechnology&rft.au=Ma%2C+Yihan&rft.au=Fu%2C+Sheng&rft.au=Tan%2C+Yixuan&rft.au=Zhang%2C+Aiqing&rft.date=2021-05-07&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=32&rft.issue=19&rft.spage=195501&rft_id=info:doi/10.1088%2F1361-6528%2Fabdf02&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6528_abdf02 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon |