Deep neural networks-based rolling bearing fault diagnosis
Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Thus, it is significant to study fault diagnosis technology on rolling bearing. In this paper, three deep neural network models (Deep Boltzmann Machi...
Saved in:
Published in | Microelectronics and reliability Vol. 75; pp. 327 - 333 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Thus, it is significant to study fault diagnosis technology on rolling bearing. In this paper, three deep neural network models (Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders) are employed to identify the fault condition of rolling bearing. Four preprocessing schemes including feature of time domain, frequency domain and time-frequency domain are discussed. One data set with seven fault patterns is collected to evaluate the performance of deep learning models for rolling bearing fault diagnosis, which is based on the health condition of a rotating mechanical system. The results proved that the accuracy achieved by Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders are highly reliable and applicable in fault diagnosis of rolling bearing.
•Develop DNN-based rolling bearing fault diagnosis system.•Evaluate the performance of DBM, SAE and DBN for rolling bearing fault diagnosis.•Discuss four preprocessing schemes for DNN-based fault diagnosis.•Deeply analyze the parameter setting of DBM, SAE and DBN-based diagnosis system. |
---|---|
AbstractList | Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Thus, it is significant to study fault diagnosis technology on rolling bearing. In this paper, three deep neural network models (Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders) are employed to identify the fault condition of rolling bearing. Four preprocessing schemes including feature of time domain, frequency domain and time-frequency domain are discussed. One data set with seven fault patterns is collected to evaluate the performance of deep learning models for rolling bearing fault diagnosis, which is based on the health condition of a rotating mechanical system. The results proved that the accuracy achieved by Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders are highly reliable and applicable in fault diagnosis of rolling bearing.
•Develop DNN-based rolling bearing fault diagnosis system.•Evaluate the performance of DBM, SAE and DBN for rolling bearing fault diagnosis.•Discuss four preprocessing schemes for DNN-based fault diagnosis.•Deeply analyze the parameter setting of DBM, SAE and DBN-based diagnosis system. |
Author | Sanchez, René-Vinicio Deng, Shengcai Qin, Huafeng Li, Chuan Chen, Zhiqiang Chen, Xudong |
Author_xml | – sequence: 1 givenname: Zhiqiang orcidid: 0000-0002-4721-3690 surname: Chen fullname: Chen, Zhiqiang email: czq@ctbu.edu.cn organization: National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 2 givenname: Shengcai surname: Deng fullname: Deng, Shengcai organization: Chongqing Key Laboratory of Electronic Commerce and Supply Chain, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 3 givenname: Xudong surname: Chen fullname: Chen, Xudong organization: National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 4 givenname: Chuan surname: Li fullname: Li, Chuan organization: National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 5 givenname: René-Vinicio surname: Sanchez fullname: Sanchez, René-Vinicio email: rsanchezl@ups.edu.ec organization: Department of Mechanical Engineering, Universidad Politécnica Salesiana, Cuenca, Ecuador – sequence: 6 givenname: Huafeng surname: Qin fullname: Qin, Huafeng organization: National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China |
BookMark | eNqFkMtOwzAURC1UJNrCL6D8QML1I3aKWIBKeUiV2IDEznLsm8olTSrbBfH3pCps2HQ1qzOaORMy6voOCbmkUFCg8mpdbLwNfcC2YEBVAbwAkCdkTCvF8pmg7yMyBmAyZ4qKMzKJcQ0ACigdk-t7xG3W4S6Ydoj01YePmNcmostC37a-W2U1mrDPxuzalDlvVl0ffTwnp41pI1785pS8PSxe50_58uXxeX63zC2XZcopt1SWytWcc1U2VJSzGQpDZT2M4KWQrDIlGHCyYdy5SjKhLGJVCmeAW8WnRB56h5MxBmz0NviNCd-agt4b0Gv9Z0DvDWjgejAwgDf_QOuTSb7vUjC-PY7fHnAczn16DDpaj51F5wPapF3vj1X8AAlefgk |
CitedBy_id | crossref_primary_10_1016_j_compind_2020_103380 crossref_primary_10_1177_14759217231226119 crossref_primary_10_1109_JSEN_2019_2927754 crossref_primary_10_3390_s21134424 crossref_primary_10_3390_e25020242 crossref_primary_10_1007_s40430_022_03954_5 crossref_primary_10_3390_s23021005 crossref_primary_10_1109_ACCESS_2020_2972859 crossref_primary_10_1155_2020_8843759 crossref_primary_10_1088_1757_899X_717_1_012011 crossref_primary_10_1016_j_knosys_2021_106796 crossref_primary_10_1186_s10033_021_00553_8 crossref_primary_10_1155_2020_8826507 crossref_primary_10_1007_s00170_023_12060_2 crossref_primary_10_1142_S0219519418400341 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_3390_s21175888 crossref_primary_10_1109_TASE_2020_3028151 crossref_primary_10_1088_1742_6596_2025_1_012041 crossref_primary_10_1109_ACCESS_2019_2956264 crossref_primary_10_1007_s11431_024_2734_x crossref_primary_10_1088_1742_6596_1509_1_012030 crossref_primary_10_3390_s19081826 crossref_primary_10_3390_s22010013 crossref_primary_10_1007_s12206_019_0103_x crossref_primary_10_1109_ACCESS_2020_2998722 crossref_primary_10_1109_ACCESS_2018_2880990 crossref_primary_10_1016_j_ast_2019_105423 crossref_primary_10_1155_2024_2140227 crossref_primary_10_1177_1687814018798251 crossref_primary_10_3389_fenrg_2021_796528 crossref_primary_10_1109_ACCESS_2021_3084602 crossref_primary_10_1177_1748006X231184656 crossref_primary_10_1088_1361_6501_ad69b5 crossref_primary_10_1177_0954407019861028 crossref_primary_10_1016_j_ymssp_2021_108382 crossref_primary_10_1016_j_compind_2019_103132 crossref_primary_10_1177_1748006X211048585 crossref_primary_10_1016_j_asej_2022_101945 crossref_primary_10_1016_j_neucom_2025_129588 crossref_primary_10_1007_s40435_023_01157_x crossref_primary_10_1016_j_isatra_2021_03_013 crossref_primary_10_5050_KSNVE_2021_31_1_047 crossref_primary_10_3390_app10082932 crossref_primary_10_3390_machines11100943 crossref_primary_10_1155_2019_8239198 crossref_primary_10_1177_10775463241313018 crossref_primary_10_3390_su15129391 crossref_primary_10_1177_09574565221139638 crossref_primary_10_1016_j_jocs_2021_101508 crossref_primary_10_3390_electronics9091334 crossref_primary_10_1016_j_conengprac_2025_106263 crossref_primary_10_1016_j_engfailanal_2021_106011 crossref_primary_10_32604_cmc_2024_049665 crossref_primary_10_3390_s21020433 crossref_primary_10_1016_j_measurement_2019_107293 crossref_primary_10_1007_s00170_020_05449_w crossref_primary_10_1016_j_knosys_2020_105883 crossref_primary_10_3390_app132011514 crossref_primary_10_1016_j_cie_2020_106427 crossref_primary_10_1016_j_neucom_2020_02_042 crossref_primary_10_1088_1361_6501_acc04a crossref_primary_10_1007_s00707_024_03915_0 crossref_primary_10_1109_ACCESS_2024_3412274 crossref_primary_10_1016_j_measurement_2020_107901 crossref_primary_10_1049_elp2_12005 crossref_primary_10_1088_1757_899X_790_1_012066 crossref_primary_10_3390_a11020021 crossref_primary_10_1155_2018_3047830 crossref_primary_10_3390_math10030455 crossref_primary_10_1007_s00500_022_07343_x crossref_primary_10_1016_j_asoc_2020_106706 crossref_primary_10_1155_2021_8828317 crossref_primary_10_3390_machines8040066 crossref_primary_10_3233_JIFS_190101 crossref_primary_10_3390_s19163553 crossref_primary_10_1088_1361_6501_ad3f39 crossref_primary_10_1109_TMECH_2020_2996939 crossref_primary_10_3390_su10124779 crossref_primary_10_1007_s42417_024_01405_0 crossref_primary_10_1016_j_compind_2019_05_005 crossref_primary_10_1007_s10845_021_01739_6 crossref_primary_10_1016_j_ymssp_2024_112117 crossref_primary_10_1088_1361_6501_abaf2b crossref_primary_10_3390_act13120514 crossref_primary_10_3390_app8112332 crossref_primary_10_1016_j_pnucene_2022_104324 crossref_primary_10_33961_jecst_2019_03174 crossref_primary_10_3390_machines11070746 crossref_primary_10_1016_j_measurement_2019_07_039 crossref_primary_10_1016_j_neucom_2020_11_063 crossref_primary_10_1088_1361_6501_ac3d47 crossref_primary_10_1109_JSYST_2019_2905565 crossref_primary_10_1177_1748006X20976817 crossref_primary_10_1109_ACCESS_2020_2990528 crossref_primary_10_3390_app9071364 crossref_primary_10_3390_s19010026 crossref_primary_10_1109_TII_2020_3021688 crossref_primary_10_1007_s13369_024_09488_3 crossref_primary_10_3390_s18103521 crossref_primary_10_1155_2018_6024874 crossref_primary_10_1016_j_measurement_2021_109467 crossref_primary_10_1007_s11042_023_15325_w crossref_primary_10_1016_j_measurement_2020_108257 crossref_primary_10_3390_s19040758 crossref_primary_10_1155_2020_5281512 crossref_primary_10_32604_cmc_2020_013131 crossref_primary_10_1016_j_ymssp_2018_05_050 crossref_primary_10_1109_TIM_2023_3336436 crossref_primary_10_1016_j_ymssp_2024_111697 crossref_primary_10_1109_ACCESS_2019_2909756 crossref_primary_10_1007_s11081_024_09904_5 crossref_primary_10_1016_j_measurement_2018_08_002 crossref_primary_10_1177_10775463211016130 crossref_primary_10_1088_1361_6501_ad6788 crossref_primary_10_1177_09544062241274178 crossref_primary_10_1016_j_knosys_2020_105895 crossref_primary_10_1109_ACCESS_2017_2720965 crossref_primary_10_3390_en14165150 crossref_primary_10_1155_2021_5296904 crossref_primary_10_3390_app12125904 crossref_primary_10_1007_s10489_021_03004_y crossref_primary_10_1016_j_asoc_2025_112785 crossref_primary_10_1088_1361_6501_ad1e20 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1109_ACCESS_2024_3472454 crossref_primary_10_32604_iasc_2024_043091 crossref_primary_10_1016_j_lfs_2022_121195 crossref_primary_10_1016_j_measurement_2020_107619 crossref_primary_10_1016_j_microrel_2023_115220 crossref_primary_10_1016_j_ymssp_2017_08_002 crossref_primary_10_3390_s19092131 crossref_primary_10_1784_insi_2023_65_4_217 crossref_primary_10_3390_machines8020022 crossref_primary_10_1080_21693277_2024_2305358 crossref_primary_10_1109_ACCESS_2020_2989510 crossref_primary_10_1088_1742_6596_2503_1_012095 crossref_primary_10_1016_j_neucom_2019_08_099 crossref_primary_10_1109_ACCESS_2019_2938227 crossref_primary_10_3390_app14072913 crossref_primary_10_3390_en16010296 crossref_primary_10_3390_s19092097 crossref_primary_10_1088_1361_6501_ad7a97 crossref_primary_10_1109_TII_2020_2979467 crossref_primary_10_1109_ACCESS_2020_2987324 crossref_primary_10_2478_msr_2022_0022 crossref_primary_10_1109_ACCESS_2019_2947501 crossref_primary_10_1007_s40799_019_00324_0 crossref_primary_10_1007_s00170_019_04078_2 crossref_primary_10_3390_electronics13173426 crossref_primary_10_3390_s19102338 crossref_primary_10_1007_s42417_022_00525_9 crossref_primary_10_1016_j_engappai_2023_107126 crossref_primary_10_1177_00202940221088713 crossref_primary_10_3390_wevj15070281 crossref_primary_10_3390_app8122564 crossref_primary_10_1111_exsy_13128 crossref_primary_10_1016_j_solener_2021_06_006 crossref_primary_10_1109_ACCESS_2023_3347345 crossref_primary_10_1016_j_neucom_2018_06_078 crossref_primary_10_1016_j_psep_2022_07_046 crossref_primary_10_1016_j_tust_2023_105386 crossref_primary_10_1016_j_compind_2021_103528 crossref_primary_10_1016_j_cogsys_2018_03_002 crossref_primary_10_1051_itmconf_20192401004 crossref_primary_10_3390_s25020325 crossref_primary_10_1109_ACCESS_2020_2990572 crossref_primary_10_1520_JTE20190800 crossref_primary_10_1016_j_jmsy_2018_01_003 crossref_primary_10_1016_j_measurement_2021_110065 crossref_primary_10_1049_csy2_12105 crossref_primary_10_1016_j_measurement_2021_110460 crossref_primary_10_1007_s12206_018_1205_6 crossref_primary_10_1016_j_procir_2021_01_138 crossref_primary_10_3390_s21030849 |
Cites_doi | 10.1177/0954406213514960 10.1016/j.ymssp.2005.09.012 10.1016/j.neucom.2015.06.008 10.1016/j.jsv.2009.02.013 10.1109/TIM.2009.2023814 10.1016/j.mechmachtheory.2011.08.007 10.1006/mssp.2001.1462 10.1007/s005290050031 10.1016/j.ymssp.2015.10.025 10.1016/j.jsv.2015.01.052 10.1016/j.apacoust.2014.08.016 10.1088/0957-0233/23/5/055605 10.1162/NECO_a_00311 10.1177/1077546308095224 10.3390/s130100274 10.1109/TSMCB.2003.811291 10.1016/j.eswa.2013.12.026 10.1109/3468.661149 10.1561/2200000006 10.1016/j.ymssp.2012.10.003 10.1109/TSMCC.2006.875415 10.1016/j.microrel.2012.12.004 10.5923/j.safety.20140301.03 10.1016/j.ymssp.2006.01.009 10.1109/TFUZZ.2007.896237 10.1109/TSMCB.2007.908864 10.1162/neco.2006.18.7.1527 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.microrel.2017.03.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-941X |
EndPage | 333 |
ExternalDocumentID | 10_1016_j_microrel_2017_03_006 S0026271417300513 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c365t-13c1657db33375f14599e4a16b000354628a50a0d6f23dd86247cee854da03c73 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Tue Jul 01 01:27:24 EDT 2025 Thu Apr 24 23:06:14 EDT 2025 Fri Feb 23 02:18:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Stacked Auto-Encoders Deep Belief Networks Rolling bearing Deep Boltzmann Machines |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-13c1657db33375f14599e4a16b000354628a50a0d6f23dd86247cee854da03c73 |
ORCID | 0000-0002-4721-3690 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_microrel_2017_03_006 crossref_citationtrail_10_1016_j_microrel_2017_03_006 elsevier_sciencedirect_doi_10_1016_j_microrel_2017_03_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hou, Liang, Zhang, Li (bb0030) 2014; 228 Freund, Haussler (bb0165) 1994 Wang, Miao, Kang (bb0095) 2009; 324 Chen, Li, Sanchez (bb0130) 2015; 2015 Bengio (bb0180) 2009; 2 Miao, Zhou (bb0015) 2015; 2015 Wang (bb0080) Feb. 2008; 16 Tran, Thobiani, Ball (bb0135) 2014; 41 Jack, Nandi, McCormick (bb0055) 1999; 6 Wang, Tse, Tsui (bb0005) 2013; 35 Li, Sanchez, Zurita, Cerrada, Cabrera, Vásquez (bb0140) 2015; 168 Wang, He, Xiang, Zi (bb0020) 2012; 47 Chen, Li, Sánchez (bb0145) 2015; 17 Bengio, Lamblin, Popovici, Larochelle (bb0175) 2007 Miao, Tang, Liang, Pecht (bb0045) 2013; 13 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bb0160) 2010; 11 Lei, Kong, Lin, Zuo (bb0025) 2012; 23 Jardine, Lin, Banjevic (bb0035) 2006; 20 Uluyol, Kim, Nwadiogbu (bb0075) Jul. 2006; 36 Guo, Chen, Li (bb0040) 2009; 15 Samanta, Al-Balushi (bb0060) Mar. 2003; 17 Hinton, Osindero, Teh (bb0155) 2006; 18 Souzal, Granzotto, Almeida, Oliveira-Lopes (bb0115) 2014; 3 Li, Xu, Wei, Huang (bb0110) 2015; 17 Castellano, Fanelli, Mencar (bb0070) Feb. 2004; 34 Ali, Fnaiech, Saidi, Chebel-Morello, Fnaiech (bb0105) 2015; 89 Duda, Hart, Stork (bb0050) 2001 Miao, Makis (bb0100) 2007; 21 Wang, Miao (bb0090) 2015; 345 Miao, Xie, Cui, Liang, Pecht (bb0120) 2013; 53 Jia, Lei, Lin, Zhou, Lu (bb0125) 2016; 72-73 Salakhutdinov, Hinton (bb0170) 2012; 24 Jie Liu, Wang, Golnaraghi (bb0010) 2010; 59 Isermann (bb0065) Mar. 1998; 28 Wang (bb0085) Feb. 2008; 38 Salakhutdinov, Hinton (bb0150) 2009; 5 Li (10.1016/j.microrel.2017.03.006_bb0140) 2015; 168 Wang (10.1016/j.microrel.2017.03.006_bb0085) 2008; 38 Salakhutdinov (10.1016/j.microrel.2017.03.006_bb0150) 2009; 5 Guo (10.1016/j.microrel.2017.03.006_bb0040) 2009; 15 Hinton (10.1016/j.microrel.2017.03.006_bb0155) 2006; 18 Freund (10.1016/j.microrel.2017.03.006_bb0165) 1994 Samanta (10.1016/j.microrel.2017.03.006_bb0060) 2003; 17 Isermann (10.1016/j.microrel.2017.03.006_bb0065) 1998; 28 Wang (10.1016/j.microrel.2017.03.006_bb0090) 2015; 345 Wang (10.1016/j.microrel.2017.03.006_bb0020) 2012; 47 Li (10.1016/j.microrel.2017.03.006_bb0110) 2015; 17 Miao (10.1016/j.microrel.2017.03.006_bb0100) 2007; 21 Hou (10.1016/j.microrel.2017.03.006_bb0030) 2014; 228 Jardine (10.1016/j.microrel.2017.03.006_bb0035) 2006; 20 Duda (10.1016/j.microrel.2017.03.006_bb0050) 2001 Chen (10.1016/j.microrel.2017.03.006_bb0130) 2015; 2015 Vincent (10.1016/j.microrel.2017.03.006_bb0160) 2010; 11 Jia (10.1016/j.microrel.2017.03.006_bb0125) 2016; 72-73 Tran (10.1016/j.microrel.2017.03.006_bb0135) 2014; 41 Lei (10.1016/j.microrel.2017.03.006_bb0025) 2012; 23 Salakhutdinov (10.1016/j.microrel.2017.03.006_bb0170) 2012; 24 Jack (10.1016/j.microrel.2017.03.006_bb0055) 1999; 6 Wang (10.1016/j.microrel.2017.03.006_bb0095) 2009; 324 Bengio (10.1016/j.microrel.2017.03.006_bb0175) 2007 Miao (10.1016/j.microrel.2017.03.006_bb0120) 2013; 53 Bengio (10.1016/j.microrel.2017.03.006_bb0180) 2009; 2 Miao (10.1016/j.microrel.2017.03.006_bb0045) 2013; 13 Chen (10.1016/j.microrel.2017.03.006_bb0145) 2015; 17 Miao (10.1016/j.microrel.2017.03.006_bb0015) 2015; 2015 Uluyol (10.1016/j.microrel.2017.03.006_bb0075) 2006; 36 Castellano (10.1016/j.microrel.2017.03.006_bb0070) 2004; 34 Ali (10.1016/j.microrel.2017.03.006_bb0105) 2015; 89 Wang (10.1016/j.microrel.2017.03.006_bb0005) 2013; 35 Jie Liu (10.1016/j.microrel.2017.03.006_bb0010) 2010; 59 Souzal (10.1016/j.microrel.2017.03.006_bb0115) 2014; 3 Wang (10.1016/j.microrel.2017.03.006_bb0080) 2008; 16 |
References_xml | – volume: 47 start-page: 62 year: 2012 end-page: 73 ident: bb0020 article-title: Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox publication-title: Mech. Mach. Theory – volume: 17 start-page: 1188 year: 2015 end-page: 1202 ident: bb0110 article-title: Bearing fault diagnosis based on adaptive multiscale fuzzy entropy and support vector machine publication-title: J. Vibroeng. – volume: 23 year: 2012 ident: bb0025 article-title: Fault detection of planetary gearboxes using new diagnostic parameters publication-title: Meas. Sci. Technol. – volume: 2015 year: 2015 ident: bb0015 article-title: Planetary gearbox vibration signal characteristics analysis and fault diagnosis publication-title: Shock. Vib. – volume: 228 start-page: 1888 year: 2014 end-page: 1899 ident: bb0030 article-title: Vibration signal demodulation and bearing fault detection: a clustering-based segmentation method publication-title: Proc. IME C J. Mech. Eng. Sci. – volume: 5 start-page: 448 year: 2009 end-page: 455 ident: bb0150 article-title: Deep Boltzmann machines publication-title: J. Mach. Learn. Res. – start-page: 153 year: 2007 end-page: 160 ident: bb0175 article-title: Greedy layer-wise training of deep networks publication-title: Advances in Neural Information Processing Systems 19 (NIPS’06) – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bb0155 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 20 start-page: 1483 year: 2006 end-page: 1510 ident: bb0035 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech. Syst. Signal Process. – volume: 38 start-page: 102 year: Feb. 2008 end-page: 112 ident: bb0085 article-title: An enhanced diagnostic system for gear system monitoring publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. – volume: 59 start-page: 309 year: 2010 end-page: 321 ident: bb0010 article-title: An enhanced diagnostic scheme for bearing condition monitoring publication-title: IEEE Trans. Instrum. Meas. – volume: 15 start-page: 1349 year: 2009 end-page: 1363 ident: bb0040 article-title: Rolling bearing fault classification based on envelope spectrum and support vector machine publication-title: J. Vib. Control. – volume: 53 start-page: 805 year: 2013 end-page: 810 ident: bb0120 article-title: Remaining useful life prediction of Lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. – volume: 2015 start-page: 1 year: 2015 end-page: 10 ident: bb0130 article-title: Gearbox fault identification and classification with convolutional neural networks publication-title: Shock. Vib. – volume: 28 start-page: 221 year: Mar. 1998 end-page: 235 ident: bb0065 article-title: On fuzzy logic applications for automatic control, supervision, and fault diagnosis publication-title: IEEE Trans. Syst. Man Cybern. Syst. Humans – volume: 72-73 start-page: 303 year: 2016 end-page: 315 ident: bb0125 article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mech. Syst. Signal Process. – volume: 35 start-page: 176 year: 2013 end-page: 199 ident: bb0005 article-title: An enhanced Kurto-gram method for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Signal Process. – volume: 13 start-page: 274 year: 2013 end-page: 291 ident: bb0045 article-title: Health assessment of cooling fan bearings using wavelet-based filtering publication-title: Sensors – volume: 36 start-page: 476 year: Jul. 2006 end-page: 484 ident: bb0075 article-title: Synergistic use of soft computing technologies for fault detection in gas turbine engines publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. – volume: 24 start-page: 1967 year: 2012 end-page: 2006 ident: bb0170 article-title: An efficient learning procedure for deep machines publication-title: Neural Comput. – volume: 21 start-page: 840 year: 2007 end-page: 855 ident: bb0100 article-title: Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models publication-title: Mech. Syst. Signal Process. – volume: 168 start-page: 119 year: 2015 end-page: 127 ident: bb0140 article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis publication-title: Neurocomputing – volume: 6 start-page: 25 year: 1999 end-page: 32 ident: bb0055 article-title: Diagnosis of rolling element bearing faults using radial basis function networks publication-title: Appl. Signal Process. – volume: 16 start-page: 110 year: Feb. 2008 end-page: 122 ident: bb0080 article-title: An intelligent system for machinery condition monitoring publication-title: IEEE Trans. Fuzzy Syst. – volume: 324 start-page: 1141 year: 2009 end-page: 1157 ident: bb0095 article-title: Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition publication-title: J. Sound Vib. – volume: 17 start-page: 317 year: Mar. 2003 end-page: 328 ident: bb0060 article-title: Artificial neural-network-based fault diagnostics of rolling-element bearings using time-domain features publication-title: Mech. Syst. Signal Process. – year: 1994 ident: bb0165 article-title: Unsupervised learning of distributions on binary vectors using two layer networks publication-title: Technical Report UCSC-CRL-94-25 – volume: 41 start-page: 4113 year: 2014 end-page: 4122 ident: bb0135 article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks publication-title: Expert Syst. Appl. – volume: 34 start-page: 725 year: Feb. 2004 end-page: 731 ident: bb0070 article-title: An empirical risk functional to improve learning in a neuro fuzzy classifier publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. – volume: 17 start-page: 2379 year: 2015 end-page: 2392 ident: bb0145 article-title: Multi-layer neural network with deep belief network for gearbox fault diagnosis publication-title: J. Vibroeng. – volume: 89 start-page: 16 year: 2015 end-page: 27 ident: bb0105 article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals publication-title: Appl. Acoust. – volume: 345 start-page: 250 year: 2015 end-page: 266 ident: bb0090 article-title: Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults publication-title: J. Sound Vib. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bb0160 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – year: 2001 ident: bb0050 article-title: Pattern Classification – volume: 3 start-page: 18 year: 2014 end-page: 29 ident: bb0115 article-title: Fault detection and diagnosis using support vector machines - a SVC and SVR comparison publication-title: J. Saf. Eng. – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bb0180 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. – volume: 228 start-page: 1888 issue: 11 year: 2014 ident: 10.1016/j.microrel.2017.03.006_bb0030 article-title: Vibration signal demodulation and bearing fault detection: a clustering-based segmentation method publication-title: Proc. IME C J. Mech. Eng. Sci. doi: 10.1177/0954406213514960 – volume: 20 start-page: 1483 issue: 7 year: 2006 ident: 10.1016/j.microrel.2017.03.006_bb0035 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.09.012 – volume: 168 start-page: 119 year: 2015 ident: 10.1016/j.microrel.2017.03.006_bb0140 article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.008 – volume: 5 start-page: 448 issue: 2 year: 2009 ident: 10.1016/j.microrel.2017.03.006_bb0150 article-title: Deep Boltzmann machines publication-title: J. Mach. Learn. Res. – volume: 324 start-page: 1141 issue: 3–5 year: 2009 ident: 10.1016/j.microrel.2017.03.006_bb0095 article-title: Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.02.013 – volume: 59 start-page: 309 issue: 2 year: 2010 ident: 10.1016/j.microrel.2017.03.006_bb0010 article-title: An enhanced diagnostic scheme for bearing condition monitoring publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2023814 – year: 2001 ident: 10.1016/j.microrel.2017.03.006_bb0050 – volume: 47 start-page: 62 issue: 1 year: 2012 ident: 10.1016/j.microrel.2017.03.006_bb0020 article-title: Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2011.08.007 – volume: 17 start-page: 317 issue: 2 year: 2003 ident: 10.1016/j.microrel.2017.03.006_bb0060 article-title: Artificial neural-network-based fault diagnostics of rolling-element bearings using time-domain features publication-title: Mech. Syst. Signal Process. doi: 10.1006/mssp.2001.1462 – volume: 2015 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.microrel.2017.03.006_bb0130 article-title: Gearbox fault identification and classification with convolutional neural networks publication-title: Shock. Vib. – volume: 6 start-page: 25 year: 1999 ident: 10.1016/j.microrel.2017.03.006_bb0055 article-title: Diagnosis of rolling element bearing faults using radial basis function networks publication-title: Appl. Signal Process. doi: 10.1007/s005290050031 – volume: 72-73 start-page: 303 year: 2016 ident: 10.1016/j.microrel.2017.03.006_bb0125 article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.025 – volume: 17 start-page: 2379 issue: 5 year: 2015 ident: 10.1016/j.microrel.2017.03.006_bb0145 article-title: Multi-layer neural network with deep belief network for gearbox fault diagnosis publication-title: J. Vibroeng. – volume: 345 start-page: 250 issue: 9 year: 2015 ident: 10.1016/j.microrel.2017.03.006_bb0090 article-title: Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.01.052 – volume: 89 start-page: 16 year: 2015 ident: 10.1016/j.microrel.2017.03.006_bb0105 article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2014.08.016 – volume: 23 issue: 5 year: 2012 ident: 10.1016/j.microrel.2017.03.006_bb0025 article-title: Fault detection of planetary gearboxes using new diagnostic parameters publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/23/5/055605 – year: 1994 ident: 10.1016/j.microrel.2017.03.006_bb0165 article-title: Unsupervised learning of distributions on binary vectors using two layer networks – volume: 24 start-page: 1967 issue: 8 year: 2012 ident: 10.1016/j.microrel.2017.03.006_bb0170 article-title: An efficient learning procedure for deep machines publication-title: Neural Comput. doi: 10.1162/NECO_a_00311 – volume: 15 start-page: 1349 issue: 9 year: 2009 ident: 10.1016/j.microrel.2017.03.006_bb0040 article-title: Rolling bearing fault classification based on envelope spectrum and support vector machine publication-title: J. Vib. Control. doi: 10.1177/1077546308095224 – volume: 13 start-page: 274 issue: 1 year: 2013 ident: 10.1016/j.microrel.2017.03.006_bb0045 article-title: Health assessment of cooling fan bearings using wavelet-based filtering publication-title: Sensors doi: 10.3390/s130100274 – volume: 34 start-page: 725 issue: 1 year: 2004 ident: 10.1016/j.microrel.2017.03.006_bb0070 article-title: An empirical risk functional to improve learning in a neuro fuzzy classifier publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2003.811291 – volume: 41 start-page: 4113 issue: 9 year: 2014 ident: 10.1016/j.microrel.2017.03.006_bb0135 article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.026 – volume: 28 start-page: 221 issue: 2 year: 1998 ident: 10.1016/j.microrel.2017.03.006_bb0065 article-title: On fuzzy logic applications for automatic control, supervision, and fault diagnosis publication-title: IEEE Trans. Syst. Man Cybern. Syst. Humans doi: 10.1109/3468.661149 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.microrel.2017.03.006_bb0180 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – start-page: 153 year: 2007 ident: 10.1016/j.microrel.2017.03.006_bb0175 article-title: Greedy layer-wise training of deep networks – volume: 2015 year: 2015 ident: 10.1016/j.microrel.2017.03.006_bb0015 article-title: Planetary gearbox vibration signal characteristics analysis and fault diagnosis publication-title: Shock. Vib. – volume: 35 start-page: 176 issue: 1–2 year: 2013 ident: 10.1016/j.microrel.2017.03.006_bb0005 article-title: An enhanced Kurto-gram method for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.10.003 – volume: 36 start-page: 476 issue: 6 year: 2006 ident: 10.1016/j.microrel.2017.03.006_bb0075 article-title: Synergistic use of soft computing technologies for fault detection in gas turbine engines publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2006.875415 – volume: 17 start-page: 1188 issue: 3 year: 2015 ident: 10.1016/j.microrel.2017.03.006_bb0110 article-title: Bearing fault diagnosis based on adaptive multiscale fuzzy entropy and support vector machine publication-title: J. Vibroeng. – volume: 53 start-page: 805 issue: 6 year: 2013 ident: 10.1016/j.microrel.2017.03.006_bb0120 article-title: Remaining useful life prediction of Lithium-ion battery with unscented particle filter technique publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.12.004 – volume: 3 start-page: 18 issue: 1 year: 2014 ident: 10.1016/j.microrel.2017.03.006_bb0115 article-title: Fault detection and diagnosis using support vector machines - a SVC and SVR comparison publication-title: J. Saf. Eng. doi: 10.5923/j.safety.20140301.03 – volume: 21 start-page: 840 issue: 2 year: 2007 ident: 10.1016/j.microrel.2017.03.006_bb0100 article-title: Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.01.009 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.microrel.2017.03.006_bb0160 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 110 issue: 1 year: 2008 ident: 10.1016/j.microrel.2017.03.006_bb0080 article-title: An intelligent system for machinery condition monitoring publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2007.896237 – volume: 38 start-page: 102 issue: 1 year: 2008 ident: 10.1016/j.microrel.2017.03.006_bb0085 article-title: An enhanced diagnostic system for gear system monitoring publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2007.908864 – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.microrel.2017.03.006_bb0155 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 |
SSID | ssj0007011 |
Score | 2.5873187 |
Snippet | Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Thus, it is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 327 |
SubjectTerms | Deep Belief Networks Deep Boltzmann Machines Fault diagnosis Rolling bearing Stacked Auto-Encoders |
Title | Deep neural networks-based rolling bearing fault diagnosis |
URI | https://dx.doi.org/10.1016/j.microrel.2017.03.006 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KvehBfOKz5OA1bTb7aryVaqmKPVnobclmN9BSY-nj6m93J5toBaEHTyFhB8K3szML8803AHcsN6abIks8StKQGXekdJYYLBdia0mXUIsV3deRGI7Z84RPGtCve2GQVlnFfh_Ty2hdfelUaHYW0yn2-MYiloSRUnK9nFzLmEQvb3_-0DxkRPzUvFiEuHqrS3jWfkfS29JiCYJIL3Yq_k5QW0lncASH1W0x6PkfOoaGLU7gYEtD8BTuH6xdBChL6RYWntS9CjE5mWDpFbcD7dwZn3m6ma8D49l109UZjAePb_1hWA1ECDMqOI6Nz4jg0mhKqeQ5YTxJLEuJ8BVBbDNNeZRGRuQxdXsgYiZdEuxyZtKIZpKeQ7P4KOwFBJpyKrWNheFY0jU6R62zJLeCCR7n-hJ4jYLKKrVwHFoxVzUtbKZq9BSipyKqHHqX0Pm2W3i9jJ0WSQ2y-rXzygX1HbZX_7C9hn1882S-G2iulxt76y4Ya90qPagFe72nl-HoC6ftz8g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPagH8Yn1mYMeY7PPNIIHsUqrticFb2uS3UBLraUPxIt_yj_oTjfRCoIH6SmQZELyZTKzYb75BuCYZ1rXYmSJB1Hsc20_qSSNNJYLsbWkRpjBim6rLRsP_OZRPJbgo-iFQVplHvtdTJ9G63xPNUezOuh0sMeXShoSTqaS66SYYH1r3l7tf9vovFm3L_mE0uur-8uGn48W8FMmBQ5gT4kUoU4YY6HICBdRZHhMpKutYcNmLII40DKjzD6NpDy06aQmuI4DlobMXncBFrkNFzg24fT9m1cSBsSN6aPSx9ubaUvunj4jy25osOZBQqeuKn_PiDNZ7noNVvPlqXfhEFiHkulvwMqMaOEmnNWNGXiog2lP7DsW-cjHbKi9oZP49hKLEW6zeNIbe9rR-TqjLXiYC0zbUO6_9M0OeAkTLEwMlVpgDVknGYqrRZmRXAqaJRUQBQoqzeXJcUpGTxU8tK4q0FOIngqYsuhVoPplN3ACHX9aRAXI6oerKZtF_rDd_YftESw17lt36q7Zvt2DZTzimIT7UB4PJ-bArm7GyeHUmzx4mrf7fgJywAlB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+neural+networks-based+rolling+bearing+fault+diagnosis&rft.jtitle=Microelectronics+and+reliability&rft.au=Chen%2C+Zhiqiang&rft.au=Deng%2C+Shengcai&rft.au=Chen%2C+Xudong&rft.au=Li%2C+Chuan&rft.date=2017-08-01&rft.issn=0026-2714&rft.volume=75&rft.spage=327&rft.epage=333&rft_id=info:doi/10.1016%2Fj.microrel.2017.03.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2017_03_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |