Deep neural networks-based rolling bearing fault diagnosis

Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Thus, it is significant to study fault diagnosis technology on rolling bearing. In this paper, three deep neural network models (Deep Boltzmann Machi...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 75; pp. 327 - 333
Main Authors Chen, Zhiqiang, Deng, Shengcai, Chen, Xudong, Li, Chuan, Sanchez, René-Vinicio, Qin, Huafeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Thus, it is significant to study fault diagnosis technology on rolling bearing. In this paper, three deep neural network models (Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders) are employed to identify the fault condition of rolling bearing. Four preprocessing schemes including feature of time domain, frequency domain and time-frequency domain are discussed. One data set with seven fault patterns is collected to evaluate the performance of deep learning models for rolling bearing fault diagnosis, which is based on the health condition of a rotating mechanical system. The results proved that the accuracy achieved by Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders are highly reliable and applicable in fault diagnosis of rolling bearing. •Develop DNN-based rolling bearing fault diagnosis system.•Evaluate the performance of DBM, SAE and DBN for rolling bearing fault diagnosis.•Discuss four preprocessing schemes for DNN-based fault diagnosis.•Deeply analyze the parameter setting of DBM, SAE and DBN-based diagnosis system.
AbstractList Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Thus, it is significant to study fault diagnosis technology on rolling bearing. In this paper, three deep neural network models (Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders) are employed to identify the fault condition of rolling bearing. Four preprocessing schemes including feature of time domain, frequency domain and time-frequency domain are discussed. One data set with seven fault patterns is collected to evaluate the performance of deep learning models for rolling bearing fault diagnosis, which is based on the health condition of a rotating mechanical system. The results proved that the accuracy achieved by Deep Boltzmann Machines, Deep Belief Networks and Stacked Auto-Encoders are highly reliable and applicable in fault diagnosis of rolling bearing. •Develop DNN-based rolling bearing fault diagnosis system.•Evaluate the performance of DBM, SAE and DBN for rolling bearing fault diagnosis.•Discuss four preprocessing schemes for DNN-based fault diagnosis.•Deeply analyze the parameter setting of DBM, SAE and DBN-based diagnosis system.
Author Sanchez, René-Vinicio
Deng, Shengcai
Qin, Huafeng
Li, Chuan
Chen, Zhiqiang
Chen, Xudong
Author_xml – sequence: 1
  givenname: Zhiqiang
  orcidid: 0000-0002-4721-3690
  surname: Chen
  fullname: Chen, Zhiqiang
  email: czq@ctbu.edu.cn
  organization: National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 2
  givenname: Shengcai
  surname: Deng
  fullname: Deng, Shengcai
  organization: Chongqing Key Laboratory of Electronic Commerce and Supply Chain, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 3
  givenname: Xudong
  surname: Chen
  fullname: Chen, Xudong
  organization: National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 4
  givenname: Chuan
  surname: Li
  fullname: Li, Chuan
  organization: National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 5
  givenname: René-Vinicio
  surname: Sanchez
  fullname: Sanchez, René-Vinicio
  email: rsanchezl@ups.edu.ec
  organization: Department of Mechanical Engineering, Universidad Politécnica Salesiana, Cuenca, Ecuador
– sequence: 6
  givenname: Huafeng
  surname: Qin
  fullname: Qin, Huafeng
  organization: National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
BookMark eNqFkMtOwzAURC1UJNrCL6D8QML1I3aKWIBKeUiV2IDEznLsm8olTSrbBfH3pCps2HQ1qzOaORMy6voOCbmkUFCg8mpdbLwNfcC2YEBVAbwAkCdkTCvF8pmg7yMyBmAyZ4qKMzKJcQ0ACigdk-t7xG3W4S6Ydoj01YePmNcmostC37a-W2U1mrDPxuzalDlvVl0ffTwnp41pI1785pS8PSxe50_58uXxeX63zC2XZcopt1SWytWcc1U2VJSzGQpDZT2M4KWQrDIlGHCyYdy5SjKhLGJVCmeAW8WnRB56h5MxBmz0NviNCd-agt4b0Gv9Z0DvDWjgejAwgDf_QOuTSb7vUjC-PY7fHnAczn16DDpaj51F5wPapF3vj1X8AAlefgk
CitedBy_id crossref_primary_10_1016_j_compind_2020_103380
crossref_primary_10_1177_14759217231226119
crossref_primary_10_1109_JSEN_2019_2927754
crossref_primary_10_3390_s21134424
crossref_primary_10_3390_e25020242
crossref_primary_10_1007_s40430_022_03954_5
crossref_primary_10_3390_s23021005
crossref_primary_10_1109_ACCESS_2020_2972859
crossref_primary_10_1155_2020_8843759
crossref_primary_10_1088_1757_899X_717_1_012011
crossref_primary_10_1016_j_knosys_2021_106796
crossref_primary_10_1186_s10033_021_00553_8
crossref_primary_10_1155_2020_8826507
crossref_primary_10_1007_s00170_023_12060_2
crossref_primary_10_1142_S0219519418400341
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_3390_s21175888
crossref_primary_10_1109_TASE_2020_3028151
crossref_primary_10_1088_1742_6596_2025_1_012041
crossref_primary_10_1109_ACCESS_2019_2956264
crossref_primary_10_1007_s11431_024_2734_x
crossref_primary_10_1088_1742_6596_1509_1_012030
crossref_primary_10_3390_s19081826
crossref_primary_10_3390_s22010013
crossref_primary_10_1007_s12206_019_0103_x
crossref_primary_10_1109_ACCESS_2020_2998722
crossref_primary_10_1109_ACCESS_2018_2880990
crossref_primary_10_1016_j_ast_2019_105423
crossref_primary_10_1155_2024_2140227
crossref_primary_10_1177_1687814018798251
crossref_primary_10_3389_fenrg_2021_796528
crossref_primary_10_1109_ACCESS_2021_3084602
crossref_primary_10_1177_1748006X231184656
crossref_primary_10_1088_1361_6501_ad69b5
crossref_primary_10_1177_0954407019861028
crossref_primary_10_1016_j_ymssp_2021_108382
crossref_primary_10_1016_j_compind_2019_103132
crossref_primary_10_1177_1748006X211048585
crossref_primary_10_1016_j_asej_2022_101945
crossref_primary_10_1016_j_neucom_2025_129588
crossref_primary_10_1007_s40435_023_01157_x
crossref_primary_10_1016_j_isatra_2021_03_013
crossref_primary_10_5050_KSNVE_2021_31_1_047
crossref_primary_10_3390_app10082932
crossref_primary_10_3390_machines11100943
crossref_primary_10_1155_2019_8239198
crossref_primary_10_1177_10775463241313018
crossref_primary_10_3390_su15129391
crossref_primary_10_1177_09574565221139638
crossref_primary_10_1016_j_jocs_2021_101508
crossref_primary_10_3390_electronics9091334
crossref_primary_10_1016_j_conengprac_2025_106263
crossref_primary_10_1016_j_engfailanal_2021_106011
crossref_primary_10_32604_cmc_2024_049665
crossref_primary_10_3390_s21020433
crossref_primary_10_1016_j_measurement_2019_107293
crossref_primary_10_1007_s00170_020_05449_w
crossref_primary_10_1016_j_knosys_2020_105883
crossref_primary_10_3390_app132011514
crossref_primary_10_1016_j_cie_2020_106427
crossref_primary_10_1016_j_neucom_2020_02_042
crossref_primary_10_1088_1361_6501_acc04a
crossref_primary_10_1007_s00707_024_03915_0
crossref_primary_10_1109_ACCESS_2024_3412274
crossref_primary_10_1016_j_measurement_2020_107901
crossref_primary_10_1049_elp2_12005
crossref_primary_10_1088_1757_899X_790_1_012066
crossref_primary_10_3390_a11020021
crossref_primary_10_1155_2018_3047830
crossref_primary_10_3390_math10030455
crossref_primary_10_1007_s00500_022_07343_x
crossref_primary_10_1016_j_asoc_2020_106706
crossref_primary_10_1155_2021_8828317
crossref_primary_10_3390_machines8040066
crossref_primary_10_3233_JIFS_190101
crossref_primary_10_3390_s19163553
crossref_primary_10_1088_1361_6501_ad3f39
crossref_primary_10_1109_TMECH_2020_2996939
crossref_primary_10_3390_su10124779
crossref_primary_10_1007_s42417_024_01405_0
crossref_primary_10_1016_j_compind_2019_05_005
crossref_primary_10_1007_s10845_021_01739_6
crossref_primary_10_1016_j_ymssp_2024_112117
crossref_primary_10_1088_1361_6501_abaf2b
crossref_primary_10_3390_act13120514
crossref_primary_10_3390_app8112332
crossref_primary_10_1016_j_pnucene_2022_104324
crossref_primary_10_33961_jecst_2019_03174
crossref_primary_10_3390_machines11070746
crossref_primary_10_1016_j_measurement_2019_07_039
crossref_primary_10_1016_j_neucom_2020_11_063
crossref_primary_10_1088_1361_6501_ac3d47
crossref_primary_10_1109_JSYST_2019_2905565
crossref_primary_10_1177_1748006X20976817
crossref_primary_10_1109_ACCESS_2020_2990528
crossref_primary_10_3390_app9071364
crossref_primary_10_3390_s19010026
crossref_primary_10_1109_TII_2020_3021688
crossref_primary_10_1007_s13369_024_09488_3
crossref_primary_10_3390_s18103521
crossref_primary_10_1155_2018_6024874
crossref_primary_10_1016_j_measurement_2021_109467
crossref_primary_10_1007_s11042_023_15325_w
crossref_primary_10_1016_j_measurement_2020_108257
crossref_primary_10_3390_s19040758
crossref_primary_10_1155_2020_5281512
crossref_primary_10_32604_cmc_2020_013131
crossref_primary_10_1016_j_ymssp_2018_05_050
crossref_primary_10_1109_TIM_2023_3336436
crossref_primary_10_1016_j_ymssp_2024_111697
crossref_primary_10_1109_ACCESS_2019_2909756
crossref_primary_10_1007_s11081_024_09904_5
crossref_primary_10_1016_j_measurement_2018_08_002
crossref_primary_10_1177_10775463211016130
crossref_primary_10_1088_1361_6501_ad6788
crossref_primary_10_1177_09544062241274178
crossref_primary_10_1016_j_knosys_2020_105895
crossref_primary_10_1109_ACCESS_2017_2720965
crossref_primary_10_3390_en14165150
crossref_primary_10_1155_2021_5296904
crossref_primary_10_3390_app12125904
crossref_primary_10_1007_s10489_021_03004_y
crossref_primary_10_1016_j_asoc_2025_112785
crossref_primary_10_1088_1361_6501_ad1e20
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1109_ACCESS_2024_3472454
crossref_primary_10_32604_iasc_2024_043091
crossref_primary_10_1016_j_lfs_2022_121195
crossref_primary_10_1016_j_measurement_2020_107619
crossref_primary_10_1016_j_microrel_2023_115220
crossref_primary_10_1016_j_ymssp_2017_08_002
crossref_primary_10_3390_s19092131
crossref_primary_10_1784_insi_2023_65_4_217
crossref_primary_10_3390_machines8020022
crossref_primary_10_1080_21693277_2024_2305358
crossref_primary_10_1109_ACCESS_2020_2989510
crossref_primary_10_1088_1742_6596_2503_1_012095
crossref_primary_10_1016_j_neucom_2019_08_099
crossref_primary_10_1109_ACCESS_2019_2938227
crossref_primary_10_3390_app14072913
crossref_primary_10_3390_en16010296
crossref_primary_10_3390_s19092097
crossref_primary_10_1088_1361_6501_ad7a97
crossref_primary_10_1109_TII_2020_2979467
crossref_primary_10_1109_ACCESS_2020_2987324
crossref_primary_10_2478_msr_2022_0022
crossref_primary_10_1109_ACCESS_2019_2947501
crossref_primary_10_1007_s40799_019_00324_0
crossref_primary_10_1007_s00170_019_04078_2
crossref_primary_10_3390_electronics13173426
crossref_primary_10_3390_s19102338
crossref_primary_10_1007_s42417_022_00525_9
crossref_primary_10_1016_j_engappai_2023_107126
crossref_primary_10_1177_00202940221088713
crossref_primary_10_3390_wevj15070281
crossref_primary_10_3390_app8122564
crossref_primary_10_1111_exsy_13128
crossref_primary_10_1016_j_solener_2021_06_006
crossref_primary_10_1109_ACCESS_2023_3347345
crossref_primary_10_1016_j_neucom_2018_06_078
crossref_primary_10_1016_j_psep_2022_07_046
crossref_primary_10_1016_j_tust_2023_105386
crossref_primary_10_1016_j_compind_2021_103528
crossref_primary_10_1016_j_cogsys_2018_03_002
crossref_primary_10_1051_itmconf_20192401004
crossref_primary_10_3390_s25020325
crossref_primary_10_1109_ACCESS_2020_2990572
crossref_primary_10_1520_JTE20190800
crossref_primary_10_1016_j_jmsy_2018_01_003
crossref_primary_10_1016_j_measurement_2021_110065
crossref_primary_10_1049_csy2_12105
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_1007_s12206_018_1205_6
crossref_primary_10_1016_j_procir_2021_01_138
crossref_primary_10_3390_s21030849
Cites_doi 10.1177/0954406213514960
10.1016/j.ymssp.2005.09.012
10.1016/j.neucom.2015.06.008
10.1016/j.jsv.2009.02.013
10.1109/TIM.2009.2023814
10.1016/j.mechmachtheory.2011.08.007
10.1006/mssp.2001.1462
10.1007/s005290050031
10.1016/j.ymssp.2015.10.025
10.1016/j.jsv.2015.01.052
10.1016/j.apacoust.2014.08.016
10.1088/0957-0233/23/5/055605
10.1162/NECO_a_00311
10.1177/1077546308095224
10.3390/s130100274
10.1109/TSMCB.2003.811291
10.1016/j.eswa.2013.12.026
10.1109/3468.661149
10.1561/2200000006
10.1016/j.ymssp.2012.10.003
10.1109/TSMCC.2006.875415
10.1016/j.microrel.2012.12.004
10.5923/j.safety.20140301.03
10.1016/j.ymssp.2006.01.009
10.1109/TFUZZ.2007.896237
10.1109/TSMCB.2007.908864
10.1162/neco.2006.18.7.1527
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.microrel.2017.03.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-941X
EndPage 333
ExternalDocumentID 10_1016_j_microrel_2017_03_006
S0026271417300513
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c365t-13c1657db33375f14599e4a16b000354628a50a0d6f23dd86247cee854da03c73
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Tue Jul 01 01:27:24 EDT 2025
Thu Apr 24 23:06:14 EDT 2025
Fri Feb 23 02:18:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Stacked Auto-Encoders
Deep Belief Networks
Rolling bearing
Deep Boltzmann Machines
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-13c1657db33375f14599e4a16b000354628a50a0d6f23dd86247cee854da03c73
ORCID 0000-0002-4721-3690
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_microrel_2017_03_006
crossref_citationtrail_10_1016_j_microrel_2017_03_006
elsevier_sciencedirect_doi_10_1016_j_microrel_2017_03_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Microelectronics and reliability
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hou, Liang, Zhang, Li (bb0030) 2014; 228
Freund, Haussler (bb0165) 1994
Wang, Miao, Kang (bb0095) 2009; 324
Chen, Li, Sanchez (bb0130) 2015; 2015
Bengio (bb0180) 2009; 2
Miao, Zhou (bb0015) 2015; 2015
Wang (bb0080) Feb. 2008; 16
Tran, Thobiani, Ball (bb0135) 2014; 41
Jack, Nandi, McCormick (bb0055) 1999; 6
Wang, Tse, Tsui (bb0005) 2013; 35
Li, Sanchez, Zurita, Cerrada, Cabrera, Vásquez (bb0140) 2015; 168
Wang, He, Xiang, Zi (bb0020) 2012; 47
Chen, Li, Sánchez (bb0145) 2015; 17
Bengio, Lamblin, Popovici, Larochelle (bb0175) 2007
Miao, Tang, Liang, Pecht (bb0045) 2013; 13
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bb0160) 2010; 11
Lei, Kong, Lin, Zuo (bb0025) 2012; 23
Jardine, Lin, Banjevic (bb0035) 2006; 20
Uluyol, Kim, Nwadiogbu (bb0075) Jul. 2006; 36
Guo, Chen, Li (bb0040) 2009; 15
Samanta, Al-Balushi (bb0060) Mar. 2003; 17
Hinton, Osindero, Teh (bb0155) 2006; 18
Souzal, Granzotto, Almeida, Oliveira-Lopes (bb0115) 2014; 3
Li, Xu, Wei, Huang (bb0110) 2015; 17
Castellano, Fanelli, Mencar (bb0070) Feb. 2004; 34
Ali, Fnaiech, Saidi, Chebel-Morello, Fnaiech (bb0105) 2015; 89
Duda, Hart, Stork (bb0050) 2001
Miao, Makis (bb0100) 2007; 21
Wang, Miao (bb0090) 2015; 345
Miao, Xie, Cui, Liang, Pecht (bb0120) 2013; 53
Jia, Lei, Lin, Zhou, Lu (bb0125) 2016; 72-73
Salakhutdinov, Hinton (bb0170) 2012; 24
Jie Liu, Wang, Golnaraghi (bb0010) 2010; 59
Isermann (bb0065) Mar. 1998; 28
Wang (bb0085) Feb. 2008; 38
Salakhutdinov, Hinton (bb0150) 2009; 5
Li (10.1016/j.microrel.2017.03.006_bb0140) 2015; 168
Wang (10.1016/j.microrel.2017.03.006_bb0085) 2008; 38
Salakhutdinov (10.1016/j.microrel.2017.03.006_bb0150) 2009; 5
Guo (10.1016/j.microrel.2017.03.006_bb0040) 2009; 15
Hinton (10.1016/j.microrel.2017.03.006_bb0155) 2006; 18
Freund (10.1016/j.microrel.2017.03.006_bb0165) 1994
Samanta (10.1016/j.microrel.2017.03.006_bb0060) 2003; 17
Isermann (10.1016/j.microrel.2017.03.006_bb0065) 1998; 28
Wang (10.1016/j.microrel.2017.03.006_bb0090) 2015; 345
Wang (10.1016/j.microrel.2017.03.006_bb0020) 2012; 47
Li (10.1016/j.microrel.2017.03.006_bb0110) 2015; 17
Miao (10.1016/j.microrel.2017.03.006_bb0100) 2007; 21
Hou (10.1016/j.microrel.2017.03.006_bb0030) 2014; 228
Jardine (10.1016/j.microrel.2017.03.006_bb0035) 2006; 20
Duda (10.1016/j.microrel.2017.03.006_bb0050) 2001
Chen (10.1016/j.microrel.2017.03.006_bb0130) 2015; 2015
Vincent (10.1016/j.microrel.2017.03.006_bb0160) 2010; 11
Jia (10.1016/j.microrel.2017.03.006_bb0125) 2016; 72-73
Tran (10.1016/j.microrel.2017.03.006_bb0135) 2014; 41
Lei (10.1016/j.microrel.2017.03.006_bb0025) 2012; 23
Salakhutdinov (10.1016/j.microrel.2017.03.006_bb0170) 2012; 24
Jack (10.1016/j.microrel.2017.03.006_bb0055) 1999; 6
Wang (10.1016/j.microrel.2017.03.006_bb0095) 2009; 324
Bengio (10.1016/j.microrel.2017.03.006_bb0175) 2007
Miao (10.1016/j.microrel.2017.03.006_bb0120) 2013; 53
Bengio (10.1016/j.microrel.2017.03.006_bb0180) 2009; 2
Miao (10.1016/j.microrel.2017.03.006_bb0045) 2013; 13
Chen (10.1016/j.microrel.2017.03.006_bb0145) 2015; 17
Miao (10.1016/j.microrel.2017.03.006_bb0015) 2015; 2015
Uluyol (10.1016/j.microrel.2017.03.006_bb0075) 2006; 36
Castellano (10.1016/j.microrel.2017.03.006_bb0070) 2004; 34
Ali (10.1016/j.microrel.2017.03.006_bb0105) 2015; 89
Wang (10.1016/j.microrel.2017.03.006_bb0005) 2013; 35
Jie Liu (10.1016/j.microrel.2017.03.006_bb0010) 2010; 59
Souzal (10.1016/j.microrel.2017.03.006_bb0115) 2014; 3
Wang (10.1016/j.microrel.2017.03.006_bb0080) 2008; 16
References_xml – volume: 47
  start-page: 62
  year: 2012
  end-page: 73
  ident: bb0020
  article-title: Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox
  publication-title: Mech. Mach. Theory
– volume: 17
  start-page: 1188
  year: 2015
  end-page: 1202
  ident: bb0110
  article-title: Bearing fault diagnosis based on adaptive multiscale fuzzy entropy and support vector machine
  publication-title: J. Vibroeng.
– volume: 23
  year: 2012
  ident: bb0025
  article-title: Fault detection of planetary gearboxes using new diagnostic parameters
  publication-title: Meas. Sci. Technol.
– volume: 2015
  year: 2015
  ident: bb0015
  article-title: Planetary gearbox vibration signal characteristics analysis and fault diagnosis
  publication-title: Shock. Vib.
– volume: 228
  start-page: 1888
  year: 2014
  end-page: 1899
  ident: bb0030
  article-title: Vibration signal demodulation and bearing fault detection: a clustering-based segmentation method
  publication-title: Proc. IME C J. Mech. Eng. Sci.
– volume: 5
  start-page: 448
  year: 2009
  end-page: 455
  ident: bb0150
  article-title: Deep Boltzmann machines
  publication-title: J. Mach. Learn. Res.
– start-page: 153
  year: 2007
  end-page: 160
  ident: bb0175
  article-title: Greedy layer-wise training of deep networks
  publication-title: Advances in Neural Information Processing Systems 19 (NIPS’06)
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bb0155
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: bb0035
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signal Process.
– volume: 38
  start-page: 102
  year: Feb. 2008
  end-page: 112
  ident: bb0085
  article-title: An enhanced diagnostic system for gear system monitoring
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– volume: 59
  start-page: 309
  year: 2010
  end-page: 321
  ident: bb0010
  article-title: An enhanced diagnostic scheme for bearing condition monitoring
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 15
  start-page: 1349
  year: 2009
  end-page: 1363
  ident: bb0040
  article-title: Rolling bearing fault classification based on envelope spectrum and support vector machine
  publication-title: J. Vib. Control.
– volume: 53
  start-page: 805
  year: 2013
  end-page: 810
  ident: bb0120
  article-title: Remaining useful life prediction of Lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 10
  ident: bb0130
  article-title: Gearbox fault identification and classification with convolutional neural networks
  publication-title: Shock. Vib.
– volume: 28
  start-page: 221
  year: Mar. 1998
  end-page: 235
  ident: bb0065
  article-title: On fuzzy logic applications for automatic control, supervision, and fault diagnosis
  publication-title: IEEE Trans. Syst. Man Cybern. Syst. Humans
– volume: 72-73
  start-page: 303
  year: 2016
  end-page: 315
  ident: bb0125
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
– volume: 35
  start-page: 176
  year: 2013
  end-page: 199
  ident: bb0005
  article-title: An enhanced Kurto-gram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
– volume: 13
  start-page: 274
  year: 2013
  end-page: 291
  ident: bb0045
  article-title: Health assessment of cooling fan bearings using wavelet-based filtering
  publication-title: Sensors
– volume: 36
  start-page: 476
  year: Jul. 2006
  end-page: 484
  ident: bb0075
  article-title: Synergistic use of soft computing technologies for fault detection in gas turbine engines
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
– volume: 24
  start-page: 1967
  year: 2012
  end-page: 2006
  ident: bb0170
  article-title: An efficient learning procedure for deep machines
  publication-title: Neural Comput.
– volume: 21
  start-page: 840
  year: 2007
  end-page: 855
  ident: bb0100
  article-title: Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models
  publication-title: Mech. Syst. Signal Process.
– volume: 168
  start-page: 119
  year: 2015
  end-page: 127
  ident: bb0140
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
– volume: 6
  start-page: 25
  year: 1999
  end-page: 32
  ident: bb0055
  article-title: Diagnosis of rolling element bearing faults using radial basis function networks
  publication-title: Appl. Signal Process.
– volume: 16
  start-page: 110
  year: Feb. 2008
  end-page: 122
  ident: bb0080
  article-title: An intelligent system for machinery condition monitoring
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 324
  start-page: 1141
  year: 2009
  end-page: 1157
  ident: bb0095
  article-title: Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition
  publication-title: J. Sound Vib.
– volume: 17
  start-page: 317
  year: Mar. 2003
  end-page: 328
  ident: bb0060
  article-title: Artificial neural-network-based fault diagnostics of rolling-element bearings using time-domain features
  publication-title: Mech. Syst. Signal Process.
– year: 1994
  ident: bb0165
  article-title: Unsupervised learning of distributions on binary vectors using two layer networks
  publication-title: Technical Report UCSC-CRL-94-25
– volume: 41
  start-page: 4113
  year: 2014
  end-page: 4122
  ident: bb0135
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
– volume: 34
  start-page: 725
  year: Feb. 2004
  end-page: 731
  ident: bb0070
  article-title: An empirical risk functional to improve learning in a neuro fuzzy classifier
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– volume: 17
  start-page: 2379
  year: 2015
  end-page: 2392
  ident: bb0145
  article-title: Multi-layer neural network with deep belief network for gearbox fault diagnosis
  publication-title: J. Vibroeng.
– volume: 89
  start-page: 16
  year: 2015
  end-page: 27
  ident: bb0105
  article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
  publication-title: Appl. Acoust.
– volume: 345
  start-page: 250
  year: 2015
  end-page: 266
  ident: bb0090
  article-title: Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults
  publication-title: J. Sound Vib.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bb0160
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– year: 2001
  ident: bb0050
  article-title: Pattern Classification
– volume: 3
  start-page: 18
  year: 2014
  end-page: 29
  ident: bb0115
  article-title: Fault detection and diagnosis using support vector machines - a SVC and SVR comparison
  publication-title: J. Saf. Eng.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bb0180
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– volume: 228
  start-page: 1888
  issue: 11
  year: 2014
  ident: 10.1016/j.microrel.2017.03.006_bb0030
  article-title: Vibration signal demodulation and bearing fault detection: a clustering-based segmentation method
  publication-title: Proc. IME C J. Mech. Eng. Sci.
  doi: 10.1177/0954406213514960
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.microrel.2017.03.006_bb0035
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 168
  start-page: 119
  year: 2015
  ident: 10.1016/j.microrel.2017.03.006_bb0140
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.008
– volume: 5
  start-page: 448
  issue: 2
  year: 2009
  ident: 10.1016/j.microrel.2017.03.006_bb0150
  article-title: Deep Boltzmann machines
  publication-title: J. Mach. Learn. Res.
– volume: 324
  start-page: 1141
  issue: 3–5
  year: 2009
  ident: 10.1016/j.microrel.2017.03.006_bb0095
  article-title: Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.02.013
– volume: 59
  start-page: 309
  issue: 2
  year: 2010
  ident: 10.1016/j.microrel.2017.03.006_bb0010
  article-title: An enhanced diagnostic scheme for bearing condition monitoring
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2023814
– year: 2001
  ident: 10.1016/j.microrel.2017.03.006_bb0050
– volume: 47
  start-page: 62
  issue: 1
  year: 2012
  ident: 10.1016/j.microrel.2017.03.006_bb0020
  article-title: Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2011.08.007
– volume: 17
  start-page: 317
  issue: 2
  year: 2003
  ident: 10.1016/j.microrel.2017.03.006_bb0060
  article-title: Artificial neural-network-based fault diagnostics of rolling-element bearings using time-domain features
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1006/mssp.2001.1462
– volume: 2015
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.microrel.2017.03.006_bb0130
  article-title: Gearbox fault identification and classification with convolutional neural networks
  publication-title: Shock. Vib.
– volume: 6
  start-page: 25
  year: 1999
  ident: 10.1016/j.microrel.2017.03.006_bb0055
  article-title: Diagnosis of rolling element bearing faults using radial basis function networks
  publication-title: Appl. Signal Process.
  doi: 10.1007/s005290050031
– volume: 72-73
  start-page: 303
  year: 2016
  ident: 10.1016/j.microrel.2017.03.006_bb0125
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 17
  start-page: 2379
  issue: 5
  year: 2015
  ident: 10.1016/j.microrel.2017.03.006_bb0145
  article-title: Multi-layer neural network with deep belief network for gearbox fault diagnosis
  publication-title: J. Vibroeng.
– volume: 345
  start-page: 250
  issue: 9
  year: 2015
  ident: 10.1016/j.microrel.2017.03.006_bb0090
  article-title: Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.01.052
– volume: 89
  start-page: 16
  year: 2015
  ident: 10.1016/j.microrel.2017.03.006_bb0105
  article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2014.08.016
– volume: 23
  issue: 5
  year: 2012
  ident: 10.1016/j.microrel.2017.03.006_bb0025
  article-title: Fault detection of planetary gearboxes using new diagnostic parameters
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/23/5/055605
– year: 1994
  ident: 10.1016/j.microrel.2017.03.006_bb0165
  article-title: Unsupervised learning of distributions on binary vectors using two layer networks
– volume: 24
  start-page: 1967
  issue: 8
  year: 2012
  ident: 10.1016/j.microrel.2017.03.006_bb0170
  article-title: An efficient learning procedure for deep machines
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00311
– volume: 15
  start-page: 1349
  issue: 9
  year: 2009
  ident: 10.1016/j.microrel.2017.03.006_bb0040
  article-title: Rolling bearing fault classification based on envelope spectrum and support vector machine
  publication-title: J. Vib. Control.
  doi: 10.1177/1077546308095224
– volume: 13
  start-page: 274
  issue: 1
  year: 2013
  ident: 10.1016/j.microrel.2017.03.006_bb0045
  article-title: Health assessment of cooling fan bearings using wavelet-based filtering
  publication-title: Sensors
  doi: 10.3390/s130100274
– volume: 34
  start-page: 725
  issue: 1
  year: 2004
  ident: 10.1016/j.microrel.2017.03.006_bb0070
  article-title: An empirical risk functional to improve learning in a neuro fuzzy classifier
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2003.811291
– volume: 41
  start-page: 4113
  issue: 9
  year: 2014
  ident: 10.1016/j.microrel.2017.03.006_bb0135
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.026
– volume: 28
  start-page: 221
  issue: 2
  year: 1998
  ident: 10.1016/j.microrel.2017.03.006_bb0065
  article-title: On fuzzy logic applications for automatic control, supervision, and fault diagnosis
  publication-title: IEEE Trans. Syst. Man Cybern. Syst. Humans
  doi: 10.1109/3468.661149
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.microrel.2017.03.006_bb0180
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– start-page: 153
  year: 2007
  ident: 10.1016/j.microrel.2017.03.006_bb0175
  article-title: Greedy layer-wise training of deep networks
– volume: 2015
  year: 2015
  ident: 10.1016/j.microrel.2017.03.006_bb0015
  article-title: Planetary gearbox vibration signal characteristics analysis and fault diagnosis
  publication-title: Shock. Vib.
– volume: 35
  start-page: 176
  issue: 1–2
  year: 2013
  ident: 10.1016/j.microrel.2017.03.006_bb0005
  article-title: An enhanced Kurto-gram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.10.003
– volume: 36
  start-page: 476
  issue: 6
  year: 2006
  ident: 10.1016/j.microrel.2017.03.006_bb0075
  article-title: Synergistic use of soft computing technologies for fault detection in gas turbine engines
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2006.875415
– volume: 17
  start-page: 1188
  issue: 3
  year: 2015
  ident: 10.1016/j.microrel.2017.03.006_bb0110
  article-title: Bearing fault diagnosis based on adaptive multiscale fuzzy entropy and support vector machine
  publication-title: J. Vibroeng.
– volume: 53
  start-page: 805
  issue: 6
  year: 2013
  ident: 10.1016/j.microrel.2017.03.006_bb0120
  article-title: Remaining useful life prediction of Lithium-ion battery with unscented particle filter technique
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.12.004
– volume: 3
  start-page: 18
  issue: 1
  year: 2014
  ident: 10.1016/j.microrel.2017.03.006_bb0115
  article-title: Fault detection and diagnosis using support vector machines - a SVC and SVR comparison
  publication-title: J. Saf. Eng.
  doi: 10.5923/j.safety.20140301.03
– volume: 21
  start-page: 840
  issue: 2
  year: 2007
  ident: 10.1016/j.microrel.2017.03.006_bb0100
  article-title: Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.01.009
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.microrel.2017.03.006_bb0160
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 110
  issue: 1
  year: 2008
  ident: 10.1016/j.microrel.2017.03.006_bb0080
  article-title: An intelligent system for machinery condition monitoring
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2007.896237
– volume: 38
  start-page: 102
  issue: 1
  year: 2008
  ident: 10.1016/j.microrel.2017.03.006_bb0085
  article-title: An enhanced diagnostic system for gear system monitoring
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2007.908864
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.microrel.2017.03.006_bb0155
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
SSID ssj0007011
Score 2.5873187
Snippet Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Thus, it is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 327
SubjectTerms Deep Belief Networks
Deep Boltzmann Machines
Fault diagnosis
Rolling bearing
Stacked Auto-Encoders
Title Deep neural networks-based rolling bearing fault diagnosis
URI https://dx.doi.org/10.1016/j.microrel.2017.03.006
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KvehBfOKz5OA1bTb7aryVaqmKPVnobclmN9BSY-nj6m93J5toBaEHTyFhB8K3szML8803AHcsN6abIks8StKQGXekdJYYLBdia0mXUIsV3deRGI7Z84RPGtCve2GQVlnFfh_Ty2hdfelUaHYW0yn2-MYiloSRUnK9nFzLmEQvb3_-0DxkRPzUvFiEuHqrS3jWfkfS29JiCYJIL3Yq_k5QW0lncASH1W0x6PkfOoaGLU7gYEtD8BTuH6xdBChL6RYWntS9CjE5mWDpFbcD7dwZn3m6ma8D49l109UZjAePb_1hWA1ECDMqOI6Nz4jg0mhKqeQ5YTxJLEuJ8BVBbDNNeZRGRuQxdXsgYiZdEuxyZtKIZpKeQ7P4KOwFBJpyKrWNheFY0jU6R62zJLeCCR7n-hJ4jYLKKrVwHFoxVzUtbKZq9BSipyKqHHqX0Pm2W3i9jJ0WSQ2y-rXzygX1HbZX_7C9hn1882S-G2iulxt76y4Ya90qPagFe72nl-HoC6ftz8g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qPagH8Yn1mYMeY7PPNIIHsUqrticFb2uS3UBLraUPxIt_yj_oTjfRCoIH6SmQZELyZTKzYb75BuCYZ1rXYmSJB1Hsc20_qSSNNJYLsbWkRpjBim6rLRsP_OZRPJbgo-iFQVplHvtdTJ9G63xPNUezOuh0sMeXShoSTqaS66SYYH1r3l7tf9vovFm3L_mE0uur-8uGn48W8FMmBQ5gT4kUoU4YY6HICBdRZHhMpKutYcNmLII40DKjzD6NpDy06aQmuI4DlobMXncBFrkNFzg24fT9m1cSBsSN6aPSx9ubaUvunj4jy25osOZBQqeuKn_PiDNZ7noNVvPlqXfhEFiHkulvwMqMaOEmnNWNGXiog2lP7DsW-cjHbKi9oZP49hKLEW6zeNIbe9rR-TqjLXiYC0zbUO6_9M0OeAkTLEwMlVpgDVknGYqrRZmRXAqaJRUQBQoqzeXJcUpGTxU8tK4q0FOIngqYsuhVoPplN3ACHX9aRAXI6oerKZtF_rDd_YftESw17lt36q7Zvt2DZTzimIT7UB4PJ-bArm7GyeHUmzx4mrf7fgJywAlB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+neural+networks-based+rolling+bearing+fault+diagnosis&rft.jtitle=Microelectronics+and+reliability&rft.au=Chen%2C+Zhiqiang&rft.au=Deng%2C+Shengcai&rft.au=Chen%2C+Xudong&rft.au=Li%2C+Chuan&rft.date=2017-08-01&rft.issn=0026-2714&rft.volume=75&rft.spage=327&rft.epage=333&rft_id=info:doi/10.1016%2Fj.microrel.2017.03.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2017_03_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon