Fabrication, characterization and comparison of α-arbutin loaded dissolving and hydrogel forming microneedles
[Display omitted] In this study, polyacrylic acid-co-maleic acid (PAMA) and polyvinyl alcohol (PVA) (1:4) were used to fabricate dissolving microneedles (DMNs) and hydrogel forming microneedles (HMNs) which incorporated α-arbutin. Αlpha-arbutin is commonly used as a skin lightening agent. However, i...
Saved in:
Published in | International journal of pharmaceutics Vol. 586; p. 119508 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
30.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
In this study, polyacrylic acid-co-maleic acid (PAMA) and polyvinyl alcohol (PVA) (1:4) were used to fabricate dissolving microneedles (DMNs) and hydrogel forming microneedles (HMNs) which incorporated α-arbutin. Αlpha-arbutin is commonly used as a skin lightening agent. However, it has poor penetration ability due to its hydrophilic properties. The purpose of this study was to compare the permeation of α-arbutin into the skin using DMNs and HMNs. Both types of microneedles (MNs) were sharp, strong with elegant appearance and approximately 100% penetrated the neonatal porcine skin. All needles of α-arbutin loaded DMNs were completely dissolved within 45 min, whereas maximum swelling of HMNs was observed at 4 h. In vitro permeation studies showed that α-arbutin loaded DMNs and HMNs provided significantly about 4.5 and 2.8 times, respectively, greater α-arbutin permeability than gel and commercial cream (P < 0.05). In vivo study also showed high intradermal delivery of α-arbutin levels using DMNs (5.33 µg/mL) and HMNs (1.47 µg/mL) when compared to that of commercial cream 0.15 µg/mL. Moreover, the micro-holes caused by applying MNs can reseal within 1 h. MNs were also stable at 25 °C for 3 months. The results suggested that DMNs and HMNs developed have a promising platform for transdermal delivery. |
---|---|
AbstractList | In this study, polyacrylic acid-co-maleic acid (PAMA) and polyvinyl alcohol (PVA) (1:4) were used to fabricate dissolving microneedles (DMNs) and hydrogel forming microneedles (HMNs) which incorporated α-arbutin. Αlpha-arbutin is commonly used as a skin lightening agent. However, it has poor penetration ability due to its hydrophilic properties. The purpose of this study was to compare the permeation of α-arbutin into the skin using DMNs and HMNs. Both types of microneedles (MNs) were sharp, strong with elegant appearance and approximately 100% penetrated the neonatal porcine skin. All needles of α-arbutin loaded DMNs were completely dissolved within 45 min, whereas maximum swelling of HMNs was observed at 4 h. In vitro permeation studies showed that α-arbutin loaded DMNs and HMNs provided significantly about 4.5 and 2.8 times, respectively, greater α-arbutin permeability than gel and commercial cream (P < 0.05). In vivo study also showed high intradermal delivery of α-arbutin levels using DMNs (5.33 µg/mL) and HMNs (1.47 µg/mL) when compared to that of commercial cream 0.15 µg/mL. Moreover, the micro-holes caused by applying MNs can reseal within 1 h. MNs were also stable at 25 °C for 3 months. The results suggested that DMNs and HMNs developed have a promising platform for transdermal delivery. [Display omitted] In this study, polyacrylic acid-co-maleic acid (PAMA) and polyvinyl alcohol (PVA) (1:4) were used to fabricate dissolving microneedles (DMNs) and hydrogel forming microneedles (HMNs) which incorporated α-arbutin. Αlpha-arbutin is commonly used as a skin lightening agent. However, it has poor penetration ability due to its hydrophilic properties. The purpose of this study was to compare the permeation of α-arbutin into the skin using DMNs and HMNs. Both types of microneedles (MNs) were sharp, strong with elegant appearance and approximately 100% penetrated the neonatal porcine skin. All needles of α-arbutin loaded DMNs were completely dissolved within 45 min, whereas maximum swelling of HMNs was observed at 4 h. In vitro permeation studies showed that α-arbutin loaded DMNs and HMNs provided significantly about 4.5 and 2.8 times, respectively, greater α-arbutin permeability than gel and commercial cream (P < 0.05). In vivo study also showed high intradermal delivery of α-arbutin levels using DMNs (5.33 µg/mL) and HMNs (1.47 µg/mL) when compared to that of commercial cream 0.15 µg/mL. Moreover, the micro-holes caused by applying MNs can reseal within 1 h. MNs were also stable at 25 °C for 3 months. The results suggested that DMNs and HMNs developed have a promising platform for transdermal delivery. |
ArticleNumber | 119508 |
Author | Pamornpathomkul, Boonnada Patrojanasophon, Prasopchai Aung, Nway Nway Opanasopit, Praneet Ngawhirunpat, Tanasait Rojanarata, Theerasak |
Author_xml | – sequence: 1 givenname: Nway Nway surname: Aung fullname: Aung, Nway Nway organization: Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand – sequence: 2 givenname: Tanasait surname: Ngawhirunpat fullname: Ngawhirunpat, Tanasait organization: Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand – sequence: 3 givenname: Theerasak surname: Rojanarata fullname: Rojanarata, Theerasak organization: Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand – sequence: 4 givenname: Prasopchai surname: Patrojanasophon fullname: Patrojanasophon, Prasopchai organization: Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand – sequence: 5 givenname: Boonnada surname: Pamornpathomkul fullname: Pamornpathomkul, Boonnada email: boonnada_p@rmutt.ac.th organization: Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand – sequence: 6 givenname: Praneet surname: Opanasopit fullname: Opanasopit, Praneet email: opanasopit_p@su.ac.th organization: Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32512227$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtOwzAURS1URD-wBFAWQIo_jZ2MEEIUkCoxgbHlX1pHiR3ZaaWyKzbCmkibwpTR07u6972rMwUj550B4BrBOYKI3lVzW7UbEZo5hrjXUJHB_AxMUM5IShaMjsAEEpanGWJkDKYxVhBCihG5AGOCM4QxZhPglkIGq0RnvbtNVH9QqM4E-3lUEuF0onzTimBjv_oy-f5KRZDbzrqk9kIbnWgbo6931q2P9s1eB782dVL60BzExqrQdze6NvESnJeijubqNGfgY_n0_viSrt6eXx8fVqkiNOtSBI2CAhaKCFqWGjNJSmmohHRBiVYFYZBqqoo8ZzRXjKEspzIjMMslYkgpMgPZcLd_HWMwJW-DbUTYcwT5gR-v-IkfP_DjA78-dzPk2q1sjP5L_QLrDfeDwfTtd9YEHpU1Thltg1Ed197-8-IHbqqInA |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_05_045 crossref_primary_10_1016_j_ijpharm_2021_120749 crossref_primary_10_1016_j_ijbiomac_2023_123292 crossref_primary_10_1016_j_jddst_2023_104395 crossref_primary_10_3762_bjnano_13_98 crossref_primary_10_3390_molecules26195912 crossref_primary_10_3390_biomedicines11082119 crossref_primary_10_3390_pharmaceutics15072007 crossref_primary_10_1016_j_ijpharm_2024_123856 crossref_primary_10_1016_j_ejpb_2023_11_013 crossref_primary_10_3390_cosmetics11020051 crossref_primary_10_3390_pharmaceutics14030472 crossref_primary_10_1093_jpp_rgad058 crossref_primary_10_1080_17425247_2023_2201494 crossref_primary_10_3390_polym13172852 crossref_primary_10_1016_j_jddst_2024_105377 crossref_primary_10_1186_s43094_023_00553_6 crossref_primary_10_1039_D3BM00132F crossref_primary_10_1016_j_scp_2022_100604 crossref_primary_10_3390_antiox10071129 crossref_primary_10_1016_j_jddst_2022_103913 crossref_primary_10_1016_j_jddst_2022_103639 crossref_primary_10_1080_03639045_2022_2027959 crossref_primary_10_3389_fbioe_2022_1032041 crossref_primary_10_1016_j_mtchem_2022_101204 crossref_primary_10_1177_15593258221097594 crossref_primary_10_1016_j_ijpharm_2021_120406 crossref_primary_10_1021_acsbiomaterials_4c00972 crossref_primary_10_3390_pharmaceutics15102444 crossref_primary_10_1089_ten_teb_2022_0131 crossref_primary_10_1016_j_ijpharm_2022_121612 crossref_primary_10_3390_macromol4020019 crossref_primary_10_1016_j_eurpolymj_2021_110942 crossref_primary_10_1016_j_ijpharm_2022_122549 crossref_primary_10_1016_j_cclet_2022_108103 crossref_primary_10_1002_ptr_7076 crossref_primary_10_1016_j_ijpharm_2024_124400 crossref_primary_10_1016_j_ejpb_2024_114181 crossref_primary_10_1016_j_jddst_2022_103760 crossref_primary_10_3390_pharmaceutics15020587 crossref_primary_10_1016_j_ijpharm_2021_121092 crossref_primary_10_1016_j_xphs_2021_08_014 crossref_primary_10_3390_gels9100806 crossref_primary_10_1186_s40643_023_00721_9 crossref_primary_10_2174_2210681213666230516155253 crossref_primary_10_1007_s13346_023_01483_9 crossref_primary_10_1007_s13346_024_01656_0 crossref_primary_10_1007_s13346_023_01293_z crossref_primary_10_1016_j_jddst_2020_102284 crossref_primary_10_1016_j_colsurfb_2022_113018 |
Cites_doi | 10.1208/pt0804094 10.1016/j.ejpb.2018.05.017 10.1016/j.ejpb.2018.11.013 10.1016/j.phytol.2015.05.015 10.1016/j.biomaterials.2011.09.074 10.1002/adma.201702243 10.4028/www.scientific.net/KEM.819.45 10.1016/j.ijpharm.2014.05.042 10.1007/BF03353783 10.1016/S0022-2275(20)38361-9 10.3390/molecules200916933 10.1016/j.addr.2012.04.005 10.1016/j.ijpharm.2017.06.052 10.4314/tjpr.v13i11.1 10.2147/DDDT.S101900 10.1208/s12249-018-1130-0 10.1016/j.jconrel.2011.05.021 10.1016/j.ejps.2018.05.009 10.1111/php.12209 10.1208/s12249-019-1599-1 10.3390/cosmetics3030027 10.1152/ajpheart.01142.2009 10.1021/la302660p 10.1007/s12039-019-1666-x 10.23939/chcht04.04.297 10.1016/j.yrtph.2015.11.008 10.3390/pharmaceutics11080402 10.1080/00914030500208246 10.3390/molecules201219884 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1016/j.ijpharm.2020.119508 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3476 |
ExternalDocumentID | 10_1016_j_ijpharm_2020_119508 32512227 S0378517320304920 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSP SSZ T5K TEORI ~02 ~G- AAQFI AAXKI AKRWK CGR CUY CVF ECM EIF NPM RIG .GJ 29J 3O- 53G 5VS AAQXK AAYXX ABXDB ADMUD AFJKZ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMT HVGLF HZ~ R2- SEW SPT WUQ ZXP |
ID | FETCH-LOGICAL-c365t-10ec0a09c3a6ffd27b3fbe6b06463dc93706d6c988768c771586b53058b171cc3 |
IEDL.DBID | AIKHN |
ISSN | 0378-5173 |
IngestDate | Thu Sep 26 16:34:51 EDT 2024 Sat Sep 28 08:25:17 EDT 2024 Fri Feb 23 02:46:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dissolving microneedles Transdermal α-Arbutin Skin lightening Hydrogel forming microneedles |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-10ec0a09c3a6ffd27b3fbe6b06463dc93706d6c988768c771586b53058b171cc3 |
PMID | 32512227 |
ParticipantIDs | crossref_primary_10_1016_j_ijpharm_2020_119508 pubmed_primary_32512227 elsevier_sciencedirect_doi_10_1016_j_ijpharm_2020_119508 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-30 |
PublicationDateYYYYMMDD | 2020-08-30 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of pharmaceutics |
PublicationTitleAlternate | Int J Pharm |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Donnelly, Morrow, McCrudden, Alkilani, Vicente-Perez, O'Mahony, Gonzalez-Vazquez, McCarron, Woolfson (b0040) 2014; 90 Pamornpathomkul, Ngawhirunpat, Tekko, Vora, McCarthy, Donnelly (b0135) 2018; 121 Shin, Srivilai, Ibrahim, Strasinger, Hammell, Hassan, Stinchcomb (b0150) 2018; 19 Toth, Illés, Bauer, Nesztor, Szekeres, Zupko, Tombácz (b0155) 2012; 28 Won, Park (b0160) 2014; 13 Kim, Park, Prausnitz (b0085) 2012; 64 Liu, Kim, Jo, Kim, Hwang, Lee (b0105) 2015; 20 Gibas, Janik (b0060) 2010; 4 Mahato (b0110) 2017 Brekke, Oveland, Kolmannskog, Hammersborg, Wiig, Husby, Tenstad, Nedrebø (b0020) 2010; 299 Grubauer, Elias, Feingold (b0065) 1989; 30 Nguyen, Bozorg, Kim, Wieber, Birk, Lubda, Banga (b0130) 2018; 129 Cilurzo, F., Minghetti, P., Sinico, C., 2007. Newborn pig skin as model membrane in in vitro drug permeation studies: a technical note. AAPS PharmSciTech. 8, E94-E94. https://doi.org/10.1208/pt0804094. El-Say, El-Sawy (b0050) 2017; 528 Hong, Wu, Chen, Wu, Wei, Yuan (b0075) 2014; 6 Lee, Fakhraei Lahiji, Jang, Jang, Jung (b0095) 2019; 11 Gaaz, Bakar, Akhtar, Kadhum, Kadhum, Mohamad, Al-Amiery, McPhee (b0055) 2016; 20 Aung, Myat, Ngawhirunpat, Rojanarata, Patrojanasophon, Opanasopit, Pamornpathomkul (b0005) 2019; 819 Sccs, Degen, G.H., 2016. Opinion of the scientific committee on consumer safety (sccs)-opinion on the safety of the use of alpha-arbutin in cosmetic products. Regul. Toxicol. Pharmacol. 74, 75–76. https://doi.org/10.1016/j.yrtph.2015.11.008. Gupta, Gill, Andrews, Prausnitz (b0070) 2011; 154 Couteau, Coiffard (b0035) 2016; 3 Migas, Krauze-Baranowska (b0120) 2015; 13 Bhatnagar, Gadeela, Thathireddy, Venuganti (b0015) 2019; 131 Pizzo, Lundblad, Willis (b0140) 2016 Aung, Ngawhirunpat, Rojanarata, Patrojanasophon, Opanasopit, Pamornpathomkul (b0010) 2019; 21 Chang, Zheng, Yu, Than, Razina, Kang, Tian, Khanh, Liu, Chen, Xu (b0025) 2017; 29 Larrañeta, Moore, Vicente-Pérez, Gonzalez Vazquez, Lutton, Woolfson, Donnelly (b0090) 2014; 472 Maitra, Shukla (b0115) 2014; 4 Kim, Jung, Park (b0080) 2012; 33 Mohan, Sudhakar, Murthy, Raju (b0125) 2006; 55 Leone, Priester, Romeijn, Nejadnik, Monkare, O'Mahony, Jiskoot, Kersten, Bouwstra (b0100) 2019; 134 El-Say (b0045) 2016; 10 Mahato (10.1016/j.ijpharm.2020.119508_b0110) 2017 El-Say (10.1016/j.ijpharm.2020.119508_b0050) 2017; 528 Kim (10.1016/j.ijpharm.2020.119508_b0080) 2012; 33 Couteau (10.1016/j.ijpharm.2020.119508_b0035) 2016; 3 Larrañeta (10.1016/j.ijpharm.2020.119508_b0090) 2014; 472 Maitra (10.1016/j.ijpharm.2020.119508_b0115) 2014; 4 10.1016/j.ijpharm.2020.119508_b0145 Liu (10.1016/j.ijpharm.2020.119508_b0105) 2015; 20 Bhatnagar (10.1016/j.ijpharm.2020.119508_b0015) 2019; 131 Donnelly (10.1016/j.ijpharm.2020.119508_b0040) 2014; 90 Kim (10.1016/j.ijpharm.2020.119508_b0085) 2012; 64 Won (10.1016/j.ijpharm.2020.119508_b0160) 2014; 13 Hong (10.1016/j.ijpharm.2020.119508_b0075) 2014; 6 El-Say (10.1016/j.ijpharm.2020.119508_b0045) 2016; 10 Shin (10.1016/j.ijpharm.2020.119508_b0150) 2018; 19 Gaaz (10.1016/j.ijpharm.2020.119508_b0055) 2016; 20 Lee (10.1016/j.ijpharm.2020.119508_b0095) 2019; 11 Pamornpathomkul (10.1016/j.ijpharm.2020.119508_b0135) 2018; 121 Toth (10.1016/j.ijpharm.2020.119508_b0155) 2012; 28 Mohan (10.1016/j.ijpharm.2020.119508_b0125) 2006; 55 Aung (10.1016/j.ijpharm.2020.119508_b0010) 2019; 21 Gupta (10.1016/j.ijpharm.2020.119508_b0070) 2011; 154 Migas (10.1016/j.ijpharm.2020.119508_b0120) 2015; 13 Grubauer (10.1016/j.ijpharm.2020.119508_b0065) 1989; 30 Chang (10.1016/j.ijpharm.2020.119508_b0025) 2017; 29 Nguyen (10.1016/j.ijpharm.2020.119508_b0130) 2018; 129 10.1016/j.ijpharm.2020.119508_b0030 Pizzo (10.1016/j.ijpharm.2020.119508_b0140) 2016 Leone (10.1016/j.ijpharm.2020.119508_b0100) 2019; 134 Brekke (10.1016/j.ijpharm.2020.119508_b0020) 2010; 299 Aung (10.1016/j.ijpharm.2020.119508_b0005) 2019; 819 Gibas (10.1016/j.ijpharm.2020.119508_b0060) 2010; 4 |
References_xml | – volume: 131 start-page: 90 year: 2019 ident: b0015 article-title: Microneedle-based drug delivery: materials of construction publication-title: J. Chem. Sci. contributor: fullname: Venuganti – volume: 528 start-page: 675 year: 2017 end-page: 691 ident: b0050 article-title: Polymeric nanoparticles: promising platform for drug delivery publication-title: Int. J. Pharm. contributor: fullname: El-Sawy – volume: 64 start-page: 1547 year: 2012 end-page: 1568 ident: b0085 article-title: Microneedles for drug and vaccine delivery publication-title: Adv Drug Deliv. Rev. contributor: fullname: Prausnitz – volume: 28 start-page: 16638 year: 2012 end-page: 16646 ident: b0155 article-title: Designed polyelectrolyte shell on magnetite nanocore for dilution-resistant biocompatible magnetic fluids publication-title: Langmuir contributor: fullname: Tombácz – volume: 154 start-page: 148 year: 2011 end-page: 155 ident: b0070 article-title: Kinetics of skin resealing after insertion of microneedles in human subjects publication-title: J. Control. Release contributor: fullname: Prausnitz – volume: 129 start-page: 88 year: 2018 end-page: 103 ident: b0130 article-title: Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: Banga – volume: 20 start-page: 22833 year: 2016 end-page: 22847 ident: b0055 article-title: Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites publication-title: Molecules contributor: fullname: McPhee – volume: 4 start-page: 25 year: 2014 end-page: 31 ident: b0115 article-title: Cross-linking in hydrogels – a review publication-title: J. Polym. Sci. contributor: fullname: Shukla – volume: 4 start-page: 297 year: 2010 end-page: 304 ident: b0060 article-title: Review: synthetic polymer hydrogels for biomedical applications publication-title: Chem. Chem. Technol. contributor: fullname: Janik – volume: 3 start-page: 27 year: 2016 ident: b0035 article-title: Overview of skin whitening agents: drugs and cosmetic products publication-title: Cosmetics contributor: fullname: Coiffard – volume: 13 start-page: 1775 year: 2014 end-page: 1781 ident: b0160 article-title: Improvement of arbutin trans-epidermal delivery using radiofrequency microporation publication-title: Tropl. J. Pharm. Res. contributor: fullname: Park – volume: 472 start-page: 65 year: 2014 end-page: 73 ident: b0090 article-title: A proposed model membrane and test method for microneedle insertion studies publication-title: Int. J. Pharm. contributor: fullname: Donnelly – volume: 55 start-page: 513 year: 2006 end-page: 536 ident: b0125 article-title: Swelling properties of chemically crosslinked poly(acrylamide-co-maleic acid) hydrogels publication-title: Int. J. Polym. Mater. contributor: fullname: Raju – volume: 121 start-page: 200 year: 2018 end-page: 209 ident: b0135 article-title: Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery publication-title: Eur. J. Pharm. Sci. contributor: fullname: Donnelly – volume: 6 start-page: 191 year: 2014 end-page: 199 ident: b0075 article-title: Hydrogel microneedle arrays for transdermal drug delivery publication-title: Nano-Micro Lett. contributor: fullname: Yuan – volume: 134 start-page: 49 year: 2019 end-page: 59 ident: b0100 article-title: Hyaluronan-based dissolving microneedles with high antigen content for intradermal vaccination: formulation, physicochemical characterization and immunogenicity assessment publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: Bouwstra – volume: 819 start-page: 45 year: 2019 end-page: 50 ident: b0005 article-title: Evaluation of thermally crosslinked poly(acrylic acid-co-maleic acid) (pama)/poly(vinyl alcohol) (PVA) microneedle arrays publication-title: Key Eng. Mater. contributor: fullname: Pamornpathomkul – volume: 20 start-page: 16933 year: 2015 end-page: 16945 ident: b0105 article-title: Synthesis and biological evaluation of resveratrol derivatives as melanogenesis inhibitors publication-title: Molecules contributor: fullname: Lee – volume: 19 start-page: 2778 year: 2018 end-page: 2786 ident: b0150 article-title: The sensitivity of in vitro permeation tests to chemical penetration enhancer concentration changes in fentanyl transdermal delivery systems publication-title: AAPS PharmSciTech. contributor: fullname: Stinchcomb – volume: 13 start-page: 35 year: 2015 end-page: 40 ident: b0120 article-title: The significance of arbutin and its derivatives in therapy and cosmetics publication-title: Phytochem. Lett. contributor: fullname: Krauze-Baranowska – volume: 29 start-page: 1702243 year: 2017 ident: b0025 article-title: A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis publication-title: Adv. Mater. contributor: fullname: Xu – volume: 11 start-page: 402 year: 2019 ident: b0095 article-title: Micro-pillar integrated dissolving microneedles for enhanced transdermal drug delivery publication-title: Pharmaceutics contributor: fullname: Jung – volume: 30 start-page: 323 year: 1989 end-page: 333 ident: b0065 article-title: Transepidermal water loss: the signal for recovery of barrier structure and function publication-title: J Lipid Res. contributor: fullname: Feingold – volume: 33 start-page: 668 year: 2012 end-page: 678 ident: b0080 article-title: Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin publication-title: Biomaterial contributor: fullname: Park – volume: 299 start-page: H1546 year: 2010 end-page: 1553 ident: b0020 article-title: Isolation of interstitial fluid in skin during volume expansion: Evaluation of a method in pigs publication-title: Am. J. Physiol. Heart Circ. Physiol. contributor: fullname: Nedrebø – volume: 10 start-page: 825 year: 2016 end-page: 839 ident: b0045 article-title: Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper-Lin small composite design publication-title: Drug Des. Dev. Ther. contributor: fullname: El-Say – year: 2016 ident: b0140 article-title: Proteolysis in the Interstitial Space contributor: fullname: Willis – volume: 21 start-page: 25 year: 2019 ident: b0010 article-title: HPMC/PVP dissolving microneedles: a promising delivery platform to promote trans-epidermal delivery of alpha-arbutin for skin lightening publication-title: AAPS PharmSciTech. contributor: fullname: Pamornpathomkul – volume: 90 start-page: 641 year: 2014 end-page: 647 ident: b0040 article-title: Hydrogel-forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors publication-title: J. Photochem. Photobiol. contributor: fullname: Woolfson – start-page: 331 year: 2017 end-page: 353 ident: b0110 article-title: Chapter 13 – Microneedles in drug delivery publication-title: Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices contributor: fullname: Mahato – ident: 10.1016/j.ijpharm.2020.119508_b0030 doi: 10.1208/pt0804094 – volume: 129 start-page: 88 year: 2018 ident: 10.1016/j.ijpharm.2020.119508_b0130 article-title: Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.05.017 contributor: fullname: Nguyen – volume: 134 start-page: 49 year: 2019 ident: 10.1016/j.ijpharm.2020.119508_b0100 article-title: Hyaluronan-based dissolving microneedles with high antigen content for intradermal vaccination: formulation, physicochemical characterization and immunogenicity assessment publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.11.013 contributor: fullname: Leone – volume: 13 start-page: 35 year: 2015 ident: 10.1016/j.ijpharm.2020.119508_b0120 article-title: The significance of arbutin and its derivatives in therapy and cosmetics publication-title: Phytochem. Lett. doi: 10.1016/j.phytol.2015.05.015 contributor: fullname: Migas – volume: 33 start-page: 668 year: 2012 ident: 10.1016/j.ijpharm.2020.119508_b0080 article-title: Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin publication-title: Biomaterial doi: 10.1016/j.biomaterials.2011.09.074 contributor: fullname: Kim – volume: 29 start-page: 1702243 year: 2017 ident: 10.1016/j.ijpharm.2020.119508_b0025 article-title: A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis publication-title: Adv. Mater. doi: 10.1002/adma.201702243 contributor: fullname: Chang – volume: 819 start-page: 45 year: 2019 ident: 10.1016/j.ijpharm.2020.119508_b0005 article-title: Evaluation of thermally crosslinked poly(acrylic acid-co-maleic acid) (pama)/poly(vinyl alcohol) (PVA) microneedle arrays publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.819.45 contributor: fullname: Aung – volume: 472 start-page: 65 year: 2014 ident: 10.1016/j.ijpharm.2020.119508_b0090 article-title: A proposed model membrane and test method for microneedle insertion studies publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.05.042 contributor: fullname: Larrañeta – start-page: 331 year: 2017 ident: 10.1016/j.ijpharm.2020.119508_b0110 article-title: Chapter 13 – Microneedles in drug delivery contributor: fullname: Mahato – volume: 6 start-page: 191 year: 2014 ident: 10.1016/j.ijpharm.2020.119508_b0075 article-title: Hydrogel microneedle arrays for transdermal drug delivery publication-title: Nano-Micro Lett. doi: 10.1007/BF03353783 contributor: fullname: Hong – volume: 30 start-page: 323 year: 1989 ident: 10.1016/j.ijpharm.2020.119508_b0065 article-title: Transepidermal water loss: the signal for recovery of barrier structure and function publication-title: J Lipid Res. doi: 10.1016/S0022-2275(20)38361-9 contributor: fullname: Grubauer – volume: 20 start-page: 16933 year: 2015 ident: 10.1016/j.ijpharm.2020.119508_b0105 article-title: Synthesis and biological evaluation of resveratrol derivatives as melanogenesis inhibitors publication-title: Molecules doi: 10.3390/molecules200916933 contributor: fullname: Liu – year: 2016 ident: 10.1016/j.ijpharm.2020.119508_b0140 contributor: fullname: Pizzo – volume: 64 start-page: 1547 year: 2012 ident: 10.1016/j.ijpharm.2020.119508_b0085 article-title: Microneedles for drug and vaccine delivery publication-title: Adv Drug Deliv. Rev. doi: 10.1016/j.addr.2012.04.005 contributor: fullname: Kim – volume: 528 start-page: 675 year: 2017 ident: 10.1016/j.ijpharm.2020.119508_b0050 article-title: Polymeric nanoparticles: promising platform for drug delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.06.052 contributor: fullname: El-Say – volume: 13 start-page: 1775 year: 2014 ident: 10.1016/j.ijpharm.2020.119508_b0160 article-title: Improvement of arbutin trans-epidermal delivery using radiofrequency microporation publication-title: Tropl. J. Pharm. Res. doi: 10.4314/tjpr.v13i11.1 contributor: fullname: Won – volume: 10 start-page: 825 year: 2016 ident: 10.1016/j.ijpharm.2020.119508_b0045 article-title: Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper-Lin small composite design publication-title: Drug Des. Dev. Ther. doi: 10.2147/DDDT.S101900 contributor: fullname: El-Say – volume: 19 start-page: 2778 issue: 7 year: 2018 ident: 10.1016/j.ijpharm.2020.119508_b0150 article-title: The sensitivity of in vitro permeation tests to chemical penetration enhancer concentration changes in fentanyl transdermal delivery systems publication-title: AAPS PharmSciTech. doi: 10.1208/s12249-018-1130-0 contributor: fullname: Shin – volume: 154 start-page: 148 year: 2011 ident: 10.1016/j.ijpharm.2020.119508_b0070 article-title: Kinetics of skin resealing after insertion of microneedles in human subjects publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.05.021 contributor: fullname: Gupta – volume: 121 start-page: 200 year: 2018 ident: 10.1016/j.ijpharm.2020.119508_b0135 article-title: Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2018.05.009 contributor: fullname: Pamornpathomkul – volume: 90 start-page: 641 year: 2014 ident: 10.1016/j.ijpharm.2020.119508_b0040 article-title: Hydrogel-forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors publication-title: J. Photochem. Photobiol. doi: 10.1111/php.12209 contributor: fullname: Donnelly – volume: 4 start-page: 25 issue: 2 year: 2014 ident: 10.1016/j.ijpharm.2020.119508_b0115 article-title: Cross-linking in hydrogels – a review publication-title: J. Polym. Sci. contributor: fullname: Maitra – volume: 21 start-page: 25 year: 2019 ident: 10.1016/j.ijpharm.2020.119508_b0010 article-title: HPMC/PVP dissolving microneedles: a promising delivery platform to promote trans-epidermal delivery of alpha-arbutin for skin lightening publication-title: AAPS PharmSciTech. doi: 10.1208/s12249-019-1599-1 contributor: fullname: Aung – volume: 3 start-page: 27 issue: 3 year: 2016 ident: 10.1016/j.ijpharm.2020.119508_b0035 article-title: Overview of skin whitening agents: drugs and cosmetic products publication-title: Cosmetics doi: 10.3390/cosmetics3030027 contributor: fullname: Couteau – volume: 299 start-page: H1546 year: 2010 ident: 10.1016/j.ijpharm.2020.119508_b0020 article-title: Isolation of interstitial fluid in skin during volume expansion: Evaluation of a method in pigs publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01142.2009 contributor: fullname: Brekke – volume: 28 start-page: 16638 issue: 48 year: 2012 ident: 10.1016/j.ijpharm.2020.119508_b0155 article-title: Designed polyelectrolyte shell on magnetite nanocore for dilution-resistant biocompatible magnetic fluids publication-title: Langmuir doi: 10.1021/la302660p contributor: fullname: Toth – volume: 131 start-page: 90 year: 2019 ident: 10.1016/j.ijpharm.2020.119508_b0015 article-title: Microneedle-based drug delivery: materials of construction publication-title: J. Chem. Sci. doi: 10.1007/s12039-019-1666-x contributor: fullname: Bhatnagar – volume: 4 start-page: 297 year: 2010 ident: 10.1016/j.ijpharm.2020.119508_b0060 article-title: Review: synthetic polymer hydrogels for biomedical applications publication-title: Chem. Chem. Technol. doi: 10.23939/chcht04.04.297 contributor: fullname: Gibas – ident: 10.1016/j.ijpharm.2020.119508_b0145 doi: 10.1016/j.yrtph.2015.11.008 – volume: 11 start-page: 402 year: 2019 ident: 10.1016/j.ijpharm.2020.119508_b0095 article-title: Micro-pillar integrated dissolving microneedles for enhanced transdermal drug delivery publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11080402 contributor: fullname: Lee – volume: 55 start-page: 513 year: 2006 ident: 10.1016/j.ijpharm.2020.119508_b0125 article-title: Swelling properties of chemically crosslinked poly(acrylamide-co-maleic acid) hydrogels publication-title: Int. J. Polym. Mater. doi: 10.1080/00914030500208246 contributor: fullname: Mohan – volume: 20 start-page: 22833 issue: 12 year: 2016 ident: 10.1016/j.ijpharm.2020.119508_b0055 article-title: Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites publication-title: Molecules doi: 10.3390/molecules201219884 contributor: fullname: Gaaz |
SSID | ssj0006213 |
Score | 2.575316 |
Snippet | [Display omitted]
In this study, polyacrylic acid-co-maleic acid (PAMA) and polyvinyl alcohol (PVA) (1:4) were used to fabricate dissolving microneedles (DMNs)... In this study, polyacrylic acid-co-maleic acid (PAMA) and polyvinyl alcohol (PVA) (1:4) were used to fabricate dissolving microneedles (DMNs) and hydrogel... |
SourceID | crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 119508 |
SubjectTerms | Administration, Cutaneous Animals Arbutin - administration & dosage Arbutin - chemistry Arbutin - pharmacokinetics Dissolving microneedles Drug Carriers - chemistry Drug Delivery Systems Drug Stability Drug Storage Hydrogel forming microneedles Hydrogels Hydrophobic and Hydrophilic Interactions Permeability Polymethacrylic Acids - chemistry Polyvinyl Alcohol - chemistry Skin - metabolism Skin Absorption Skin lightening Skin Lightening Preparations - administration & dosage Skin Lightening Preparations - chemistry Skin Lightening Preparations - pharmacokinetics Swine Transdermal α-Arbutin |
Title | Fabrication, characterization and comparison of α-arbutin loaded dissolving and hydrogel forming microneedles |
URI | https://dx.doi.org/10.1016/j.ijpharm.2020.119508 https://www.ncbi.nlm.nih.gov/pubmed/32512227 |
Volume | 586 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oXrwY3-KD7MFwotB22217NESCGgmJkHBr9lWFYCGIBy7-J_-Iv8kZuoCeTDx2031kZ_PNN7M7M4RcIwd3dcQcDqfXCUABOTEzwgHqKgNtopAL9Hc8dni7H9wPwsEWaa5iYfBZpcX-AtOXaG1bGnY3G9PhsPHksmVheebj7V7ig92-A-rIj0tk5-buod1ZAzL3bZVkMJiwwyaQpzGqD0dTzBENlqKP-IFFUf9QUT_0T2uf7FniSG-KtR2QLZMfkmq3yDy9qNHeJpDqrUartLvJSb04InlLyJl1z9WoWmdpLoIwqcg1VeuKhHSS0a9PR8ywFFZOxxOhjaZ4cz8Zo_9h-fvLQs8mz2ZMkfVi4ys-7ctBGY7N2zHpt257zbZjSy04ivFwDmBslCvcRDHBs0z7kWSZNFwCYeFMK-AwLtdcJQBJPFZR5IUxlyFgRSy9yFOKnZBSDnOcESpFLIMERsuMG3ixSdBGybRkoQHqJb0yqa92N50WGTXS1VOzUWrFkaI40kIcZRKvZJD-OhopoP5fXU8Lma1nYsjnfD86__-gF2QXv5aOZfeSlOazd3MFzGQuK2S7_uFV7Pn7BsPT5GY |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPejF-H7rHownCm233bZHYySgQEiEhFuzryoEC0E88LP8I_4mZ-gCejLxuu3uNjvbb76Z3Zkh5AY5uKsj5nDYvU4ACsiJmREOUFcZaBOFXKC_o9Xm9V7w2A_7JXK_jIXBa5UW-wtMX6C1bana1axOBoPqs8sWheWZj6d7iQ92-yawgQT-zs27xlO9vQJk7tsqyWAwYYd1IE91WBkMJ5gjGixFH_EDi6L-oaJ-6J_aLtmxxJHeFd-2R0om3ye3nSLz9LxMu-tAqvcyvaWddU7q-QHJa0JOrXuuTNUqS3MRhElFrqlaVSSk44x-fTpiiqWwcjoaC200xZP78Qj9D4vXX-d6On4xI4qsFxvf8GpfDspwZN4PSa_20L2vO7bUgqMYD2cAxka5wk0UEzzLtB9JlknDJRAWzrQCDuNyzVUCkMRjFUVeGHMZAlbE0os8pdgR2chhjhNCpYhlkMBomXEDLzYJ2iiZliw0QL2kd0oqy9VNJ0VGjXR51WyYWnGkKI60EMcpiZcySH9tjRRQ_6-ux4XMVjMx5HO-H539f9BrslXvtppps9F-Oifb-GThZHYvyMZs-mEugaXM5JXdhd9MBOZa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication%2C+characterization+and+comparison+of+%CE%B1-arbutin+loaded+dissolving+and+hydrogel+forming+microneedles&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Aung%2C+Nway+Nway&rft.au=Ngawhirunpat%2C+Tanasait&rft.au=Rojanarata%2C+Theerasak&rft.au=Patrojanasophon%2C+Prasopchai&rft.date=2020-08-30&rft.issn=0378-5173&rft.volume=586&rft.spage=119508&rft_id=info:doi/10.1016%2Fj.ijpharm.2020.119508&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijpharm_2020_119508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon |