Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach
Summary A Bayesian statistical framework was previously developed for modal identification of well‐separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal...
Saved in:
Published in | Structural control and health monitoring Vol. 22; no. 3; pp. 395 - 416 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Pavia
Blackwell Publishing Ltd
01.03.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
A Bayesian statistical framework was previously developed for modal identification of well‐separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal parameters using an iterative procedure. As a sequel to the development, this paper investigates the posterior uncertainty of the modal parameters in terms of their covariance matrix, which is mathematically equal to the inverse of the Hessian of the negative log‐likelihood function evaluated at the most probable value. Computational issues arising from the norm constraint of the global mode shape are addressed. Analytical expressions are derived for the Hessian so that it can be evaluated accurately and efficiently without resorting to finite difference. The proposed method is verified using synthetic and laboratory data. It is also applied to field test data, which reveals some challenges in operational modal analysis incorporating multiple setups. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Summary A Bayesian statistical framework was previously developed for modal identification of well-separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal parameters using an iterative procedure. As a sequel to the development, this paper investigates the posterior uncertainty of the modal parameters in terms of their covariance matrix, which is mathematically equal to the inverse of the Hessian of the negative log-likelihood function evaluated at the most probable value. Computational issues arising from the norm constraint of the global mode shape are addressed. Analytical expressions are derived for the Hessian so that it can be evaluated accurately and efficiently without resorting to finite difference. The proposed method is verified using synthetic and laboratory data. It is also applied to field test data, which reveals some challenges in operational modal analysis incorporating multiple setups. Copyright © 2014 John Wiley & Sons, Ltd. A Bayesian statistical framework was previously developed for modal identification of well-separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal parameters using an iterative procedure. As a sequel to the development, this paper investigates the posterior uncertainty of the modal parameters in terms of their covariance matrix, which is mathematically equal to the inverse of the Hessian of the negative log-likelihood function evaluated at the most probable value. Computational issues arising from the norm constraint of the global mode shape are addressed. Analytical expressions are derived for the Hessian so that it can be evaluated accurately and efficiently without resorting to finite difference. The proposed method is verified using synthetic and laboratory data. It is also applied to field test data, which reveals some challenges in operational modal analysis incorporating multiple setups. Copyright copyright 2014 John Wiley & Sons, Ltd. Summary A Bayesian statistical framework was previously developed for modal identification of well‐separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal parameters using an iterative procedure. As a sequel to the development, this paper investigates the posterior uncertainty of the modal parameters in terms of their covariance matrix, which is mathematically equal to the inverse of the Hessian of the negative log‐likelihood function evaluated at the most probable value. Computational issues arising from the norm constraint of the global mode shape are addressed. Analytical expressions are derived for the Hessian so that it can be evaluated accurately and efficiently without resorting to finite difference. The proposed method is verified using synthetic and laboratory data. It is also applied to field test data, which reveals some challenges in operational modal analysis incorporating multiple setups. Copyright © 2014 John Wiley & Sons, Ltd. |
Author | Lam, Heung-Fai Zhang, Feng-Liang Au, Siu-Kui |
Author_xml | – sequence: 1 givenname: Feng-Liang surname: Zhang fullname: Zhang, Feng-Liang email: Correspondence to: Feng-Liang Zhang, Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, China. ;, fengliangzhang@hotmail.comfengliangzhang@tongji.edu.cn organization: Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, China – sequence: 2 givenname: Siu-Kui surname: Au fullname: Au, Siu-Kui organization: Center for Engineering Dynamics and Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK – sequence: 3 givenname: Heung-Fai surname: Lam fullname: Lam, Heung-Fai organization: Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon, Hong Kong |
BookMark | eNpdkE9P20AQxVeISkBaiY9giQsXp-v97yNEJaBGFFSqHlebzQQ2cXZdj63W355NU4HUy8yT5jdvNO-MHMcUgZDzik4rStln7P20Uro-IqeVFLJkTPHjNy3lCTlD3GRSMSNPyfYKERBDfC6G6KHrXYj9WIRYpBY614cUXVPs0ipXl-WIAfPUp65N-3He2w1NH9oGCoR-aLEY_rq54tqNgMHFwrVtl5x_-Ug-rF2D8Olfn5AfN1-eZrfl4tv8bna1KD1Xsi655qZeCsdAUrF0wmgKXuharZhmdC2V51W9ZJKD9LqqBRNmtQbQxq9rAwb4hFwefPPZXwNgb3cBPTSNi5AGtJVStTFCGpPRi__QTRq6_GemtFJGcE1lpsoD9Ts0MNq2CzvXjbaidh-5zZHbfeT2-9Ns39_5gD38eeNdt7VKcy3tz_u5vX_Q8qu6frSUvwIzzofV |
CitedBy_id | crossref_primary_10_1016_j_ymssp_2019_03_009 crossref_primary_10_1142_S0219455419400108 crossref_primary_10_1016_j_engstruct_2024_118000 crossref_primary_10_1061_AJRUA6_0000843 crossref_primary_10_1002_stc_2759 crossref_primary_10_1016_j_ymssp_2020_107016 crossref_primary_10_1002_stc_2175 crossref_primary_10_1016_j_ymssp_2019_106376 crossref_primary_10_1016_j_ymssp_2021_108205 crossref_primary_10_1142_S0219455415500522 crossref_primary_10_1002_stc_1840 crossref_primary_10_1016_j_ymssp_2020_107078 crossref_primary_10_1016_j_ymssp_2022_108985 crossref_primary_10_1016_j_ymssp_2020_106663 crossref_primary_10_1016_j_ymssp_2020_107261 crossref_primary_10_1016_j_ymssp_2020_107382 crossref_primary_10_1016_j_ymssp_2017_09_017 crossref_primary_10_1016_j_engstruct_2017_02_003 crossref_primary_10_1016_j_jsv_2023_117774 crossref_primary_10_12989_sss_2016_17_3_471 crossref_primary_10_1155_2023_6661720 crossref_primary_10_1061_JBENF2_BEENG_6235 crossref_primary_10_1002_stc_1955 crossref_primary_10_1002_stc_2089 crossref_primary_10_1002_stc_2121 crossref_primary_10_1016_j_ymssp_2022_109153 crossref_primary_10_1002_stc_2383 crossref_primary_10_1016_j_cma_2023_116680 crossref_primary_10_1016_j_engstruct_2016_11_048 crossref_primary_10_1016_j_ymssp_2019_106306 crossref_primary_10_1111_mice_12663 crossref_primary_10_1016_j_ymssp_2015_04_023 crossref_primary_10_1016_j_measurement_2020_108742 crossref_primary_10_1177_1475921718798769 crossref_primary_10_1080_13632469_2016_1138168 crossref_primary_10_1002_stc_1816 crossref_primary_10_1016_j_cma_2017_05_021 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
DBID | BSCLL 7ST 8FD C1K FR3 KR7 SOI 7SC JQ2 L7M L~C L~D |
DOI | 10.1002/stc.1679 |
DatabaseName | Istex Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | 416 |
ExternalDocumentID | 3958297401 STC1679 ark_67375_WNG_NP75K6BQ_0 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT 1OB 7ST 8FD C1K FR3 KR7 SOI 7SC JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3659-37389b4a2e504ba4870ec4796d2720f56c319b253e5c7194248dfee78cf98e8e3 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Sat Aug 17 04:03:54 EDT 2024 Thu Oct 10 16:53:20 EDT 2024 Sat Aug 24 00:50:20 EDT 2024 Wed Oct 30 09:53:39 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3659-37389b4a2e504ba4870ec4796d2720f56c319b253e5c7194248dfee78cf98e8e3 |
Notes | ArticleID:STC1679 ark:/67375/WNG-NP75K6BQ-0 istex:DBF2C82A5E67A64E5E7750D8A8AB8D3667EC4488 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1002/stc.1679 |
PQID | 1766843705 |
PQPubID | 2034347 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_1669884588 proquest_journals_1766843705 wiley_primary_10_1002_stc_1679_STC1679 istex_primary_ark_67375_WNG_NP75K6BQ_0 |
PublicationCentury | 2000 |
PublicationDate | 2015-03 March 2015 20150301 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03 |
PublicationDecade | 2010 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationTitleAlternate | Struct. Control Health Monit |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Papadimitriou C, Beck JL, Katafygiotis LS. Updating robust reliability using structural test data. Probabilistic Engineering Mechanics 2001; 16(2):103-113. Ivanovic SS, Trifunac MD, Todorovska MI. Ambient vibration tests of structures-a review. ISET Journal of Earthquake Technology 2000; 37:165-197. Au SK. Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value. Mechanical Systems and Signal Processing 2012; 26:60-75. Brownjohn JMW, Moyo P, Omenzetter P, Chakraborty S. Lessons from monitoring the performance of highway bridge. Structural Control and Health Monitoring 2005; 12:227-244. Au SK, Zhang FL. On assessing the posterior mode shape uncertainty in ambient modal identification. Probabilistic Engineering Mechanics 2011; 26(3):427-434. Au SK. Fast Bayesian ambient modal identification in the frequency domain, part II: posterior uncertainty. Mechanical Systems and Signal Processing 2012; 26:76-90. Parloo E, Guillaume P, Cauberghe B. Maximum likelihood identification of non-stationary operational data. Journal of Sound and Vibration 2003; 268(5):971-991. Au SK, Zhang FL. Fast Bayesian ambient modal identification incorporating multiple setups. Journal of Engineering Mechanics, ASCE 2012; 138(7):800-815. Brownjohn JMW, Magalhaes F, Caetano E, Cunha A. Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Engineering Structures 2010; 32(8):2003-2018. Jaynes ET. Probability theory: The logic of science. Cambridge Univ. Press: UK, 2003. Au SK. Fast Bayesian FFT method for ambient modal identification with separated modes. Journal of Engineering Mechanics, ASCE 2011; 137(3):214-226. Javier Cara F, Jesús J, Enrique A. Estimating the modal parameters from multiple measurement setups using a joint state space model. Mechanical Systems and Signal Processing 2014; 43:171-191. Schoukens J, Pintelon R. Identification of linear systems: a practical guideline for accurate modelling. Pergamon Press: London, 1991. Yuen KV, Katafygiotis LS. Bayesian fast Fourier transform approach for modal updating using ambient data. Advance in Structural Engineering 2003; 6(2):81-95. Brownjohn JMW, De Stefano A, Xu YL, Wenzel H, Aktan AE. Vibration-based monitoring of civil infrastructure: challenges and successes. Journal of Civil Structural Health Monitoring 2011; 1(3-4):79-95. Yuen KV, Katafygiotis LS, Beck JL. Spectral density estimation of stochastic vector processes. Probabilistic Engineering Mechanics 2002; 17(3):265-272. Mevel L, Basseville M, Benveniste A, Goursat M. Merging sensor data from multiple measurement set-ups for non-stationary subspace-based modal analysis. Journal of Sound and Vibration 2002; 249(4):719-741. Au SK. Connecting Bayesian and Frequentist quantification of parameter uncertainty in system identification. Mechanical Systems and Signal Processing 2012; 29:328-342. Ni YQ, Xia Y, Liao WY, Ko JM. Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower. Structural Control and Health Monitoring 2009; 16(1):73-98. Min KW, Kim J, Park SA, Park CS. Ambient vibration testing for story stiffness estimation of a heritage timber building. The Scientific World Journal 2013; 2013:1-9, Article ID 198483. Au SK. Assembling mode shapes by least squares. Mechanical Systems and Signal Processing 2011; 25(1):163-179. Au SK, Zhang FL, Ni YC. Bayesian operational modal analysis: theory, computation, practice. Computers and Structures 2013; 126:3-15. Beck JL. Bayesian system identification based on probability logic. Structural Control and Health Monitoring 2010; 17:825-847. Zhang FL, Au SK. Erratum for Fast Bayesian FFT method for ambient modal identification with separated modes by Siu-Kui Au. Journal of Engineering Mechanics, ASCE 2013; 139(4):545-545. 2002; 17 2011; 137 2010; 32 2011; 1 2011 2010; 17 2013; 126 1998 2009 2003 1991 2014; 43 1999 2000; 37 2013; 2013 2003; 6 2013; 139 2002; 249 2012; 29 2001; 16 2011; 26 2011; 25 2012; 26 2003; 268 2012; 138 2009; 16 2005; 12 |
References_xml | – year: 2011 – volume: 43 start-page: 171 year: 2014 end-page: 191 article-title: Estimating the modal parameters from multiple measurement setups using a joint state space model publication-title: Mechanical Systems and Signal Processing – volume: 138 start-page: 800 issue: 7 year: 2012 end-page: 815 article-title: Fast Bayesian ambient modal identification incorporating multiple setups publication-title: Journal of Engineering Mechanics, ASCE – year: 2009 – volume: 268 start-page: 971 issue: 5 year: 2003 end-page: 991 article-title: Maximum likelihood identification of non‐stationary operational data publication-title: Journal of Sound and Vibration – volume: 1 start-page: 79 issue: 3‐4 year: 2011 end-page: 95 article-title: Vibration‐based monitoring of civil infrastructure: challenges and successes publication-title: Journal of Civil Structural Health Monitoring – volume: 139 start-page: 545 issue: 4 year: 2013 end-page: 545 article-title: Erratum for Fast Bayesian FFT method for ambient modal identification with separated modes by Siu‐Kui Au publication-title: Journal of Engineering Mechanics, ASCE – volume: 16 start-page: 103 issue: 2 year: 2001 end-page: 113 article-title: Updating robust reliability using structural test data publication-title: Probabilistic Engineering Mechanics – year: 2003 – volume: 26 start-page: 60 year: 2012 end-page: 75 article-title: Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value publication-title: Mechanical Systems and Signal Processing – volume: 126 start-page: 3 year: 2013 end-page: 15 article-title: Bayesian operational modal analysis: theory, computation, practice publication-title: Computers and Structures – volume: 16 start-page: 73 issue: 1 year: 2009 end-page: 98 article-title: Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower publication-title: Structural Control and Health Monitoring – volume: 29 start-page: 328 year: 2012 end-page: 342 article-title: Connecting Bayesian and Frequentist quantification of parameter uncertainty in system identification publication-title: Mechanical Systems and Signal Processing – volume: 12 start-page: 227 year: 2005 end-page: 244 article-title: Lessons from monitoring the performance of highway bridge publication-title: Structural Control and Health Monitoring – volume: 17 start-page: 825 year: 2010 end-page: 847 article-title: Bayesian system identification based on probability logic publication-title: Structural Control and Health Monitoring – year: 1998 – volume: 137 start-page: 214 issue: 3 year: 2011 end-page: 226 article-title: Fast Bayesian FFT method for ambient modal identification with separated modes publication-title: Journal of Engineering Mechanics, ASCE – volume: 25 start-page: 163 issue: 1 year: 2011 end-page: 179 article-title: Assembling mode shapes by least squares publication-title: Mechanical Systems and Signal Processing – volume: 2013 start-page: 1 year: 2013 end-page: 9 article-title: Ambient vibration testing for story stiffness estimation of a heritage timber building publication-title: The Scientific World Journal – volume: 37 start-page: 165 year: 2000 end-page: 197 article-title: Ambient vibration tests of structures–a review publication-title: ISET Journal of Earthquake Technology – volume: 17 start-page: 265 issue: 3 year: 2002 end-page: 272 article-title: Spectral density estimation of stochastic vector processes publication-title: Probabilistic Engineering Mechanics – volume: 249 start-page: 719 issue: 4 year: 2002 end-page: 741 article-title: Merging sensor data from multiple measurement set‐ups for non‐stationary subspace‐based modal analysis publication-title: Journal of Sound and Vibration – volume: 26 start-page: 427 issue: 3 year: 2011 end-page: 434 article-title: On assessing the posterior mode shape uncertainty in ambient modal identification publication-title: Probabilistic Engineering Mechanics – year: 1991 – volume: 6 start-page: 81 issue: 2 year: 2003 end-page: 95 article-title: Bayesian fast Fourier transform approach for modal updating using ambient data publication-title: Advance in Structural Engineering – volume: 32 start-page: 2003 issue: 8 year: 2010 end-page: 2018 article-title: Ambient vibration re‐testing and operational modal analysis of the Humber Bridge publication-title: Engineering Structures – volume: 26 start-page: 76 year: 2012 end-page: 90 article-title: Fast Bayesian ambient modal identification in the frequency domain, part II: posterior uncertainty publication-title: Mechanical Systems and Signal Processing – year: 1999 |
SSID | ssj0026285 |
Score | 2.305942 |
Snippet | Summary
A Bayesian statistical framework was previously developed for modal identification of well‐separated modes incorporating ambient vibration data, that... Summary A Bayesian statistical framework was previously developed for modal identification of well-separated modes incorporating ambient vibration data, that... A Bayesian statistical framework was previously developed for modal identification of well-separated modes incorporating ambient vibration data, that is,... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 395 |
SubjectTerms | ambient modal identification Bayesian Bayesian analysis field test Inverse Mathematical analysis mode shape assembly Multiple setups Norms operational modal analysis posterior uncertainty Strategy Uncertainty Vibration |
Title | Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach |
URI | https://api.istex.fr/ark:/67375/WNG-NP75K6BQ-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.1679 https://www.proquest.com/docview/1766843705 https://search.proquest.com/docview/1669884588 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUqTu0BaAtiKa1cqeotSzax4-RYaClq1RWfAomDZTsTCa2aXW0SCfrrO2MnW-BUcUkixY6tjCd-9rx5YewTYtZC4FQSVQbXqoJ4NGYCSZRkVqUOXJV6UZ9f0-z4Uvy4ltc9q5JyYYI-xGrDjTzDf6_JwY1t9v-JhjatG1MMAT-_k1QRm-vr2Uo5KqHMQC-VKmSEQ1YOurNxsj9URDhKb_LuEbZ8iFD9FHO0wW6GzgVmyWzctXbs_jzRbXxe7zfZeo88-ZcwVF6zF1C_Ya8e6BG-ZbMQAsZrjtNdIAu09_y25vMFLPttQ_57XuLR9GomnOQdghoy1RsIiryBtls0vPNPM_zA3APla_JBxHyLXR59uzg8jvq_MUQO7VVEJIFUWGESkLGwBhc6MTihiqykUG4lM4febBOZgnRqggNA5GUFoHJXFTnkkG6ztXpeww7jsbGyLKVKSydEUhUWYYayPuSYgUlhxD57y-hFUNzQZjkjApqS-mr6XU9PlPyZHZzqeMT2BtPp3vcaTZKXuUhVLEfs4-o2eg2FQkwN8w7LZFmR55Sli215O63aCjrOiUYLabKQPr84pPPu_xZ8x14iqpKBqLbH1tplB-8RubT2gx-jfwFb8-v8 |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHpRyAA2_EQgEjIW7ZpokdJ-JEC2Wh7YrHVvRQybKdiYRWZFe7iUT59czEyVI4IS5JpDixlfHEY8_MZ4AXZLMWkoaSqLI0V5UcR2P3MImSzOnUo6_SDupzMs0mp_LDmTrbgldDLkzgQ2wW3Fgzuv81KzgvSO_-poauGz9mJ8IVuEranvL2BW8-b9hRCecGdrBUqSLqtGogz8bJ7vAkGaT8LX_8YV1etlG7QebwFpwPzQuxJfNx27ix__kXufE_238bbvbGp3gdessd2ML6Lty4hCS8B_PgBaZrQSNeiBdoLsS3WiyWuOpXDsX3RUlH2wNNBBMeAhCZnxtiFMUam3a5Fm33Niv27QVyyqYYOOb34fTw7exgEvUbMkSeRFZETEEqnLQJqlg6S3OdGL3URVayN7dSmSeFdolKUXm9R31A5mWFqHNfFTnmmD6A7XpR40MQsXWqLJVOSy9lUhWOLA3tOq9jhjbFEbzsRGOWAbph7GrOMWhama_Td2b6UaujbP-TiUewM8jO9Oq3Nky9zGWqYzWC55vbpDjsDbE1Lloqk2VFnnOiLtXVCWpTV0A5J4YkZFhC5svsgM-P_rXgM7g2mZ0cm-P306PHcJ2MLBXi1nZgu1m1-IQMmcY97TrsLw9H8BY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOvBELLRgJccs2TfxIjvSxFAqrAq2o1INlOxMJrciudhOJ9tczYydLywlxSSLFjq2MJ_7s-eYLY28Qs5YCp5KktrhWFcSjsTuQJZlyOvfg6zyI-nyeqsNT8fFMnvWsSsqFifoQ6w038ozwvSYHX1T19h_R0FXrxxRDuMluCZWnROfa_7qWjsooNTBopQqZ4JiVg_Bsmm0PNRGP0qv8dQ1cXoWoYY6Z3GfnQ-8itWQ27lo39pd_CTf-X_cfsHs99OTv4lh5yG5A84jdvSJI-JjNYgwYrznOd5Et0F7wHw2fL2DZ7xvyn_MKj7aXM-Gk7xDlkKnewFDkK2i7xYp34WmW79oLoIRNPqiYP2Gnk4OTvcOk_x1D4tFgZUIaSKUTNgOZCmdxpZOCF7pUFcVya6k8urPLZA7S6x0cAaKoagBd-LosoID8Kdto5g08Yzy1TlaV1Hnlhcjq0iHO0C7EHBXYHEbsbbCMWUTJDWOXM2KgaWm-T9-b6bGWR2r3i0lHbHMwnemdb2VI87IQuU7liL1e30a3oViIbWDeYRmlyqKgNF1sK9hp3VYUcs4MWsiQhcy3kz06P__Xgq_Y7eP9ifn0YXr0gt1BhCUjaW2TbbTLDrYQxbTuZRiuvwFYO-7F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+uncertainty+in+operational+modal+analysis+incorporating+multiple+setups+using+a+Bayesian+approach&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Zhang%2C+Feng%E2%80%90Liang&rft.au=Au%2C+Siu%E2%80%90Kui&rft.au=Lam%2C+Heung%E2%80%90Fai&rft.date=2015-03-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=22&rft.issue=3&rft.spage=395&rft.epage=416&rft_id=info:doi/10.1002%2Fstc.1679&rft.externalDBID=10.1002%252Fstc.1679&rft.externalDocID=STC1679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |