Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach

Summary A Bayesian statistical framework was previously developed for modal identification of well‐separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 22; no. 3; pp. 395 - 416
Main Authors Zhang, Feng-Liang, Au, Siu-Kui, Lam, Heung-Fai
Format Journal Article
LanguageEnglish
Published Pavia Blackwell Publishing Ltd 01.03.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary A Bayesian statistical framework was previously developed for modal identification of well‐separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal parameters using an iterative procedure. As a sequel to the development, this paper investigates the posterior uncertainty of the modal parameters in terms of their covariance matrix, which is mathematically equal to the inverse of the Hessian of the negative log‐likelihood function evaluated at the most probable value. Computational issues arising from the norm constraint of the global mode shape are addressed. Analytical expressions are derived for the Hessian so that it can be evaluated accurately and efficiently without resorting to finite difference. The proposed method is verified using synthetic and laboratory data. It is also applied to field test data, which reveals some challenges in operational modal analysis incorporating multiple setups. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList Summary A Bayesian statistical framework was previously developed for modal identification of well-separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal parameters using an iterative procedure. As a sequel to the development, this paper investigates the posterior uncertainty of the modal parameters in terms of their covariance matrix, which is mathematically equal to the inverse of the Hessian of the negative log-likelihood function evaluated at the most probable value. Computational issues arising from the norm constraint of the global mode shape are addressed. Analytical expressions are derived for the Hessian so that it can be evaluated accurately and efficiently without resorting to finite difference. The proposed method is verified using synthetic and laboratory data. It is also applied to field test data, which reveals some challenges in operational modal analysis incorporating multiple setups. Copyright © 2014 John Wiley & Sons, Ltd.
A Bayesian statistical framework was previously developed for modal identification of well-separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal parameters using an iterative procedure. As a sequel to the development, this paper investigates the posterior uncertainty of the modal parameters in terms of their covariance matrix, which is mathematically equal to the inverse of the Hessian of the negative log-likelihood function evaluated at the most probable value. Computational issues arising from the norm constraint of the global mode shape are addressed. Analytical expressions are derived for the Hessian so that it can be evaluated accurately and efficiently without resorting to finite difference. The proposed method is verified using synthetic and laboratory data. It is also applied to field test data, which reveals some challenges in operational modal analysis incorporating multiple setups. Copyright copyright 2014 John Wiley & Sons, Ltd.
Summary A Bayesian statistical framework was previously developed for modal identification of well‐separated modes incorporating ambient vibration data, that is, operational modal analysis, from multiple setups. An efficient strategy was developed for evaluating the most probable value of the modal parameters using an iterative procedure. As a sequel to the development, this paper investigates the posterior uncertainty of the modal parameters in terms of their covariance matrix, which is mathematically equal to the inverse of the Hessian of the negative log‐likelihood function evaluated at the most probable value. Computational issues arising from the norm constraint of the global mode shape are addressed. Analytical expressions are derived for the Hessian so that it can be evaluated accurately and efficiently without resorting to finite difference. The proposed method is verified using synthetic and laboratory data. It is also applied to field test data, which reveals some challenges in operational modal analysis incorporating multiple setups. Copyright © 2014 John Wiley & Sons, Ltd.
Author Lam, Heung-Fai
Zhang, Feng-Liang
Au, Siu-Kui
Author_xml – sequence: 1
  givenname: Feng-Liang
  surname: Zhang
  fullname: Zhang, Feng-Liang
  email: Correspondence to: Feng-Liang Zhang, Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, China. ;, fengliangzhang@hotmail.comfengliangzhang@tongji.edu.cn
  organization: Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Siu-Kui
  surname: Au
  fullname: Au, Siu-Kui
  organization: Center for Engineering Dynamics and Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
– sequence: 3
  givenname: Heung-Fai
  surname: Lam
  fullname: Lam, Heung-Fai
  organization: Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon, Hong Kong
BookMark eNpdkE9P20AQxVeISkBaiY9giQsXp-v97yNEJaBGFFSqHlebzQQ2cXZdj63W355NU4HUy8yT5jdvNO-MHMcUgZDzik4rStln7P20Uro-IqeVFLJkTPHjNy3lCTlD3GRSMSNPyfYKERBDfC6G6KHrXYj9WIRYpBY614cUXVPs0ipXl-WIAfPUp65N-3He2w1NH9oGCoR-aLEY_rq54tqNgMHFwrVtl5x_-Ug-rF2D8Olfn5AfN1-eZrfl4tv8bna1KD1Xsi655qZeCsdAUrF0wmgKXuharZhmdC2V51W9ZJKD9LqqBRNmtQbQxq9rAwb4hFwefPPZXwNgb3cBPTSNi5AGtJVStTFCGpPRi__QTRq6_GemtFJGcE1lpsoD9Ts0MNq2CzvXjbaidh-5zZHbfeT2-9Ns39_5gD38eeNdt7VKcy3tz_u5vX_Q8qu6frSUvwIzzofV
CitedBy_id crossref_primary_10_1016_j_ymssp_2019_03_009
crossref_primary_10_1142_S0219455419400108
crossref_primary_10_1016_j_engstruct_2024_118000
crossref_primary_10_1061_AJRUA6_0000843
crossref_primary_10_1002_stc_2759
crossref_primary_10_1016_j_ymssp_2020_107016
crossref_primary_10_1002_stc_2175
crossref_primary_10_1016_j_ymssp_2019_106376
crossref_primary_10_1016_j_ymssp_2021_108205
crossref_primary_10_1142_S0219455415500522
crossref_primary_10_1002_stc_1840
crossref_primary_10_1016_j_ymssp_2020_107078
crossref_primary_10_1016_j_ymssp_2022_108985
crossref_primary_10_1016_j_ymssp_2020_106663
crossref_primary_10_1016_j_ymssp_2020_107261
crossref_primary_10_1016_j_ymssp_2020_107382
crossref_primary_10_1016_j_ymssp_2017_09_017
crossref_primary_10_1016_j_engstruct_2017_02_003
crossref_primary_10_1016_j_jsv_2023_117774
crossref_primary_10_12989_sss_2016_17_3_471
crossref_primary_10_1155_2023_6661720
crossref_primary_10_1061_JBENF2_BEENG_6235
crossref_primary_10_1002_stc_1955
crossref_primary_10_1002_stc_2089
crossref_primary_10_1002_stc_2121
crossref_primary_10_1016_j_ymssp_2022_109153
crossref_primary_10_1002_stc_2383
crossref_primary_10_1016_j_cma_2023_116680
crossref_primary_10_1016_j_engstruct_2016_11_048
crossref_primary_10_1016_j_ymssp_2019_106306
crossref_primary_10_1111_mice_12663
crossref_primary_10_1016_j_ymssp_2015_04_023
crossref_primary_10_1016_j_measurement_2020_108742
crossref_primary_10_1177_1475921718798769
crossref_primary_10_1080_13632469_2016_1138168
crossref_primary_10_1002_stc_1816
crossref_primary_10_1016_j_cma_2017_05_021
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
7ST
8FD
C1K
FR3
KR7
SOI
7SC
JQ2
L7M
L~C
L~D
DOI 10.1002/stc.1679
DatabaseName Istex
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage 416
ExternalDocumentID 3958297401
STC1679
ark_67375_WNG_NP75K6BQ_0
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
1OB
7ST
8FD
C1K
FR3
KR7
SOI
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3659-37389b4a2e504ba4870ec4796d2720f56c319b253e5c7194248dfee78cf98e8e3
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Sat Aug 17 04:03:54 EDT 2024
Thu Oct 10 16:53:20 EDT 2024
Sat Aug 24 00:50:20 EDT 2024
Wed Oct 30 09:53:39 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3659-37389b4a2e504ba4870ec4796d2720f56c319b253e5c7194248dfee78cf98e8e3
Notes ArticleID:STC1679
ark:/67375/WNG-NP75K6BQ-0
istex:DBF2C82A5E67A64E5E7750D8A8AB8D3667EC4488
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1002/stc.1679
PQID 1766843705
PQPubID 2034347
PageCount 22
ParticipantIDs proquest_miscellaneous_1669884588
proquest_journals_1766843705
wiley_primary_10_1002_stc_1679_STC1679
istex_primary_ark_67375_WNG_NP75K6BQ_0
PublicationCentury 2000
PublicationDate 2015-03
March 2015
20150301
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03
PublicationDecade 2010
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationTitleAlternate Struct. Control Health Monit
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Papadimitriou C, Beck JL, Katafygiotis LS. Updating robust reliability using structural test data. Probabilistic Engineering Mechanics 2001; 16(2):103-113.
Ivanovic SS, Trifunac MD, Todorovska MI. Ambient vibration tests of structures-a review. ISET Journal of Earthquake Technology 2000; 37:165-197.
Au SK. Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value. Mechanical Systems and Signal Processing 2012; 26:60-75.
Brownjohn JMW, Moyo P, Omenzetter P, Chakraborty S. Lessons from monitoring the performance of highway bridge. Structural Control and Health Monitoring 2005; 12:227-244.
Au SK, Zhang FL. On assessing the posterior mode shape uncertainty in ambient modal identification. Probabilistic Engineering Mechanics 2011; 26(3):427-434.
Au SK. Fast Bayesian ambient modal identification in the frequency domain, part II: posterior uncertainty. Mechanical Systems and Signal Processing 2012; 26:76-90.
Parloo E, Guillaume P, Cauberghe B. Maximum likelihood identification of non-stationary operational data. Journal of Sound and Vibration 2003; 268(5):971-991.
Au SK, Zhang FL. Fast Bayesian ambient modal identification incorporating multiple setups. Journal of Engineering Mechanics, ASCE 2012; 138(7):800-815.
Brownjohn JMW, Magalhaes F, Caetano E, Cunha A. Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Engineering Structures 2010; 32(8):2003-2018.
Jaynes ET. Probability theory: The logic of science. Cambridge Univ. Press: UK, 2003.
Au SK. Fast Bayesian FFT method for ambient modal identification with separated modes. Journal of Engineering Mechanics, ASCE 2011; 137(3):214-226.
Javier Cara F, Jesús J, Enrique A. Estimating the modal parameters from multiple measurement setups using a joint state space model. Mechanical Systems and Signal Processing 2014; 43:171-191.
Schoukens J, Pintelon R. Identification of linear systems: a practical guideline for accurate modelling. Pergamon Press: London, 1991.
Yuen KV, Katafygiotis LS. Bayesian fast Fourier transform approach for modal updating using ambient data. Advance in Structural Engineering 2003; 6(2):81-95.
Brownjohn JMW, De Stefano A, Xu YL, Wenzel H, Aktan AE. Vibration-based monitoring of civil infrastructure: challenges and successes. Journal of Civil Structural Health Monitoring 2011; 1(3-4):79-95.
Yuen KV, Katafygiotis LS, Beck JL. Spectral density estimation of stochastic vector processes. Probabilistic Engineering Mechanics 2002; 17(3):265-272.
Mevel L, Basseville M, Benveniste A, Goursat M. Merging sensor data from multiple measurement set-ups for non-stationary subspace-based modal analysis. Journal of Sound and Vibration 2002; 249(4):719-741.
Au SK. Connecting Bayesian and Frequentist quantification of parameter uncertainty in system identification. Mechanical Systems and Signal Processing 2012; 29:328-342.
Ni YQ, Xia Y, Liao WY, Ko JM. Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower. Structural Control and Health Monitoring 2009; 16(1):73-98.
Min KW, Kim J, Park SA, Park CS. Ambient vibration testing for story stiffness estimation of a heritage timber building. The Scientific World Journal 2013; 2013:1-9, Article ID 198483.
Au SK. Assembling mode shapes by least squares. Mechanical Systems and Signal Processing 2011; 25(1):163-179.
Au SK, Zhang FL, Ni YC. Bayesian operational modal analysis: theory, computation, practice. Computers and Structures 2013; 126:3-15.
Beck JL. Bayesian system identification based on probability logic. Structural Control and Health Monitoring 2010; 17:825-847.
Zhang FL, Au SK. Erratum for Fast Bayesian FFT method for ambient modal identification with separated modes by Siu-Kui Au. Journal of Engineering Mechanics, ASCE 2013; 139(4):545-545.
2002; 17
2011; 137
2010; 32
2011; 1
2011
2010; 17
2013; 126
1998
2009
2003
1991
2014; 43
1999
2000; 37
2013; 2013
2003; 6
2013; 139
2002; 249
2012; 29
2001; 16
2011; 26
2011; 25
2012; 26
2003; 268
2012; 138
2009; 16
2005; 12
References_xml – year: 2011
– volume: 43
  start-page: 171
  year: 2014
  end-page: 191
  article-title: Estimating the modal parameters from multiple measurement setups using a joint state space model
  publication-title: Mechanical Systems and Signal Processing
– volume: 138
  start-page: 800
  issue: 7
  year: 2012
  end-page: 815
  article-title: Fast Bayesian ambient modal identification incorporating multiple setups
  publication-title: Journal of Engineering Mechanics, ASCE
– year: 2009
– volume: 268
  start-page: 971
  issue: 5
  year: 2003
  end-page: 991
  article-title: Maximum likelihood identification of non‐stationary operational data
  publication-title: Journal of Sound and Vibration
– volume: 1
  start-page: 79
  issue: 3‐4
  year: 2011
  end-page: 95
  article-title: Vibration‐based monitoring of civil infrastructure: challenges and successes
  publication-title: Journal of Civil Structural Health Monitoring
– volume: 139
  start-page: 545
  issue: 4
  year: 2013
  end-page: 545
  article-title: Erratum for Fast Bayesian FFT method for ambient modal identification with separated modes by Siu‐Kui Au
  publication-title: Journal of Engineering Mechanics, ASCE
– volume: 16
  start-page: 103
  issue: 2
  year: 2001
  end-page: 113
  article-title: Updating robust reliability using structural test data
  publication-title: Probabilistic Engineering Mechanics
– year: 2003
– volume: 26
  start-page: 60
  year: 2012
  end-page: 75
  article-title: Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value
  publication-title: Mechanical Systems and Signal Processing
– volume: 126
  start-page: 3
  year: 2013
  end-page: 15
  article-title: Bayesian operational modal analysis: theory, computation, practice
  publication-title: Computers and Structures
– volume: 16
  start-page: 73
  issue: 1
  year: 2009
  end-page: 98
  article-title: Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower
  publication-title: Structural Control and Health Monitoring
– volume: 29
  start-page: 328
  year: 2012
  end-page: 342
  article-title: Connecting Bayesian and Frequentist quantification of parameter uncertainty in system identification
  publication-title: Mechanical Systems and Signal Processing
– volume: 12
  start-page: 227
  year: 2005
  end-page: 244
  article-title: Lessons from monitoring the performance of highway bridge
  publication-title: Structural Control and Health Monitoring
– volume: 17
  start-page: 825
  year: 2010
  end-page: 847
  article-title: Bayesian system identification based on probability logic
  publication-title: Structural Control and Health Monitoring
– year: 1998
– volume: 137
  start-page: 214
  issue: 3
  year: 2011
  end-page: 226
  article-title: Fast Bayesian FFT method for ambient modal identification with separated modes
  publication-title: Journal of Engineering Mechanics, ASCE
– volume: 25
  start-page: 163
  issue: 1
  year: 2011
  end-page: 179
  article-title: Assembling mode shapes by least squares
  publication-title: Mechanical Systems and Signal Processing
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 9
  article-title: Ambient vibration testing for story stiffness estimation of a heritage timber building
  publication-title: The Scientific World Journal
– volume: 37
  start-page: 165
  year: 2000
  end-page: 197
  article-title: Ambient vibration tests of structures–a review
  publication-title: ISET Journal of Earthquake Technology
– volume: 17
  start-page: 265
  issue: 3
  year: 2002
  end-page: 272
  article-title: Spectral density estimation of stochastic vector processes
  publication-title: Probabilistic Engineering Mechanics
– volume: 249
  start-page: 719
  issue: 4
  year: 2002
  end-page: 741
  article-title: Merging sensor data from multiple measurement set‐ups for non‐stationary subspace‐based modal analysis
  publication-title: Journal of Sound and Vibration
– volume: 26
  start-page: 427
  issue: 3
  year: 2011
  end-page: 434
  article-title: On assessing the posterior mode shape uncertainty in ambient modal identification
  publication-title: Probabilistic Engineering Mechanics
– year: 1991
– volume: 6
  start-page: 81
  issue: 2
  year: 2003
  end-page: 95
  article-title: Bayesian fast Fourier transform approach for modal updating using ambient data
  publication-title: Advance in Structural Engineering
– volume: 32
  start-page: 2003
  issue: 8
  year: 2010
  end-page: 2018
  article-title: Ambient vibration re‐testing and operational modal analysis of the Humber Bridge
  publication-title: Engineering Structures
– volume: 26
  start-page: 76
  year: 2012
  end-page: 90
  article-title: Fast Bayesian ambient modal identification in the frequency domain, part II: posterior uncertainty
  publication-title: Mechanical Systems and Signal Processing
– year: 1999
SSID ssj0026285
Score 2.305942
Snippet Summary A Bayesian statistical framework was previously developed for modal identification of well‐separated modes incorporating ambient vibration data, that...
Summary A Bayesian statistical framework was previously developed for modal identification of well-separated modes incorporating ambient vibration data, that...
A Bayesian statistical framework was previously developed for modal identification of well-separated modes incorporating ambient vibration data, that is,...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 395
SubjectTerms ambient modal identification
Bayesian
Bayesian analysis
field test
Inverse
Mathematical analysis
mode shape assembly
Multiple setups
Norms
operational modal analysis
posterior uncertainty
Strategy
Uncertainty
Vibration
Title Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach
URI https://api.istex.fr/ark:/67375/WNG-NP75K6BQ-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.1679
https://www.proquest.com/docview/1766843705
https://search.proquest.com/docview/1669884588
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUqTu0BaAtiKa1cqeotSzax4-RYaClq1RWfAomDZTsTCa2aXW0SCfrrO2MnW-BUcUkixY6tjCd-9rx5YewTYtZC4FQSVQbXqoJ4NGYCSZRkVqUOXJV6UZ9f0-z4Uvy4ltc9q5JyYYI-xGrDjTzDf6_JwY1t9v-JhjatG1MMAT-_k1QRm-vr2Uo5KqHMQC-VKmSEQ1YOurNxsj9URDhKb_LuEbZ8iFD9FHO0wW6GzgVmyWzctXbs_jzRbXxe7zfZeo88-ZcwVF6zF1C_Ya8e6BG-ZbMQAsZrjtNdIAu09_y25vMFLPttQ_57XuLR9GomnOQdghoy1RsIiryBtls0vPNPM_zA3APla_JBxHyLXR59uzg8jvq_MUQO7VVEJIFUWGESkLGwBhc6MTihiqykUG4lM4febBOZgnRqggNA5GUFoHJXFTnkkG6ztXpeww7jsbGyLKVKSydEUhUWYYayPuSYgUlhxD57y-hFUNzQZjkjApqS-mr6XU9PlPyZHZzqeMT2BtPp3vcaTZKXuUhVLEfs4-o2eg2FQkwN8w7LZFmR55Sli215O63aCjrOiUYLabKQPr84pPPu_xZ8x14iqpKBqLbH1tplB-8RubT2gx-jfwFb8-v8
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHpRyAA2_EQgEjIW7ZpokdJ-JEC2Wh7YrHVvRQybKdiYRWZFe7iUT59czEyVI4IS5JpDixlfHEY8_MZ4AXZLMWkoaSqLI0V5UcR2P3MImSzOnUo6_SDupzMs0mp_LDmTrbgldDLkzgQ2wW3Fgzuv81KzgvSO_-poauGz9mJ8IVuEranvL2BW8-b9hRCecGdrBUqSLqtGogz8bJ7vAkGaT8LX_8YV1etlG7QebwFpwPzQuxJfNx27ix__kXufE_238bbvbGp3gdessd2ML6Lty4hCS8B_PgBaZrQSNeiBdoLsS3WiyWuOpXDsX3RUlH2wNNBBMeAhCZnxtiFMUam3a5Fm33Niv27QVyyqYYOOb34fTw7exgEvUbMkSeRFZETEEqnLQJqlg6S3OdGL3URVayN7dSmSeFdolKUXm9R31A5mWFqHNfFTnmmD6A7XpR40MQsXWqLJVOSy9lUhWOLA3tOq9jhjbFEbzsRGOWAbph7GrOMWhama_Td2b6UaujbP-TiUewM8jO9Oq3Nky9zGWqYzWC55vbpDjsDbE1Lloqk2VFnnOiLtXVCWpTV0A5J4YkZFhC5svsgM-P_rXgM7g2mZ0cm-P306PHcJ2MLBXi1nZgu1m1-IQMmcY97TrsLw9H8BY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOvBELLRgJccs2TfxIjvSxFAqrAq2o1INlOxMJrciudhOJ9tczYydLywlxSSLFjq2MJ_7s-eYLY28Qs5YCp5KktrhWFcSjsTuQJZlyOvfg6zyI-nyeqsNT8fFMnvWsSsqFifoQ6w038ozwvSYHX1T19h_R0FXrxxRDuMluCZWnROfa_7qWjsooNTBopQqZ4JiVg_Bsmm0PNRGP0qv8dQ1cXoWoYY6Z3GfnQ-8itWQ27lo39pd_CTf-X_cfsHs99OTv4lh5yG5A84jdvSJI-JjNYgwYrznOd5Et0F7wHw2fL2DZ7xvyn_MKj7aXM-Gk7xDlkKnewFDkK2i7xYp34WmW79oLoIRNPqiYP2Gnk4OTvcOk_x1D4tFgZUIaSKUTNgOZCmdxpZOCF7pUFcVya6k8urPLZA7S6x0cAaKoagBd-LosoID8Kdto5g08Yzy1TlaV1Hnlhcjq0iHO0C7EHBXYHEbsbbCMWUTJDWOXM2KgaWm-T9-b6bGWR2r3i0lHbHMwnemdb2VI87IQuU7liL1e30a3oViIbWDeYRmlyqKgNF1sK9hp3VYUcs4MWsiQhcy3kz06P__Xgq_Y7eP9ifn0YXr0gt1BhCUjaW2TbbTLDrYQxbTuZRiuvwFYO-7F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+uncertainty+in+operational+modal+analysis+incorporating+multiple+setups+using+a+Bayesian+approach&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Zhang%2C+Feng%E2%80%90Liang&rft.au=Au%2C+Siu%E2%80%90Kui&rft.au=Lam%2C+Heung%E2%80%90Fai&rft.date=2015-03-01&rft.issn=1545-2255&rft.eissn=1545-2263&rft.volume=22&rft.issue=3&rft.spage=395&rft.epage=416&rft_id=info:doi/10.1002%2Fstc.1679&rft.externalDBID=10.1002%252Fstc.1679&rft.externalDocID=STC1679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon