Optimal Groomings with Grooming Ratios Six and Seven
Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, an...
Saved in:
Published in | Journal of combinatorial designs Vol. 23; no. 9; pp. 400 - 415 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
01.09.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1063-8539 1520-6610 |
DOI | 10.1002/jcd.21428 |
Cover
Abstract | Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The determination of optimal C‐groomings has been considered for 3≤C≤9, and completely solved for 3≤C≤5. For C=6, it has been shown that the lower bound for the drop cost of an optimal C‐grooming can be attained for almost all orders with 5 exceptions and 308 possible exceptions. For C=7, there are infinitely many unsettled orders; especially the case n≡2(mod3) is far from complete. In this paper, we show that the lower bound for the drop cost of a 6‐grooming can be attained for almost all orders by reducing the 308 possible exceptions to 3, and that the lower bound for the drop cost of a 7‐grooming can be attained for almost all orders with seven exceptions and 16 possible exceptions. Moreover, for the unsettled orders, we give upper bounds for the minimum drop costs. |
---|---|
AbstractList | Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The determination of optimal C‐groomings has been considered for 3≤C≤9, and completely solved for 3≤C≤5. For C=6, it has been shown that the lower bound for the drop cost of an optimal C‐grooming can be attained for almost all orders with 5 exceptions and 308 possible exceptions. For C=7, there are infinitely many unsettled orders; especially the case n≡2(mod3) is far from complete. In this paper, we show that the lower bound for the drop cost of a 6‐grooming can be attained for almost all orders by reducing the 308 possible exceptions to 3, and that the lower bound for the drop cost of a 7‐grooming can be attained for almost all orders with seven exceptions and 16 possible exceptions. Moreover, for the unsettled orders, we give upper bounds for the minimum drop costs. Grooming uniform all-to-all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The determination of optimal C-groomings has been considered for 3 ≤C ≤9, and completely solved for 3 ≤C ≤5. For C =6, it has been shown that the lower bound for the drop cost of an optimal C-grooming can be attained for almost all orders with 5 exceptions and 308 possible exceptions. For C =7, there are infinitely many unsettled orders; especially the case n 2 (mod 3 ) is far from complete. In this paper, we show that the lower bound for the drop cost of a 6-grooming can be attained for almost all orders by reducing the 308 possible exceptions to 3, and that the lower bound for the drop cost of a 7-grooming can be attained for almost all orders with seven exceptions and 16 possible exceptions. Moreover, for the unsettled orders, we give upper bounds for the minimum drop costs. |
Author | Ge, Gennian Kolotoğlu, Emre Wei, Hengjia |
Author_xml | – sequence: 1 givenname: Gennian surname: Ge fullname: Ge, Gennian email: ven0505@163.com organization: School of Mathematical Sciences, Capital Normal University, 100048, Beijing, China – sequence: 2 givenname: Emre surname: Kolotoğlu fullname: Kolotoğlu, Emre organization: Department of Mathematics, Yıldız Technical University, 34220, Istanbul, Turkey – sequence: 3 givenname: Hengjia surname: Wei fullname: Wei, Hengjia organization: School of Mathematical Sciences, Capital Normal University, 100048, Beijing, China |
BookMark | eNp1kEFPAjEQhRuDiYge_AebePKw0Ha27fZoUEGDkojGY9Pd7WoRdrFdBP691VVunmYm-d7Mm3eMOlVdGYTOCO4TjOlgnhd9ShKaHqAuYRTHnBPcCT3mEKcM5BE69n6OMZYSeBcl01Vjl3oRjVxdL2316qONbd72Y_SoG1v7aGa3ka6KaGY-TXWCDku98Ob0t_bQ883103AcT6aj2-HlJM6BszSmpCxyKpgUAAWhYDLgWgoajILmJoXSUMN5RrJEU5xIUgoNZQmZSbMcNIMeOm_3rlz9sTa-UfN67apwUhEuQQCnKQ3URUvlrvbemVKtXHjJ7RTB6jsUFUJRP6EEdtCyG7swu_9BdTe8-lPErcL6xmz3Cu3eFRcgmHp5GCk2SZlM7sdKwBeE8HG4 |
CODEN | JDESEU |
Cites_doi | 10.1137/060660084 10.1007/s10623-013-9854-z 10.1016/j.dam.2009.03.019 10.1137/070709141 10.1016/j.disc.2010.09.013 10.1109/49.887919 10.1137/S0895480104444314 10.1016/j.disc.2013.04.018 10.1109/90.879347 10.1002/net.10061 10.1002/jcd.21405 10.1364/JON.1.000032 10.1002/jcd.21336 10.1016/j.disc.2003.11.023 10.1109/MNET.2002.1081765 10.1109/90.879348 10.1002/jcd.21340 10.1109/35.933446 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. Copyright © 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: Copyright © 2015 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/jcd.21428 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1520-6610 |
EndPage | 415 |
ExternalDocumentID | 3735160921 10_1002_jcd_21428 JCD21428 ark_67375_WNG_5L8594MH_7 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61171198, 11431003 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LZ13A010001 |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1OB 1OC 1ZS 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5VS 6TJ 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADIZJ ADMGS ADOZA ADXAS AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BNHUX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD FEDTE FSPIC G-S GODZA H.T H.X HF~ HGLYW HVGLF HZ~ H~9 LATKE LAW LC2 LC3 LEEKS LH4 LP6 LP7 LW6 LYRES M6L MEWTI MK4 MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 UPT V2E VH1 VQA W99 WH7 WOHZO WQJ WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3658-21fdc2759733d123eb36a9721003a6e83fe2e66b1b4a20491f7a3ff3be8bc3a53 |
IEDL.DBID | DR2 |
ISSN | 1063-8539 |
IngestDate | Fri Jul 25 12:16:55 EDT 2025 Tue Jul 01 01:29:32 EDT 2025 Wed Jan 22 17:04:13 EST 2025 Wed Oct 30 09:51:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3658-21fdc2759733d123eb36a9721003a6e83fe2e66b1b4a20491f7a3ff3be8bc3a53 |
Notes | National Natural Science Foundation of China - No. 61171198, 11431003 ark:/67375/WNG-5L8594MH-7 Online Data Appendix ArticleID:JCD21428 Zhejiang Provincial Natural Science Foundation of China - No. LZ13A010001 istex:7A17A081672F1C013024932DC1891CABB9A300C7 Contract grant sponsor: National Natural Science Foundation of China; contract grant number: 61171198 and 11431003; Importation and Development of High‐Caliber Talents Project of Beijing Municipal Institutions; Zhejiang Provincial Natural Science Foundation of China; contract grant number: LZ13A010001. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1693736282 |
PQPubID | 1006355 |
PageCount | 16 |
ParticipantIDs | proquest_journals_1693736282 crossref_primary_10_1002_jcd_21428 wiley_primary_10_1002_jcd_21428_JCD21428 istex_primary_ark_67375_WNG_5L8594MH_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of combinatorial designs |
PublicationTitleAlternate | J. Combin. Designs |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | C. J. Colbourn, G. Ge, and A. C. H. Ling, Optical grooming with grooming ratio nine, Discrete Math 311 (2011), 8-15. X. Zhang and C. Qiao, An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings, IEEE/ACM Trans Netw 8 (2000), 608-617. O. Gerstel, R. Ramaswani, and G. Sasaki, Cost-effective traffic grooming in WDM rings, IEEE/ACM Trans Netw 8 (2000), 618-630. C. J. Colbourn, G. Ge, and A. C. H. Ling, Optimal grooming with grooming ratio eight, Discrete Appl Math 157 (2009), 2763-2772. J.-C. Bermond, C. J. Colbourn, A. C. H. Ling, and M. L. Yu, Grooming in unidirectional rings: K4−e designs, Discrete Math 284 (2004), 67-72. C. J. Colbourn, H. L. Fu, G. Ge, A. C. H. Ling, and H. C. Lu, Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 7, SIAM J Discrete Math 23 (2008), 109-122. E. Modiano and P. Lin, Traffic grooming in WDM networks, IEEE Commun Mag 39 (2001), 124-129. R. Dutta and N. Rouskas, Traffic grooming in WDM networks: past and future, IEEE Network 16 (2002), 46-56. H. Wei and G. Ge, Group divisible designs with block size four and group type gum1 for more small g, Discrete Math 313 (2013), 2065-2083. H. Wei and G. Ge, Group divisible designs with block size four and group type gum1, Des Codes Crytogr 74(1) (2015), 243-282. G. Ge and A. C. H. Ling, On the existence of (K5∖e) designs with application to optical networks, SIAM J Discrete Math 21 (2007), 851-864. H. Wei and G. Ge, Group divisible designs with block size four and group type gum1 for g≡0(mod6), J Combin Des 22(1) (2014), 26-52. J.-C. Bermond and S. Ceroi, Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3, Networks 41 (2003), 83-86. J.-C. Bermond, C. J. Colbourn, D. Coudert, G. Ge, A. C. H. Ling, and X. Mu noz, Traffic grooming in unidirectional WDM rings with grooming ratio C=6, SIAM J Discrete Math 19 (2005), 523-542. E. Kolotoğlu, The existence and construction of (K5∖e)-designs of orders 27, 135, 162, and 216, J Combin Des 21(7) (2013), 280-302. J. Q. Hu, Optimal traffic grooming for wavelength-division-multiplexing rings with all-to-all uniform traffic, OSA J Opt Netw 1 (2002), 32-42. P.-J. Wan, G. Calinescu, L. Liu, and O. Frieder, Grooming of arbitrary traffic in SONET/WDM BLSRs, IEEE J Sel Areas Commun 18 (2000), 1995-2003. G. Ge, S. Hu, E. Kolotoğlu, and H. Wei, A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks, J Combin Des 23(6) (2015), 233-273. 2002; 16 2015; 23 2011; 311 2005; 19 2000; 18 2013; 21 2004; 284 2013; 313 2015; 74 2000; 8 2003; 2 1998 2002; 1 2008; 23 2009; 157 2003 2001; 39 2007; 21 2003; 41 2014; 22 Zhang (10.1002/jcd.21428-BIB0021|jcd21428-cit-0021) 2000; 8 Ge (10.1002/jcd.21428-BIB0010|jcd21428-cit-0010) 2015; 23 Colbourn (10.1002/jcd.21428-BIB0007|jcd21428-cit-0007) 2009; 157 Gerstel (10.1002/jcd.21428-BIB0012|jcd21428-cit-0012) 1998 Wei (10.1002/jcd.21428-BIB0020|jcd21428-cit-0020) 2015; 74 Dutta (10.1002/jcd.21428-BIB0009|jcd21428-cit-0009) 2002; 16 Bermond (10.1002/jcd.21428-BIB0005|jcd21428-cit-0005) 2003 Bermond (10.1002/jcd.21428-BIB0001|jcd21428-cit-0001) 2003; 41 Colbourn (10.1002/jcd.21428-BIB0008|jcd21428-cit-0008) 2011; 311 Modiano (10.1002/jcd.21428-BIB0016|jcd21428-cit-0016) 2001; 39 Bermond (10.1002/jcd.21428-BIB0003|jcd21428-cit-0003) 2004; 284 Colbourn (10.1002/jcd.21428-BIB0006|jcd21428-cit-0006) 2008; 23 Bermond (10.1002/jcd.21428-BIB0002|jcd21428-cit-0002) 2005; 19 Kolotoğlu (10.1002/jcd.21428-BIB0015|jcd21428-cit-0015) 2013; 21 Gerstel (10.1002/jcd.21428-BIB0013|jcd21428-cit-0013) 2000; 8 Ge (10.1002/jcd.21428-BIB0011|jcd21428-cit-0011) 2007; 21 Bermond (10.1002/jcd.21428-BIB0004|jcd21428-cit-0004) 2003; 2 Wan (10.1002/jcd.21428-BIB0017|jcd21428-cit-0017) 2000; 18 Wei (10.1002/jcd.21428-BIB0019|jcd21428-cit-0019) 2014; 22 Wei (10.1002/jcd.21428-BIB0018|jcd21428-cit-0018) 2013; 313 Hu (10.1002/jcd.21428-BIB0014|jcd21428-cit-0014) 2002; 1 |
References_xml | – reference: J.-C. Bermond, C. J. Colbourn, A. C. H. Ling, and M. L. Yu, Grooming in unidirectional rings: K4−e designs, Discrete Math 284 (2004), 67-72. – reference: R. Dutta and N. Rouskas, Traffic grooming in WDM networks: past and future, IEEE Network 16 (2002), 46-56. – reference: C. J. Colbourn, H. L. Fu, G. Ge, A. C. H. Ling, and H. C. Lu, Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 7, SIAM J Discrete Math 23 (2008), 109-122. – reference: P.-J. Wan, G. Calinescu, L. Liu, and O. Frieder, Grooming of arbitrary traffic in SONET/WDM BLSRs, IEEE J Sel Areas Commun 18 (2000), 1995-2003. – reference: E. Kolotoğlu, The existence and construction of (K5∖e)-designs of orders 27, 135, 162, and 216, J Combin Des 21(7) (2013), 280-302. – reference: H. Wei and G. Ge, Group divisible designs with block size four and group type gum1 for g≡0(mod6), J Combin Des 22(1) (2014), 26-52. – reference: J.-C. Bermond and S. Ceroi, Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3, Networks 41 (2003), 83-86. – reference: C. J. Colbourn, G. Ge, and A. C. H. Ling, Optical grooming with grooming ratio nine, Discrete Math 311 (2011), 8-15. – reference: H. Wei and G. Ge, Group divisible designs with block size four and group type gum1 for more small g, Discrete Math 313 (2013), 2065-2083. – reference: O. Gerstel, R. Ramaswani, and G. Sasaki, Cost-effective traffic grooming in WDM rings, IEEE/ACM Trans Netw 8 (2000), 618-630. – reference: J.-C. Bermond, C. J. Colbourn, D. Coudert, G. Ge, A. C. H. Ling, and X. Mu noz, Traffic grooming in unidirectional WDM rings with grooming ratio C=6, SIAM J Discrete Math 19 (2005), 523-542. – reference: E. Modiano and P. Lin, Traffic grooming in WDM networks, IEEE Commun Mag 39 (2001), 124-129. – reference: G. Ge and A. C. H. Ling, On the existence of (K5∖e) designs with application to optical networks, SIAM J Discrete Math 21 (2007), 851-864. – reference: C. J. Colbourn, G. Ge, and A. C. H. Ling, Optimal grooming with grooming ratio eight, Discrete Appl Math 157 (2009), 2763-2772. – reference: G. Ge, S. Hu, E. Kolotoğlu, and H. Wei, A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks, J Combin Des 23(6) (2015), 233-273. – reference: J. Q. Hu, Optimal traffic grooming for wavelength-division-multiplexing rings with all-to-all uniform traffic, OSA J Opt Netw 1 (2002), 32-42. – reference: H. Wei and G. Ge, Group divisible designs with block size four and group type gum1, Des Codes Crytogr 74(1) (2015), 243-282. – reference: X. Zhang and C. Qiao, An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings, IEEE/ACM Trans Netw 8 (2000), 608-617. – volume: 21 start-page: 851 year: 2007 end-page: 864 article-title: On the existence of ( ) designs with application to optical networks publication-title: SIAM J Discrete Math – volume: 39 start-page: 124 year: 2001 end-page: 129 article-title: Traffic grooming in WDM networks publication-title: IEEE Commun Mag – start-page: 1135 year: 2003 end-page: 1153 – volume: 41 start-page: 83 year: 2003 end-page: 86 article-title: Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3 publication-title: Networks – start-page: 94 year: 1998 end-page: 101 – volume: 23 start-page: 233 issue: 6 year: 2015 end-page: 273 article-title: A complete solution to spectrum problem for five‐vertex graphs with application to traffic grooming in optical networks publication-title: J Combin Des – volume: 18 start-page: 1995 year: 2000 end-page: 2003 article-title: Grooming of arbitrary traffic in SONET/WDM BLSRs publication-title: IEEE J Sel Areas Commun – volume: 22 start-page: 26 issue: 1 year: 2014 end-page: 52 article-title: Group divisible designs with block size four and group type for publication-title: J Combin Des – volume: 8 start-page: 608 year: 2000 end-page: 617 article-title: An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings publication-title: IEEE/ACM Trans Netw – volume: 311 start-page: 8 year: 2011 end-page: 15 article-title: Optical grooming with grooming ratio nine publication-title: Discrete Math – volume: 1 start-page: 32 year: 2002 end-page: 42 article-title: Optimal traffic grooming for wavelength‐division‐multiplexing rings with all‐to‐all uniform traffic publication-title: OSA J Opt Netw – volume: 23 start-page: 109 year: 2008 end-page: 122 article-title: Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 7 publication-title: SIAM J Discrete Math – volume: 284 start-page: 67 year: 2004 end-page: 72 article-title: Grooming in unidirectional rings: designs publication-title: Discrete Math – volume: 16 start-page: 46 year: 2002 end-page: 56 article-title: Traffic grooming in WDM networks: past and future publication-title: IEEE Network – volume: 8 start-page: 618 year: 2000 end-page: 630 article-title: Cost‐effective traffic grooming in WDM rings publication-title: IEEE/ACM Trans Netw – volume: 21 start-page: 280 issue: 7 year: 2013 end-page: 302 article-title: The existence and construction of ( )‐designs of orders 27, 135, 162, and 216 publication-title: J Combin Des – volume: 2 start-page: 1402 year: 2003 end-page: 1406 – volume: 74 start-page: 243 issue: 1 year: 2015 end-page: 282 publication-title: Des Codes Crytogr – volume: 19 start-page: 523 year: 2005 end-page: 542 article-title: Traffic grooming in unidirectional WDM rings with grooming ratio publication-title: SIAM J Discrete Math – volume: 157 start-page: 2763 year: 2009 end-page: 2772 article-title: Optimal grooming with grooming ratio eight publication-title: Discrete Appl Math – volume: 313 start-page: 2065 year: 2013 end-page: 2083 article-title: Group divisible designs with block size four and group type for more small publication-title: Discrete Math – volume: 21 start-page: 851 year: 2007 ident: 10.1002/jcd.21428-BIB0011|jcd21428-cit-0011 article-title: On the existence of (K5∖e) designs with application to optical networks publication-title: SIAM J Discrete Math doi: 10.1137/060660084 – start-page: 94 volume-title: IEEE Infocom year: 1998 ident: 10.1002/jcd.21428-BIB0012|jcd21428-cit-0012 – volume: 74 start-page: 243 issue: 1 year: 2015 ident: 10.1002/jcd.21428-BIB0020|jcd21428-cit-0020 publication-title: Des Codes Crytogr doi: 10.1007/s10623-013-9854-z – volume: 157 start-page: 2763 year: 2009 ident: 10.1002/jcd.21428-BIB0007|jcd21428-cit-0007 article-title: Optimal grooming with grooming ratio eight publication-title: Discrete Appl Math doi: 10.1016/j.dam.2009.03.019 – volume: 23 start-page: 109 year: 2008 ident: 10.1002/jcd.21428-BIB0006|jcd21428-cit-0006 article-title: Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 7 publication-title: SIAM J Discrete Math doi: 10.1137/070709141 – volume: 311 start-page: 8 year: 2011 ident: 10.1002/jcd.21428-BIB0008|jcd21428-cit-0008 article-title: Optical grooming with grooming ratio nine publication-title: Discrete Math doi: 10.1016/j.disc.2010.09.013 – volume: 18 start-page: 1995 year: 2000 ident: 10.1002/jcd.21428-BIB0017|jcd21428-cit-0017 article-title: Grooming of arbitrary traffic in SONET/WDM BLSRs publication-title: IEEE J Sel Areas Commun doi: 10.1109/49.887919 – volume: 19 start-page: 523 year: 2005 ident: 10.1002/jcd.21428-BIB0002|jcd21428-cit-0002 article-title: Traffic grooming in unidirectional WDM rings with grooming ratio C=6 publication-title: SIAM J Discrete Math doi: 10.1137/S0895480104444314 – volume: 313 start-page: 2065 year: 2013 ident: 10.1002/jcd.21428-BIB0018|jcd21428-cit-0018 article-title: Group divisible designs with block size four and group type gum1 for more small g publication-title: Discrete Math doi: 10.1016/j.disc.2013.04.018 – start-page: 1135 volume-title: Proceedings of the ONDM03 year: 2003 ident: 10.1002/jcd.21428-BIB0005|jcd21428-cit-0005 – volume: 8 start-page: 608 year: 2000 ident: 10.1002/jcd.21428-BIB0021|jcd21428-cit-0021 article-title: An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings publication-title: IEEE/ACM Trans Netw doi: 10.1109/90.879347 – volume: 41 start-page: 83 year: 2003 ident: 10.1002/jcd.21428-BIB0001|jcd21428-cit-0001 article-title: Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3 publication-title: Networks doi: 10.1002/net.10061 – volume: 23 start-page: 233 issue: 6 year: 2015 ident: 10.1002/jcd.21428-BIB0010|jcd21428-cit-0010 article-title: A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks publication-title: J Combin Des doi: 10.1002/jcd.21405 – volume: 1 start-page: 32 year: 2002 ident: 10.1002/jcd.21428-BIB0014|jcd21428-cit-0014 article-title: Optimal traffic grooming for wavelength-division-multiplexing rings with all-to-all uniform traffic publication-title: OSA J Opt Netw doi: 10.1364/JON.1.000032 – volume: 22 start-page: 26 issue: 1 year: 2014 ident: 10.1002/jcd.21428-BIB0019|jcd21428-cit-0019 article-title: Group divisible designs with block size four and group type gum1 for g≡0(mod6) publication-title: J Combin Des doi: 10.1002/jcd.21336 – volume: 284 start-page: 67 year: 2004 ident: 10.1002/jcd.21428-BIB0003|jcd21428-cit-0003 article-title: Grooming in unidirectional rings: K4−e designs publication-title: Discrete Math doi: 10.1016/j.disc.2003.11.023 – volume: 2 start-page: 1402 volume-title: IEEE Conference on Communication (ICC'03) year: 2003 ident: 10.1002/jcd.21428-BIB0004|jcd21428-cit-0004 – volume: 16 start-page: 46 year: 2002 ident: 10.1002/jcd.21428-BIB0009|jcd21428-cit-0009 article-title: Traffic grooming in WDM networks: past and future publication-title: IEEE Network doi: 10.1109/MNET.2002.1081765 – volume: 8 start-page: 618 year: 2000 ident: 10.1002/jcd.21428-BIB0013|jcd21428-cit-0013 article-title: Cost-effective traffic grooming in WDM rings publication-title: IEEE/ACM Trans Netw doi: 10.1109/90.879348 – volume: 21 start-page: 280 issue: 7 year: 2013 ident: 10.1002/jcd.21428-BIB0015|jcd21428-cit-0015 article-title: The existence and construction of (K5∖e)-designs of orders 27, 135, 162, and 216 publication-title: J Combin Des doi: 10.1002/jcd.21340 – volume: 39 start-page: 124 year: 2001 ident: 10.1002/jcd.21428-BIB0016|jcd21428-cit-0016 article-title: Traffic grooming in WDM networks publication-title: IEEE Commun Mag doi: 10.1109/35.933446 |
SSID | ssj0009936 |
Score | 2.0086124 |
Snippet | Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into... Grooming uniform all-to-all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 400 |
SubjectTerms | 05B30 05C70 2000 Mathematics Subject Classification: 05B05 68M10 68R05 graph decomposition graph decomposition; optical networks; traffic grooming; wavelength‐division multiplexing Heuristic optical networks Optimization traffic grooming wavelength-division multiplexing |
Title | Optimal Groomings with Grooming Ratios Six and Seven |
URI | https://api.istex.fr/ark:/67375/WNG-5L8594MH-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcd.21428 https://www.proquest.com/docview/1693736282 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPoi_64F2cN4qI-NK5Jm2a4pM65xCn4AV9EEJuBR1OcRsMP70n6VovIIhvLSS0PScn559w8ivAjs6UiYhiIVechrGkMpQ8sSHVKTMNmzPpz3F3Llj7Nj67T-4n4KA8C1PwIaoNNxcZfr52AS5Vf_8TGvqkTd3zwnD-jShz3Pzm1Sc6CvOuP1mEKTjElJSVVKEG2a96fstFU86so29C86tc9fmmNQcP5ZsWZSbd-nCg6vr9B8Txn58yD7NjHRocFgNnASZsbxFmOhXEtb8E8SVOJ8_Y6NSpa7ejHrhd2-o2uHJe7QfXj6NA9kxw7WBQy3DbOrk5bofjnyyEmqL6CEmUG01SXFdQil6juLhm0iF9MNwls5zmlljGVKRiSXA5EeWppHlOleVKU5nQFZjsvfTsKgTcZJZoEkueqTjSmTQxqiNDLYrOBjW8BtulucVrwdIQBTWZCDSB8Caowa53RNVCvnVd8VmaiLuLU5Gc8ySLO22R1mCj9JQYx11fOLRMijmZkxrseZP__iRxdtz0F2t_b7oO06iYkqLIbAMmB29Du4mqZKC2YOrwqHnU2vLD8AMSctvm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS-xAEC5cDupBfS44bi-IiJfMTLo7SQe8iNs838wILuhFmt4CKo7ijCD-eqs7k7iAIN4SqCZJVVfXV0XVF4BNnSkTEZWEXHEaMkllKHlsQ6rTxDRtnkg_x93pJq0LdnwVX43ATjkLU_BDVAU35xn-vHYO7grSjXfW0Ftt6p4wbBTGGQINl3rtn76TR2Hk9bNFGIRDDEpZySvUJI1q6adoNO4U-_IJan4ErD7iHM7AdfmuRaPJXf15oOr69QuN428_Zhamh1A02C32zh8Ysb05mOpUPK79eWAneKLco9CRA9iuqB64wm11G5w6w_aDs5uXQPZMcOb4oBbg4vDgfK8VDv-zEGqKACQkUW40STG1oBQNRzG_TqRj9UGPl4nlNLfEJomKFJMEM4ooTyXNc6osV5rKmC7CWO-hZ5cg4CazRBMmeaZYpDNpGAIkQy3iziY1vAYbpb7FY0GnIQriZCJQBcKroAZb3hKVhHy6c_1naSwuu0cibvM4Y52WSGuwWppKDF2vLxy7TIphmZMabHudf_8kcby37y-Wfy76FyZa5522aP_r_l-BSQRQcdFztgpjg6dnu4YgZaDW_V58A_qx3pM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB98gOgHW1941bZBpPgl52V3s9nQT0V7no87iw_0g7DsK6DiVbw7OPrXd3ZziVUQpN8SmCXJzM7Ob4aZXwC2Ta5tQjSPhRY0ZoqqWInUxdRk3LZcwVWY4-72eOeSHV2n11PwvZqFKfkh6oKb94xwXnsHf7TF7jNp6J2xzcAXNg2zjCOS8Ijo7Jk7CgNvGC3CGBxjTMorWqEW2a2XvghGs16v4xdI81-8GgJO-wPcVK9a9pncN0dD3TR_XrE4_ue3fITFCRCNfpQ7ZwmmXH8ZFro1i-tgBdgpnicPKHTg4bUvqUe-bFvfRmferIPo_HYcqb6Nzj0b1Cpctn9e7HXiyV8WYkMRfsQkKawhGSYWlKLZKGbXXHlOH_R3xZ2ghSOOc51opgjmE0mRKVoUVDuhDVUpXYOZ_u--W4dI2NwRQ5gSuWaJyZVlCI8sdYg6W9SKBmxV6paPJZmGLGmTiUQVyKCCBnwLhqgl1NO97z7LUnnVO5DpiUhz1u3IrAGblaXkxPEG0nPLZBiUBWnATlD520-SR3v74eLT-0W_wtyv_bY8Oewdb8A8oqe0bDjbhJnh08h9RoQy1F_CTvwLeF3dQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Groomings+with+Grooming+Ratios+Six+and+Seven&rft.jtitle=Journal+of+combinatorial+designs&rft.au=Ge%2C+Gennian&rft.au=Koloto%C4%9Flu%2C+Emre&rft.au=Wei%2C+Hengjia&rft.date=2015-09-01&rft.issn=1063-8539&rft.eissn=1520-6610&rft.volume=23&rft.issue=9&rft.spage=400&rft.epage=415&rft_id=info:doi/10.1002%2Fjcd.21428&rft.externalDBID=10.1002%252Fjcd.21428&rft.externalDocID=JCD21428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8539&client=summon |