Optimal Groomings with Grooming Ratios Six and Seven

Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, an...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial designs Vol. 23; no. 9; pp. 400 - 415
Main Authors Ge, Gennian, Kolotoğlu, Emre, Wei, Hengjia
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.09.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1063-8539
1520-6610
DOI10.1002/jcd.21428

Cover

Abstract Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The determination of optimal C‐groomings has been considered for 3≤C≤9, and completely solved for 3≤C≤5. For C=6, it has been shown that the lower bound for the drop cost of an optimal C‐grooming can be attained for almost all orders with 5 exceptions and 308 possible exceptions. For C=7, there are infinitely many unsettled orders; especially the case n≡2(mod3) is far from complete. In this paper, we show that the lower bound for the drop cost of a 6‐grooming can be attained for almost all orders by reducing the 308 possible exceptions to 3, and that the lower bound for the drop cost of a 7‐grooming can be attained for almost all orders with seven exceptions and 16 possible exceptions. Moreover, for the unsettled orders, we give upper bounds for the minimum drop costs.
AbstractList Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The determination of optimal C‐groomings has been considered for 3≤C≤9, and completely solved for 3≤C≤5. For C=6, it has been shown that the lower bound for the drop cost of an optimal C‐grooming can be attained for almost all orders with 5 exceptions and 308 possible exceptions. For C=7, there are infinitely many unsettled orders; especially the case n≡2(mod3) is far from complete. In this paper, we show that the lower bound for the drop cost of a 6‐grooming can be attained for almost all orders by reducing the 308 possible exceptions to 3, and that the lower bound for the drop cost of a 7‐grooming can be attained for almost all orders with seven exceptions and 16 possible exceptions. Moreover, for the unsettled orders, we give upper bounds for the minimum drop costs.
Grooming uniform all-to-all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The determination of optimal C-groomings has been considered for 3 ≤C ≤9, and completely solved for 3 ≤C ≤5. For C =6, it has been shown that the lower bound for the drop cost of an optimal C-grooming can be attained for almost all orders with 5 exceptions and 308 possible exceptions. For C =7, there are infinitely many unsettled orders; especially the case n 2 (mod 3 ) is far from complete. In this paper, we show that the lower bound for the drop cost of a 6-grooming can be attained for almost all orders by reducing the 308 possible exceptions to 3, and that the lower bound for the drop cost of a 7-grooming can be attained for almost all orders with seven exceptions and 16 possible exceptions. Moreover, for the unsettled orders, we give upper bounds for the minimum drop costs.
Author Ge, Gennian
Kolotoğlu, Emre
Wei, Hengjia
Author_xml – sequence: 1
  givenname: Gennian
  surname: Ge
  fullname: Ge, Gennian
  email: ven0505@163.com
  organization: School of Mathematical Sciences, Capital Normal University, 100048, Beijing, China
– sequence: 2
  givenname: Emre
  surname: Kolotoğlu
  fullname: Kolotoğlu, Emre
  organization: Department of Mathematics, Yıldız Technical University, 34220, Istanbul, Turkey
– sequence: 3
  givenname: Hengjia
  surname: Wei
  fullname: Wei, Hengjia
  organization: School of Mathematical Sciences, Capital Normal University, 100048, Beijing, China
BookMark eNp1kEFPAjEQhRuDiYge_AebePKw0Ha27fZoUEGDkojGY9Pd7WoRdrFdBP691VVunmYm-d7Mm3eMOlVdGYTOCO4TjOlgnhd9ShKaHqAuYRTHnBPcCT3mEKcM5BE69n6OMZYSeBcl01Vjl3oRjVxdL2316qONbd72Y_SoG1v7aGa3ka6KaGY-TXWCDku98Ob0t_bQ883103AcT6aj2-HlJM6BszSmpCxyKpgUAAWhYDLgWgoajILmJoXSUMN5RrJEU5xIUgoNZQmZSbMcNIMeOm_3rlz9sTa-UfN67apwUhEuQQCnKQ3URUvlrvbemVKtXHjJ7RTB6jsUFUJRP6EEdtCyG7swu_9BdTe8-lPErcL6xmz3Cu3eFRcgmHp5GCk2SZlM7sdKwBeE8HG4
CODEN JDESEU
Cites_doi 10.1137/060660084
10.1007/s10623-013-9854-z
10.1016/j.dam.2009.03.019
10.1137/070709141
10.1016/j.disc.2010.09.013
10.1109/49.887919
10.1137/S0895480104444314
10.1016/j.disc.2013.04.018
10.1109/90.879347
10.1002/net.10061
10.1002/jcd.21405
10.1364/JON.1.000032
10.1002/jcd.21336
10.1016/j.disc.2003.11.023
10.1109/MNET.2002.1081765
10.1109/90.879348
10.1002/jcd.21340
10.1109/35.933446
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright © 2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: Copyright © 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/jcd.21428
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1520-6610
EndPage 415
ExternalDocumentID 3735160921
10_1002_jcd_21428
JCD21428
ark_67375_WNG_5L8594MH_7
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61171198, 11431003
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LZ13A010001
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1OB
1OC
1ZS
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
6TJ
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BNHUX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
FEDTE
FSPIC
G-S
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
H~9
LATKE
LAW
LC2
LC3
LEEKS
LH4
LP6
LP7
LW6
LYRES
M6L
MEWTI
MK4
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
VH1
VQA
W99
WH7
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3658-21fdc2759733d123eb36a9721003a6e83fe2e66b1b4a20491f7a3ff3be8bc3a53
IEDL.DBID DR2
ISSN 1063-8539
IngestDate Fri Jul 25 12:16:55 EDT 2025
Tue Jul 01 01:29:32 EDT 2025
Wed Jan 22 17:04:13 EST 2025
Wed Oct 30 09:51:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3658-21fdc2759733d123eb36a9721003a6e83fe2e66b1b4a20491f7a3ff3be8bc3a53
Notes National Natural Science Foundation of China - No. 61171198, 11431003
ark:/67375/WNG-5L8594MH-7
Online Data Appendix
ArticleID:JCD21428
Zhejiang Provincial Natural Science Foundation of China - No. LZ13A010001
istex:7A17A081672F1C013024932DC1891CABB9A300C7
Contract grant sponsor: National Natural Science Foundation of China; contract grant number: 61171198 and 11431003; Importation and Development of High‐Caliber Talents Project of Beijing Municipal Institutions; Zhejiang Provincial Natural Science Foundation of China; contract grant number: LZ13A010001.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1693736282
PQPubID 1006355
PageCount 16
ParticipantIDs proquest_journals_1693736282
crossref_primary_10_1002_jcd_21428
wiley_primary_10_1002_jcd_21428_JCD21428
istex_primary_ark_67375_WNG_5L8594MH_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of combinatorial designs
PublicationTitleAlternate J. Combin. Designs
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References C. J. Colbourn, G. Ge, and A. C. H. Ling, Optical grooming with grooming ratio nine, Discrete Math 311 (2011), 8-15.
X. Zhang and C. Qiao, An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings, IEEE/ACM Trans Netw 8 (2000), 608-617.
O. Gerstel, R. Ramaswani, and G. Sasaki, Cost-effective traffic grooming in WDM rings, IEEE/ACM Trans Netw 8 (2000), 618-630.
C. J. Colbourn, G. Ge, and A. C. H. Ling, Optimal grooming with grooming ratio eight, Discrete Appl Math 157 (2009), 2763-2772.
J.-C. Bermond, C. J. Colbourn, A. C. H. Ling, and M. L. Yu, Grooming in unidirectional rings: K4−e designs, Discrete Math 284 (2004), 67-72.
C. J. Colbourn, H. L. Fu, G. Ge, A. C. H. Ling, and H. C. Lu, Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 7, SIAM J Discrete Math 23 (2008), 109-122.
E. Modiano and P. Lin, Traffic grooming in WDM networks, IEEE Commun Mag 39 (2001), 124-129.
R. Dutta and N. Rouskas, Traffic grooming in WDM networks: past and future, IEEE Network 16 (2002), 46-56.
H. Wei and G. Ge, Group divisible designs with block size four and group type gum1 for more small g, Discrete Math 313 (2013), 2065-2083.
H. Wei and G. Ge, Group divisible designs with block size four and group type gum1, Des Codes Crytogr 74(1) (2015), 243-282.
G. Ge and A. C. H. Ling, On the existence of (K5∖e) designs with application to optical networks, SIAM J Discrete Math 21 (2007), 851-864.
H. Wei and G. Ge, Group divisible designs with block size four and group type gum1 for g≡0(mod6), J Combin Des 22(1) (2014), 26-52.
J.-C. Bermond and S. Ceroi, Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3, Networks 41 (2003), 83-86.
J.-C. Bermond, C. J. Colbourn, D. Coudert, G. Ge, A. C. H. Ling, and X. Mu noz, Traffic grooming in unidirectional WDM rings with grooming ratio C=6, SIAM J Discrete Math 19 (2005), 523-542.
E. Kolotoğlu, The existence and construction of (K5∖e)-designs of orders 27, 135, 162, and 216, J Combin Des 21(7) (2013), 280-302.
J. Q. Hu, Optimal traffic grooming for wavelength-division-multiplexing rings with all-to-all uniform traffic, OSA J Opt Netw 1 (2002), 32-42.
P.-J. Wan, G. Calinescu, L. Liu, and O. Frieder, Grooming of arbitrary traffic in SONET/WDM BLSRs, IEEE J Sel Areas Commun 18 (2000), 1995-2003.
G. Ge, S. Hu, E. Kolotoğlu, and H. Wei, A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks, J Combin Des 23(6) (2015), 233-273.
2002; 16
2015; 23
2011; 311
2005; 19
2000; 18
2013; 21
2004; 284
2013; 313
2015; 74
2000; 8
2003; 2
1998
2002; 1
2008; 23
2009; 157
2003
2001; 39
2007; 21
2003; 41
2014; 22
Zhang (10.1002/jcd.21428-BIB0021|jcd21428-cit-0021) 2000; 8
Ge (10.1002/jcd.21428-BIB0010|jcd21428-cit-0010) 2015; 23
Colbourn (10.1002/jcd.21428-BIB0007|jcd21428-cit-0007) 2009; 157
Gerstel (10.1002/jcd.21428-BIB0012|jcd21428-cit-0012) 1998
Wei (10.1002/jcd.21428-BIB0020|jcd21428-cit-0020) 2015; 74
Dutta (10.1002/jcd.21428-BIB0009|jcd21428-cit-0009) 2002; 16
Bermond (10.1002/jcd.21428-BIB0005|jcd21428-cit-0005) 2003
Bermond (10.1002/jcd.21428-BIB0001|jcd21428-cit-0001) 2003; 41
Colbourn (10.1002/jcd.21428-BIB0008|jcd21428-cit-0008) 2011; 311
Modiano (10.1002/jcd.21428-BIB0016|jcd21428-cit-0016) 2001; 39
Bermond (10.1002/jcd.21428-BIB0003|jcd21428-cit-0003) 2004; 284
Colbourn (10.1002/jcd.21428-BIB0006|jcd21428-cit-0006) 2008; 23
Bermond (10.1002/jcd.21428-BIB0002|jcd21428-cit-0002) 2005; 19
Kolotoğlu (10.1002/jcd.21428-BIB0015|jcd21428-cit-0015) 2013; 21
Gerstel (10.1002/jcd.21428-BIB0013|jcd21428-cit-0013) 2000; 8
Ge (10.1002/jcd.21428-BIB0011|jcd21428-cit-0011) 2007; 21
Bermond (10.1002/jcd.21428-BIB0004|jcd21428-cit-0004) 2003; 2
Wan (10.1002/jcd.21428-BIB0017|jcd21428-cit-0017) 2000; 18
Wei (10.1002/jcd.21428-BIB0019|jcd21428-cit-0019) 2014; 22
Wei (10.1002/jcd.21428-BIB0018|jcd21428-cit-0018) 2013; 313
Hu (10.1002/jcd.21428-BIB0014|jcd21428-cit-0014) 2002; 1
References_xml – reference: J.-C. Bermond, C. J. Colbourn, A. C. H. Ling, and M. L. Yu, Grooming in unidirectional rings: K4−e designs, Discrete Math 284 (2004), 67-72.
– reference: R. Dutta and N. Rouskas, Traffic grooming in WDM networks: past and future, IEEE Network 16 (2002), 46-56.
– reference: C. J. Colbourn, H. L. Fu, G. Ge, A. C. H. Ling, and H. C. Lu, Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 7, SIAM J Discrete Math 23 (2008), 109-122.
– reference: P.-J. Wan, G. Calinescu, L. Liu, and O. Frieder, Grooming of arbitrary traffic in SONET/WDM BLSRs, IEEE J Sel Areas Commun 18 (2000), 1995-2003.
– reference: E. Kolotoğlu, The existence and construction of (K5∖e)-designs of orders 27, 135, 162, and 216, J Combin Des 21(7) (2013), 280-302.
– reference: H. Wei and G. Ge, Group divisible designs with block size four and group type gum1 for g≡0(mod6), J Combin Des 22(1) (2014), 26-52.
– reference: J.-C. Bermond and S. Ceroi, Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3, Networks 41 (2003), 83-86.
– reference: C. J. Colbourn, G. Ge, and A. C. H. Ling, Optical grooming with grooming ratio nine, Discrete Math 311 (2011), 8-15.
– reference: H. Wei and G. Ge, Group divisible designs with block size four and group type gum1 for more small g, Discrete Math 313 (2013), 2065-2083.
– reference: O. Gerstel, R. Ramaswani, and G. Sasaki, Cost-effective traffic grooming in WDM rings, IEEE/ACM Trans Netw 8 (2000), 618-630.
– reference: J.-C. Bermond, C. J. Colbourn, D. Coudert, G. Ge, A. C. H. Ling, and X. Mu noz, Traffic grooming in unidirectional WDM rings with grooming ratio C=6, SIAM J Discrete Math 19 (2005), 523-542.
– reference: E. Modiano and P. Lin, Traffic grooming in WDM networks, IEEE Commun Mag 39 (2001), 124-129.
– reference: G. Ge and A. C. H. Ling, On the existence of (K5∖e) designs with application to optical networks, SIAM J Discrete Math 21 (2007), 851-864.
– reference: C. J. Colbourn, G. Ge, and A. C. H. Ling, Optimal grooming with grooming ratio eight, Discrete Appl Math 157 (2009), 2763-2772.
– reference: G. Ge, S. Hu, E. Kolotoğlu, and H. Wei, A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks, J Combin Des 23(6) (2015), 233-273.
– reference: J. Q. Hu, Optimal traffic grooming for wavelength-division-multiplexing rings with all-to-all uniform traffic, OSA J Opt Netw 1 (2002), 32-42.
– reference: H. Wei and G. Ge, Group divisible designs with block size four and group type gum1, Des Codes Crytogr 74(1) (2015), 243-282.
– reference: X. Zhang and C. Qiao, An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings, IEEE/ACM Trans Netw 8 (2000), 608-617.
– volume: 21
  start-page: 851
  year: 2007
  end-page: 864
  article-title: On the existence of ( ) designs with application to optical networks
  publication-title: SIAM J Discrete Math
– volume: 39
  start-page: 124
  year: 2001
  end-page: 129
  article-title: Traffic grooming in WDM networks
  publication-title: IEEE Commun Mag
– start-page: 1135
  year: 2003
  end-page: 1153
– volume: 41
  start-page: 83
  year: 2003
  end-page: 86
  article-title: Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3
  publication-title: Networks
– start-page: 94
  year: 1998
  end-page: 101
– volume: 23
  start-page: 233
  issue: 6
  year: 2015
  end-page: 273
  article-title: A complete solution to spectrum problem for five‐vertex graphs with application to traffic grooming in optical networks
  publication-title: J Combin Des
– volume: 18
  start-page: 1995
  year: 2000
  end-page: 2003
  article-title: Grooming of arbitrary traffic in SONET/WDM BLSRs
  publication-title: IEEE J Sel Areas Commun
– volume: 22
  start-page: 26
  issue: 1
  year: 2014
  end-page: 52
  article-title: Group divisible designs with block size four and group type for
  publication-title: J Combin Des
– volume: 8
  start-page: 608
  year: 2000
  end-page: 617
  article-title: An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings
  publication-title: IEEE/ACM Trans Netw
– volume: 311
  start-page: 8
  year: 2011
  end-page: 15
  article-title: Optical grooming with grooming ratio nine
  publication-title: Discrete Math
– volume: 1
  start-page: 32
  year: 2002
  end-page: 42
  article-title: Optimal traffic grooming for wavelength‐division‐multiplexing rings with all‐to‐all uniform traffic
  publication-title: OSA J Opt Netw
– volume: 23
  start-page: 109
  year: 2008
  end-page: 122
  article-title: Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 7
  publication-title: SIAM J Discrete Math
– volume: 284
  start-page: 67
  year: 2004
  end-page: 72
  article-title: Grooming in unidirectional rings: designs
  publication-title: Discrete Math
– volume: 16
  start-page: 46
  year: 2002
  end-page: 56
  article-title: Traffic grooming in WDM networks: past and future
  publication-title: IEEE Network
– volume: 8
  start-page: 618
  year: 2000
  end-page: 630
  article-title: Cost‐effective traffic grooming in WDM rings
  publication-title: IEEE/ACM Trans Netw
– volume: 21
  start-page: 280
  issue: 7
  year: 2013
  end-page: 302
  article-title: The existence and construction of ( )‐designs of orders 27, 135, 162, and 216
  publication-title: J Combin Des
– volume: 2
  start-page: 1402
  year: 2003
  end-page: 1406
– volume: 74
  start-page: 243
  issue: 1
  year: 2015
  end-page: 282
  publication-title: Des Codes Crytogr
– volume: 19
  start-page: 523
  year: 2005
  end-page: 542
  article-title: Traffic grooming in unidirectional WDM rings with grooming ratio
  publication-title: SIAM J Discrete Math
– volume: 157
  start-page: 2763
  year: 2009
  end-page: 2772
  article-title: Optimal grooming with grooming ratio eight
  publication-title: Discrete Appl Math
– volume: 313
  start-page: 2065
  year: 2013
  end-page: 2083
  article-title: Group divisible designs with block size four and group type for more small
  publication-title: Discrete Math
– volume: 21
  start-page: 851
  year: 2007
  ident: 10.1002/jcd.21428-BIB0011|jcd21428-cit-0011
  article-title: On the existence of (K5∖e) designs with application to optical networks
  publication-title: SIAM J Discrete Math
  doi: 10.1137/060660084
– start-page: 94
  volume-title: IEEE Infocom
  year: 1998
  ident: 10.1002/jcd.21428-BIB0012|jcd21428-cit-0012
– volume: 74
  start-page: 243
  issue: 1
  year: 2015
  ident: 10.1002/jcd.21428-BIB0020|jcd21428-cit-0020
  publication-title: Des Codes Crytogr
  doi: 10.1007/s10623-013-9854-z
– volume: 157
  start-page: 2763
  year: 2009
  ident: 10.1002/jcd.21428-BIB0007|jcd21428-cit-0007
  article-title: Optimal grooming with grooming ratio eight
  publication-title: Discrete Appl Math
  doi: 10.1016/j.dam.2009.03.019
– volume: 23
  start-page: 109
  year: 2008
  ident: 10.1002/jcd.21428-BIB0006|jcd21428-cit-0006
  article-title: Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 7
  publication-title: SIAM J Discrete Math
  doi: 10.1137/070709141
– volume: 311
  start-page: 8
  year: 2011
  ident: 10.1002/jcd.21428-BIB0008|jcd21428-cit-0008
  article-title: Optical grooming with grooming ratio nine
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2010.09.013
– volume: 18
  start-page: 1995
  year: 2000
  ident: 10.1002/jcd.21428-BIB0017|jcd21428-cit-0017
  article-title: Grooming of arbitrary traffic in SONET/WDM BLSRs
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/49.887919
– volume: 19
  start-page: 523
  year: 2005
  ident: 10.1002/jcd.21428-BIB0002|jcd21428-cit-0002
  article-title: Traffic grooming in unidirectional WDM rings with grooming ratio C=6
  publication-title: SIAM J Discrete Math
  doi: 10.1137/S0895480104444314
– volume: 313
  start-page: 2065
  year: 2013
  ident: 10.1002/jcd.21428-BIB0018|jcd21428-cit-0018
  article-title: Group divisible designs with block size four and group type gum1 for more small g
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2013.04.018
– start-page: 1135
  volume-title: Proceedings of the ONDM03
  year: 2003
  ident: 10.1002/jcd.21428-BIB0005|jcd21428-cit-0005
– volume: 8
  start-page: 608
  year: 2000
  ident: 10.1002/jcd.21428-BIB0021|jcd21428-cit-0021
  article-title: An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings
  publication-title: IEEE/ACM Trans Netw
  doi: 10.1109/90.879347
– volume: 41
  start-page: 83
  year: 2003
  ident: 10.1002/jcd.21428-BIB0001|jcd21428-cit-0001
  article-title: Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3
  publication-title: Networks
  doi: 10.1002/net.10061
– volume: 23
  start-page: 233
  issue: 6
  year: 2015
  ident: 10.1002/jcd.21428-BIB0010|jcd21428-cit-0010
  article-title: A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks
  publication-title: J Combin Des
  doi: 10.1002/jcd.21405
– volume: 1
  start-page: 32
  year: 2002
  ident: 10.1002/jcd.21428-BIB0014|jcd21428-cit-0014
  article-title: Optimal traffic grooming for wavelength-division-multiplexing rings with all-to-all uniform traffic
  publication-title: OSA J Opt Netw
  doi: 10.1364/JON.1.000032
– volume: 22
  start-page: 26
  issue: 1
  year: 2014
  ident: 10.1002/jcd.21428-BIB0019|jcd21428-cit-0019
  article-title: Group divisible designs with block size four and group type gum1 for g≡0(mod6)
  publication-title: J Combin Des
  doi: 10.1002/jcd.21336
– volume: 284
  start-page: 67
  year: 2004
  ident: 10.1002/jcd.21428-BIB0003|jcd21428-cit-0003
  article-title: Grooming in unidirectional rings: K4−e designs
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2003.11.023
– volume: 2
  start-page: 1402
  volume-title: IEEE Conference on Communication (ICC'03)
  year: 2003
  ident: 10.1002/jcd.21428-BIB0004|jcd21428-cit-0004
– volume: 16
  start-page: 46
  year: 2002
  ident: 10.1002/jcd.21428-BIB0009|jcd21428-cit-0009
  article-title: Traffic grooming in WDM networks: past and future
  publication-title: IEEE Network
  doi: 10.1109/MNET.2002.1081765
– volume: 8
  start-page: 618
  year: 2000
  ident: 10.1002/jcd.21428-BIB0013|jcd21428-cit-0013
  article-title: Cost-effective traffic grooming in WDM rings
  publication-title: IEEE/ACM Trans Netw
  doi: 10.1109/90.879348
– volume: 21
  start-page: 280
  issue: 7
  year: 2013
  ident: 10.1002/jcd.21428-BIB0015|jcd21428-cit-0015
  article-title: The existence and construction of (K5∖e)-designs of orders 27, 135, 162, and 216
  publication-title: J Combin Des
  doi: 10.1002/jcd.21340
– volume: 39
  start-page: 124
  year: 2001
  ident: 10.1002/jcd.21428-BIB0016|jcd21428-cit-0016
  article-title: Traffic grooming in WDM networks
  publication-title: IEEE Commun Mag
  doi: 10.1109/35.933446
SSID ssj0009936
Score 2.0086124
Snippet Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into...
Grooming uniform all-to-all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 400
SubjectTerms 05B30
05C70
2000 Mathematics Subject Classification: 05B05
68M10
68R05
graph decomposition
graph decomposition; optical networks; traffic grooming; wavelength‐division multiplexing
Heuristic
optical networks
Optimization
traffic grooming
wavelength-division multiplexing
Title Optimal Groomings with Grooming Ratios Six and Seven
URI https://api.istex.fr/ark:/67375/WNG-5L8594MH-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcd.21428
https://www.proquest.com/docview/1693736282
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPoi_64F2cN4qI-NK5Jm2a4pM65xCn4AV9EEJuBR1OcRsMP70n6VovIIhvLSS0PScn559w8ivAjs6UiYhiIVechrGkMpQ8sSHVKTMNmzPpz3F3Llj7Nj67T-4n4KA8C1PwIaoNNxcZfr52AS5Vf_8TGvqkTd3zwnD-jShz3Pzm1Sc6CvOuP1mEKTjElJSVVKEG2a96fstFU86so29C86tc9fmmNQcP5ZsWZSbd-nCg6vr9B8Txn58yD7NjHRocFgNnASZsbxFmOhXEtb8E8SVOJ8_Y6NSpa7ejHrhd2-o2uHJe7QfXj6NA9kxw7WBQy3DbOrk5bofjnyyEmqL6CEmUG01SXFdQil6juLhm0iF9MNwls5zmlljGVKRiSXA5EeWppHlOleVKU5nQFZjsvfTsKgTcZJZoEkueqTjSmTQxqiNDLYrOBjW8BtulucVrwdIQBTWZCDSB8Caowa53RNVCvnVd8VmaiLuLU5Gc8ySLO22R1mCj9JQYx11fOLRMijmZkxrseZP__iRxdtz0F2t_b7oO06iYkqLIbAMmB29Du4mqZKC2YOrwqHnU2vLD8AMSctvm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS-xAEC5cDupBfS44bi-IiJfMTLo7SQe8iNs838wILuhFmt4CKo7ijCD-eqs7k7iAIN4SqCZJVVfXV0XVF4BNnSkTEZWEXHEaMkllKHlsQ6rTxDRtnkg_x93pJq0LdnwVX43ATjkLU_BDVAU35xn-vHYO7grSjXfW0Ftt6p4wbBTGGQINl3rtn76TR2Hk9bNFGIRDDEpZySvUJI1q6adoNO4U-_IJan4ErD7iHM7AdfmuRaPJXf15oOr69QuN428_Zhamh1A02C32zh8Ysb05mOpUPK79eWAneKLco9CRA9iuqB64wm11G5w6w_aDs5uXQPZMcOb4oBbg4vDgfK8VDv-zEGqKACQkUW40STG1oBQNRzG_TqRj9UGPl4nlNLfEJomKFJMEM4ooTyXNc6osV5rKmC7CWO-hZ5cg4CazRBMmeaZYpDNpGAIkQy3iziY1vAYbpb7FY0GnIQriZCJQBcKroAZb3hKVhHy6c_1naSwuu0cibvM4Y52WSGuwWppKDF2vLxy7TIphmZMabHudf_8kcby37y-Wfy76FyZa5522aP_r_l-BSQRQcdFztgpjg6dnu4YgZaDW_V58A_qx3pM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB98gOgHW1941bZBpPgl52V3s9nQT0V7no87iw_0g7DsK6DiVbw7OPrXd3ZziVUQpN8SmCXJzM7Ob4aZXwC2Ta5tQjSPhRY0ZoqqWInUxdRk3LZcwVWY4-72eOeSHV2n11PwvZqFKfkh6oKb94xwXnsHf7TF7jNp6J2xzcAXNg2zjCOS8Ijo7Jk7CgNvGC3CGBxjTMorWqEW2a2XvghGs16v4xdI81-8GgJO-wPcVK9a9pncN0dD3TR_XrE4_ue3fITFCRCNfpQ7ZwmmXH8ZFro1i-tgBdgpnicPKHTg4bUvqUe-bFvfRmferIPo_HYcqb6Nzj0b1Cpctn9e7HXiyV8WYkMRfsQkKawhGSYWlKLZKGbXXHlOH_R3xZ2ghSOOc51opgjmE0mRKVoUVDuhDVUpXYOZ_u--W4dI2NwRQ5gSuWaJyZVlCI8sdYg6W9SKBmxV6paPJZmGLGmTiUQVyKCCBnwLhqgl1NO97z7LUnnVO5DpiUhz1u3IrAGblaXkxPEG0nPLZBiUBWnATlD520-SR3v74eLT-0W_wtyv_bY8Oewdb8A8oqe0bDjbhJnh08h9RoQy1F_CTvwLeF3dQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Groomings+with+Grooming+Ratios+Six+and+Seven&rft.jtitle=Journal+of+combinatorial+designs&rft.au=Ge%2C+Gennian&rft.au=Koloto%C4%9Flu%2C+Emre&rft.au=Wei%2C+Hengjia&rft.date=2015-09-01&rft.issn=1063-8539&rft.eissn=1520-6610&rft.volume=23&rft.issue=9&rft.spage=400&rft.epage=415&rft_id=info:doi/10.1002%2Fjcd.21428&rft.externalDBID=10.1002%252Fjcd.21428&rft.externalDocID=JCD21428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8539&client=summon