A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels

Agronomic experiments are often complex and difficult to interpret, and the proper use of appropriate statistical methodology is essential for an efficient and reliable analysis. In this paper, the basics of the statistical analysis of designed experiments are discussed using real examples from agri...

Full description

Saved in:
Bibliographic Details
Published inJournal of agronomy and crop science (1986) Vol. 204; no. 5; pp. 429 - 455
Main Authors Piepho, H. P., Edmondson, R. N.
Format Journal Article
LanguageEnglish
Published Berlin Wiley Subscription Services, Inc 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Agronomic experiments are often complex and difficult to interpret, and the proper use of appropriate statistical methodology is essential for an efficient and reliable analysis. In this paper, the basics of the statistical analysis of designed experiments are discussed using real examples from agricultural field trials. Factorial designs allow for the study of two or more treatment factors in the same experiment, and here we discuss the analysis of factorial designs for both qualitative and quantitative level treatment factors. Where treatment factors have quantitative levels, models of treatment effects are essential for efficient analysis and in this paper we discuss the use of polynomials for empirical quantitative modelling of treatment effects. The example analyses cover experiments with a single quantitative level factor, experiments with mixtures of quantitative and qualitative level factors, polynomial regression designs with two quantitative level factors, split‐plot designs with quantitative level factors and repeated‐measures designs with correlated data and a quantitative treatment response over time. Modern mixed model computer software for routine analysis of experimental data is now readily available, and we demonstrate the use of two alternative software packages, the SAS package and the R language. The main purpose of the paper is to exemplify standard statistical methodology for routine analysis of designed experiments in agricultural research, but in our discussion we also provide some references for the study of more advanced methodology.
AbstractList Agronomic experiments are often complex and difficult to interpret, and the proper use of appropriate statistical methodology is essential for an efficient and reliable analysis. In this paper, the basics of the statistical analysis of designed experiments are discussed using real examples from agricultural field trials. Factorial designs allow for the study of two or more treatment factors in the same experiment, and here we discuss the analysis of factorial designs for both qualitative and quantitative level treatment factors. Where treatment factors have quantitative levels, models of treatment effects are essential for efficient analysis and in this paper we discuss the use of polynomials for empirical quantitative modelling of treatment effects. The example analyses cover experiments with a single quantitative level factor, experiments with mixtures of quantitative and qualitative level factors, polynomial regression designs with two quantitative level factors, split‐plot designs with quantitative level factors and repeated‐measures designs with correlated data and a quantitative treatment response over time. Modern mixed model computer software for routine analysis of experimental data is now readily available, and we demonstrate the use of two alternative software packages, the SAS package and the R language. The main purpose of the paper is to exemplify standard statistical methodology for routine analysis of designed experiments in agricultural research, but in our discussion we also provide some references for the study of more advanced methodology.
Agronomic experiments are often complex and difficult to interpret, and the proper use of appropriate statistical methodology is essential for an efficient and reliable analysis. In this paper, the basics of the statistical analysis of designed experiments are discussed using real examples from agricultural field trials. Factorial designs allow for the study of two or more treatment factors in the same experiment, and here we discuss the analysis of factorial designs for both qualitative and quantitative level treatment factors. Where treatment factors have quantitative levels, models of treatment effects are essential for efficient analysis and in this paper we discuss the use of polynomials for empirical quantitative modelling of treatment effects. The example analyses cover experiments with a single quantitative level factor, experiments with mixtures of quantitative and qualitative level factors, polynomial regression designs with two quantitative level factors, split‐plot designs with quantitative level factors and repeated‐measures designs with correlated data and a quantitative treatment response over time. Modern mixed model computer software for routine analysis of experimental data is now readily available, and we demonstrate the use of two alternative software packages, the SAS package and the R language. The main purpose of the paper is to exemplify standard statistical methodology for routine analysis of designed experiments in agricultural research, but in our discussion we also provide some references for the study of more advanced methodology.
Author Edmondson, R. N.
Piepho, H. P.
Author_xml – sequence: 1
  givenname: H. P.
  orcidid: 0000-0001-7813-2992
  surname: Piepho
  fullname: Piepho, H. P.
  email: piepho@uni-hohenheim.de
  organization: University of Hohenheim
– sequence: 2
  givenname: R. N.
  surname: Edmondson
  fullname: Edmondson, R. N.
  organization: Rana House
BookMark eNp1kTtPwzAUhS0EEm1h4B9YYoEhxY84Tsaq4ikkFga2yDE3wpUbt7ZD6b_HbcOCwMuVr75zpHvOGB13rgOELiiZ0vRuFkpPKWOFPEIjmvMqI1y-HaMRqTjNGBPkFI1DWBBCCsb4CG1nOPbReaMsdh2OH4BDVNGEaHRaqU7ZbTABuxa3Sg8gfK3AmyV0MeCNiR943StrdrJPSJL33b-LP4voQcUdPDhgC59gwxk6aZUNcD7MCXq9u32dP2TPL_eP89lzpnkhZNa0kpW5pKKhLeSNIByqnKQTRdM0jHOheFWWumV5LkmRV1Q3rWCSayaZfhd8gq4Otivv1j2EWC9N0GCt6sD1oWaU01KmpEhCL3-hC9f7lECiSFUKWZasTNTNgdLeheChrfX-UtdFr4ytKal3TdSpiXrfRFJc_1KsUnrKb_9kB_eNsbD9H6yfZvOD4htnRptE
CitedBy_id crossref_primary_10_5902_2179460X67509
crossref_primary_10_3390_f16010153
crossref_primary_10_3390_catal9030287
crossref_primary_10_1007_s11540_024_09714_3
crossref_primary_10_1590_1984_70332020v20n3s46
crossref_primary_10_3390_agronomy13112823
crossref_primary_10_1093_jee_toaa080
crossref_primary_10_1017_S0021859623000564
crossref_primary_10_3389_fmars_2025_1573506
crossref_primary_10_1038_s42003_020_01317_1
crossref_primary_10_1017_S0021859622000466
crossref_primary_10_1007_s00374_018_1324_3
crossref_primary_10_1016_j_apsoil_2019_103373
crossref_primary_10_1002_bimj_201800270
crossref_primary_10_3389_fpls_2022_846237
crossref_primary_10_3390_ijms232012205
crossref_primary_10_3390_plants12061417
crossref_primary_10_1016_j_fcr_2020_107783
crossref_primary_10_1016_j_fcr_2025_109760
crossref_primary_10_3389_fmolb_2022_897935
crossref_primary_10_1111_jtxs_12799
crossref_primary_10_3390_crops4030027
crossref_primary_10_1016_j_fcr_2019_107593
crossref_primary_10_3390_app122111076
crossref_primary_10_1007_s10457_019_00407_2
crossref_primary_10_1016_j_apsoil_2018_12_023
crossref_primary_10_1111_wre_12576
crossref_primary_10_1111_avsc_12606
crossref_primary_10_3390_data5010006
crossref_primary_10_1007_s11676_023_01675_6
crossref_primary_10_1007_s11119_025_10224_6
crossref_primary_10_3390_agronomy11112343
crossref_primary_10_3390_plants13081163
crossref_primary_10_1016_j_foodres_2023_112564
crossref_primary_10_1111_nph_18503
crossref_primary_10_1007_s10705_023_10274_0
crossref_primary_10_3389_fpls_2021_718202
crossref_primary_10_1002_csc2_20662
crossref_primary_10_1016_j_apsoil_2023_104898
crossref_primary_10_4025_actasciagron_v45i1_56882
crossref_primary_10_3390_agronomy10091383
crossref_primary_10_1016_j_ces_2024_120039
crossref_primary_10_1016_j_soilbio_2020_107704
crossref_primary_10_1590_1678_992x_2022_0041
crossref_primary_10_1017_wsc_2023_46
crossref_primary_10_1094_PDIS_07_22_1658_RE
crossref_primary_10_1007_s13593_021_00681_4
crossref_primary_10_1016_j_foodres_2024_114694
crossref_primary_10_1111_ejss_12976
crossref_primary_10_1094_PHYTO_12_21_0517_R
crossref_primary_10_1016_j_apsoil_2024_105277
crossref_primary_10_1111_gfs_12477
crossref_primary_10_3389_fpubh_2022_993700
crossref_primary_10_1007_s12355_024_01506_w
crossref_primary_10_2134_agronj2017_10_0580
crossref_primary_10_3390_s21030762
crossref_primary_10_1002_agg2_20520
crossref_primary_10_1079_ab_2025_0009
crossref_primary_10_3390_catal11040514
crossref_primary_10_1007_s11164_024_05399_y
crossref_primary_10_1002_hyp_14017
crossref_primary_10_1016_j_pedobi_2020_150651
crossref_primary_10_3390_horticulturae8040307
crossref_primary_10_1016_j_eja_2022_126591
crossref_primary_10_1016_j_fcr_2024_109594
crossref_primary_10_1111_gcb_16035
crossref_primary_10_1111_jac_12759
crossref_primary_10_1080_23311975_2024_2336712
crossref_primary_10_1007_s13253_021_00467_x
crossref_primary_10_1016_j_jenvman_2020_111913
crossref_primary_10_17221_104_2020_JFS
Cites_doi 10.1007/s13253-014-0170-5
10.1007/s00122-015-2530-0
10.1007/978-1-4899-2951-8
10.1111/j.1439-037X.2004.00097.x
10.1002/9780470316856
10.1201/9781315370279
10.1201/9781482277371
10.21273/HORTSCI.41.2.446
10.1046/j.1439-037X.2003.00049.x
10.1017/S0021859614000823
10.2307/2346786
10.1614/WS-D-13-00159.1
10.1007/978-1-4614-3900-4
10.1007/BF00156745
10.1094/PHYTO.2004.94.1.33
10.1002/0471476471
10.1017/CBO9781139020879
10.1007/978-1-4899-4473-3
10.1002/0470072768
10.1016/j.csda.2005.07.015
10.2307/2532397
10.18637/jss.v059.i09
10.1007/b97673
10.1017/CBO9780511806384
10.1017/CBO9780511611483
10.18637/jss.v082.i13
10.4148/2475-7772.1474
10.2307/2533558
10.1111/jac.12225
10.1002/9781118625590
10.1007/978-1-4899-7220-0
10.1007/978-0-387-75969-2
10.1201/b17198
10.1007/978-1-4899-7180-7
10.2307/2684952
10.18637/jss.v067.i01
10.1080/02664760021862
10.1093/biomet/41.3-4.544
10.1002/bimj.4710240404
10.1002/9780470594001
10.1007/978-1-4899-2873-3
10.2134/agronj2008.0226x
10.1890/10-0340.1
10.1007/978-0-387-98141-3
10.1002/0471715816
10.1300/J411v14n01_04
10.2307/2530043
10.1016/j.csda.2008.12.013
10.1007/978-0-387-21706-2
10.1111/j.1467-842X.2004.00334.x
10.1017/S0014479704002364
10.1201/9781420011340
10.1007/978-1-4419-0318-1
10.1198/108571105X58199
10.1080/03610918.2013.870196
10.1111/jac.12220
10.1007/978-1-4899-3242-6
ContentType Journal Article
Copyright 2018 The Authors. Published by Blackwell Verlag GmbH
Copyright © 2018 Blackwell Verlag GmbH
Copyright_xml – notice: 2018 The Authors. Published by Blackwell Verlag GmbH
– notice: Copyright © 2018 Blackwell Verlag GmbH
DBID 24P
AAYXX
CITATION
7ST
C1K
SOI
7S9
L.6
DOI 10.1111/jac.12267
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Environment Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Statistics
EISSN 1439-037X
EndPage 455
ExternalDocumentID 10_1111_jac_12267
JAC12267
Genre reviewArticle
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29J
31~
33P
3SF
4.4
4P2
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
APEBS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EAD
EAP
EAS
EBD
EBO
EBS
ECGQY
EDH
EJD
EMK
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7ST
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c3657-bf7284715b1fe4b503e9401225bbb2335a3988cf244706491cbf5273c272cd53
IEDL.DBID DR2
ISSN 0931-2250
IngestDate Fri Jul 11 18:31:18 EDT 2025
Wed Aug 13 08:39:39 EDT 2025
Tue Jul 01 01:45:44 EDT 2025
Thu Apr 24 23:07:03 EDT 2025
Wed Aug 20 07:27:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3657-bf7284715b1fe4b503e9401225bbb2335a3988cf244706491cbf5273c272cd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7813-2992
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjac.12267
PQID 2098578828
PQPubID 2045140
PageCount 27
ParticipantIDs proquest_miscellaneous_2131874390
proquest_journals_2098578828
crossref_citationtrail_10_1111_jac_12267
crossref_primary_10_1111_jac_12267
wiley_primary_10_1111_jac_12267_JAC12267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of agronomy and crop science (1986)
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 204
1954; 41
2013; 8
1982; 24
1990; 44
1991; 47
2009; 53
2000
1997; 53
1987
2014; 59
1985
1984
1983
2014; 19
2017; 203
2016; 45
1989
1988
2000; 27
2006; 50
2012
2011
2010
2004; 46
2009
1998
2008
2005; 41
2007
1996
2006
1995
1994
2005
2004
1992
2015; 128
2002
1999; 7
1999
2015; 67
2006; 41
2004; 94
1973; 22
1982; 82
2004; 190
2015; 63
2011; 92
2015; 153
2018
2009; 101
2017
2005; 10
2016
2015
2014
2013
2003; 189
1994; 4
2005; 14
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_68_1
e_1_2_13_20_1
e_1_2_13_66_1
Mead R. (e_1_2_13_41_1) 1988
Rao C. R. (e_1_2_13_63_1) 2008
e_1_2_13_87_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_85_1
e_1_2_13_62_1
Hocking R. R. (e_1_2_13_25_1) 1985
Kabacoff R. I. (e_1_2_13_29_1) 2015
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
e_1_2_13_81_1
Milliken G. A. (e_1_2_13_45_1) 2002
e_1_2_13_17_1
Petersen R. G. (e_1_2_13_52_1) 1994
e_1_2_13_19_1
Hinkelmann K. (e_1_2_13_24_1) 1994
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_15_1
Littell R. C. (e_1_2_13_38_1) 2006
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_30_1
Snedecor G. W. (e_1_2_13_75_1) 1989
e_1_2_13_4_1
e_1_2_13_2_1
Burnham K. P. (e_1_2_13_8_1) 2002
Kuehl R. O. (e_1_2_13_33_1) 2000
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_67_1
Bretz F. (e_1_2_13_7_1) 2011
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_86_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_84_1
e_1_2_13_61_1
e_1_2_13_80_1
Faraway J. J. (e_1_2_13_16_1) 2006
Atkinson A. C. (e_1_2_13_3_1) 1987
Searle S. R. (e_1_2_13_71_1) 1987
Stroup W. W. (e_1_2_13_77_1) 2015
Milliken G. A. (e_1_2_13_44_1) 1992
e_1_2_13_18_1
e_1_2_13_39_1
Piepho H. P. (e_1_2_13_59_1) 2013; 8
e_1_2_13_14_1
e_1_2_13_35_1
Schabenberger O. (e_1_2_13_70_1) 2002
e_1_2_13_37_1
e_1_2_13_58_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_12_1
Gomez K. A. (e_1_2_13_21_1) 1984
e_1_2_13_54_1
e_1_2_13_73_1
e_1_2_13_50_1
Welham S. J. (e_1_2_13_82_1) 2015
e_1_2_13_5_1
R Core Team (e_1_2_13_64_1) 2016
Searle S. R. (e_1_2_13_72_1) 1994; 4
e_1_2_13_28_1
Piepho H. P. (e_1_2_13_57_1) 1999; 7
References_xml – year: 2011
– year: 1985
– year: 2009
– year: 2005
– volume: 128
  start-page: 1541
  year: 2015
  end-page: 1554
  article-title: Inter‐block information: To recover or not to recover it?
  publication-title: Theoretical and Applied Genetics
– volume: 27
  start-page: 109
  year: 2000
  end-page: 112
  article-title: Functional marginality and response surface fitting
  publication-title: Journal of Applied Statistics
– volume: 101
  start-page: 865
  year: 2009
  end-page: 869
  article-title: Data transformation in statistical analysis of field trials with changing treatment variance
  publication-title: Agronomy Journal
– year: 1989
– volume: 24
  start-page: 339
  year: 1982
  end-page: 360
  article-title: How large is the probability for the estimate of a variance component to be negative?
  publication-title: Biometical Journal
– volume: 45
  start-page: 660
  year: 2016
  end-page: 670
  article-title: A clustering‐based test for nonadditivity in an unreplicated two‐way layout
  publication-title: Communications in Statistics – Simulation and Computation
– volume: 4
  start-page: 103
  year: 1994
  end-page: 107
  article-title: Comments on J.A. Nelder ‘The statistics of linear models: Back to basics’
  publication-title: Statistics and Computing
– year: 2018
– year: 1994
– year: 2014
– volume: 53
  start-page: 983
  year: 1997
  end-page: 997
  article-title: Small sample inference for fixed effects from restricted maximum likelihood
  publication-title: Biometrics
– year: 1998
– volume: 10
  start-page: 374
  year: 2005
  end-page: 389
  article-title: A simulation study on tests of hypotheses for fixed effects in mixed models for blocked experiments with missing data
  publication-title: Journal of Agricultural, Biological and Environmental Statistics
– volume: 67
  issue: 1
  year: 2015
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– year: 2008
– year: 2004
– volume: 204
  start-page: 86
  year: 2018
  end-page: 98
  article-title: What's normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions
  publication-title: Journal of Agronomy and Crop Science
– volume: 153
  start-page: 1187
  year: 2015
  end-page: 1207
  article-title: Treatment comparisons in agricultural field trials accounting for spatial correlation
  publication-title: Journal of Agricultural Science
– volume: 94
  start-page: 33
  year: 2004
  end-page: 43
  article-title: Nonparametric analysis of ordinal data in designed factorial experiments
  publication-title: Phytopathology
– volume: 203
  start-page: 584
  year: 2017
  end-page: 592
  article-title: Designing an experiment with quantitative treatment factors to study the effects of climate change
  publication-title: Journal of Agronomy and Crop Science
– volume: 41
  start-page: 109
  year: 2005
  end-page: 120
  article-title: The factorial field experiment
  publication-title: Experimental Agriculture
– volume: 53
  start-page: 2583
  year: 2009
  end-page: 2595
  article-title: An improved approximation to the precision of fixed effects from restricted maximum likelihood
  publication-title: Computational Statistics and Data Analysis
– volume: 50
  start-page: 3464
  year: 2006
  end-page: 3485
  article-title: Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs
  publication-title: Computational Statistics and Data Analysis
– year: 2015
– year: 1983
– volume: 63
  start-page: 166
  year: 2015
  end-page: 187
  article-title: Research methods in weed science: Statistics
  publication-title: Weed Science
– volume: 82
  start-page: 613
  year: 1982
  end-page: 621
  article-title: Analysis of covariance and standardisation as instances of prediction
  publication-title: Biometrics
– volume: 44
  start-page: 26
  year: 1990
  end-page: 30
  article-title: A property of well‐formulated polynomial regression models
  publication-title: The American Statistician
– year: 1987
– year: 2007
– volume: 41
  start-page: 446
  year: 2006
  end-page: 452
  article-title: A note on the analysis of designed experiments with complex treatment structure
  publication-title: HortScience
– volume: 8
  start-page: 10
  year: 2013
  end-page: 22
  article-title: A two‐stage approach to recovery of inter‐block information and shrinkage of block effect estimates
  publication-title: Communications in Biometry and Crop Science
– year: 1996
– year: 2000
– volume: 47
  start-page: 1435
  year: 1991
  end-page: 1448
  article-title: Agricultural response surface experiments based on four‐level factorial designs
  publication-title: Biometrics
– volume: 14
  start-page: 29
  year: 2005
  end-page: 50
  article-title: Designing for and analyzing results from field experiments
  publication-title: Journal of Crop Improvement
– volume: 92
  start-page: 3
  year: 2011
  end-page: 10
  article-title: The arcsine is asinine: The analysis of proportions in ecology
  publication-title: Ecology
– volume: 190
  start-page: 230
  year: 2004
  end-page: 247
  article-title: A mixed modelling approach to randomized experiments with repeated measures
  publication-title: Journal of Agronomy and Crop Science
– volume: 19
  start-page: 258
  year: 2014
  end-page: 277
  article-title: ANOVA for factors with ordered levels
  publication-title: Journal of Agricultural, Biological and Environmental Statistics
– year: 2016
– volume: 22
  start-page: 392
  year: 1973
  end-page: 399
  article-title: Symbolic description of factorial models for analysis of variance
  publication-title: Applied Statistics
– year: 1992
– year: 2010
– year: 2012
– year: 1984
– volume: 59
  start-page: 1
  issue: 9
  year: 2014
  end-page: 30
  article-title: A Kenward‐Roger approximation and parametric bootstrap methods for tests in linear mixed models – The R package pbkrtest
  publication-title: Journal of Statistical Software
– year: 2002
– year: 1988
– year: 2006
– volume: 41
  start-page: 544
  year: 1954
  end-page: 548
  article-title: The interpretation of negative components of variance
  publication-title: Biometrika
– year: 1995
– volume: 189
  start-page: 310
  year: 2003
  end-page: 322
  article-title: A hitchhiker's guide to the mixed model analysis of randomized experiments
  publication-title: Journal of Agronomy and Crop Science
– volume: 46
  start-page: 325
  year: 2004
  end-page: 347
  article-title: Prediction in linear mixed models
  publication-title: Australian and New Zealand Journal of Statistics
– year: 2017
– volume: 4
  start-page: 221
  year: 1994
  end-page: 234
  article-title: The statistics of linear models: Back to basics
  publication-title: Statistics and Computing
– volume: 7
  start-page: 39
  year: 1999
  end-page: 46
  article-title: Anmerkungen zur Analyse balancierter gemischter Modelle mit der SAS Prozedur MIXED
  publication-title: Zeitschrift für Agrarinformatik
– year: 1999
– year: 2013
– ident: e_1_2_13_19_1
  doi: 10.1007/s13253-014-0170-5
– ident: e_1_2_13_46_1
  doi: 10.1007/s00122-015-2530-0
– ident: e_1_2_13_42_1
  doi: 10.1007/978-1-4899-2951-8
– ident: e_1_2_13_55_1
  doi: 10.1111/j.1439-037X.2004.00097.x
– ident: e_1_2_13_73_1
  doi: 10.1002/9780470316856
– ident: e_1_2_13_86_1
  doi: 10.1201/9781315370279
– volume-title: Agricultural field experiments. Design and analysis
  year: 1994
  ident: e_1_2_13_52_1
  doi: 10.1201/9781482277371
– volume-title: Statistical methods in biology
  year: 2015
  ident: e_1_2_13_82_1
– ident: e_1_2_13_58_1
  doi: 10.21273/HORTSCI.41.2.446
– volume: 4
  start-page: 103
  year: 1994
  ident: e_1_2_13_72_1
  article-title: Comments on J.A. Nelder ‘The statistics of linear models: Back to basics’
  publication-title: Statistics and Computing
– ident: e_1_2_13_54_1
  doi: 10.1046/j.1439-037X.2003.00049.x
– ident: e_1_2_13_65_1
  doi: 10.1017/S0021859614000823
– ident: e_1_2_13_85_1
  doi: 10.2307/2346786
– ident: e_1_2_13_15_1
– volume-title: Model selection and multimodel inference: A practical information‐theoretic approach
  year: 2002
  ident: e_1_2_13_8_1
– volume-title: Plots, transformations, and regression: An introduction to graphical methods of diagnostic regression analysis
  year: 1987
  ident: e_1_2_13_3_1
– volume-title: R in action: Data analysis and graphics with R
  year: 2015
  ident: e_1_2_13_29_1
– volume-title: The design of experiments. Statistical principles for practical application
  year: 1988
  ident: e_1_2_13_41_1
– volume-title: Contemporary statistical models for the plant and soil sciences
  year: 2002
  ident: e_1_2_13_70_1
– ident: e_1_2_13_68_1
– volume-title: Analysis of messy data. Volume I: Designed experiments
  year: 1992
  ident: e_1_2_13_44_1
– ident: e_1_2_13_66_1
  doi: 10.1614/WS-D-13-00159.1
– ident: e_1_2_13_18_1
  doi: 10.1007/978-1-4614-3900-4
– volume-title: Statistical methods
  year: 1989
  ident: e_1_2_13_75_1
– ident: e_1_2_13_87_1
– ident: e_1_2_13_9_1
– ident: e_1_2_13_48_1
  doi: 10.1007/BF00156745
– ident: e_1_2_13_74_1
  doi: 10.1094/PHYTO.2004.94.1.33
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_13_64_1
– volume-title: Linear models. Least squares and alternatives
  year: 2008
  ident: e_1_2_13_63_1
– ident: e_1_2_13_20_1
  doi: 10.1002/0471476471
– ident: e_1_2_13_43_1
  doi: 10.1017/CBO9781139020879
– volume-title: Extending the linear model with R. Generalized linear, mixed effects and nonparametric regression models
  year: 2006
  ident: e_1_2_13_16_1
– ident: e_1_2_13_22_1
  doi: 10.1007/978-1-4899-4473-3
– ident: e_1_2_13_6_1
  doi: 10.1002/0470072768
– ident: e_1_2_13_69_1
  doi: 10.1016/j.csda.2005.07.015
– ident: e_1_2_13_14_1
  doi: 10.2307/2532397
– ident: e_1_2_13_23_1
  doi: 10.18637/jss.v059.i09
– ident: e_1_2_13_11_1
  doi: 10.1007/b97673
– ident: e_1_2_13_62_1
  doi: 10.1017/CBO9780511806384
– ident: e_1_2_13_4_1
  doi: 10.1017/CBO9780511611483
– volume-title: Multiple comparisons using R
  year: 2011
  ident: e_1_2_13_7_1
– ident: e_1_2_13_34_1
  doi: 10.18637/jss.v082.i13
– ident: e_1_2_13_12_1
  doi: 10.4148/2475-7772.1474
– ident: e_1_2_13_30_1
  doi: 10.2307/2533558
– ident: e_1_2_13_56_1
  doi: 10.1111/jac.12225
– volume-title: Generalized linear mixed models. Modern concepts, methods and applications
  year: 2015
  ident: e_1_2_13_77_1
– ident: e_1_2_13_13_1
  doi: 10.1002/9781118625590
– ident: e_1_2_13_27_1
  doi: 10.1007/978-1-4899-7220-0
– ident: e_1_2_13_67_1
  doi: 10.1007/978-0-387-75969-2
– ident: e_1_2_13_83_1
  doi: 10.1201/b17198
– ident: e_1_2_13_26_1
  doi: 10.1007/978-1-4899-7180-7
– volume-title: Statistical procedures for agricultural research
  year: 1984
  ident: e_1_2_13_21_1
– ident: e_1_2_13_51_1
  doi: 10.2307/2684952
– volume: 8
  start-page: 10
  year: 2013
  ident: e_1_2_13_59_1
  article-title: A two‐stage approach to recovery of inter‐block information and shrinkage of block effect estimates
  publication-title: Communications in Biometry and Crop Science
– ident: e_1_2_13_5_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_13_61_1
– ident: e_1_2_13_49_1
  doi: 10.1080/02664760021862
– ident: e_1_2_13_47_1
  doi: 10.1093/biomet/41.3-4.544
– ident: e_1_2_13_79_1
  doi: 10.1002/bimj.4710240404
– ident: e_1_2_13_2_1
  doi: 10.1002/9780470594001
– volume-title: Linear models for unbalanced data
  year: 1987
  ident: e_1_2_13_71_1
– ident: e_1_2_13_10_1
  doi: 10.1007/978-1-4899-2873-3
– volume-title: The analysis of linear models
  year: 1985
  ident: e_1_2_13_25_1
– volume: 7
  start-page: 39
  year: 1999
  ident: e_1_2_13_57_1
  article-title: Anmerkungen zur Analyse balancierter gemischter Modelle mit der SAS Prozedur MIXED
  publication-title: Zeitschrift für Agrarinformatik
– ident: e_1_2_13_53_1
  doi: 10.2134/agronj2008.0226x
– ident: e_1_2_13_80_1
  doi: 10.1890/10-0340.1
– ident: e_1_2_13_84_1
  doi: 10.1007/978-0-387-98141-3
– ident: e_1_2_13_28_1
  doi: 10.1002/0471715816
– volume-title: Design of experiments: Statistical principles of research design and analysis
  year: 2000
  ident: e_1_2_13_33_1
– ident: e_1_2_13_17_1
  doi: 10.1300/J411v14n01_04
– ident: e_1_2_13_35_1
  doi: 10.2307/2530043
– ident: e_1_2_13_37_1
– volume-title: Design and analysis of experiments
  year: 1994
  ident: e_1_2_13_24_1
– ident: e_1_2_13_31_1
  doi: 10.1016/j.csda.2008.12.013
– ident: e_1_2_13_78_1
  doi: 10.1007/978-0-387-21706-2
– ident: e_1_2_13_81_1
  doi: 10.1111/j.1467-842X.2004.00334.x
– volume-title: SAS for mixed models
  year: 2006
  ident: e_1_2_13_38_1
– ident: e_1_2_13_50_1
  doi: 10.1017/S0014479704002364
– ident: e_1_2_13_36_1
  doi: 10.1201/9781420011340
– ident: e_1_2_13_60_1
  doi: 10.1007/978-1-4419-0318-1
– ident: e_1_2_13_76_1
  doi: 10.1198/108571105X58199
– ident: e_1_2_13_39_1
  doi: 10.1080/03610918.2013.870196
– ident: e_1_2_13_32_1
  doi: 10.1111/jac.12220
– ident: e_1_2_13_40_1
  doi: 10.1007/978-1-4899-3242-6
– volume-title: Analysis of messy data. Volume III: Analysis of covariance
  year: 2002
  ident: e_1_2_13_45_1
SSID ssj0006223
Score 2.468938
SecondaryResourceType review_article
Snippet Agronomic experiments are often complex and difficult to interpret, and the proper use of appropriate statistical methodology is essential for an efficient and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 429
SubjectTerms Agricultural land
Agricultural practices
Agricultural research
Agronomy
Computer programs
computer software
Correlation analysis
Data processing
Design
Empirical analysis
experimental design
factorial analysis
Factorial experiments
field experimentation
linear mixed models
Methodology
polynomial regression
Polynomials
Qualitative analysis
Regression analysis
repeated‐measures analysis
response surface models
SAS
Software
Software packages
Split-plot design
split‐plot analysis
Statistical analysis
Statistical methods
statistical models
Statistics
Within-subjects design
Title A tutorial on the statistical analysis of factorial experiments with qualitative and quantitative treatment factor levels
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjac.12267
https://www.proquest.com/docview/2098578828
https://www.proquest.com/docview/2131874390
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RuNADBdqqS2FlEIdeghI_4kScAu0KIYEQAolDpch2bA5FWcRmD_DrGTuPBUSlqrc8xoljz9hf7JlvAPa1UI5XuYookzziQuaRqnId8dSJKnaZVSG26uw8PbnmpzfiZgkO-1iYlh9iWHDzlhHGa2_gSs9eGjm-L0Hw4CPJva-WB0SXC-qolNI2jTxLItTZuGMVCl48fcnXc9ECYL6EqWGemXyC330NW_eSPwfzRh-Ypzfkjf_5Ceuw1uFPUrQKswFLtt6Ej8XtQ8fBYT_DY0Eaz2yAmkmmNUGESHzYUWB0xkuqozEhU0fabD1ecJEpYEb82i5pozUDrTgWqfx53fQXBvf27gnkzvsuzb7A1eTX1fFJ1GVoiAy2uIy0k2F6EzpxlmsRM5tzv1kntNaUMaFYnmXGIYaQiH3yxGjnGd8MldRUgn2F5Xpa229AqLSVkymvBCpHZp1KUqMtVYhnK50YOYIffVeVpmMv90k07srhL0aZMjTmCPYG0fuWsuM9oe2-v8vOamcljfMMRzD8CR3B7nAb7c1voqjaTucokzCfxpDlMVYpdO7fX1KeFsfhYOvfRb_DKmKylnI32Ybl5mFudxD3NHoMHyi_GMNKcfTzaDIO6v4MXIkCyw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8q4wAcNr4mygYYxIFLqtiO40TapapWlbH1gIrUC4psx-bAlExretj-ep6dj44JJMQtcZ5jJ37P_tl-_j2Aj1ool5S5ihiXSZQImUeqzHWUpE6UscusCmerLpbp4ltythbrEZz0Z2Fafohhwc1bRuivvYH7Bem7Vo4FUkQP8gE89BG9w4Tq6448KmWsDSTPaYRaG3e8QsGPp8_6-2i0g5h3gWoYaeYH8L2vY-tg8nOybfTE3N6jb_zfj3gK-x0EJdNWZ57ByFbP4cn0x3VHw2FfwM2UNJ7cAJWT1BVBkEj8yaNA6oxJqmMyIbUjbcAeL7gLFrAhfnmXtAc2A7M4Zin9fdX0CYOHe_cGcundlzYvYTU_Xc0WURekITI8FTLSToYRTmjqbKJFzG2e-P06obVmnAvF8ywzDmGERPiTU6OdJ30zTDJTCn4Ie1Vd2VdAmLSlk2lSCtSPzDpFU6MtUwhpS02NHMOnvq0K0xGY-zgal8UwkVGmCD9zDB8G0auWteNPQsd9gxed4W4KFucZdmI4Dx3D--ExmpzfR1GVrbcoQ7mPZMjzGKsUWvfvhRRn01m4eP3vou_g0WJ1cV6cf15-OYLHCNFaBl56DHvN9da-QRjU6LdB238BPVYEnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkKpyKPQllgI1VQ-9BCV-xIl6WgEroAVVFZU4VIr87AGURWz2AL--Y-exFLUS4pY449iJZ-zP9vgbgE9aKM9tqRLKJE-4kGWibKkTnnthU184Fc9WnZ7lRz_5yYW4WIIv_VmYlh9iWHALlhH762Dg19bfN3IsL0PwIJ_BCs_TIqj0wY8Fd1ROaRtHnmUJKm3a0QpFN54-69-D0QJh3sepcaCZrMGvvoqtf8nl3rzRe-buAXvjE79hHV52AJSMW415BUuufg2r4983HQmHewO3Y9IEagNUTTKtCUJEEs4dRUpnTFIdjwmZetKG6wmCi1ABMxIWd0l7XDPyimMWG-7rpk8Y_Nu7N5Cr4Lw0ewvnk8Pz_aOkC9GQGJYLmWgv4_gmdOYd1yJlruRht05orSljQrGyKIxHECER_JSZ0T5QvhkqqbGCvYPlelq7DSBUOutlzq1A7SicV1lutKMKAa3VmZEj-Nw3VWU6-vIQReOqGqYxylTxZ47g4yB63XJ2_Etoq2_vqjPbWUXTssAuDGehI9gdHqPBhV0UVbvpHGUyFuIYsjLFKsXG_X8h1cl4P15sPl70Azz_fjCpvh2ffX0PLxCftfS72RYsNzdzt40YqNE7Udf_AFCKA1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tutorial+on+the+statistical+analysis+of+factorial+experiments+with+qualitative+and+quantitative+treatment+factor+levels&rft.jtitle=Journal+of+agronomy+and+crop+science+%281986%29&rft.au=Piepho%2C+H+P&rft.au=Edmondson%2C+R+N&rft.date=2018-10-01&rft.issn=0931-2250&rft.volume=204&rft.issue=5+p.429-455&rft.spage=429&rft.epage=455&rft_id=info:doi/10.1111%2Fjac.12267&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-2250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-2250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-2250&client=summon