Analyzing social psychological impact on emotional expression through peer communication using crayfish optimization algorithm with deep learning model

In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with peers. The insights gained will advance the fields of social psychology and human-computer interaction (HCI), informing the design of digita...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 26222 - 15
Main Author Alzubaidi, Umkalthoom
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with peers. The insights gained will advance the fields of social psychology and human-computer interaction (HCI), informing the design of digital platforms that better support meaningful emotional and social interactions. Sentiment analysis (SA) identifies people’s emotions, attitudes, and sentiments towards a given target, like activities, people, services, organizations, products, and subjects. Emotion detection is a subdivision of SA as it forecasts the novel emotion instead of only maintaining negative, positive, or neutral. Emotion recognition has emerged as an important area of study that may report different valuable inputs. Emotion is expressed in numerous ways that are observed, namely written text, gestures, speech, and facial expressions. Emotional recognition in the text document is primarily a content-based classification problem containing ideas from natural language processing (NLP). NLP methods enhance the performance of learning-based models by combining the syntactic and semantic features of the text. To identify the emotion, a new deep learning (DL) model is applied to recognize emotional expression from text for improved results. This paper uses the Crayfish Optimization Algorithm and Deep Learning (SPIEEPC-COADL) method to analyze the Social Psychological Impact on Emotional Expression through Peer Communication. The presented SPIEEPC-COADL model aims to develop an effective method for detecting text-based emotional expressions to enhance HCI. Initially, the text pre-processing stage contains various levels to clean, normalize, and structure raw text data to improve the performance. Furthermore, the FastText method is employed for the word embedding process. Moreover, the variational autoencoder (VAE) model is implemented for emotion classification. Finally, the crayfish optimization algorithm (COA) adjusts the VAE model’s hyperparameter values, improving classification. The efficiency of the SPIEEPC-COADL model is examined using emotion detection from the text dataset. The comparison study of the SPIEEPC-COADL technique demonstrated a superior accuracy value of 99.07% over existing models.
AbstractList In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with peers. The insights gained will advance the fields of social psychology and human-computer interaction (HCI), informing the design of digital platforms that better support meaningful emotional and social interactions. Sentiment analysis (SA) identifies people’s emotions, attitudes, and sentiments towards a given target, like activities, people, services, organizations, products, and subjects. Emotion detection is a subdivision of SA as it forecasts the novel emotion instead of only maintaining negative, positive, or neutral. Emotion recognition has emerged as an important area of study that may report different valuable inputs. Emotion is expressed in numerous ways that are observed, namely written text, gestures, speech, and facial expressions. Emotional recognition in the text document is primarily a content-based classification problem containing ideas from natural language processing (NLP). NLP methods enhance the performance of learning-based models by combining the syntactic and semantic features of the text. To identify the emotion, a new deep learning (DL) model is applied to recognize emotional expression from text for improved results. This paper uses the Crayfish Optimization Algorithm and Deep Learning (SPIEEPC-COADL) method to analyze the Social Psychological Impact on Emotional Expression through Peer Communication. The presented SPIEEPC-COADL model aims to develop an effective method for detecting text-based emotional expressions to enhance HCI. Initially, the text pre-processing stage contains various levels to clean, normalize, and structure raw text data to improve the performance. Furthermore, the FastText method is employed for the word embedding process. Moreover, the variational autoencoder (VAE) model is implemented for emotion classification. Finally, the crayfish optimization algorithm (COA) adjusts the VAE model’s hyperparameter values, improving classification. The efficiency of the SPIEEPC-COADL model is examined using emotion detection from the text dataset. The comparison study of the SPIEEPC-COADL technique demonstrated a superior accuracy value of 99.07% over existing models.
Abstract In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with peers. The insights gained will advance the fields of social psychology and human-computer interaction (HCI), informing the design of digital platforms that better support meaningful emotional and social interactions. Sentiment analysis (SA) identifies people’s emotions, attitudes, and sentiments towards a given target, like activities, people, services, organizations, products, and subjects. Emotion detection is a subdivision of SA as it forecasts the novel emotion instead of only maintaining negative, positive, or neutral. Emotion recognition has emerged as an important area of study that may report different valuable inputs. Emotion is expressed in numerous ways that are observed, namely written text, gestures, speech, and facial expressions. Emotional recognition in the text document is primarily a content-based classification problem containing ideas from natural language processing (NLP). NLP methods enhance the performance of learning-based models by combining the syntactic and semantic features of the text. To identify the emotion, a new deep learning (DL) model is applied to recognize emotional expression from text for improved results. This paper uses the Crayfish Optimization Algorithm and Deep Learning (SPIEEPC-COADL) method to analyze the Social Psychological Impact on Emotional Expression through Peer Communication. The presented SPIEEPC-COADL model aims to develop an effective method for detecting text-based emotional expressions to enhance HCI. Initially, the text pre-processing stage contains various levels to clean, normalize, and structure raw text data to improve the performance. Furthermore, the FastText method is employed for the word embedding process. Moreover, the variational autoencoder (VAE) model is implemented for emotion classification. Finally, the crayfish optimization algorithm (COA) adjusts the VAE model’s hyperparameter values, improving classification. The efficiency of the SPIEEPC-COADL model is examined using emotion detection from the text dataset. The comparison study of the SPIEEPC-COADL technique demonstrated a superior accuracy value of 99.07% over existing models.
ArticleNumber 26222
Author Alzubaidi, Umkalthoom
Author_xml – sequence: 1
  givenname: Umkalthoom
  surname: Alzubaidi
  fullname: Alzubaidi, Umkalthoom
  email: uhalzubaidi@uhb.edu.sa
  organization: Department of Social Work, Al Nairyah University College, University of Hafr Albatin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40683924$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAURSNUREvpDzBAlpgwCfideISqikelSkxgbDnOSeKrxA52Qrn9EX4X36aUlgEe2D722tu2vJ8XRz54KIqXBL8lmNXvEidC1SWmoiSkqkTJnxQnFHNRUkbp0YP5cXGW0g7nJqjiRD0rjjmWNVOUnxS_zr0Z9zfO9ygF68yI5rS3QxhD72yu3DQbu6DgEUxhcSHTCH7OEVLKBVqGGNZ-QDNARDZM0-qz7MChNR1MbTT7zqUBhXlxk7vZ9szYh-iWYULXuUctwIxGMNEfJFNoYXxRPO3MmODsbjwtvn388PXic3n15dPlxflVaZkUvFSGMUuxNKCwqqVsKlbnN4OiDVjRKEEAYyUNsx0zWFlcGYDKVrLpQDLRsdPicvNtg9npObrJxL0OxunbhRB7beLi7AiaKwBaG9bQFnjXVk3NsGoIF4xYSrjJXu83r3ltJmgt-CWa8ZHp4x3vBt2HH5pQWknGSXZ4c-cQw_cV0qInlyyMo_EQ1qQZZUTyikmZ0df_oLuwxvw9GyVErTjO1KuHV7q_y58AZIBugI0hpQjdPUKwPgRNb0HTOWj6Nmj6IGKbKGXY9xD_nv0f1W_jp9lk
Cites_doi 10.2139/ssrn.4846084
10.1016/j.neucom.2025.129532
10.1155/2022/2645381
10.54216/fpa.200103
10.38094/jastt20291
10.1016/j.inffus.2024.102304
10.1109/ISMSIT50672.2020.9255279
10.1007/s10462-023-10685-z
10.1371/journal.pone.0318524
10.1016/j.asoc.2023.110494
10.1016/j.aej.2023.08.062
10.57197/JDR-2024-0017
10.1007/s13369-025-10144-7
10.1109/ACCESS.2024.3356357
10.1007/s13278-021-00776-6
10.1109/TCYB.2020.2987064
10.3389/fpsyg.2023.1190326
10.3390/mti8060047
10.1038/s41598-025-97962-9
10.1016/j.procs.2024.09.394
10.1016/j.eswa.2023.122728
10.1080/0144929X.2022.2156387
10.1016/j.array.2025.100401
10.1142/S0218348X25400377
10.3389/frai.2024.1458230
10.3390/electronics11050676
10.1002/eng2.12189
10.1016/j.engappai.2024.108485
10.1038/s41598-025-92563-y
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-11775-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Psychology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_49ee28a3b2de4fd7b8309b14531c214a
PMC12276341
40683924
10_1038_s41598_025_11775_4
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c3654-9a33c206ae909866b738232e92bec5b951e0096a3cf3a09c07aee7c76bfe635f3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:09:21 EDT 2025
Thu Aug 21 18:25:52 EDT 2025
Mon Jul 21 01:47:43 EDT 2025
Sat Aug 23 12:24:49 EDT 2025
Thu Jul 24 02:09:28 EDT 2025
Thu Jul 24 01:55:20 EDT 2025
Sun Jul 20 01:10:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Peer communication crayfish optimization algorithm
Sentiment analysis
Emotional expression
Social psychological impact
Language English
License Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3654-9a33c206ae909866b738232e92bec5b951e0096a3cf3a09c07aee7c76bfe635f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3231558940?pq-origsite=%requestingapplication%
PMID 40683924
PQID 3231558940
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_49ee28a3b2de4fd7b8309b14531c214a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12276341
proquest_miscellaneous_3231647366
proquest_journals_3231558940
pubmed_primary_40683924
crossref_primary_10_1038_s41598_025_11775_4
springer_journals_10_1038_s41598_025_11775_4
PublicationCentury 2000
PublicationDate 20250719
PublicationDateYYYYMMDD 2025-07-19
PublicationDate_xml – month: 7
  year: 2025
  text: 20250719
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 11775_CR4
11775_CR3
11775_CR2
O Askri (11775_CR27) 2024; 246
Y Zheng (11775_CR12) 2024; 242
D Tiwari (11775_CR24) 2025; 15
A Al Maruf (11775_CR33) 2024; 12
Y Li (11775_CR15) 2024; 57
HT Halawani (11775_CR11) 2023; 80
A Aslam (11775_CR16) 2023; 144
A Alslaity (11775_CR23) 2024; 43
J Guo (11775_CR1) 2022; 31
11775_CR10
11775_CR32
11775_CR17
J Govea (11775_CR21) 2024; 7
11775_CR30
A Amanat (11775_CR9) 2022; 11
C Zhang (11775_CR13) 2024; 133
K Machová (11775_CR5) 2023; 14
P Nandwani (11775_CR6) 2021; 11
X Wang (11775_CR8) 2020; 51
11775_CR18
HM Alshahrani (11775_CR19) 2024; 3
AM Alashjaee (11775_CR29) 2025; 33
L Xiao (11775_CR14) 2024; 106
L Bastida (11775_CR25) 2024; 8
11775_CR22
Y Mao (11775_CR31) 2025; 15
11775_CR28
SMSA Abdullah (11775_CR7) 2021; 2
11775_CR26
11775_CR20
References_xml – ident: 11775_CR18
  doi: 10.2139/ssrn.4846084
– ident: 11775_CR17
  doi: 10.1016/j.neucom.2025.129532
– ident: 11775_CR2
  doi: 10.1155/2022/2645381
– ident: 11775_CR10
  doi: 10.54216/fpa.200103
– volume: 2
  start-page: 73
  issue: 01
  year: 2021
  ident: 11775_CR7
  publication-title: J. Appl. Sci. Technol. Trends
  doi: 10.38094/jastt20291
– volume: 106
  start-page: 102304
  year: 2024
  ident: 11775_CR14
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2024.102304
– ident: 11775_CR4
  doi: 10.1109/ISMSIT50672.2020.9255279
– volume: 57
  start-page: 78
  issue: 4
  year: 2024
  ident: 11775_CR15
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10685-z
– ident: 11775_CR20
  doi: 10.1371/journal.pone.0318524
– volume: 144
  start-page: 110494
  year: 2023
  ident: 11775_CR16
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110494
– volume: 80
  start-page: 433
  year: 2023
  ident: 11775_CR11
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2023.08.062
– volume: 3
  start-page: 20240017
  issue: 3
  year: 2024
  ident: 11775_CR19
  publication-title: J. Disabil. Res.
  doi: 10.57197/JDR-2024-0017
– ident: 11775_CR26
  doi: 10.1007/s13369-025-10144-7
– volume: 12
  start-page: 18416
  year: 2024
  ident: 11775_CR33
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2024.3356357
– volume: 11
  start-page: 81
  issue: 1
  year: 2021
  ident: 11775_CR6
  publication-title: Social Netw. Anal. Min.
  doi: 10.1007/s13278-021-00776-6
– volume: 51
  start-page: 4400
  issue: 9
  year: 2020
  ident: 11775_CR8
  publication-title: IEEE Trans. Cybernetics
  doi: 10.1109/TCYB.2020.2987064
– volume: 14
  start-page: 1190326
  year: 2023
  ident: 11775_CR5
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2023.1190326
– volume: 8
  start-page: 47
  issue: 6
  year: 2024
  ident: 11775_CR25
  publication-title: Multimodal Technol. Interact.
  doi: 10.3390/mti8060047
– volume: 15
  start-page: 13864
  issue: 1
  year: 2025
  ident: 11775_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-97962-9
– ident: 11775_CR28
– volume: 246
  start-page: 2772
  year: 2024
  ident: 11775_CR27
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2024.09.394
– volume: 242
  start-page: 122728
  year: 2024
  ident: 11775_CR12
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122728
– volume: 43
  start-page: 139
  issue: 1
  year: 2024
  ident: 11775_CR23
  publication-title: Behav. Inform. Technol.
  doi: 10.1080/0144929X.2022.2156387
– ident: 11775_CR22
  doi: 10.1016/j.array.2025.100401
– volume: 33
  start-page: 2540037
  issue: 02
  year: 2025
  ident: 11775_CR29
  publication-title: Fractals
  doi: 10.1142/S0218348X25400377
– volume: 7
  start-page: 1458230
  year: 2024
  ident: 11775_CR21
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2024.1458230
– volume: 11
  start-page: 676
  issue: 5
  year: 2022
  ident: 11775_CR9
  publication-title: Electronics
  doi: 10.3390/electronics11050676
– volume: 31
  start-page: 113
  issue: 1
  year: 2022
  ident: 11775_CR1
  publication-title: J. Intell. Syst.
– ident: 11775_CR3
  doi: 10.1002/eng2.12189
– ident: 11775_CR30
– volume: 133
  start-page: 108485
  year: 2024
  ident: 11775_CR13
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108485
– volume: 15
  start-page: 8119
  issue: 1
  year: 2025
  ident: 11775_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-92563-y
– ident: 11775_CR32
SSID ssj0000529419
Score 2.4524515
Snippet In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with...
Abstract In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 26222
SubjectTerms 631/114
631/477
Algorithms
Artificial intelligence
Classification
Deep learning
Embedding
Emotional expression
Emotions
Humanities and Social Sciences
multidisciplinary
Neural networks
Pattern recognition
Peer communication crayfish optimization algorithm
Psychology
Science
Science (multidisciplinary)
Sentiment analysis
Social interactions
Social psychological impact
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbNptO0unkqOKyCHpyYW8hSVfPDLjdw8wsuP4R_66Vx4wzPvDiNemGIlWVfElVfUXIS6nAMaVdjVdlXUspQ21EUDXvFKLXoTHexGrkj5_U2bn8cNFe7LX6ijlhmR44L9yJNABcO-F5D3LoO68FM76RaDuBNzJBIzzz9i5TmdWbG9mYUiXDhD5Z40kVq8l4W8c4ZVvLg5MoEfb_CWX-niz5S8Q0HUSnd8jtgiDpmyz5XXIDxnvkZu4peX2ffE80I9_wV5rfw-lyf4-juSySTiOF3MEHx-BrSYcdaenbQ5cAKxr2q0doTJGf0bBy18NiPacTbjaXpYqTui-zabXYzC9pfNilPcCSloYUM5q67Twg56fvP787q0v3hToI1craOCECZ8qBYUYr5bsYMuRgOKq99YjMIN5_nAiDcMwE1jmALnTKD4AoZhAPydE4jfCY0AYXz7hIiawQfinQ_RDcwERoQq84-Iq82mrCLjPJhk3BcaFt1ptFvSVe8tbKiryNytp9GQmy0wCajS1mY_9lNhU53qraFq9dW4Fgt221kawiL3bT6G8xiOJGmK7yN0p2QqmKPMqWsZMEwVHEmyihPrCZA1EPZ8bFPHF6Nxy9AxFFRV5vzeunXH9fiyf_Yy2ekls8-kWkCzXH5GizuoJnCLU2_nnyqh9D2Sjs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkhcEN8ECjISN4hIbMexjwuiqlaCC1TqLXKcye5KNFlltxLlj_B3GTvO0oVy4Brb0igzYz97Zt4AvJYKbaa0TemqrFMppUuNcCrlpSL02uamNr4a-dNndXom5-fF-QHwqRYmJO0HSsuwTU_ZYe82dND4YjBepD7MWKTyFhx5qnay7aPZbP5lvntZ8bErmZtYIZMJfcPivVMokPXfhDD_TpT8I1oaDqGTe3A3okc2G-W9DwfYPYDbYz_Jq4fwM1CM_KClbHwLZ-vr-xsbSyJZ3zEcu_fQN_weU2E7Fnv2sDXiwNz1yhHm0-MXzA32ql1tlqynjeYiVnAy-23RD6vt8oL5R13WIK5ZbEaxYKHTziM4O_n49cNpGjsvpE6oQqbGCuF4piyazGil6tKHCzkaTiovakJl6O8-VrhW2My4rLSIpStV3SIhmFY8hsOu7_ApsJx-nrGeDlkR9FKom9bZNhMud43iWCfwZtJEtR4JNqoQGBe6GvVWkd4CJ3lRyQTee2XtZnpy7PChHxZVNJZKGkSurah5g7JtylqLzNQ52UrueC5tAseTqqvosZtKENAtCm1klsCr3TD5mg-g2A77y3GOkqVQKoEno2XsJCFg5LEmSaj3bGZP1P2RbrUMfN45J88gNJHA28m8fsv173_x7P-mP4c73HuAJwU1x3C4HS7xBQGqbf0yetAvR0cfnQ
  priority: 102
  providerName: Springer Nature
Title Analyzing social psychological impact on emotional expression through peer communication using crayfish optimization algorithm with deep learning model
URI https://link.springer.com/article/10.1038/s41598-025-11775-4
https://www.ncbi.nlm.nih.gov/pubmed/40683924
https://www.proquest.com/docview/3231558940
https://www.proquest.com/docview/3231647366
https://pubmed.ncbi.nlm.nih.gov/PMC12276341
https://doaj.org/article/49ee28a3b2de4fd7b8309b14531c214a
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZby6AvZetu7rqgwd42U1uSZelppKGlBFbGtkLejCwfJ4XW9pIUlv2R_d0dyUra7PZkkI2RdS76fI7Odwh5KySYRCoT46-yioUQNtbcypjlEtFrnepSu2rkjxfy_FKMJ9kkBNwW4Vjl2id6R1211sXIjzkCkSxTWiQfum-x6xrlsquhhcZDsuuoy5xW55N8E2NxWSyR6lArk3B1vMD9ytWUsSx22cosFlv7kaft_xvW_PPI5G95U78dnT0m-wFH0mEv-CfkATQH5FHfWXJ1QPY2jm31lPz0zCM_8D20D5HT7r7bo32lJG0bCn1THxyD7-GEbENDKx_aAcypvV9QQt2p-Sm1c7OqrxYz2qL_uQmFndRcT3H9lrMb6mK9tALoaOhRMaW-Ac8zcnl2-nV0HoeGDLHlMhOxNpxblkgDOtFKyjJ3WUQGmqEmZCWCNXC_RIbbmptE2yQ3ALnNZVkDApuaPyc7TdvAS0JTXEltHEuyREQmQVW1NXXCbWoryaCMyLu1WIqu590ofL6cq6IXYoFC9FTlWSEicuIkt3nScWb7gXY-LYIJFkIDMGV4ySoQdZWXiie6TAV6IctSYSJytJZ7EQx5UdypXUTebG6jCbq8immgve2fkSLnUkbkRa8mm5kgXnIQFGeothRoa6rbd5qrmaf5ThkaDIKMiLxf69rdvP69Fof__4xXZI859XfcoPqI7Cznt_AacdWyHHjjGZDd4XD8ZYzXk9OLT59xdCRHAx-r-AVDXSmu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQvCMorUMBIcIKoie048QEhXtWWPk6ttLfgOJPdSjQJu1vB8kf4F_xGxnm1y-vWaxJFtuf12eOZD-CZVGgClRiftsqJL6W0vhZW-TxWhF6LUGfaVSMfHKrRsfw4jsZr8LOvhXHXKnuf2DjqvLLujHxbEBCJokTL4HX9xXesUS672lNotGqxh8uvtGWbv9p9T_J9zvnOh6N3I79jFfCtUJH0tRHC8kAZ1IFOlMpilwrjqDlNJ8oIcaDD9UbYQphA2yA2iLGNVVYgRedC0H-vwFUKvIHb7MXjeDjTcVkzGequNicQyfac4qOrYeOR77KjkS9X4l9DE_A3bPvnFc3f8rRN-Nu5CTc63MretIp2C9aw3IRrLZPlchM2Bke6vA0_mk4n3-k_rD2SZ_VFN8vaykxWlQxbEiF6ht-6G7kl66iDWI04Y_ZiAQtzt_QnzM7MsjiZT1lF_u60KyRl5vOE5LWYnjJ3tsxyxJp1nBgT1hD-3IHjSxHVXVgvqxLvAwtpJbVxXZkVIUCFSV5YUwTChjZXHDMPXvRiSeu2z0fa5OdFkrZCTEmITWv0KJUevHWSG750PbqbB9VsknYmn0qNyBMjMp6jLPI4S0Sgs1CS17M8lMaDrV7uaec45um5mnvwdHhNJu_yOKbE6qz9RslYKOXBvVZNhpEQPnOQl0aYrCjQylBX35Qn06ateMjJQAnUePCy17Xzcf17LR78fxpP4Pro6GA_3d893HsIG9yZgutLqrdgfTE7w0eE6RbZ48aQGHy6bMv9BYENYOk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUB7QTBugQFGgieImtiOEz8gxNiqjUE1ISbtLTjOSTuJJaXtBOWP8F_4dRzn0q3c3vaaRJHtc_Fnn8sH8FQqNIFKjE9H5cSXUlpfC6t8HitCr0WoM-2qkd8P1d6RfHscHa_Bz64WxqVVdj6xdtR5Zd0deV8QEImiRMugX7RpEYc7g1eTL75jkHKR1o5Oo1GRA1x8pePb7OX-Dsn6GeeD3Y9v9vyWYcC3QkXS10YIywNlUAc6USqLXViMo-Y0tSgj9IEO4xthC2ECbYPYIMY2VlmBtFMXgv57BdZjdyrqwfr27vDww_KGx8XQZKjbSp1AJP0Z7Zauoo1HvouVRr5c2Q1r0oC_Id0_EzZ_i9rWm-HgBlxvUSx73ajdTVjDchOuNryWi03YWLrVxS34Ufc9-U7_Yc0FPZtcdLqsqdNkVcmwoRSiZ_itzc8tWUskxCaIU2YvlrMwl7M_YnZqFsXJbMwq8n6nbVkpM59HJLH5-JS5m2aWI05Yy5AxYjX9z204uhRh3YFeWZV4D1hIK6mN69GsCA8qTPLCmiIQNrS54ph58LwTSzppun6kdbReJGkjxJSEWDdKj1LpwbaT3PJL17G7flBNR2nrAFKpEXliRMZzlEUeZ4kIdBZK8oGWh9J4sNXJPW3dyCw9V3oPnixfkwNwUR1TYnXWfKNkLJTy4G6jJsuREFpzAJhGmKwo0MpQV9-UJ-O6yXjIyVwJ4njwotO183H9ey3u_38aj-EaWW36bn948AA2uLME16RUb0FvPj3DhwTw5tmj1pIYfLps4_0FzPBmhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+social+psychological+impact+on+emotional+expression+through+peer+communication+using+crayfish+optimization+algorithm+with+deep+learning+model&rft.jtitle=Scientific+reports&rft.au=Alzubaidi%2C+Umkalthoom&rft.date=2025-07-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-11775-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_11775_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon