Analyzing social psychological impact on emotional expression through peer communication using crayfish optimization algorithm with deep learning model
In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with peers. The insights gained will advance the fields of social psychology and human-computer interaction (HCI), informing the design of digita...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 26222 - 15 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with peers. The insights gained will advance the fields of social psychology and human-computer interaction (HCI), informing the design of digital platforms that better support meaningful emotional and social interactions. Sentiment analysis (SA) identifies people’s emotions, attitudes, and sentiments towards a given target, like activities, people, services, organizations, products, and subjects. Emotion detection is a subdivision of SA as it forecasts the novel emotion instead of only maintaining negative, positive, or neutral. Emotion recognition has emerged as an important area of study that may report different valuable inputs. Emotion is expressed in numerous ways that are observed, namely written text, gestures, speech, and facial expressions. Emotional recognition in the text document is primarily a content-based classification problem containing ideas from natural language processing (NLP). NLP methods enhance the performance of learning-based models by combining the syntactic and semantic features of the text. To identify the emotion, a new deep learning (DL) model is applied to recognize emotional expression from text for improved results. This paper uses the Crayfish Optimization Algorithm and Deep Learning (SPIEEPC-COADL) method to analyze the Social Psychological Impact on Emotional Expression through Peer Communication. The presented SPIEEPC-COADL model aims to develop an effective method for detecting text-based emotional expressions to enhance HCI. Initially, the text pre-processing stage contains various levels to clean, normalize, and structure raw text data to improve the performance. Furthermore, the FastText method is employed for the word embedding process. Moreover, the variational autoencoder (VAE) model is implemented for emotion classification. Finally, the crayfish optimization algorithm (COA) adjusts the VAE model’s hyperparameter values, improving classification. The efficiency of the SPIEEPC-COADL model is examined using emotion detection from the text dataset. The comparison study of the SPIEEPC-COADL technique demonstrated a superior accuracy value of 99.07% over existing models. |
---|---|
AbstractList | In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with peers. The insights gained will advance the fields of social psychology and human-computer interaction (HCI), informing the design of digital platforms that better support meaningful emotional and social interactions. Sentiment analysis (SA) identifies people’s emotions, attitudes, and sentiments towards a given target, like activities, people, services, organizations, products, and subjects. Emotion detection is a subdivision of SA as it forecasts the novel emotion instead of only maintaining negative, positive, or neutral. Emotion recognition has emerged as an important area of study that may report different valuable inputs. Emotion is expressed in numerous ways that are observed, namely written text, gestures, speech, and facial expressions. Emotional recognition in the text document is primarily a content-based classification problem containing ideas from natural language processing (NLP). NLP methods enhance the performance of learning-based models by combining the syntactic and semantic features of the text. To identify the emotion, a new deep learning (DL) model is applied to recognize emotional expression from text for improved results. This paper uses the Crayfish Optimization Algorithm and Deep Learning (SPIEEPC-COADL) method to analyze the Social Psychological Impact on Emotional Expression through Peer Communication. The presented SPIEEPC-COADL model aims to develop an effective method for detecting text-based emotional expressions to enhance HCI. Initially, the text pre-processing stage contains various levels to clean, normalize, and structure raw text data to improve the performance. Furthermore, the FastText method is employed for the word embedding process. Moreover, the variational autoencoder (VAE) model is implemented for emotion classification. Finally, the crayfish optimization algorithm (COA) adjusts the VAE model’s hyperparameter values, improving classification. The efficiency of the SPIEEPC-COADL model is examined using emotion detection from the text dataset. The comparison study of the SPIEEPC-COADL technique demonstrated a superior accuracy value of 99.07% over existing models. Abstract In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with peers. The insights gained will advance the fields of social psychology and human-computer interaction (HCI), informing the design of digital platforms that better support meaningful emotional and social interactions. Sentiment analysis (SA) identifies people’s emotions, attitudes, and sentiments towards a given target, like activities, people, services, organizations, products, and subjects. Emotion detection is a subdivision of SA as it forecasts the novel emotion instead of only maintaining negative, positive, or neutral. Emotion recognition has emerged as an important area of study that may report different valuable inputs. Emotion is expressed in numerous ways that are observed, namely written text, gestures, speech, and facial expressions. Emotional recognition in the text document is primarily a content-based classification problem containing ideas from natural language processing (NLP). NLP methods enhance the performance of learning-based models by combining the syntactic and semantic features of the text. To identify the emotion, a new deep learning (DL) model is applied to recognize emotional expression from text for improved results. This paper uses the Crayfish Optimization Algorithm and Deep Learning (SPIEEPC-COADL) method to analyze the Social Psychological Impact on Emotional Expression through Peer Communication. The presented SPIEEPC-COADL model aims to develop an effective method for detecting text-based emotional expressions to enhance HCI. Initially, the text pre-processing stage contains various levels to clean, normalize, and structure raw text data to improve the performance. Furthermore, the FastText method is employed for the word embedding process. Moreover, the variational autoencoder (VAE) model is implemented for emotion classification. Finally, the crayfish optimization algorithm (COA) adjusts the VAE model’s hyperparameter values, improving classification. The efficiency of the SPIEEPC-COADL model is examined using emotion detection from the text dataset. The comparison study of the SPIEEPC-COADL technique demonstrated a superior accuracy value of 99.07% over existing models. |
ArticleNumber | 26222 |
Author | Alzubaidi, Umkalthoom |
Author_xml | – sequence: 1 givenname: Umkalthoom surname: Alzubaidi fullname: Alzubaidi, Umkalthoom email: uhalzubaidi@uhb.edu.sa organization: Department of Social Work, Al Nairyah University College, University of Hafr Albatin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40683924$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAURSNUREvpDzBAlpgwCfideISqikelSkxgbDnOSeKrxA52Qrn9EX4X36aUlgEe2D722tu2vJ8XRz54KIqXBL8lmNXvEidC1SWmoiSkqkTJnxQnFHNRUkbp0YP5cXGW0g7nJqjiRD0rjjmWNVOUnxS_zr0Z9zfO9ygF68yI5rS3QxhD72yu3DQbu6DgEUxhcSHTCH7OEVLKBVqGGNZ-QDNARDZM0-qz7MChNR1MbTT7zqUBhXlxk7vZ9szYh-iWYULXuUctwIxGMNEfJFNoYXxRPO3MmODsbjwtvn388PXic3n15dPlxflVaZkUvFSGMUuxNKCwqqVsKlbnN4OiDVjRKEEAYyUNsx0zWFlcGYDKVrLpQDLRsdPicvNtg9npObrJxL0OxunbhRB7beLi7AiaKwBaG9bQFnjXVk3NsGoIF4xYSrjJXu83r3ltJmgt-CWa8ZHp4x3vBt2HH5pQWknGSXZ4c-cQw_cV0qInlyyMo_EQ1qQZZUTyikmZ0df_oLuwxvw9GyVErTjO1KuHV7q_y58AZIBugI0hpQjdPUKwPgRNb0HTOWj6Nmj6IGKbKGXY9xD_nv0f1W_jp9lk |
Cites_doi | 10.2139/ssrn.4846084 10.1016/j.neucom.2025.129532 10.1155/2022/2645381 10.54216/fpa.200103 10.38094/jastt20291 10.1016/j.inffus.2024.102304 10.1109/ISMSIT50672.2020.9255279 10.1007/s10462-023-10685-z 10.1371/journal.pone.0318524 10.1016/j.asoc.2023.110494 10.1016/j.aej.2023.08.062 10.57197/JDR-2024-0017 10.1007/s13369-025-10144-7 10.1109/ACCESS.2024.3356357 10.1007/s13278-021-00776-6 10.1109/TCYB.2020.2987064 10.3389/fpsyg.2023.1190326 10.3390/mti8060047 10.1038/s41598-025-97962-9 10.1016/j.procs.2024.09.394 10.1016/j.eswa.2023.122728 10.1080/0144929X.2022.2156387 10.1016/j.array.2025.100401 10.1142/S0218348X25400377 10.3389/frai.2024.1458230 10.3390/electronics11050676 10.1002/eng2.12189 10.1016/j.engappai.2024.108485 10.1038/s41598-025-92563-y |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-11775-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Psychology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_49ee28a3b2de4fd7b8309b14531c214a PMC12276341 40683924 10_1038_s41598_025_11775_4 |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c3654-9a33c206ae909866b738232e92bec5b951e0096a3cf3a09c07aee7c76bfe635f3 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:09:21 EDT 2025 Thu Aug 21 18:25:52 EDT 2025 Mon Jul 21 01:47:43 EDT 2025 Sat Aug 23 12:24:49 EDT 2025 Thu Jul 24 02:09:28 EDT 2025 Thu Jul 24 01:55:20 EDT 2025 Sun Jul 20 01:10:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Peer communication crayfish optimization algorithm Sentiment analysis Emotional expression Social psychological impact |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3654-9a33c206ae909866b738232e92bec5b951e0096a3cf3a09c07aee7c76bfe635f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3231558940?pq-origsite=%requestingapplication% |
PMID | 40683924 |
PQID | 3231558940 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_49ee28a3b2de4fd7b8309b14531c214a pubmedcentral_primary_oai_pubmedcentral_nih_gov_12276341 proquest_miscellaneous_3231647366 proquest_journals_3231558940 pubmed_primary_40683924 crossref_primary_10_1038_s41598_025_11775_4 springer_journals_10_1038_s41598_025_11775_4 |
PublicationCentury | 2000 |
PublicationDate | 20250719 |
PublicationDateYYYYMMDD | 2025-07-19 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250719 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 11775_CR4 11775_CR3 11775_CR2 O Askri (11775_CR27) 2024; 246 Y Zheng (11775_CR12) 2024; 242 D Tiwari (11775_CR24) 2025; 15 A Al Maruf (11775_CR33) 2024; 12 Y Li (11775_CR15) 2024; 57 HT Halawani (11775_CR11) 2023; 80 A Aslam (11775_CR16) 2023; 144 A Alslaity (11775_CR23) 2024; 43 J Guo (11775_CR1) 2022; 31 11775_CR10 11775_CR32 11775_CR17 J Govea (11775_CR21) 2024; 7 11775_CR30 A Amanat (11775_CR9) 2022; 11 C Zhang (11775_CR13) 2024; 133 K Machová (11775_CR5) 2023; 14 P Nandwani (11775_CR6) 2021; 11 X Wang (11775_CR8) 2020; 51 11775_CR18 HM Alshahrani (11775_CR19) 2024; 3 AM Alashjaee (11775_CR29) 2025; 33 L Xiao (11775_CR14) 2024; 106 L Bastida (11775_CR25) 2024; 8 11775_CR22 Y Mao (11775_CR31) 2025; 15 11775_CR28 SMSA Abdullah (11775_CR7) 2021; 2 11775_CR26 11775_CR20 |
References_xml | – ident: 11775_CR18 doi: 10.2139/ssrn.4846084 – ident: 11775_CR17 doi: 10.1016/j.neucom.2025.129532 – ident: 11775_CR2 doi: 10.1155/2022/2645381 – ident: 11775_CR10 doi: 10.54216/fpa.200103 – volume: 2 start-page: 73 issue: 01 year: 2021 ident: 11775_CR7 publication-title: J. Appl. Sci. Technol. Trends doi: 10.38094/jastt20291 – volume: 106 start-page: 102304 year: 2024 ident: 11775_CR14 publication-title: Inform. Fusion doi: 10.1016/j.inffus.2024.102304 – ident: 11775_CR4 doi: 10.1109/ISMSIT50672.2020.9255279 – volume: 57 start-page: 78 issue: 4 year: 2024 ident: 11775_CR15 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10685-z – ident: 11775_CR20 doi: 10.1371/journal.pone.0318524 – volume: 144 start-page: 110494 year: 2023 ident: 11775_CR16 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110494 – volume: 80 start-page: 433 year: 2023 ident: 11775_CR11 publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2023.08.062 – volume: 3 start-page: 20240017 issue: 3 year: 2024 ident: 11775_CR19 publication-title: J. Disabil. Res. doi: 10.57197/JDR-2024-0017 – ident: 11775_CR26 doi: 10.1007/s13369-025-10144-7 – volume: 12 start-page: 18416 year: 2024 ident: 11775_CR33 publication-title: IEEE Access. doi: 10.1109/ACCESS.2024.3356357 – volume: 11 start-page: 81 issue: 1 year: 2021 ident: 11775_CR6 publication-title: Social Netw. Anal. Min. doi: 10.1007/s13278-021-00776-6 – volume: 51 start-page: 4400 issue: 9 year: 2020 ident: 11775_CR8 publication-title: IEEE Trans. Cybernetics doi: 10.1109/TCYB.2020.2987064 – volume: 14 start-page: 1190326 year: 2023 ident: 11775_CR5 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2023.1190326 – volume: 8 start-page: 47 issue: 6 year: 2024 ident: 11775_CR25 publication-title: Multimodal Technol. Interact. doi: 10.3390/mti8060047 – volume: 15 start-page: 13864 issue: 1 year: 2025 ident: 11775_CR31 publication-title: Sci. Rep. doi: 10.1038/s41598-025-97962-9 – ident: 11775_CR28 – volume: 246 start-page: 2772 year: 2024 ident: 11775_CR27 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2024.09.394 – volume: 242 start-page: 122728 year: 2024 ident: 11775_CR12 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122728 – volume: 43 start-page: 139 issue: 1 year: 2024 ident: 11775_CR23 publication-title: Behav. Inform. Technol. doi: 10.1080/0144929X.2022.2156387 – ident: 11775_CR22 doi: 10.1016/j.array.2025.100401 – volume: 33 start-page: 2540037 issue: 02 year: 2025 ident: 11775_CR29 publication-title: Fractals doi: 10.1142/S0218348X25400377 – volume: 7 start-page: 1458230 year: 2024 ident: 11775_CR21 publication-title: Front. Artif. Intell. doi: 10.3389/frai.2024.1458230 – volume: 11 start-page: 676 issue: 5 year: 2022 ident: 11775_CR9 publication-title: Electronics doi: 10.3390/electronics11050676 – volume: 31 start-page: 113 issue: 1 year: 2022 ident: 11775_CR1 publication-title: J. Intell. Syst. – ident: 11775_CR3 doi: 10.1002/eng2.12189 – ident: 11775_CR30 – volume: 133 start-page: 108485 year: 2024 ident: 11775_CR13 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108485 – volume: 15 start-page: 8119 issue: 1 year: 2025 ident: 11775_CR24 publication-title: Sci. Rep. doi: 10.1038/s41598-025-92563-y – ident: 11775_CR32 |
SSID | ssj0000529419 |
Score | 2.4524515 |
Snippet | In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and communicate with... Abstract In today’s digital age, people frequently interact with multiple devices simultaneously, significantly reshaping how they express emotions and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 26222 |
SubjectTerms | 631/114 631/477 Algorithms Artificial intelligence Classification Deep learning Embedding Emotional expression Emotions Humanities and Social Sciences multidisciplinary Neural networks Pattern recognition Peer communication crayfish optimization algorithm Psychology Science Science (multidisciplinary) Sentiment analysis Social interactions Social psychological impact |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbNptO0unkqOKyCHpyYW8hSVfPDLjdw8wsuP4R_66Vx4wzPvDiNemGIlWVfElVfUXIS6nAMaVdjVdlXUspQ21EUDXvFKLXoTHexGrkj5_U2bn8cNFe7LX6ijlhmR44L9yJNABcO-F5D3LoO68FM76RaDuBNzJBIzzz9i5TmdWbG9mYUiXDhD5Z40kVq8l4W8c4ZVvLg5MoEfb_CWX-niz5S8Q0HUSnd8jtgiDpmyz5XXIDxnvkZu4peX2ffE80I9_wV5rfw-lyf4-juSySTiOF3MEHx-BrSYcdaenbQ5cAKxr2q0doTJGf0bBy18NiPacTbjaXpYqTui-zabXYzC9pfNilPcCSloYUM5q67Twg56fvP787q0v3hToI1craOCECZ8qBYUYr5bsYMuRgOKq99YjMIN5_nAiDcMwE1jmALnTKD4AoZhAPydE4jfCY0AYXz7hIiawQfinQ_RDcwERoQq84-Iq82mrCLjPJhk3BcaFt1ptFvSVe8tbKiryNytp9GQmy0wCajS1mY_9lNhU53qraFq9dW4Fgt221kawiL3bT6G8xiOJGmK7yN0p2QqmKPMqWsZMEwVHEmyihPrCZA1EPZ8bFPHF6Nxy9AxFFRV5vzeunXH9fiyf_Yy2ekls8-kWkCzXH5GizuoJnCLU2_nnyqh9D2Sjs priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkhcEN8ECjISN4hIbMexjwuiqlaCC1TqLXKcye5KNFlltxLlj_B3GTvO0oVy4Brb0igzYz97Zt4AvJYKbaa0TemqrFMppUuNcCrlpSL02uamNr4a-dNndXom5-fF-QHwqRYmJO0HSsuwTU_ZYe82dND4YjBepD7MWKTyFhx5qnay7aPZbP5lvntZ8bErmZtYIZMJfcPivVMokPXfhDD_TpT8I1oaDqGTe3A3okc2G-W9DwfYPYDbYz_Jq4fwM1CM_KClbHwLZ-vr-xsbSyJZ3zEcu_fQN_weU2E7Fnv2sDXiwNz1yhHm0-MXzA32ql1tlqynjeYiVnAy-23RD6vt8oL5R13WIK5ZbEaxYKHTziM4O_n49cNpGjsvpE6oQqbGCuF4piyazGil6tKHCzkaTiovakJl6O8-VrhW2My4rLSIpStV3SIhmFY8hsOu7_ApsJx-nrGeDlkR9FKom9bZNhMud43iWCfwZtJEtR4JNqoQGBe6GvVWkd4CJ3lRyQTee2XtZnpy7PChHxZVNJZKGkSurah5g7JtylqLzNQ52UrueC5tAseTqqvosZtKENAtCm1klsCr3TD5mg-g2A77y3GOkqVQKoEno2XsJCFg5LEmSaj3bGZP1P2RbrUMfN45J88gNJHA28m8fsv173_x7P-mP4c73HuAJwU1x3C4HS7xBQGqbf0yetAvR0cfnQ priority: 102 providerName: Springer Nature |
Title | Analyzing social psychological impact on emotional expression through peer communication using crayfish optimization algorithm with deep learning model |
URI | https://link.springer.com/article/10.1038/s41598-025-11775-4 https://www.ncbi.nlm.nih.gov/pubmed/40683924 https://www.proquest.com/docview/3231558940 https://www.proquest.com/docview/3231647366 https://pubmed.ncbi.nlm.nih.gov/PMC12276341 https://doaj.org/article/49ee28a3b2de4fd7b8309b14531c214a |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZby6AvZetu7rqgwd42U1uSZelppKGlBFbGtkLejCwfJ4XW9pIUlv2R_d0dyUra7PZkkI2RdS76fI7Odwh5KySYRCoT46-yioUQNtbcypjlEtFrnepSu2rkjxfy_FKMJ9kkBNwW4Vjl2id6R1211sXIjzkCkSxTWiQfum-x6xrlsquhhcZDsuuoy5xW55N8E2NxWSyR6lArk3B1vMD9ytWUsSx22cosFlv7kaft_xvW_PPI5G95U78dnT0m-wFH0mEv-CfkATQH5FHfWXJ1QPY2jm31lPz0zCM_8D20D5HT7r7bo32lJG0bCn1THxyD7-GEbENDKx_aAcypvV9QQt2p-Sm1c7OqrxYz2qL_uQmFndRcT3H9lrMb6mK9tALoaOhRMaW-Ac8zcnl2-nV0HoeGDLHlMhOxNpxblkgDOtFKyjJ3WUQGmqEmZCWCNXC_RIbbmptE2yQ3ALnNZVkDApuaPyc7TdvAS0JTXEltHEuyREQmQVW1NXXCbWoryaCMyLu1WIqu590ofL6cq6IXYoFC9FTlWSEicuIkt3nScWb7gXY-LYIJFkIDMGV4ySoQdZWXiie6TAV6IctSYSJytJZ7EQx5UdypXUTebG6jCbq8immgve2fkSLnUkbkRa8mm5kgXnIQFGeothRoa6rbd5qrmaf5ThkaDIKMiLxf69rdvP69Fof__4xXZI859XfcoPqI7Cznt_AacdWyHHjjGZDd4XD8ZYzXk9OLT59xdCRHAx-r-AVDXSmu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQvCMorUMBIcIKoie048QEhXtWWPk6ttLfgOJPdSjQJu1vB8kf4F_xGxnm1y-vWaxJFtuf12eOZD-CZVGgClRiftsqJL6W0vhZW-TxWhF6LUGfaVSMfHKrRsfw4jsZr8LOvhXHXKnuf2DjqvLLujHxbEBCJokTL4HX9xXesUS672lNotGqxh8uvtGWbv9p9T_J9zvnOh6N3I79jFfCtUJH0tRHC8kAZ1IFOlMpilwrjqDlNJ8oIcaDD9UbYQphA2yA2iLGNVVYgRedC0H-vwFUKvIHb7MXjeDjTcVkzGequNicQyfac4qOrYeOR77KjkS9X4l9DE_A3bPvnFc3f8rRN-Nu5CTc63MretIp2C9aw3IRrLZPlchM2Bke6vA0_mk4n3-k_rD2SZ_VFN8vaykxWlQxbEiF6ht-6G7kl66iDWI04Y_ZiAQtzt_QnzM7MsjiZT1lF_u60KyRl5vOE5LWYnjJ3tsxyxJp1nBgT1hD-3IHjSxHVXVgvqxLvAwtpJbVxXZkVIUCFSV5YUwTChjZXHDMPXvRiSeu2z0fa5OdFkrZCTEmITWv0KJUevHWSG750PbqbB9VsknYmn0qNyBMjMp6jLPI4S0Sgs1CS17M8lMaDrV7uaec45um5mnvwdHhNJu_yOKbE6qz9RslYKOXBvVZNhpEQPnOQl0aYrCjQylBX35Qn06ateMjJQAnUePCy17Xzcf17LR78fxpP4Pro6GA_3d893HsIG9yZgutLqrdgfTE7w0eE6RbZ48aQGHy6bMv9BYENYOk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUB7QTBugQFGgieImtiOEz8gxNiqjUE1ISbtLTjOSTuJJaXtBOWP8F_4dRzn0q3c3vaaRJHtc_Fnn8sH8FQqNIFKjE9H5cSXUlpfC6t8HitCr0WoM-2qkd8P1d6RfHscHa_Bz64WxqVVdj6xdtR5Zd0deV8QEImiRMugX7RpEYc7g1eTL75jkHKR1o5Oo1GRA1x8pePb7OX-Dsn6GeeD3Y9v9vyWYcC3QkXS10YIywNlUAc6USqLXViMo-Y0tSgj9IEO4xthC2ECbYPYIMY2VlmBtFMXgv57BdZjdyrqwfr27vDww_KGx8XQZKjbSp1AJP0Z7Zauoo1HvouVRr5c2Q1r0oC_Id0_EzZ_i9rWm-HgBlxvUSx73ajdTVjDchOuNryWi03YWLrVxS34Ufc9-U7_Yc0FPZtcdLqsqdNkVcmwoRSiZ_itzc8tWUskxCaIU2YvlrMwl7M_YnZqFsXJbMwq8n6nbVkpM59HJLH5-JS5m2aWI05Yy5AxYjX9z204uhRh3YFeWZV4D1hIK6mN69GsCA8qTPLCmiIQNrS54ph58LwTSzppun6kdbReJGkjxJSEWDdKj1LpwbaT3PJL17G7flBNR2nrAFKpEXliRMZzlEUeZ4kIdBZK8oGWh9J4sNXJPW3dyCw9V3oPnixfkwNwUR1TYnXWfKNkLJTy4G6jJsuREFpzAJhGmKwo0MpQV9-UJ-O6yXjIyVwJ4njwotO183H9ey3u_38aj-EaWW36bn948AA2uLME16RUb0FvPj3DhwTw5tmj1pIYfLps4_0FzPBmhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+social+psychological+impact+on+emotional+expression+through+peer+communication+using+crayfish+optimization+algorithm+with+deep+learning+model&rft.jtitle=Scientific+reports&rft.au=Alzubaidi%2C+Umkalthoom&rft.date=2025-07-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-11775-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_11775_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |