Flammability dynamics in the Australian Alps

Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flamm...

Full description

Saved in:
Bibliographic Details
Published inAustral ecology Vol. 43; no. 5; pp. 578 - 591
Main Author Zylstra, Philip John
Format Journal Article
LanguageEnglish
Published Richmond Blackwell Publishing Ltd 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland.
AbstractList Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland.
Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland.
Forests of the Australian Alps ( SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland.
Author Zylstra, Philip John
Author_xml – sequence: 1
  givenname: Philip John
  orcidid: 0000-0002-6946-866X
  surname: Zylstra
  fullname: Zylstra, Philip John
  email: pzylstra@uow.edu.au
  organization: University of Wollongong
BookMark eNp1kE1Lw0AQhhepYK0e_AcBLwqm3cl-NDmG0qpQ8KLnZbPZ4JbNpu4mSP69qy0eis5lBuZ55-O9RBPXOY3QDeA5xFhIreaQsYKeoSlQmqVFUZDJb52zC3QZwg5jnPMCpuhhY2XbyspY049JPTrZGhUS45L-XSflEHovrZEuKe0-XKHzRtqgr495ht4269fVU7p9eXxeldtUEc5oCg1hhPEGCOGS1jTL8hwoSBVrmeuGq4bqhlW1lppC7HFeZ5JwTKHSrNJkhu4Oc_e--xh06EVrgtLWSqe7IYgMGOEQV0BEb0_QXTd4F68TGeZLRjAs80gtDpTyXQheN0KZXvamc_E9YwVg8e2eiO6JH_ei4v5EsfemlX78kz1O_zRWj_-DolyvDoovkqt-LA
CitedBy_id crossref_primary_10_1016_j_foreco_2022_120070
crossref_primary_10_1071_WR24035
crossref_primary_10_1071_WF21160
crossref_primary_10_1111_geb_13478
crossref_primary_10_3389_ffgc_2020_00022
crossref_primary_10_1016_j_scitotenv_2019_06_298
crossref_primary_10_1111_ddi_13417
crossref_primary_10_1088_1748_9326_adbf30
crossref_primary_10_1111_aec_13520
crossref_primary_10_1002_ecy_2839
crossref_primary_10_3390_cli8020021
crossref_primary_10_3390_fire7040148
crossref_primary_10_1071_PC20046
crossref_primary_10_1038_s41559_020_1195_5
crossref_primary_10_1080_15230430_2024_2429864
crossref_primary_10_1111_1365_2745_13663
crossref_primary_10_3390_fire3020013
crossref_primary_10_1071_WF18067
crossref_primary_10_1016_j_foreco_2020_118701
crossref_primary_10_1088_1748_9326_ac5c10
crossref_primary_10_1016_j_jenvman_2018_10_021
crossref_primary_10_1007_s12351_024_00882_1
crossref_primary_10_1071_WF20031
crossref_primary_10_1007_s10021_019_00340_6
crossref_primary_10_1071_WF21089
crossref_primary_10_1111_1365_2435_14305
crossref_primary_10_1111_aec_13096
crossref_primary_10_3389_ffgc_2022_929281
crossref_primary_10_1111_conl_12766
crossref_primary_10_3389_ffgc_2020_00079
crossref_primary_10_1071_BT19020
crossref_primary_10_3390_f15071266
crossref_primary_10_3390_fire6020037
crossref_primary_10_1016_j_foreco_2021_119891
crossref_primary_10_1016_j_jenvman_2018_11_063
crossref_primary_10_1111_aec_13134
crossref_primary_10_1111_ecog_04714
crossref_primary_10_1016_j_foreco_2019_117656
crossref_primary_10_2139_ssrn_4058207
crossref_primary_10_1016_j_foreco_2024_121704
crossref_primary_10_1016_j_foreco_2021_119724
crossref_primary_10_1007_s10980_022_01427_7
crossref_primary_10_1371_journal_pone_0204889
crossref_primary_10_1071_BT23002
crossref_primary_10_1111_cobi_13936
crossref_primary_10_1111_aen_12634
crossref_primary_10_1080_00049158_2020_1835032
crossref_primary_10_1111_csp2_12869
crossref_primary_10_1111_aec_13264
crossref_primary_10_1111_gcb_14589
crossref_primary_10_3389_fevo_2021_610147
crossref_primary_10_1111_pce_13916
crossref_primary_10_1111_aec_13024
crossref_primary_10_3390_f10050436
crossref_primary_10_2139_ssrn_3973755
crossref_primary_10_1111_1365_2745_13289
crossref_primary_10_1111_2041_210X_13615
crossref_primary_10_1071_BT22009
crossref_primary_10_1002_ecs2_4610
crossref_primary_10_1111_gcb_15750
crossref_primary_10_1126_science_ade4721
crossref_primary_10_1111_1365_2664_13696
crossref_primary_10_1002_ecs2_3721
crossref_primary_10_1111_gcb_14735
crossref_primary_10_1111_brv_13041
crossref_primary_10_1080_00049158_2023_2251249
crossref_primary_10_1088_1748_9326_ad41ee
crossref_primary_10_1002_eap_1999
crossref_primary_10_1111_aec_13431
crossref_primary_10_1111_aec_12863
crossref_primary_10_1016_j_agrformet_2024_109990
crossref_primary_10_1071_WF18037
crossref_primary_10_3390_f12040450
crossref_primary_10_1007_s10531_021_02171_1
crossref_primary_10_1016_j_foreco_2023_121627
crossref_primary_10_1111_oik_10248
crossref_primary_10_1038_s41559_020_1251_1
crossref_primary_10_1111_acv_12634
crossref_primary_10_1016_j_foreco_2022_120353
crossref_primary_10_1071_WF18073
crossref_primary_10_1071_BT23068
crossref_primary_10_1080_00049158_2021_1953741
crossref_primary_10_1016_j_scitotenv_2022_158705
Cites_doi 10.1126/science.284.5421.1832
10.1111/oik.03886
10.1016/j.quascirev.2010.10.010
10.1111/conl.12122
10.1007/s10021-016-0008-9
10.1071/WF15010
10.1890/ES12-00178.1
10.2307/2685478
10.5962/p.373645
10.1007/s10021-017-0195-z
10.1111/gcb.12433
10.1111/gcb.13614
10.1080/00049158.2005.10674951
10.1214/aoms/1177729885
10.1002/ecs2.1410
10.1080/00049158.2011.10676351
10.1016/j.foreco.2012.10.022
10.2307/1932179
10.1111/aec.12266
10.1086/665819
10.1007/s00265-010-1037-6
10.1071/BT9900403
10.1109/TAC.1974.1100705
10.1111/emr.12194
10.1111/gcb.12540
10.1371/journal.pone.0160715
10.1002/joc.3480
10.1071/BT12225
10.1038/ncomms8537
10.1071/WF07049
10.1002/2013JG002502
10.1111/gcb.13248
10.1007/s10021-011-9494-y
10.1111/jvs.12575
10.1657/1938-4246-41.2.212
10.1111/j.1365-2745.2012.01987.x
10.14214/sf.653
10.1111/geb.12180
10.1016/j.tplants.2010.10.007
10.1016/j.biocon.2011.01.016
10.1071/WF01013
10.1111/1365-2745.12691
10.1126/science.1163886
10.1111/j.1466-822X.2005.00154.x
10.1214/aoms/1177731607
10.1371/journal.pone.0062111
10.1071/WF02042
10.1016/j.foreco.2012.09.015
10.1002/wcc.428
10.1016/j.foreco.2012.09.012
10.1111/aec.12200
10.1080/0028825X.2016.1151903
10.1073/pnas.1110245108
ContentType Journal Article
Copyright 2018 Ecological Society of Australia
Copyright © 2018 Ecological Society of Australia
Copyright_xml – notice: 2018 Ecological Society of Australia
– notice: Copyright © 2018 Ecological Society of Australia
DBID AAYXX
CITATION
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7S9
L.6
DOI 10.1111/aec.12594
DatabaseName CrossRef
Animal Behavior Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Technology Research Database
Animal Behavior Abstracts
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1442-9993
EndPage 591
ExternalDocumentID 10_1111_aec_12594
AEC12594
Genre article
GeographicLocations Alps
Australia
Alps region
GeographicLocations_xml – name: Alps
– name: Australia
– name: Alps region
GrantInformation_xml – fundername: University of Wollongong School of Biological Sciences
– fundername: Australian Alps Liaison Committee
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QG
7QR
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7S9
L.6
ID FETCH-LOGICAL-c3654-1f35356f1336a4d42288141ac4d4a8ef6cf4ef5bdeae4188166d2a36041be5be3
IEDL.DBID DR2
ISSN 1442-9985
IngestDate Fri Jul 11 18:31:58 EDT 2025
Wed Aug 13 06:41:05 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Tue Jul 01 03:47:37 EDT 2025
Wed Jan 22 16:28:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3654-1f35356f1336a4d42288141ac4d4a8ef6cf4ef5bdeae4188166d2a36041be5be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6946-866X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/aec.12594
PQID 2067530178
PQPubID 46239
PageCount 14
ParticipantIDs proquest_miscellaneous_2153613561
proquest_journals_2067530178
crossref_citationtrail_10_1111_aec_12594
crossref_primary_10_1111_aec_12594
wiley_primary_10_1111_aec_12594_AEC12594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Richmond
PublicationPlace_xml – name: Richmond
PublicationTitle Austral ecology
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2014b; 23
2009; 41
2013; 4
1963; 44
2000; 49
1950; 21
2013; 61
1932
1999; 284
1999; 125
1970
2012; 15
2011; 16
2013; 8
1939
1974; 19
2005; 68
2003; 12
2014; 20
2012; 173
2000
2015; 40
2011; 65
2014a; 20
1998; 52
1942; 13
2014; 7
1947
2010; 74
2017; 126
2009; 324
2009; 18
2001; 10
2014; 119
2015; 6
2012; 100
2016; 19
2000; 25
1990; 38
2011
2010
2017; 28
2017; 23
2016; 54
2011; 30
2006
2004
1992
2016; 17
1970; 16
2016; 11
2016; 7
2011; 108
2013; 33
2005; 9
2014; 38
1999; 33
1970; 87
1896; VI
2017
2016
2013; 130
2013; 294
2015
2014
2016; 25
2011; 144
2016; 24
2016; 22
2005; 14
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
Reeve N. (e_1_2_6_64_1) 1999; 125
e_1_2_6_72_1
e_1_2_6_19_1
NSW Rural Fire Service (e_1_2_6_55_1) 2006
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
Specht R. L. (e_1_2_6_65_1) 1970
e_1_2_6_15_1
e_1_2_6_57_1
Zylstra P. (e_1_2_6_80_1) 2013; 130
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
Helms R. (e_1_2_6_38_1) 1896
e_1_2_6_41_1
Stern H. (e_1_2_6_66_1) 2000; 49
Wright G. T. (e_1_2_6_75_1) 2014
e_1_2_6_9_1
e_1_2_6_5_1
Zylstra P. (e_1_2_6_81_1) 2016; 24
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
Gellie N. J. H. (e_1_2_6_31_1) 2005; 9
e_1_2_6_47_1
e_1_2_6_68_1
Teague B. (e_1_2_6_71_1) 2010
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_50_1
R Core Team (e_1_2_6_63_1) 2016
Wakefield N. A. (e_1_2_6_73_1) 1970; 87
Perry G. L. W. (e_1_2_6_59_1) 2014; 38
Philpot C. W. (e_1_2_6_60_1) 1970; 16
Stevenson A. (e_1_2_6_67_1) 2010
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_42_1
e_1_2_6_21_1
Byles B. U. (e_1_2_6_14_1) 1932
e_1_2_6_40_1
e_1_2_6_82_1
Zedler P. H. (e_1_2_6_77_1) 2000
e_1_2_6_8_1
Pickering C. M. (e_1_2_6_61_1) 2004
e_1_2_6_4_1
Zylstra P. (e_1_2_6_78_1) 2006
Bates D. M. (e_1_2_6_6_1) 1992
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
ESRI (e_1_2_6_22_1) 2015
e_1_2_6_29_1
e_1_2_6_44_1
Gill A. M. (e_1_2_6_33_1) 2000; 25
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 18
  start-page: 116
  year: 2009
  end-page: 26
  article-title: Fire intensity, fire severity and burn severity: a brief review and suggested usage
  publication-title: Int. J. Wildl. Fire
– year: 2011
– volume: 294
  start-page: 217
  year: 2013
  end-page: 24
  article-title: Managing forest fuels using prescribed fire ‐ A perspective from southern Australia
  publication-title: For. Ecol. Manage.
– volume: 126
  start-page: 1428
  year: 2017
  end-page: 38
  article-title: Scaling up flammability from individual leaves to fuel beds
  publication-title: Oikos
– volume: 324
  start-page: 481
  year: 2009
  end-page: 4
  article-title: Fire in the Earth system
  publication-title: Science (80‐.)
– volume: 22
  start-page: 3127
  year: 2016
  end-page: 40
  article-title: The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest
  publication-title: Glob. Chang. Biol.
– volume: 6
  start-page: 7537
  year: 2015
  article-title: Climate‐induced variations in global wildfire danger from 1979 to 2013
  publication-title: Nat. Commun.
– volume: 65
  start-page: 13
  year: 2011
  end-page: 21
  article-title: A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion
  publication-title: Behav. Ecol. Sociobiol.
– volume: 20
  start-page: 1008
  year: 2014a
  end-page: 15
  article-title: Abrupt fire regime change may cause landscape‐wide loss of mature obligate seeder forests
  publication-title: Glob. Chang. Biol.
– volume: 33
  start-page: 931
  year: 2013
  end-page: 44
  article-title: Changes in Australian fire weather between 1973 and 2010
  publication-title: Int. J. Climatol.
– volume: 30
  start-page: 28
  year: 2011
  end-page: 46
  article-title: Late Quaternary fire regimes of Australasia
  publication-title: Quat. Sci. Rev.
– volume: 100
  start-page: 1153
  year: 2012
  end-page: 63
  article-title: Leaf traits and litter flammability: evidence for non‐additive mixture effects in a temperate forest
  publication-title: J. Ecol.
– volume: 49
  start-page: 87
  year: 2000
  end-page: 96
  article-title: Objective classification of Australian climates
  publication-title: Aust. Meteorol. Mag.
– volume: 33
  start-page: 327
  year: 1999
  end-page: 36
  article-title: Parameter estimation of nonlinear growth models in forestry
  publication-title: Silva Fenn.
– volume: 9
  start-page: 219
  year: 2005
  end-page: 53
  article-title: Native vegetation of the southern forests: south‐east highlands, Australian Alps, south‐west slopes, and SE corner bioregions
  publication-title: Cunninghamia.
– year: 2014
– start-page: 421
  year: 1992
  end-page: 53
– volume: 24
  start-page: 14
  year: 2016
  end-page: 15
  article-title: Explaining feedbacks between fire and flammability in the Snowgums and beyond
  publication-title: Australas. Plant Conserv.
– volume: 25
  start-page: 616
  year: 2000
  end-page: 25
  article-title: Fire regimes of World Heritage Kakadu National Park., Australia
  publication-title: Austral Ecol.
– volume: 41
  start-page: 212
  year: 2009
  end-page: 18
  article-title: The decline of snowpatches in the Snowy Mountains of Australia: importance of climate warming, variable snow, and wind
  publication-title: Arctic, Antarct. Alp. Res.
– volume: 61
  start-page: 167
  year: 2013
  end-page: 234
  article-title: New handbook for standardised measurement of plant functional traits worldwide
  publication-title: Aust. J. Bot.
– volume: 119
  start-page: 312
  year: 2014
  end-page: 22
  article-title: The sensitivity of global wildfires to simulated past, present, and future lightning frequency
  publication-title: J. Geophys. Res. Biogeosciences.
– volume: 7
  start-page: 355
  year: 2014
  end-page: 70
  article-title: Nonlinear effects of stand age on fire severity
  publication-title: Conserv. Lett.
– volume: 10
  start-page: 73
  year: 2001
  end-page: 7
  article-title: Theoretical fire‐interval distributions
  publication-title: Int. J. Wildl. Fire
– volume: 11
  start-page: e0160715
  year: 2016
  article-title: Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: species, not surface fuel loads determine flame dimensions in eucalypt forests
  publication-title: PLoS ONE
– volume: 54
  start-page: 247
  year: 2016
  end-page: 72
  article-title: Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand
  publication-title: New Zeal. J. Bot.
– volume: 130
  start-page: 232
  year: 2013
  end-page: 9
  article-title: The historical influence of fire on the flammability of subalpine Snowgum forest and woodland
  publication-title: Vic. Nat.
– volume: 17
  start-page: 47
  year: 2016
  end-page: 55
  article-title: Managing fire‐dependent vegetation in Byron Shire, Australia: are we restoring the keystone ecological process of fire?
  publication-title: Ecol. Manag. Restor.
– year: 2004
– year: 2017
  article-title: Shoot‐level flammability of species mixtures is driven by the most flammable species: implications for vegetation‐fire feedbacks favouring invasive species
  publication-title: Ecosystems
– volume: 20
  start-page: 2793
  year: 2014
  end-page: 9
  article-title: Big eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature
  publication-title: Glob. Chang. Biol.
– volume: 38
  start-page: 157
  year: 2014
  end-page: 76
  article-title: Ecology and long‐term history of fire in New Zealand
  publication-title: N. Z. J. Ecol.
– volume: 19
  start-page: 1325
  year: 2016
  end-page: 44
  article-title: Positive feedbacks to fire‐driven deforestation following human colonization of the South Island of New Zealand
  publication-title: Ecosystems
– volume: 74
  start-page: 97
  year: 2010
  end-page: 107
  article-title: Strategic seedbanks to meet fire risks for Victorian ash‐type species
  publication-title: Aust. For.
– volume: 108
  start-page: 15887
  year: 2011
  end-page: 91
  article-title: Newly discovered landscape traps produce regime shifts in wet forests
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 87
  start-page: 152
  year: 1970
  end-page: 8
  article-title: Bushfire frequency and vegetational change in south‐eastern Australian forests
  publication-title: Vic. Nat.
– volume: 8
  start-page: e62111
  year: 2013
  article-title: Scientific foundations for an IUCN Red List of ecosystems
  publication-title: PLoS ONE
– year: 2015
– volume: 125
  start-page: 893
  year: 1999
  end-page: 903
  article-title: Lightning activity as an indicator of climate change
  publication-title: Q. J. R.
– volume: 44
  start-page: 322
  year: 1963
  end-page: 31
  article-title: Energy storage and the balance of producers and decomposers in ecological systems
  publication-title: Ecology
– volume: 40
  start-page: 433
  year: 2015
  end-page: 43
  article-title: An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South‐Eastern Australia
  publication-title: Austral Ecol.
– volume: 52
  start-page: 181
  year: 1998
  end-page: 4
  article-title: Violin Plots: a box plot‐density trace synergism
  publication-title: Am. Stat.
– year: 1939
– volume: 16
  start-page: 69
  year: 2011
  end-page: 76
  article-title: Little evidence for fire‐adapted plant traits in Mediterranean climate regions
  publication-title: Trends Plant Sci.
– volume: 14
  start-page: 197
  year: 2005
  end-page: 212
  article-title: Integrating a global agro‐climatic classification with bioregional boundaries in Australia
  publication-title: Glob. Ecol. Biogeogr.
– volume: 7
  start-page: 910
  year: 2016
  end-page: 31
  article-title: Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?
  publication-title: WIREs Clim. Chang.
– volume: 12
  start-page: 117
  year: 2003
  end-page: 28
  article-title: A review of prescribed burning effectiveness in fire hazard reduction
  publication-title: Int. J. Wildl. Fire
– volume: 68
  start-page: 87
  year: 2005
  end-page: 93
  article-title: Flammability of Australian forests
  publication-title: Aust. For.
– start-page: 9
  year: 2000
  end-page: 18
– volume: 7
  start-page: e01410
  year: 2016
  article-title: Regeneration of montane forests a quarter‐century after the 1988 Yellowstone Fires: a fire‐catalyzed shift in lower treelines?
  publication-title: Ecosphere
– volume: 28
  start-page: 1151
  year: 2017
  end-page: 65
  article-title: Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire‐tolerant sub‐alpine forest
  publication-title: J. Veg. Sci.
– volume: 40
  start-page: 386
  issue: 4
  year: 2015
  end-page: 99
  article-title: Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, south‐eastern Australia
  publication-title: Austral Ecol.
– year: 2016
– volume: 13
  start-page: 215
  year: 1942
  end-page: 32
  article-title: Cumulative frequency functions
  publication-title: Ann. Math. Stat.
– year: 2010
– volume: 23
  start-page: 3249
  year: 2017
  end-page: 58
  article-title: Climatic warming strengthens a positive feedback between alpine shrubs and fire
  publication-title: Glob. Chang. Biol.
– year: 1932
– volume: 23
  start-page: 821
  year: 2014b
  end-page: 4
  article-title: Pyrogeographic models, feedbacks and the future of global fire regimes
  publication-title: Glob. Ecol. Biogeogr.
– volume: 25
  start-page: 831
  year: 2016
  end-page: 48
  article-title: Too much, too soon? A review of the impacts of increasing wildfire frequency on tree demography and structure in temperate forests
  publication-title: Int. J. Wildl. Fire
– volume: VI
  start-page: 75
  year: 1896
  end-page: 96
  article-title: The Australian Alps, or Snowy Mountains
  publication-title: J. R. Geogr. Soc. Australas
– volume: 4
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Process‐based models are required to manage ecological systems in a changing world
  publication-title: Ecosphere
– volume: 294
  start-page: 45
  year: 2013
  end-page: 53
  article-title: Mega‐fires, inquiries and politics in the eucalypt forests of Victoria, south‐eastern Australia
  publication-title: For. Ecol. Manage.
– volume: 284
  start-page: 1832
  year: 1999
  end-page: 5
  article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests
  publication-title: Science (80‐.)
– volume: 16
  start-page: 461
  year: 1970
  end-page: 71
  article-title: Influence of mineral content on the pyrolysis of plant materials
  publication-title: For. Sci.
– year: 2006
– start-page: 44
  year: 1970
  end-page: 67
– year: 1947
– volume: 294
  start-page: 54
  year: 2013
  end-page: 61
  article-title: Global wildland fire season severity in the 21st century
  publication-title: For. Ecol. Manage.
– volume: 19
  start-page: 716
  year: 1974
  end-page: 23
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Automat. Contr.
– volume: 144
  start-page: 1472
  year: 2011
  end-page: 80
  article-title: The 10 Australian ecosystems most vulnerable to tipping points
  publication-title: Biol. Conserv.
– year: 2017
  article-title: Flammability as an ecological and evolutionary driver
  publication-title: J. Ecol.
– volume: 38
  start-page: 403
  year: 1990
  end-page: 32
  article-title: The dynamics of communities along the Snowy River and its tributaries in South‐eastern Australia
  publication-title: Aust. J. Bot.
– volume: 21
  start-page: 27
  year: 1950
  end-page: 58
  article-title: Sample criteria for testing outlying observations
  publication-title: Ann. Math. Stat.
– volume: 15
  start-page: 97
  year: 2012
  end-page: 112
  article-title: Decreases in fire spread probability with forest age promotes alternative community states, reduced resilience to climate variability and large fire regime shifts
  publication-title: Ecosystems
– volume: 173
  start-page: 569
  year: 2012
  end-page: 83
  article-title: Fire and the angiosperm revolutions
  publication-title: Int. J. Plant Sci.
– ident: e_1_2_6_18_1
  doi: 10.1126/science.284.5421.1832
– ident: e_1_2_6_35_1
  doi: 10.1111/oik.03886
– ident: e_1_2_6_68_1
– ident: e_1_2_6_53_1
  doi: 10.1016/j.quascirev.2010.10.010
– volume: 16
  start-page: 461
  year: 1970
  ident: e_1_2_6_60_1
  article-title: Influence of mineral content on the pyrolysis of plant materials
  publication-title: For. Sci.
– start-page: 44
  volume-title: The Australian Environment
  year: 1970
  ident: e_1_2_6_65_1
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2016
  ident: e_1_2_6_63_1
– ident: e_1_2_6_70_1
  doi: 10.1111/conl.12122
– ident: e_1_2_6_72_1
  doi: 10.1007/s10021-016-0008-9
– ident: e_1_2_6_23_1
  doi: 10.1071/WF15010
– ident: e_1_2_6_19_1
  doi: 10.1890/ES12-00178.1
– ident: e_1_2_6_39_1
  doi: 10.2307/2685478
– volume-title: ArcGIS Desktop: Release 10.4.1
  year: 2015
  ident: e_1_2_6_22_1
– volume-title: Alpine Ash Recovery From the 2003 Landscape Fires, Kosciuszko National Park, NSW
  year: 2014
  ident: e_1_2_6_75_1
– volume: 24
  start-page: 14
  year: 2016
  ident: e_1_2_6_81_1
  article-title: Explaining feedbacks between fire and flammability in the Snowgums and beyond
  publication-title: Australas. Plant Conserv.
  doi: 10.5962/p.373645
– volume-title: A Reconnaissance of the Mountainous Part of the River Murray Catchment in New South Wales
  year: 1932
  ident: e_1_2_6_14_1
– ident: e_1_2_6_76_1
  doi: 10.1007/s10021-017-0195-z
– ident: e_1_2_6_9_1
  doi: 10.1111/gcb.12433
– start-page: 75
  year: 1896
  ident: e_1_2_6_38_1
  article-title: The Australian Alps, or Snowy Mountains
  publication-title: J. R. Geogr. Soc. Australas
– ident: e_1_2_6_15_1
  doi: 10.1111/gcb.13614
– ident: e_1_2_6_32_1
  doi: 10.1080/00049158.2005.10674951
– ident: e_1_2_6_36_1
  doi: 10.1214/aoms/1177729885
– ident: e_1_2_6_21_1
  doi: 10.1002/ecs2.1410
– ident: e_1_2_6_27_1
  doi: 10.1080/00049158.2011.10676351
– ident: e_1_2_6_30_1
  doi: 10.1016/j.foreco.2012.10.022
– ident: e_1_2_6_56_1
  doi: 10.2307/1932179
– ident: e_1_2_6_74_1
  doi: 10.1111/aec.12266
– ident: e_1_2_6_7_1
  doi: 10.1086/665819
– ident: e_1_2_6_69_1
  doi: 10.1007/s00265-010-1037-6
– ident: e_1_2_6_17_1
  doi: 10.1071/BT9900403
– ident: e_1_2_6_2_1
  doi: 10.1109/TAC.1974.1100705
– volume: 9
  start-page: 219
  year: 2005
  ident: e_1_2_6_31_1
  article-title: Native vegetation of the southern forests: south‐east highlands, Australian Alps, south‐west slopes, and SE corner bioregions
  publication-title: Cunninghamia.
– volume-title: Potential Effects of Global Warming on the Biota of the Australian Alps
  year: 2004
  ident: e_1_2_6_61_1
– ident: e_1_2_6_4_1
  doi: 10.1111/emr.12194
– ident: e_1_2_6_62_1
  doi: 10.1111/gcb.12540
– volume-title: Oxford Dictionary of English
  year: 2010
  ident: e_1_2_6_67_1
– ident: e_1_2_6_82_1
  doi: 10.1371/journal.pone.0160715
– ident: e_1_2_6_16_1
  doi: 10.1002/joc.3480
– ident: e_1_2_6_20_1
– ident: e_1_2_6_58_1
  doi: 10.1071/BT12225
– ident: e_1_2_6_79_1
– ident: e_1_2_6_41_1
  doi: 10.1038/ncomms8537
– ident: e_1_2_6_42_1
  doi: 10.1071/WF07049
– ident: e_1_2_6_47_1
  doi: 10.1002/2013JG002502
– volume: 130
  start-page: 232
  year: 2013
  ident: e_1_2_6_80_1
  article-title: The historical influence of fire on the flammability of subalpine Snowgum forest and woodland
  publication-title: Vic. Nat.
– ident: e_1_2_6_29_1
  doi: 10.1111/gcb.13248
– ident: e_1_2_6_44_1
  doi: 10.1007/s10021-011-9494-y
– ident: e_1_2_6_24_1
  doi: 10.1111/jvs.12575
– volume: 87
  start-page: 152
  year: 1970
  ident: e_1_2_6_73_1
  article-title: Bushfire frequency and vegetational change in south‐eastern Australian forests
  publication-title: Vic. Nat.
– ident: e_1_2_6_34_1
  doi: 10.1657/1938-4246-41.2.212
– volume: 38
  start-page: 157
  year: 2014
  ident: e_1_2_6_59_1
  article-title: Ecology and long‐term history of fire in New Zealand
  publication-title: N. Z. J. Ecol.
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-2745.2012.01987.x
– ident: e_1_2_6_26_1
  doi: 10.14214/sf.653
– ident: e_1_2_6_10_1
  doi: 10.1111/geb.12180
– ident: e_1_2_6_11_1
  doi: 10.1016/j.tplants.2010.10.007
– ident: e_1_2_6_48_1
  doi: 10.1016/j.biocon.2011.01.016
– ident: e_1_2_6_25_1
– ident: e_1_2_6_51_1
  doi: 10.1071/WF01013
– ident: e_1_2_6_57_1
  doi: 10.1111/1365-2745.12691
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1163886
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1466-822X.2005.00154.x
– volume: 125
  start-page: 893
  year: 1999
  ident: e_1_2_6_64_1
  article-title: Lightning activity as an indicator of climate change
  publication-title: Q. J. R.
– volume-title: Planning for Bush Fire Protection
  year: 2006
  ident: e_1_2_6_55_1
– ident: e_1_2_6_5_1
– ident: e_1_2_6_13_1
  doi: 10.1214/aoms/1177731607
– ident: e_1_2_6_43_1
  doi: 10.1371/journal.pone.0062111
– ident: e_1_2_6_28_1
  doi: 10.1071/WF02042
– ident: e_1_2_6_3_1
  doi: 10.1016/j.foreco.2012.09.015
– start-page: 421
  volume-title: Statistical Models in S
  year: 1992
  ident: e_1_2_6_6_1
– volume-title: 2009 Victoran Bushfires Royal Commission: Final Report
  year: 2010
  ident: e_1_2_6_71_1
– ident: e_1_2_6_37_1
  doi: 10.1002/wcc.428
– ident: e_1_2_6_52_1
  doi: 10.1016/j.foreco.2012.09.012
– ident: e_1_2_6_12_1
  doi: 10.1111/aec.12200
– ident: e_1_2_6_46_1
– ident: e_1_2_6_45_1
  doi: 10.1080/0028825X.2016.1151903
– volume-title: Fire History of the Australian Alps
  year: 2006
  ident: e_1_2_6_78_1
– start-page: 9
  volume-title: Second Interface Between Ecology and Land Development in California
  year: 2000
  ident: e_1_2_6_77_1
– ident: e_1_2_6_54_1
– ident: e_1_2_6_49_1
  doi: 10.1073/pnas.1110245108
– volume: 49
  start-page: 87
  year: 2000
  ident: e_1_2_6_66_1
  article-title: Objective classification of Australian climates
  publication-title: Aust. Meteorol. Mag.
– volume: 25
  start-page: 616
  year: 2000
  ident: e_1_2_6_33_1
  article-title: Fire regimes of World Heritage Kakadu National Park., Australia
  publication-title: Austral Ecol.
SSID ssj0008691
Score 2.4929626
Snippet Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered...
Forests of the Australian Alps ( SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 578
SubjectTerms Alps region
Ash
Australia
Australian Alps
burning
canopy
Climate change
climate change impacts
Collapse
ecosystem collapse
ecosystems
Eucalyptus
fire frequency
fire history
Flammability
Forests
fuels
heathlands
landscapes
probability
Regeneration
trees
Trends
Vegetation changes
Woodlands
Title Flammability dynamics in the Australian Alps
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faec.12594
https://www.proquest.com/docview/2067530178
https://www.proquest.com/docview/2153613561
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KQfDiW6xWieLBgynJZvMonkppEUEPYqEHIewTxJoW0x7qr3d282gVBfG2IZNkMzuz-81m8g3AZUzCQFJPun4kmWssxGWSEpcJn3LDd0Vtbs79Q3Q7onfjcNyAm-pfmIIfot5wM55h52vj4Izna07OlOjg6tw1XKAmV8sAoscVdVQS2Wp5GC8QF0OKsGQVMlk89ZVf16IVwFyHqXadGW7Dc9XDIr3ktbOY8474-Ebe-M9X2IGtEn86vcJgdqGhsj3YKCpSLrE1sCzWy324HqKtvBUs3ktHFoXrc-clcxAyOqstEqc3meUHMBoOnvq3bllawRWoKur6OgiDMNIYoUaMSsMDlvjUZwLbLFE6EpoqHXKpmKJ-Yj4uSsKCyKM-VyFXwSE0s2mmjsAhXcJ0oAWNcZCjWOIBJ57Gm3UTjyjegqtKyakoecdN-YtJWsUfqIbUqqEFF7XorCDb-EmoXY1UWvpbnhoS-hDnqjhpwXl9Gj3FfP5gmZouUAYndwQvCBixS3ZYfn9I2hv0beP476InsIloKimyA9vQnL8v1Ckiljk_s6b5Cfj446E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gxujFtxFFrcaDB0v62N2WxAtBCCpwMJB4Mc22u02MWIjAAX-9s9sW0GhivG3TabuPmd1vdqffAFx6DnUFsYRpM8FNpSEmF8QxeWSTUPFdER2b0-myVp_cP9GnAtzk_8Kk_BDzDTdlGXq-VgauNqSXrJzLqILLc5WswKrK6K2Y828fF-RRPtP58tBjcEx0KmjGK6TieOaPfl2NFhBzGajqlaa5Bc95HdMAk9fKdBJWoo9v9I3_bcQ2bGYQ1KilOrMDBZnswlqalHKGpYYmsp7twXUT1eUtJfKeGSLNXT82XhIDUaOx2CUxaoPReB_6zUav3jKz7Apm5DJKTDt2qUtZjE4q40QoKjDfJjaPsMx9GbMoJjKmoZBcEttX54vC4S6ziB1KGkr3AIrJMJGHYDhVh8duHBEPx5l5Ai9Cx4rxZVXfcmRYgqu8l4Moox5XGTAGQe6CYDcEuhtKcDEXHaV8Gz8JlfOhCjKTGweKh57idOX5JTif30ZjUScgPJHDKcrg_I74BTEjVkmPy-8fCWqNui4c_V30DNZbvU47aN91H45hA8GVnwYLlqE4eZ_KEwQwk_BU6-knQjXnvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48UHzxFtezig8-2KVHknbxadmD9UREYR-EkjYJiGt3cXcf1l_vJD1WRUF8S-m0zTGTfJNMvwE4CTzqC-II22WC21pDbC6IZ_PEJbHmuyImNufmlnUeyWWXdmfgvPgXJuOHKDfctGWY-Vob-ECoT0bOZVLF1blGZmGeMKem8zY076fcUSEz6fLQYfBs9CloTiukw3jKR78uRlOE-RmnmoWmvQJPRRWz-JKX6ngUV5P3b-yN_2zDKiznANSqZxqzBjMyXYeFLCXlBEstQ2M92YCzNirLa0bjPbFElrl-aD2nFmJGa7pHYtV7g-EmPLZbD42OnedWsBOfUWK7yqc-ZQpdVMaJ0ERgoUtcnmCZh1KxRBGpaCwkl8QN9emi8LjPHOLGksbS34K5tJ_KbbC8mseVrxIS4CizQOBF7DkKX1YLHU_GFTgtOjlKcuJxnf-iFxUOCHZDZLqhAsel6CBj2_hJaK8YqSg3uGGkWegpTlZBWIGj8jaaij7_4Knsj1EGZ3dEL4gYsUpmWH7_SFRvNUxh5--ih7B412xH1xe3V7uwhMgqzCIF92Bu9DaW-4heRvGB0dIPnEXmbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flammability+dynamics+in+the+Australian+Alps&rft.jtitle=Austral+ecology&rft.au=Zylstra%2C+Philip+John&rft.date=2018-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1442-9985&rft.eissn=1442-9993&rft.volume=43&rft.issue=5&rft.spage=578&rft.epage=591&rft_id=info:doi/10.1111%2Faec.12594&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-9985&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-9985&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-9985&client=summon