Flammability dynamics in the Australian Alps
Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flamm...
Saved in:
Published in | Austral ecology Vol. 43; no. 5; pp. 578 - 591 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Richmond
Blackwell Publishing Ltd
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland. |
---|---|
AbstractList | Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland. Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland. Forests of the Australian Alps ( SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland. |
Author | Zylstra, Philip John |
Author_xml | – sequence: 1 givenname: Philip John orcidid: 0000-0002-6946-866X surname: Zylstra fullname: Zylstra, Philip John email: pzylstra@uow.edu.au organization: University of Wollongong |
BookMark | eNp1kE1Lw0AQhhepYK0e_AcBLwqm3cl-NDmG0qpQ8KLnZbPZ4JbNpu4mSP69qy0eis5lBuZ55-O9RBPXOY3QDeA5xFhIreaQsYKeoSlQmqVFUZDJb52zC3QZwg5jnPMCpuhhY2XbyspY049JPTrZGhUS45L-XSflEHovrZEuKe0-XKHzRtqgr495ht4269fVU7p9eXxeldtUEc5oCg1hhPEGCOGS1jTL8hwoSBVrmeuGq4bqhlW1lppC7HFeZ5JwTKHSrNJkhu4Oc_e--xh06EVrgtLWSqe7IYgMGOEQV0BEb0_QXTd4F68TGeZLRjAs80gtDpTyXQheN0KZXvamc_E9YwVg8e2eiO6JH_ei4v5EsfemlX78kz1O_zRWj_-DolyvDoovkqt-LA |
CitedBy_id | crossref_primary_10_1016_j_foreco_2022_120070 crossref_primary_10_1071_WR24035 crossref_primary_10_1071_WF21160 crossref_primary_10_1111_geb_13478 crossref_primary_10_3389_ffgc_2020_00022 crossref_primary_10_1016_j_scitotenv_2019_06_298 crossref_primary_10_1111_ddi_13417 crossref_primary_10_1088_1748_9326_adbf30 crossref_primary_10_1111_aec_13520 crossref_primary_10_1002_ecy_2839 crossref_primary_10_3390_cli8020021 crossref_primary_10_3390_fire7040148 crossref_primary_10_1071_PC20046 crossref_primary_10_1038_s41559_020_1195_5 crossref_primary_10_1080_15230430_2024_2429864 crossref_primary_10_1111_1365_2745_13663 crossref_primary_10_3390_fire3020013 crossref_primary_10_1071_WF18067 crossref_primary_10_1016_j_foreco_2020_118701 crossref_primary_10_1088_1748_9326_ac5c10 crossref_primary_10_1016_j_jenvman_2018_10_021 crossref_primary_10_1007_s12351_024_00882_1 crossref_primary_10_1071_WF20031 crossref_primary_10_1007_s10021_019_00340_6 crossref_primary_10_1071_WF21089 crossref_primary_10_1111_1365_2435_14305 crossref_primary_10_1111_aec_13096 crossref_primary_10_3389_ffgc_2022_929281 crossref_primary_10_1111_conl_12766 crossref_primary_10_3389_ffgc_2020_00079 crossref_primary_10_1071_BT19020 crossref_primary_10_3390_f15071266 crossref_primary_10_3390_fire6020037 crossref_primary_10_1016_j_foreco_2021_119891 crossref_primary_10_1016_j_jenvman_2018_11_063 crossref_primary_10_1111_aec_13134 crossref_primary_10_1111_ecog_04714 crossref_primary_10_1016_j_foreco_2019_117656 crossref_primary_10_2139_ssrn_4058207 crossref_primary_10_1016_j_foreco_2024_121704 crossref_primary_10_1016_j_foreco_2021_119724 crossref_primary_10_1007_s10980_022_01427_7 crossref_primary_10_1371_journal_pone_0204889 crossref_primary_10_1071_BT23002 crossref_primary_10_1111_cobi_13936 crossref_primary_10_1111_aen_12634 crossref_primary_10_1080_00049158_2020_1835032 crossref_primary_10_1111_csp2_12869 crossref_primary_10_1111_aec_13264 crossref_primary_10_1111_gcb_14589 crossref_primary_10_3389_fevo_2021_610147 crossref_primary_10_1111_pce_13916 crossref_primary_10_1111_aec_13024 crossref_primary_10_3390_f10050436 crossref_primary_10_2139_ssrn_3973755 crossref_primary_10_1111_1365_2745_13289 crossref_primary_10_1111_2041_210X_13615 crossref_primary_10_1071_BT22009 crossref_primary_10_1002_ecs2_4610 crossref_primary_10_1111_gcb_15750 crossref_primary_10_1126_science_ade4721 crossref_primary_10_1111_1365_2664_13696 crossref_primary_10_1002_ecs2_3721 crossref_primary_10_1111_gcb_14735 crossref_primary_10_1111_brv_13041 crossref_primary_10_1080_00049158_2023_2251249 crossref_primary_10_1088_1748_9326_ad41ee crossref_primary_10_1002_eap_1999 crossref_primary_10_1111_aec_13431 crossref_primary_10_1111_aec_12863 crossref_primary_10_1016_j_agrformet_2024_109990 crossref_primary_10_1071_WF18037 crossref_primary_10_3390_f12040450 crossref_primary_10_1007_s10531_021_02171_1 crossref_primary_10_1016_j_foreco_2023_121627 crossref_primary_10_1111_oik_10248 crossref_primary_10_1038_s41559_020_1251_1 crossref_primary_10_1111_acv_12634 crossref_primary_10_1016_j_foreco_2022_120353 crossref_primary_10_1071_WF18073 crossref_primary_10_1071_BT23068 crossref_primary_10_1080_00049158_2021_1953741 crossref_primary_10_1016_j_scitotenv_2022_158705 |
Cites_doi | 10.1126/science.284.5421.1832 10.1111/oik.03886 10.1016/j.quascirev.2010.10.010 10.1111/conl.12122 10.1007/s10021-016-0008-9 10.1071/WF15010 10.1890/ES12-00178.1 10.2307/2685478 10.5962/p.373645 10.1007/s10021-017-0195-z 10.1111/gcb.12433 10.1111/gcb.13614 10.1080/00049158.2005.10674951 10.1214/aoms/1177729885 10.1002/ecs2.1410 10.1080/00049158.2011.10676351 10.1016/j.foreco.2012.10.022 10.2307/1932179 10.1111/aec.12266 10.1086/665819 10.1007/s00265-010-1037-6 10.1071/BT9900403 10.1109/TAC.1974.1100705 10.1111/emr.12194 10.1111/gcb.12540 10.1371/journal.pone.0160715 10.1002/joc.3480 10.1071/BT12225 10.1038/ncomms8537 10.1071/WF07049 10.1002/2013JG002502 10.1111/gcb.13248 10.1007/s10021-011-9494-y 10.1111/jvs.12575 10.1657/1938-4246-41.2.212 10.1111/j.1365-2745.2012.01987.x 10.14214/sf.653 10.1111/geb.12180 10.1016/j.tplants.2010.10.007 10.1016/j.biocon.2011.01.016 10.1071/WF01013 10.1111/1365-2745.12691 10.1126/science.1163886 10.1111/j.1466-822X.2005.00154.x 10.1214/aoms/1177731607 10.1371/journal.pone.0062111 10.1071/WF02042 10.1016/j.foreco.2012.09.015 10.1002/wcc.428 10.1016/j.foreco.2012.09.012 10.1111/aec.12200 10.1080/0028825X.2016.1151903 10.1073/pnas.1110245108 |
ContentType | Journal Article |
Copyright | 2018 Ecological Society of Australia Copyright © 2018 Ecological Society of Australia |
Copyright_xml | – notice: 2018 Ecological Society of Australia – notice: Copyright © 2018 Ecological Society of Australia |
DBID | AAYXX CITATION 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 7S9 L.6 |
DOI | 10.1111/aec.12594 |
DatabaseName | CrossRef Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Technology Research Database Animal Behavior Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1442-9993 |
EndPage | 591 |
ExternalDocumentID | 10_1111_aec_12594 AEC12594 |
Genre | article |
GeographicLocations | Alps Australia Alps region |
GeographicLocations_xml | – name: Alps – name: Australia – name: Alps region |
GrantInformation_xml | – fundername: University of Wollongong School of Biological Sciences – fundername: Australian Alps Liaison Committee |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QG 7QR 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7S9 L.6 |
ID | FETCH-LOGICAL-c3654-1f35356f1336a4d42288141ac4d4a8ef6cf4ef5bdeae4188166d2a36041be5be3 |
IEDL.DBID | DR2 |
ISSN | 1442-9985 |
IngestDate | Fri Jul 11 18:31:58 EDT 2025 Wed Aug 13 06:41:05 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Tue Jul 01 03:47:37 EDT 2025 Wed Jan 22 16:28:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3654-1f35356f1336a4d42288141ac4d4a8ef6cf4ef5bdeae4188166d2a36041be5be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6946-866X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/aec.12594 |
PQID | 2067530178 |
PQPubID | 46239 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2153613561 proquest_journals_2067530178 crossref_citationtrail_10_1111_aec_12594 crossref_primary_10_1111_aec_12594 wiley_primary_10_1111_aec_12594_AEC12594 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Richmond |
PublicationPlace_xml | – name: Richmond |
PublicationTitle | Austral ecology |
PublicationYear | 2018 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2014b; 23 2009; 41 2013; 4 1963; 44 2000; 49 1950; 21 2013; 61 1932 1999; 284 1999; 125 1970 2012; 15 2011; 16 2013; 8 1939 1974; 19 2005; 68 2003; 12 2014; 20 2012; 173 2000 2015; 40 2011; 65 2014a; 20 1998; 52 1942; 13 2014; 7 1947 2010; 74 2017; 126 2009; 324 2009; 18 2001; 10 2014; 119 2015; 6 2012; 100 2016; 19 2000; 25 1990; 38 2011 2010 2017; 28 2017; 23 2016; 54 2011; 30 2006 2004 1992 2016; 17 1970; 16 2016; 11 2016; 7 2011; 108 2013; 33 2005; 9 2014; 38 1999; 33 1970; 87 1896; VI 2017 2016 2013; 130 2013; 294 2015 2014 2016; 25 2011; 144 2016; 24 2016; 22 2005; 14 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 Reeve N. (e_1_2_6_64_1) 1999; 125 e_1_2_6_72_1 e_1_2_6_19_1 NSW Rural Fire Service (e_1_2_6_55_1) 2006 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 Specht R. L. (e_1_2_6_65_1) 1970 e_1_2_6_15_1 e_1_2_6_57_1 Zylstra P. (e_1_2_6_80_1) 2013; 130 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 Helms R. (e_1_2_6_38_1) 1896 e_1_2_6_41_1 Stern H. (e_1_2_6_66_1) 2000; 49 Wright G. T. (e_1_2_6_75_1) 2014 e_1_2_6_9_1 e_1_2_6_5_1 Zylstra P. (e_1_2_6_81_1) 2016; 24 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 Gellie N. J. H. (e_1_2_6_31_1) 2005; 9 e_1_2_6_47_1 e_1_2_6_68_1 Teague B. (e_1_2_6_71_1) 2010 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_50_1 R Core Team (e_1_2_6_63_1) 2016 Wakefield N. A. (e_1_2_6_73_1) 1970; 87 Perry G. L. W. (e_1_2_6_59_1) 2014; 38 Philpot C. W. (e_1_2_6_60_1) 1970; 16 Stevenson A. (e_1_2_6_67_1) 2010 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_42_1 e_1_2_6_21_1 Byles B. U. (e_1_2_6_14_1) 1932 e_1_2_6_40_1 e_1_2_6_82_1 Zedler P. H. (e_1_2_6_77_1) 2000 e_1_2_6_8_1 Pickering C. M. (e_1_2_6_61_1) 2004 e_1_2_6_4_1 Zylstra P. (e_1_2_6_78_1) 2006 Bates D. M. (e_1_2_6_6_1) 1992 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 ESRI (e_1_2_6_22_1) 2015 e_1_2_6_29_1 e_1_2_6_44_1 Gill A. M. (e_1_2_6_33_1) 2000; 25 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 18 start-page: 116 year: 2009 end-page: 26 article-title: Fire intensity, fire severity and burn severity: a brief review and suggested usage publication-title: Int. J. Wildl. Fire – year: 2011 – volume: 294 start-page: 217 year: 2013 end-page: 24 article-title: Managing forest fuels using prescribed fire ‐ A perspective from southern Australia publication-title: For. Ecol. Manage. – volume: 126 start-page: 1428 year: 2017 end-page: 38 article-title: Scaling up flammability from individual leaves to fuel beds publication-title: Oikos – volume: 324 start-page: 481 year: 2009 end-page: 4 article-title: Fire in the Earth system publication-title: Science (80‐.) – volume: 22 start-page: 3127 year: 2016 end-page: 40 article-title: The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest publication-title: Glob. Chang. Biol. – volume: 6 start-page: 7537 year: 2015 article-title: Climate‐induced variations in global wildfire danger from 1979 to 2013 publication-title: Nat. Commun. – volume: 65 start-page: 13 year: 2011 end-page: 21 article-title: A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion publication-title: Behav. Ecol. Sociobiol. – volume: 20 start-page: 1008 year: 2014a end-page: 15 article-title: Abrupt fire regime change may cause landscape‐wide loss of mature obligate seeder forests publication-title: Glob. Chang. Biol. – volume: 33 start-page: 931 year: 2013 end-page: 44 article-title: Changes in Australian fire weather between 1973 and 2010 publication-title: Int. J. Climatol. – volume: 30 start-page: 28 year: 2011 end-page: 46 article-title: Late Quaternary fire regimes of Australasia publication-title: Quat. Sci. Rev. – volume: 100 start-page: 1153 year: 2012 end-page: 63 article-title: Leaf traits and litter flammability: evidence for non‐additive mixture effects in a temperate forest publication-title: J. Ecol. – volume: 49 start-page: 87 year: 2000 end-page: 96 article-title: Objective classification of Australian climates publication-title: Aust. Meteorol. Mag. – volume: 33 start-page: 327 year: 1999 end-page: 36 article-title: Parameter estimation of nonlinear growth models in forestry publication-title: Silva Fenn. – volume: 9 start-page: 219 year: 2005 end-page: 53 article-title: Native vegetation of the southern forests: south‐east highlands, Australian Alps, south‐west slopes, and SE corner bioregions publication-title: Cunninghamia. – year: 2014 – start-page: 421 year: 1992 end-page: 53 – volume: 24 start-page: 14 year: 2016 end-page: 15 article-title: Explaining feedbacks between fire and flammability in the Snowgums and beyond publication-title: Australas. Plant Conserv. – volume: 25 start-page: 616 year: 2000 end-page: 25 article-title: Fire regimes of World Heritage Kakadu National Park., Australia publication-title: Austral Ecol. – volume: 41 start-page: 212 year: 2009 end-page: 18 article-title: The decline of snowpatches in the Snowy Mountains of Australia: importance of climate warming, variable snow, and wind publication-title: Arctic, Antarct. Alp. Res. – volume: 61 start-page: 167 year: 2013 end-page: 234 article-title: New handbook for standardised measurement of plant functional traits worldwide publication-title: Aust. J. Bot. – volume: 119 start-page: 312 year: 2014 end-page: 22 article-title: The sensitivity of global wildfires to simulated past, present, and future lightning frequency publication-title: J. Geophys. Res. Biogeosciences. – volume: 7 start-page: 355 year: 2014 end-page: 70 article-title: Nonlinear effects of stand age on fire severity publication-title: Conserv. Lett. – volume: 10 start-page: 73 year: 2001 end-page: 7 article-title: Theoretical fire‐interval distributions publication-title: Int. J. Wildl. Fire – volume: 11 start-page: e0160715 year: 2016 article-title: Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: species, not surface fuel loads determine flame dimensions in eucalypt forests publication-title: PLoS ONE – volume: 54 start-page: 247 year: 2016 end-page: 72 article-title: Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand publication-title: New Zeal. J. Bot. – volume: 130 start-page: 232 year: 2013 end-page: 9 article-title: The historical influence of fire on the flammability of subalpine Snowgum forest and woodland publication-title: Vic. Nat. – volume: 17 start-page: 47 year: 2016 end-page: 55 article-title: Managing fire‐dependent vegetation in Byron Shire, Australia: are we restoring the keystone ecological process of fire? publication-title: Ecol. Manag. Restor. – year: 2004 – year: 2017 article-title: Shoot‐level flammability of species mixtures is driven by the most flammable species: implications for vegetation‐fire feedbacks favouring invasive species publication-title: Ecosystems – volume: 20 start-page: 2793 year: 2014 end-page: 9 article-title: Big eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature publication-title: Glob. Chang. Biol. – volume: 38 start-page: 157 year: 2014 end-page: 76 article-title: Ecology and long‐term history of fire in New Zealand publication-title: N. Z. J. Ecol. – volume: 19 start-page: 1325 year: 2016 end-page: 44 article-title: Positive feedbacks to fire‐driven deforestation following human colonization of the South Island of New Zealand publication-title: Ecosystems – volume: 74 start-page: 97 year: 2010 end-page: 107 article-title: Strategic seedbanks to meet fire risks for Victorian ash‐type species publication-title: Aust. For. – volume: 108 start-page: 15887 year: 2011 end-page: 91 article-title: Newly discovered landscape traps produce regime shifts in wet forests publication-title: Proc. Natl Acad. Sci. USA – volume: 87 start-page: 152 year: 1970 end-page: 8 article-title: Bushfire frequency and vegetational change in south‐eastern Australian forests publication-title: Vic. Nat. – volume: 8 start-page: e62111 year: 2013 article-title: Scientific foundations for an IUCN Red List of ecosystems publication-title: PLoS ONE – year: 2015 – volume: 125 start-page: 893 year: 1999 end-page: 903 article-title: Lightning activity as an indicator of climate change publication-title: Q. J. R. – volume: 44 start-page: 322 year: 1963 end-page: 31 article-title: Energy storage and the balance of producers and decomposers in ecological systems publication-title: Ecology – volume: 40 start-page: 433 year: 2015 end-page: 43 article-title: An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South‐Eastern Australia publication-title: Austral Ecol. – volume: 52 start-page: 181 year: 1998 end-page: 4 article-title: Violin Plots: a box plot‐density trace synergism publication-title: Am. Stat. – year: 1939 – volume: 16 start-page: 69 year: 2011 end-page: 76 article-title: Little evidence for fire‐adapted plant traits in Mediterranean climate regions publication-title: Trends Plant Sci. – volume: 14 start-page: 197 year: 2005 end-page: 212 article-title: Integrating a global agro‐climatic classification with bioregional boundaries in Australia publication-title: Glob. Ecol. Biogeogr. – volume: 7 start-page: 910 year: 2016 end-page: 31 article-title: Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system? publication-title: WIREs Clim. Chang. – volume: 12 start-page: 117 year: 2003 end-page: 28 article-title: A review of prescribed burning effectiveness in fire hazard reduction publication-title: Int. J. Wildl. Fire – volume: 68 start-page: 87 year: 2005 end-page: 93 article-title: Flammability of Australian forests publication-title: Aust. For. – start-page: 9 year: 2000 end-page: 18 – volume: 7 start-page: e01410 year: 2016 article-title: Regeneration of montane forests a quarter‐century after the 1988 Yellowstone Fires: a fire‐catalyzed shift in lower treelines? publication-title: Ecosphere – volume: 28 start-page: 1151 year: 2017 end-page: 65 article-title: Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire‐tolerant sub‐alpine forest publication-title: J. Veg. Sci. – volume: 40 start-page: 386 issue: 4 year: 2015 end-page: 99 article-title: Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, south‐eastern Australia publication-title: Austral Ecol. – year: 2016 – volume: 13 start-page: 215 year: 1942 end-page: 32 article-title: Cumulative frequency functions publication-title: Ann. Math. Stat. – year: 2010 – volume: 23 start-page: 3249 year: 2017 end-page: 58 article-title: Climatic warming strengthens a positive feedback between alpine shrubs and fire publication-title: Glob. Chang. Biol. – year: 1932 – volume: 23 start-page: 821 year: 2014b end-page: 4 article-title: Pyrogeographic models, feedbacks and the future of global fire regimes publication-title: Glob. Ecol. Biogeogr. – volume: 25 start-page: 831 year: 2016 end-page: 48 article-title: Too much, too soon? A review of the impacts of increasing wildfire frequency on tree demography and structure in temperate forests publication-title: Int. J. Wildl. Fire – volume: VI start-page: 75 year: 1896 end-page: 96 article-title: The Australian Alps, or Snowy Mountains publication-title: J. R. Geogr. Soc. Australas – volume: 4 start-page: 1 year: 2013 end-page: 12 article-title: Process‐based models are required to manage ecological systems in a changing world publication-title: Ecosphere – volume: 294 start-page: 45 year: 2013 end-page: 53 article-title: Mega‐fires, inquiries and politics in the eucalypt forests of Victoria, south‐eastern Australia publication-title: For. Ecol. Manage. – volume: 284 start-page: 1832 year: 1999 end-page: 5 article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests publication-title: Science (80‐.) – volume: 16 start-page: 461 year: 1970 end-page: 71 article-title: Influence of mineral content on the pyrolysis of plant materials publication-title: For. Sci. – year: 2006 – start-page: 44 year: 1970 end-page: 67 – year: 1947 – volume: 294 start-page: 54 year: 2013 end-page: 61 article-title: Global wildland fire season severity in the 21st century publication-title: For. Ecol. Manage. – volume: 19 start-page: 716 year: 1974 end-page: 23 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Automat. Contr. – volume: 144 start-page: 1472 year: 2011 end-page: 80 article-title: The 10 Australian ecosystems most vulnerable to tipping points publication-title: Biol. Conserv. – year: 2017 article-title: Flammability as an ecological and evolutionary driver publication-title: J. Ecol. – volume: 38 start-page: 403 year: 1990 end-page: 32 article-title: The dynamics of communities along the Snowy River and its tributaries in South‐eastern Australia publication-title: Aust. J. Bot. – volume: 21 start-page: 27 year: 1950 end-page: 58 article-title: Sample criteria for testing outlying observations publication-title: Ann. Math. Stat. – volume: 15 start-page: 97 year: 2012 end-page: 112 article-title: Decreases in fire spread probability with forest age promotes alternative community states, reduced resilience to climate variability and large fire regime shifts publication-title: Ecosystems – volume: 173 start-page: 569 year: 2012 end-page: 83 article-title: Fire and the angiosperm revolutions publication-title: Int. J. Plant Sci. – ident: e_1_2_6_18_1 doi: 10.1126/science.284.5421.1832 – ident: e_1_2_6_35_1 doi: 10.1111/oik.03886 – ident: e_1_2_6_68_1 – ident: e_1_2_6_53_1 doi: 10.1016/j.quascirev.2010.10.010 – volume: 16 start-page: 461 year: 1970 ident: e_1_2_6_60_1 article-title: Influence of mineral content on the pyrolysis of plant materials publication-title: For. Sci. – start-page: 44 volume-title: The Australian Environment year: 1970 ident: e_1_2_6_65_1 – volume-title: R: A Language and Environment for Statistical Computing year: 2016 ident: e_1_2_6_63_1 – ident: e_1_2_6_70_1 doi: 10.1111/conl.12122 – ident: e_1_2_6_72_1 doi: 10.1007/s10021-016-0008-9 – ident: e_1_2_6_23_1 doi: 10.1071/WF15010 – ident: e_1_2_6_19_1 doi: 10.1890/ES12-00178.1 – ident: e_1_2_6_39_1 doi: 10.2307/2685478 – volume-title: ArcGIS Desktop: Release 10.4.1 year: 2015 ident: e_1_2_6_22_1 – volume-title: Alpine Ash Recovery From the 2003 Landscape Fires, Kosciuszko National Park, NSW year: 2014 ident: e_1_2_6_75_1 – volume: 24 start-page: 14 year: 2016 ident: e_1_2_6_81_1 article-title: Explaining feedbacks between fire and flammability in the Snowgums and beyond publication-title: Australas. Plant Conserv. doi: 10.5962/p.373645 – volume-title: A Reconnaissance of the Mountainous Part of the River Murray Catchment in New South Wales year: 1932 ident: e_1_2_6_14_1 – ident: e_1_2_6_76_1 doi: 10.1007/s10021-017-0195-z – ident: e_1_2_6_9_1 doi: 10.1111/gcb.12433 – start-page: 75 year: 1896 ident: e_1_2_6_38_1 article-title: The Australian Alps, or Snowy Mountains publication-title: J. R. Geogr. Soc. Australas – ident: e_1_2_6_15_1 doi: 10.1111/gcb.13614 – ident: e_1_2_6_32_1 doi: 10.1080/00049158.2005.10674951 – ident: e_1_2_6_36_1 doi: 10.1214/aoms/1177729885 – ident: e_1_2_6_21_1 doi: 10.1002/ecs2.1410 – ident: e_1_2_6_27_1 doi: 10.1080/00049158.2011.10676351 – ident: e_1_2_6_30_1 doi: 10.1016/j.foreco.2012.10.022 – ident: e_1_2_6_56_1 doi: 10.2307/1932179 – ident: e_1_2_6_74_1 doi: 10.1111/aec.12266 – ident: e_1_2_6_7_1 doi: 10.1086/665819 – ident: e_1_2_6_69_1 doi: 10.1007/s00265-010-1037-6 – ident: e_1_2_6_17_1 doi: 10.1071/BT9900403 – ident: e_1_2_6_2_1 doi: 10.1109/TAC.1974.1100705 – volume: 9 start-page: 219 year: 2005 ident: e_1_2_6_31_1 article-title: Native vegetation of the southern forests: south‐east highlands, Australian Alps, south‐west slopes, and SE corner bioregions publication-title: Cunninghamia. – volume-title: Potential Effects of Global Warming on the Biota of the Australian Alps year: 2004 ident: e_1_2_6_61_1 – ident: e_1_2_6_4_1 doi: 10.1111/emr.12194 – ident: e_1_2_6_62_1 doi: 10.1111/gcb.12540 – volume-title: Oxford Dictionary of English year: 2010 ident: e_1_2_6_67_1 – ident: e_1_2_6_82_1 doi: 10.1371/journal.pone.0160715 – ident: e_1_2_6_16_1 doi: 10.1002/joc.3480 – ident: e_1_2_6_20_1 – ident: e_1_2_6_58_1 doi: 10.1071/BT12225 – ident: e_1_2_6_79_1 – ident: e_1_2_6_41_1 doi: 10.1038/ncomms8537 – ident: e_1_2_6_42_1 doi: 10.1071/WF07049 – ident: e_1_2_6_47_1 doi: 10.1002/2013JG002502 – volume: 130 start-page: 232 year: 2013 ident: e_1_2_6_80_1 article-title: The historical influence of fire on the flammability of subalpine Snowgum forest and woodland publication-title: Vic. Nat. – ident: e_1_2_6_29_1 doi: 10.1111/gcb.13248 – ident: e_1_2_6_44_1 doi: 10.1007/s10021-011-9494-y – ident: e_1_2_6_24_1 doi: 10.1111/jvs.12575 – volume: 87 start-page: 152 year: 1970 ident: e_1_2_6_73_1 article-title: Bushfire frequency and vegetational change in south‐eastern Australian forests publication-title: Vic. Nat. – ident: e_1_2_6_34_1 doi: 10.1657/1938-4246-41.2.212 – volume: 38 start-page: 157 year: 2014 ident: e_1_2_6_59_1 article-title: Ecology and long‐term history of fire in New Zealand publication-title: N. Z. J. Ecol. – ident: e_1_2_6_50_1 doi: 10.1111/j.1365-2745.2012.01987.x – ident: e_1_2_6_26_1 doi: 10.14214/sf.653 – ident: e_1_2_6_10_1 doi: 10.1111/geb.12180 – ident: e_1_2_6_11_1 doi: 10.1016/j.tplants.2010.10.007 – ident: e_1_2_6_48_1 doi: 10.1016/j.biocon.2011.01.016 – ident: e_1_2_6_25_1 – ident: e_1_2_6_51_1 doi: 10.1071/WF01013 – ident: e_1_2_6_57_1 doi: 10.1111/1365-2745.12691 – ident: e_1_2_6_8_1 doi: 10.1126/science.1163886 – ident: e_1_2_6_40_1 doi: 10.1111/j.1466-822X.2005.00154.x – volume: 125 start-page: 893 year: 1999 ident: e_1_2_6_64_1 article-title: Lightning activity as an indicator of climate change publication-title: Q. J. R. – volume-title: Planning for Bush Fire Protection year: 2006 ident: e_1_2_6_55_1 – ident: e_1_2_6_5_1 – ident: e_1_2_6_13_1 doi: 10.1214/aoms/1177731607 – ident: e_1_2_6_43_1 doi: 10.1371/journal.pone.0062111 – ident: e_1_2_6_28_1 doi: 10.1071/WF02042 – ident: e_1_2_6_3_1 doi: 10.1016/j.foreco.2012.09.015 – start-page: 421 volume-title: Statistical Models in S year: 1992 ident: e_1_2_6_6_1 – volume-title: 2009 Victoran Bushfires Royal Commission: Final Report year: 2010 ident: e_1_2_6_71_1 – ident: e_1_2_6_37_1 doi: 10.1002/wcc.428 – ident: e_1_2_6_52_1 doi: 10.1016/j.foreco.2012.09.012 – ident: e_1_2_6_12_1 doi: 10.1111/aec.12200 – ident: e_1_2_6_46_1 – ident: e_1_2_6_45_1 doi: 10.1080/0028825X.2016.1151903 – volume-title: Fire History of the Australian Alps year: 2006 ident: e_1_2_6_78_1 – start-page: 9 volume-title: Second Interface Between Ecology and Land Development in California year: 2000 ident: e_1_2_6_77_1 – ident: e_1_2_6_54_1 – ident: e_1_2_6_49_1 doi: 10.1073/pnas.1110245108 – volume: 49 start-page: 87 year: 2000 ident: e_1_2_6_66_1 article-title: Objective classification of Australian climates publication-title: Aust. Meteorol. Mag. – volume: 25 start-page: 616 year: 2000 ident: e_1_2_6_33_1 article-title: Fire regimes of World Heritage Kakadu National Park., Australia publication-title: Austral Ecol. |
SSID | ssj0008691 |
Score | 2.4929626 |
Snippet | Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered... Forests of the Australian Alps ( SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 578 |
SubjectTerms | Alps region Ash Australia Australian Alps burning canopy Climate change climate change impacts Collapse ecosystem collapse ecosystems Eucalyptus fire frequency fire history Flammability Forests fuels heathlands landscapes probability Regeneration trees Trends Vegetation changes Woodlands |
Title | Flammability dynamics in the Australian Alps |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faec.12594 https://www.proquest.com/docview/2067530178 https://www.proquest.com/docview/2153613561 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KQfDiW6xWieLBgynJZvMonkppEUEPYqEHIewTxJoW0x7qr3d282gVBfG2IZNkMzuz-81m8g3AZUzCQFJPun4kmWssxGWSEpcJn3LDd0Vtbs79Q3Q7onfjcNyAm-pfmIIfot5wM55h52vj4Izna07OlOjg6tw1XKAmV8sAoscVdVQS2Wp5GC8QF0OKsGQVMlk89ZVf16IVwFyHqXadGW7Dc9XDIr3ktbOY8474-Ebe-M9X2IGtEn86vcJgdqGhsj3YKCpSLrE1sCzWy324HqKtvBUs3ktHFoXrc-clcxAyOqstEqc3meUHMBoOnvq3bllawRWoKur6OgiDMNIYoUaMSsMDlvjUZwLbLFE6EpoqHXKpmKJ-Yj4uSsKCyKM-VyFXwSE0s2mmjsAhXcJ0oAWNcZCjWOIBJ57Gm3UTjyjegqtKyakoecdN-YtJWsUfqIbUqqEFF7XorCDb-EmoXY1UWvpbnhoS-hDnqjhpwXl9Gj3FfP5gmZouUAYndwQvCBixS3ZYfn9I2hv0beP476InsIloKimyA9vQnL8v1Ckiljk_s6b5Cfj446E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gxujFtxFFrcaDB0v62N2WxAtBCCpwMJB4Mc22u02MWIjAAX-9s9sW0GhivG3TabuPmd1vdqffAFx6DnUFsYRpM8FNpSEmF8QxeWSTUPFdER2b0-myVp_cP9GnAtzk_8Kk_BDzDTdlGXq-VgauNqSXrJzLqILLc5WswKrK6K2Y828fF-RRPtP58tBjcEx0KmjGK6TieOaPfl2NFhBzGajqlaa5Bc95HdMAk9fKdBJWoo9v9I3_bcQ2bGYQ1KilOrMDBZnswlqalHKGpYYmsp7twXUT1eUtJfKeGSLNXT82XhIDUaOx2CUxaoPReB_6zUav3jKz7Apm5DJKTDt2qUtZjE4q40QoKjDfJjaPsMx9GbMoJjKmoZBcEttX54vC4S6ziB1KGkr3AIrJMJGHYDhVh8duHBEPx5l5Ai9Cx4rxZVXfcmRYgqu8l4Moox5XGTAGQe6CYDcEuhtKcDEXHaV8Gz8JlfOhCjKTGweKh57idOX5JTif30ZjUScgPJHDKcrg_I74BTEjVkmPy-8fCWqNui4c_V30DNZbvU47aN91H45hA8GVnwYLlqE4eZ_KEwQwk_BU6-knQjXnvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48UHzxFtezig8-2KVHknbxadmD9UREYR-EkjYJiGt3cXcf1l_vJD1WRUF8S-m0zTGTfJNMvwE4CTzqC-II22WC21pDbC6IZ_PEJbHmuyImNufmlnUeyWWXdmfgvPgXJuOHKDfctGWY-Vob-ECoT0bOZVLF1blGZmGeMKem8zY076fcUSEz6fLQYfBs9CloTiukw3jKR78uRlOE-RmnmoWmvQJPRRWz-JKX6ngUV5P3b-yN_2zDKiznANSqZxqzBjMyXYeFLCXlBEstQ2M92YCzNirLa0bjPbFElrl-aD2nFmJGa7pHYtV7g-EmPLZbD42OnedWsBOfUWK7yqc-ZQpdVMaJ0ERgoUtcnmCZh1KxRBGpaCwkl8QN9emi8LjPHOLGksbS34K5tJ_KbbC8mseVrxIS4CizQOBF7DkKX1YLHU_GFTgtOjlKcuJxnf-iFxUOCHZDZLqhAsel6CBj2_hJaK8YqSg3uGGkWegpTlZBWIGj8jaaij7_4Knsj1EGZ3dEL4gYsUpmWH7_SFRvNUxh5--ih7B412xH1xe3V7uwhMgqzCIF92Bu9DaW-4heRvGB0dIPnEXmbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flammability+dynamics+in+the+Australian+Alps&rft.jtitle=Austral+ecology&rft.au=Zylstra%2C+Philip+John&rft.date=2018-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1442-9985&rft.eissn=1442-9993&rft.volume=43&rft.issue=5&rft.spage=578&rft.epage=591&rft_id=info:doi/10.1111%2Faec.12594&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-9985&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-9985&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-9985&client=summon |