Pathophysiological mechanisms of impaired limb use and repair strategies for motor systems after unilateral injury of the developing brain
The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid‐adolescence. An initially bilateral projection i...
Saved in:
Published in | Developmental medicine and child neurology Vol. 55; no. s4; pp. 27 - 31 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid‐adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral CST connections are eliminated. Unilateral brain damage during refinement leads to bilateral developmental impairments. The damaged side develops sparse and weak contralateral spinal connections and the non‐involved hemisphere maintains its ipsilateral projection to develop an aberrant bilateral spinal projection. In a kitten model of unilateral spastic cerebral palsy, we replicate key features of the CST circuit changes: robust bilateral CST projections from the non‐involved hemisphere, sparse contralateral connections from the affected hemisphere, and motor impairments. We discuss the role of activity‐dependent synaptic competition in development of bilateral CSTs and consider several experimental strategies for restoring a more normal pattern of CST connections from the damaged and non‐involved sides. We highlight recent results stressing the importance of combined repair of CST axons, restoration of a more normal motor cortex motor representation, and key involvement of spinal cholinergic interneurons in restoring skilled motor function. |
---|---|
AbstractList | The corticospinal tract (
CST
) is important for limb control. In humans, it begins developing prenatally but
CST
connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid‐adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral
CST
connections are eliminated. Unilateral brain damage during refinement leads to bilateral developmental impairments. The damaged side develops sparse and weak contralateral spinal connections and the non‐involved hemisphere maintains its ipsilateral projection to develop an aberrant bilateral spinal projection. In a kitten model of unilateral spastic cerebral palsy, we replicate key features of the
CST
circuit changes: robust bilateral
CST
projections from the non‐involved hemisphere, sparse contralateral connections from the affected hemisphere, and motor impairments. We discuss the role of activity‐dependent synaptic competition in development of bilateral
CST
s and consider several experimental strategies for restoring a more normal pattern of
CST
connections from the damaged and non‐involved sides. We highlight recent results stressing the importance of combined repair of
CST
axons, restoration of a more normal motor cortex motor representation, and key involvement of spinal cholinergic interneurons in restoring skilled motor function. The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid-adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral CST connections are eliminated. Unilateral brain damage during refinement leads to bilateral developmental impairments. The damaged side develops sparse and weak contralateral spinal connections and the non-involved hemisphere maintains its ipsilateral projection to develop an aberrant bilateral spinal projection. In a kitten model of unilateral spastic cerebral palsy, we replicate key features of the CST circuit changes: robust bilateral CST projections from the non-involved hemisphere, sparse contralateral connections from the affected hemisphere, and motor impairments. We discuss the role of activity-dependent synaptic competition in development of bilateral CSTs and consider several experimental strategies for restoring a more normal pattern of CST connections from the damaged and non-involved sides. We highlight recent results stressing the importance of combined repair of CST axons, restoration of a more normal motor cortex motor representation, and key involvement of spinal cholinergic interneurons in restoring skilled motor function. The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid‐adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral CST connections are eliminated. Unilateral brain damage during refinement leads to bilateral developmental impairments. The damaged side develops sparse and weak contralateral spinal connections and the non‐involved hemisphere maintains its ipsilateral projection to develop an aberrant bilateral spinal projection. In a kitten model of unilateral spastic cerebral palsy, we replicate key features of the CST circuit changes: robust bilateral CST projections from the non‐involved hemisphere, sparse contralateral connections from the affected hemisphere, and motor impairments. We discuss the role of activity‐dependent synaptic competition in development of bilateral CSTs and consider several experimental strategies for restoring a more normal pattern of CST connections from the damaged and non‐involved sides. We highlight recent results stressing the importance of combined repair of CST axons, restoration of a more normal motor cortex motor representation, and key involvement of spinal cholinergic interneurons in restoring skilled motor function. |
Author | Friel, Kathleen M Chakrabarty, Samit Martin, John H |
Author_xml | – sequence: 1 givenname: Kathleen M surname: Friel fullname: Friel, Kathleen M organization: City College of the City University of New York – sequence: 2 givenname: Samit surname: Chakrabarty fullname: Chakrabarty, Samit organization: University of Leeds – sequence: 3 givenname: John H surname: Martin fullname: Martin, John H organization: Columbia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24237276$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtq3DAUQEVJaCZpN_2AoGUJONHDlu1lmbwKeXTRro0sXc8o6OFIdop_IV8dTSftslpIIM49XM4xOvDBA0JfKDmn-Vxop_w5ZZzwD2hFS9EWTV22B2hFCGUFFYwdoeOUngghXFTlR3TESsZrVosVev0hp20Yt0sywYaNUdJiB2orvUku4TBg40ZpImhsjevxnABLr3GE3S9OU5QTbAwkPISIXZjynZY0QR6WwwQRz97YzMQsNv5pjstOOm0Ba3gBG0bjN7iP0vhP6HCQNsHn9_cE_bq--rm-Le4eb76vv90VKm_PC17pXtdCtVJwzaqGMaUIqTUBWuuyqWjTDqWoJAfdKNUrBTWjJZeato0iveAn6OveO8bwPEOaOmeSAmulhzCnLhdktBFtU2b0bI-qGFKKMHRjNE7GpaOk27Xvdu27P-0zfPrunXsH-h_6N3YG6B74bSws_1F1l_frh730DUaHk_Q |
CitedBy_id | crossref_primary_10_1111_dmcn_14860 crossref_primary_10_1186_1471_2431_14_141 crossref_primary_10_1016_j_nicl_2018_07_023 crossref_primary_10_1097_PHM_0000000000000372 crossref_primary_10_1111_cch_13262 crossref_primary_10_3390_children7090136 crossref_primary_10_1016_j_earlhumdev_2018_03_001 crossref_primary_10_1371_journal_pone_0163775 crossref_primary_10_1111_dmcn_13192 crossref_primary_10_3389_fnint_2014_00051 crossref_primary_10_3390_jcm9072041 crossref_primary_10_1016_j_apmr_2014_10_013 crossref_primary_10_1016_j_tins_2014_08_009 crossref_primary_10_1186_s12887_016_0711_x crossref_primary_10_1016_j_celrep_2020_107778 crossref_primary_10_1111_1440_1681_13379 crossref_primary_10_3109_01942638_2014_880260 crossref_primary_10_1002_hbm_23904 crossref_primary_10_1016_j_arrct_2022_100203 crossref_primary_10_1177_1545968318801546 crossref_primary_10_1038_s41598_022_08741_9 crossref_primary_10_1111_dmcn_12304 crossref_primary_10_1111_sms_12575 crossref_primary_10_1136_bmjopen_2023_078383 crossref_primary_10_3389_fneur_2014_00258 crossref_primary_10_3390_brainsci13071102 crossref_primary_10_3389_fnhum_2020_00159 crossref_primary_10_1136_bmjopen_2017_018084 crossref_primary_10_1177_1545968315625838 crossref_primary_10_3389_fnins_2020_00464 crossref_primary_10_1186_s12887_015_0498_1 crossref_primary_10_1002_hbm_24744 crossref_primary_10_1177_1545968317745991 crossref_primary_10_1111_dmcn_13524 crossref_primary_10_1111_dmcn_14855 crossref_primary_10_1016_j_pmr_2018_01_004 |
Cites_doi | 10.1016/S1047-9651(02)00054-2 10.1177/154596830001400304 10.1002/cne.20483 10.1152/jn.2000.83.2.895 10.1016/0165-3806(94)90025-6 10.1523/JNEUROSCI.0080-08.2008 10.1016/S0166-4328(01)00199-1 10.1016/j.neuroimage.2005.04.046 10.1146/annurev.neuro.31.060407.125547 10.1523/JNEUROSCI.1198-12.2012 10.1523/JNEUROSCI.4616-03.2004 10.1523/JNEUROSCI.2814-07.2007 10.1152/jn.2000.84.5.2582 10.1073/pnas.95.22.13248 10.1212/WNL.57.9.1543 10.1007/s002210050673 10.1177/154596830001400406 10.1080/09602011.2010.499309 10.1523/JNEUROSCI.0735-09.2009 10.1016/j.neuroscience.2007.10.010 10.1016/S0387-7604(96)00552-9 10.1016/j.clineuro.2012.01.011 10.1093/brain/123.1.51 10.1016/0168-0102(95)00895-9 10.1080/11038120510031833 10.1002/(SICI)1096-9861(19970922)386:2<293::AID-CNE9>3.0.CO;2-X 10.1073/pnas.0906551107 10.1177/1073858405278015 10.1152/jn.00750.2006 10.1523/JNEUROSCI.1078-08.2008 10.1016/B978-008045046-9.01318-8 10.1523/JNEUROSCI.5286-09.2010 10.1002/cne.902290306 10.1016/S0165-0173(02)00195-9 10.1002/ana.21108 10.1111/j.1469-8749.2003.tb00409.x 10.1146/annurev.bioeng.6.040803.140103 10.1111/j.1469-8749.2011.04055.x 10.1007/s00415-004-0653-3 10.1006/nlme.1999.3934 |
ContentType | Journal Article |
Copyright | The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press. |
Copyright_xml | – notice: The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press – notice: The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1111/dmcn.12303 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1469-8749 |
EndPage | 31 |
ExternalDocumentID | 10_1111_dmcn_12303 24237276 DMCN12303 |
Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: K01 NS062116 – fundername: National Institutes of Health funderid: R01 NS36835 – fundername: National Institutes of Health Clinical and Translational Science Award funderid: KL2 RR024157; UL1 RR024156; TL1 RR024158 – fundername: NCRR NIH HHS grantid: KL2 RR024157 – fundername: NINDS NIH HHS grantid: K01 NS062116 – fundername: NCRR NIH HHS grantid: UL1 RR024156 – fundername: NINDS NIH HHS grantid: R01 NS36835 – fundername: NCRR NIH HHS grantid: TL1 RR024158 |
GroupedDBID | --- --Z .3N .55 .GA .GJ .Y3 0-V 05W 0R~ 10A 1CY 1OB 1OC 24P 29F 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6PF 702 7PT 7RV 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8AO 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAGKA AAHHS AANLZ AAONW AAQOH AAQQT AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABGDZ ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACMXC ACNCT ACPOU ACQPF ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFKRA AFKSM AFPWT AFZJQ AHBTC AHEFC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALUQN AMBMR AMYDB AN0 ARALO ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BAWUL BDRZF BENPR BFHJK BHBCM BKEYQ BMXJE BNQBC BPHCQ BROTX BRXPI BVXVI BY8 C45 CAG CCPQU CHEAL CJNVE COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 DWQXO E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC FYBCS FYUFA G-S G.N GNUQQ GODZA H.X HCIFZ HF~ HGLYW HMCUK HVGLF HZ~ IX1 J0M K48 KBYEO L98 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M0P M1P M2M M2P M2Q MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NAPCQ NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PCD PQEDU PQQKQ PROAC PSQYO PSYQQ Q.N Q11 QB0 R.K RCA RIWAO RJQFR ROL RX1 S0X SAMSI SUPJJ TEORI TWZ UB1 UKHRP V9Y VH1 W8V W99 WBKPD WH7 WHG WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XOL YCJ YQJ YYQ ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c3653-35dbd76c9a63d25822cc007d0e17d485189f465a3ed8ccbcce72143ad198c0b63 |
IEDL.DBID | DR2 |
ISSN | 0012-1622 |
IngestDate | Fri Aug 16 21:09:29 EDT 2024 Fri Aug 23 03:36:43 EDT 2024 Sat Sep 28 07:54:36 EDT 2024 Sat Aug 24 00:57:04 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | s4 |
Language | English |
License | The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3653-35dbd76c9a63d25822cc007d0e17d485189f465a3ed8ccbcce72143ad198c0b63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/dmcn.12303 |
PMID | 24237276 |
PQID | 1462186984 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1462186984 crossref_primary_10_1111_dmcn_12303 pubmed_primary_24237276 wiley_primary_10_1111_dmcn_12303_DMCN12303 |
PublicationCentury | 2000 |
PublicationDate | November 2013 2013-Nov 2013-11-00 20131101 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: November 2013 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Developmental medicine and child neurology |
PublicationTitleAlternate | Dev Med Child Neurol |
PublicationYear | 2013 |
References | 2001; 123 2006; 30 2010; 107 2006; 13 2004; 24 2009 2011; 53 2003; 14 1984; 229 1999; 125 2008; 31 2007; 97 2012; 32 2009; 29 2010; 20 2007; 150 2000; 14 2005; 485 2002; 40 2004; 251 1995; 22 1997; 386 2000; 74 2008; 28 1997; 19 1994; 78 2000; 83 2000; 84 2005; 7 2007; 62 2000; 123 2012; 114 1998; 95 2001; 57 2010; 30 2005; 11 2007; 27 2003; 45 e_1_2_13_25_1 e_1_2_13_24_1 e_1_2_13_27_1 e_1_2_13_26_1 e_1_2_13_21_1 e_1_2_13_20_1 e_1_2_13_23_1 e_1_2_13_22_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_7_1 e_1_2_13_6_1 e_1_2_13_17_1 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_32_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_30_1 e_1_2_13_5_1 e_1_2_13_4_1 e_1_2_13_3_1 e_1_2_13_2_1 e_1_2_13_29_1 e_1_2_13_28_1 |
References_xml | – volume: 32 start-page: 9265 year: 2012 end-page: 76 article-title: Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development publication-title: J Neurosci – volume: 251 start-page: 1429 year: 2004 end-page: 42 article-title: Development and malformations of the human pyramidal tract publication-title: J Neurol – volume: 114 start-page: 515 year: 2012 end-page: 23 article-title: Systems neurobiology of restorative neurology and future directions for repair of the damaged motor systems publication-title: Clin Neurol Neurosurg – volume: 24 start-page: 2122 year: 2004 end-page: 32 article-title: Corticospinal development depends on experience publication-title: J Neurosci – volume: 30 start-page: 2277 year: 2010 end-page: 88 article-title: Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits publication-title: J Neurosci – volume: 485 start-page: 43 year: 2005 end-page: 56 article-title: Role of sensory‐motor cortex activity in postnatal development of corticospinal axon terminals in the cat publication-title: J Comp Neurol – volume: 14 start-page: S57 year: 2003 end-page: 76 article-title: Functional and structural plasticity in motor cortex: implications for stroke recovery publication-title: Phys Med Rehabil Clin N Am – volume: 29 start-page: 8816 year: 2009 end-page: 27 article-title: Activity‐dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord publication-title: J Neurosci – volume: 62 start-page: 493 year: 2007 end-page: 503 article-title: Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? publication-title: Ann Neurol – volume: 22 start-page: 139 year: 1995 end-page: 61 article-title: Anatomy, development and lesion‐induced plasticity of rodent corticospinal tract publication-title: Neurosci Res – volume: 229 start-page: 347 year: 1984 end-page: 61 article-title: Postnatal development of neurons containing choline acetyltransferase in rat spinal cord: an immunocytochemical study publication-title: J Comp Neurol – volume: 57 start-page: 1543 year: 2001 end-page: 54 article-title: Evidence of activity‐dependent withdrawal of corticospinal projections during human development publication-title: Neurology – volume: 45 start-page: 357 year: 2003 end-page: 9 article-title: Clinical experience of constraint induced movement therapy in adolescents with hemiplegic cerebral palsy–a day camp model publication-title: Dev Med Child Neurol – volume: 28 start-page: 6022 year: 2008 end-page: 9 article-title: Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats publication-title: J Neurosci – volume: 78 start-page: 182 year: 1994 end-page: 90 article-title: Selective elimination of transient corticospinal projections in the rat cervical spinal cord gray matter publication-title: Dev Brain Res – volume: 123 start-page: 133 year: 2001 end-page: 41 article-title: Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization publication-title: Behav Brain Res – volume: 84 start-page: 2582 year: 2000 end-page: 94 article-title: Postnatal development of the motor representation in primary motor cortex publication-title: J Neurophysiol – volume: 74 start-page: 27 year: 2000 end-page: 55 article-title: Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning publication-title: Neurobiol Learn Mem – volume: 13 start-page: 13 year: 2006 end-page: 22 article-title: Effects of constraint‐induced movement therapy in adolescents with hemiplegic cerebral palsy: a day camp model publication-title: Scand J Occup Ther – volume: 386 start-page: 293 year: 1997 end-page: 303 article-title: Cells of origin, course, and termination patterns of the ventral, uncrossed component of the mature rat corticospinal tract publication-title: J Comp Neurol – volume: 14 start-page: 187 year: 2000 end-page: 98 article-title: Effects of postlesion experience on behavioral recovery and neurophysiologic reorganization after cortical injury in primates publication-title: Neurorehabil Neural Repair – volume: 20 start-page: 854 year: 2010 end-page: 68 article-title: Constraint therapy versus intensive training: implications for motor control and brain plasticity after stroke publication-title: Neuropsychol Rehabil – start-page: 203 year: 2009 end-page: 14 – volume: 28 start-page: 7426 year: 2008 end-page: 34 article-title: Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade publication-title: J Neurosci – volume: 150 start-page: 829 year: 2007 end-page: 40 article-title: Optical and electrophysiological recordings of corticospinal synaptic activity and its developmental change in rat slice co‐cultures publication-title: Neuroscience – volume: 53 start-page: 9 issue: Suppl. 4 year: 2011 end-page: 13 article-title: Harnessing activity‐dependent plasticity to repair the damaged corticospinal tract in an animal model of cerebral palsy publication-title: Dev Med Child Neurol – volume: 83 start-page: 895 year: 2000 end-page: 906 article-title: Impairments in prehension produced by early postnatal sensorimotor cortex activity blockade publication-title: J Neurophysiol – volume: 31 start-page: 195 year: 2008 end-page: 218 article-title: Descending pathways in motor control publication-title: Annu Rev Neurosci – volume: 107 start-page: 15252 year: 2010 end-page: 7 article-title: Specific involvement of postsynaptic GluN2B‐containing NMDA receptors in the developmental elimination of corticospinal synapses publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 301 year: 2000 end-page: 10 article-title: Factors contributing to motor impairment and recovery after stroke publication-title: Neurorehabil Neural Repair – volume: 7 start-page: 327 year: 2005 end-page: 60 article-title: Functional electrical stimulation for neuromuscular applications publication-title: Annu Rev Biomed Eng – volume: 30 start-page: 857 year: 2006 end-page: 70 article-title: Transcranial magnetic stimulation and stroke: a computer‐based human model study publication-title: Neuroimage – volume: 19 start-page: 176 year: 1997 end-page: 80 article-title: Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application publication-title: Brain Dev – volume: 97 start-page: 3396 year: 2007 end-page: 406 article-title: Differential activity‐dependent development of corticospinal control of movement and final limb position during visually‐guided locomotion publication-title: J Neurophysiol – volume: 125 start-page: 184 year: 1999 end-page: 99 article-title: Activity‐dependent development of cortical axon terminations in the spinal cord and brain stem publication-title: Exp Brain Res – volume: 123 start-page: 51 year: 2000 end-page: 64 article-title: Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres publication-title: Brain – volume: 95 start-page: 13248 year: 1998 end-page: 53 article-title: EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract publication-title: Proc Natl Acad Sci USA – volume: 40 start-page: 118 year: 2002 end-page: 29 article-title: Development of posture and locomotion: an interplay of endogenously generated activities and neurotrophic actions by descending pathways publication-title: Brain Res Brain Res Rev – volume: 11 start-page: 471 year: 2005 end-page: 83 article-title: In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience publication-title: Neuroscientist – volume: 27 start-page: 11083 year: 2007 end-page: 90 article-title: Bilateral activity‐dependent interactions in the developing corticospinal system publication-title: J Neurosci – ident: e_1_2_13_27_1 doi: 10.1016/S1047-9651(02)00054-2 – ident: e_1_2_13_28_1 doi: 10.1177/154596830001400304 – ident: e_1_2_13_18_1 doi: 10.1002/cne.20483 – ident: e_1_2_13_20_1 doi: 10.1152/jn.2000.83.2.895 – ident: e_1_2_13_9_1 doi: 10.1016/0165-3806(94)90025-6 – ident: e_1_2_13_39_1 doi: 10.1523/JNEUROSCI.0080-08.2008 – ident: e_1_2_13_24_1 doi: 10.1016/S0166-4328(01)00199-1 – ident: e_1_2_13_40_1 doi: 10.1016/j.neuroimage.2005.04.046 – ident: e_1_2_13_2_1 doi: 10.1146/annurev.neuro.31.060407.125547 – ident: e_1_2_13_23_1 doi: 10.1523/JNEUROSCI.1198-12.2012 – ident: e_1_2_13_41_1 doi: 10.1523/JNEUROSCI.4616-03.2004 – ident: e_1_2_13_22_1 doi: 10.1523/JNEUROSCI.2814-07.2007 – ident: e_1_2_13_30_1 doi: 10.1152/jn.2000.84.5.2582 – ident: e_1_2_13_7_1 doi: 10.1073/pnas.95.22.13248 – ident: e_1_2_13_14_1 doi: 10.1212/WNL.57.9.1543 – ident: e_1_2_13_16_1 doi: 10.1007/s002210050673 – ident: e_1_2_13_26_1 doi: 10.1177/154596830001400406 – ident: e_1_2_13_36_1 doi: 10.1080/09602011.2010.499309 – ident: e_1_2_13_32_1 doi: 10.1523/JNEUROSCI.0735-09.2009 – ident: e_1_2_13_11_1 doi: 10.1016/j.neuroscience.2007.10.010 – ident: e_1_2_13_6_1 doi: 10.1016/S0387-7604(96)00552-9 – ident: e_1_2_13_15_1 doi: 10.1016/j.clineuro.2012.01.011 – ident: e_1_2_13_4_1 doi: 10.1093/brain/123.1.51 – ident: e_1_2_13_8_1 doi: 10.1016/0168-0102(95)00895-9 – ident: e_1_2_13_34_1 doi: 10.1080/11038120510031833 – ident: e_1_2_13_10_1 doi: 10.1002/(SICI)1096-9861(19970922)386:2<293::AID-CNE9>3.0.CO;2-X – ident: e_1_2_13_12_1 doi: 10.1073/pnas.0906551107 – ident: e_1_2_13_37_1 doi: 10.1177/1073858405278015 – ident: e_1_2_13_19_1 doi: 10.1152/jn.00750.2006 – ident: e_1_2_13_21_1 doi: 10.1523/JNEUROSCI.1078-08.2008 – ident: e_1_2_13_5_1 doi: 10.1016/B978-008045046-9.01318-8 – ident: e_1_2_13_17_1 doi: 10.1523/JNEUROSCI.5286-09.2010 – ident: e_1_2_13_33_1 doi: 10.1002/cne.902290306 – ident: e_1_2_13_31_1 doi: 10.1016/S0165-0173(02)00195-9 – ident: e_1_2_13_13_1 doi: 10.1002/ana.21108 – ident: e_1_2_13_35_1 doi: 10.1111/j.1469-8749.2003.tb00409.x – ident: e_1_2_13_38_1 doi: 10.1146/annurev.bioeng.6.040803.140103 – ident: e_1_2_13_29_1 doi: 10.1111/j.1469-8749.2011.04055.x – ident: e_1_2_13_3_1 doi: 10.1007/s00415-004-0653-3 – ident: e_1_2_13_25_1 doi: 10.1006/nlme.1999.3934 |
SSID | ssj0003654 |
Score | 2.3193388 |
SecondaryResourceType | review_article |
Snippet | The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until... The corticospinal tract ( CST ) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 27 |
SubjectTerms | Cerebral Palsy - complications Cerebral Palsy - physiopathology Cerebral Palsy - therapy Extremities - physiology Humans Infant Motor Skills Disorders - etiology Motor Skills Disorders - physiopathology Motor Skills Disorders - therapy Neuronal Plasticity - physiology Prenatal Injuries - etiology Prenatal Injuries - physiopathology Prenatal Injuries - therapy Pyramidal Tracts - physiopathology |
Title | Pathophysiological mechanisms of impaired limb use and repair strategies for motor systems after unilateral injury of the developing brain |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdmcn.12303 https://www.ncbi.nlm.nih.gov/pubmed/24237276 https://search.proquest.com/docview/1462186984 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7Eg3jx_agvRvQkpDSvTQJeRC1FqIhY6EXCvgLVNpWmufgT_NXObhrrAwS9hBCSTbKzM_vN7sw3AKduoD0eCfJNdJLRgWUOz1qavNYWp_mPaWmjCbu3rNMLbvphfwHO61yYih_iY8HNaIa110bBuSg-KbkaybxJdtdSfbp-ZOK5ru7n3FE-CysKZtdzXOZ5M25SE8Yzf_TrbPQDYn5FrHbKaa_CY_2xVaTJc7OciqZ8_cbj-N-_WYOVGRbFi2rwrMOCzjdgqTvbbd-EtzuCh2O79lGbSBxpkyo8KEYFjjM0OZZkMxUOByOBZaGR5won2lzFYlrTUCAhY6QxQceKObpAW5scy3ww5CYHeoiD_InEaxolSIrzXC4UpojFFvTa1w-XHWdWu8GR1PG-44dKqIjJhDNfeSHBECkJjqiWdiMVEMyLkyxgIfe1iqUUUmpyRQOfKzeJZUswfxsW83GudwGFIliSRC5PsiggBMoJEyVBFgsdchnHugEntQzTl4qiI61dG9Otqe3WBhzX4k1Jg8y2CM_1uCyM82MLc8VBA3YquX-0Y9AmITzWgDMrvV9ekF51L2_t2d5fbt6HZc9U2LDpjQewOJ2U-pBwzlQc2fH8Do0z-y4 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6KA00u6TOpm7aZ0p4KMnqupGOwa9zUNqXY4JvYl8CpLYfIuvQn9FdnZiXZdQOF9rIIIa3Qzs7sN7sz3zD20QuNL2KJvolJc2x47ojcNei1ugLXP26UjSacTPloHl4vokUTm0O5MDU_xG7DjTTD2mtScNqQ_k3L9VoVPTS8xPV5hPoeUOWGwfc9e1TAo5qE2fMdj_t-w05KgTz7dw_Xowcg8xCz2kVn-KSurFparkKKNfnRq7ayp37-weT43__zlJ02cBSu6vnzjD0yxXP2eNIcuL9gv74hQtzY7Y_WSsLaULbwslyXsMmB0izRbGpYLdcSqtKAKDTcGboL5bZlogAEx4DTAtuaPLoEW54cqmK5EpQGvYJlcYMSpk4RlcI-nQsk1bF4yebDz7P-yGnKNzgKRz5wgkhLHXOVCh5oP0IkohQiEu0aL9YhIr0kzUMeicDoRCmplEFvNAyE9tJEuZIHZ6xTbArzioHUiEzS2BNpHocIQgXCojTME2kioZLEdNmHVojZbc3SkbXeDQ1rZoe1y9638s1QiehkRBRmU5Xk_9jaXEnYZee14Hf9EOBEkMe77JMV318-kA0m_am9ev0vD1-y49FsMs7GX6ZfL9iJTwU3bLbjG9bZ3lXmLcKerXxnJ_c9Jvb_Rg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS9xAFMcPYkH6Yqv1stXWU_SpkGWTTCYJ-FJ2XbztIlLBlxLmFth2Nytm8-JH8FN7ZrJx1YKgLyGEXOfM5Xcmc_4H4MBnJhCxJN_EpDlteO6JvGPIa-0IGv-4UW414WDIj6_Y6XV0vQSHTSxMrQ_xOOFmW4brr20Dv9H5k0auJ6poU79rpT4_ME7oa5HociEeFfKo1mD2A8_nQTAXJ7XreBbXPh-O_mPM58jqxpz-J_jTvG291ORfu5rJtrp7IeT43s_5DKtzGMVfde1ZgyVTrMPKYP67_QvcXxAfTt3kR9NH4sTYWOFROSlxmqMNsqROU-N4NJFYlQZFofHW2KNYzhodCiQ0RqoUtK2lo0t0ycmxKkZjYYOgxzgq_pJ97U2JSXERzIXSZrHYgKv-0e_usTdP3uApKvjQCyMtdcxVKniog4g4RCniEd0xfqwZcV6S5oxHIjQ6UUoqZcgXZaHQfpqojuThJiwX08JsA0pNXJLGvkjzmBGCCoKilOWJNJFQSWJasN_YMLupNTqyxrexxZq5Ym3Bj8a8GTUh-19EFGZaldb7cZm5EtaCrdruj_exuEmIx1vw01nvlQdkvUF36Pa-vuXkPVi56PWz85Ph2Q58DGy2DRfquAvLs9vKfCPmmcnvrmo_ADY0_fU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathophysiological+mechanisms+of+impaired+limb+use+and+repair+strategies+for+motor+systems+after+unilateral+injury+of+the+developing+brain&rft.jtitle=Developmental+medicine+and+child+neurology&rft.au=Friel%2C+Kathleen+M&rft.au=Chakrabarty%2C+Samit&rft.au=Martin%2C+John+H&rft.date=2013-11-01&rft.eissn=1469-8749&rft.volume=55+Suppl+4&rft.spage=27&rft.epage=31&rft_id=info:doi/10.1111%2Fdmcn.12303&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1622&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1622&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1622&client=summon |