Pathophysiological mechanisms of impaired limb use and repair strategies for motor systems after unilateral injury of the developing brain

The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid‐adolescence. An initially bilateral projection i...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental medicine and child neurology Vol. 55; no. s4; pp. 27 - 31
Main Authors Friel, Kathleen M, Chakrabarty, Samit, Martin, John H
Format Journal Article
LanguageEnglish
Published England 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid‐adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral CST connections are eliminated. Unilateral brain damage during refinement leads to bilateral developmental impairments. The damaged side develops sparse and weak contralateral spinal connections and the non‐involved hemisphere maintains its ipsilateral projection to develop an aberrant bilateral spinal projection. In a kitten model of unilateral spastic cerebral palsy, we replicate key features of the CST circuit changes: robust bilateral CST projections from the non‐involved hemisphere, sparse contralateral connections from the affected hemisphere, and motor impairments. We discuss the role of activity‐dependent synaptic competition in development of bilateral CSTs and consider several experimental strategies for restoring a more normal pattern of CST connections from the damaged and non‐involved sides. We highlight recent results stressing the importance of combined repair of CST axons, restoration of a more normal motor cortex motor representation, and key involvement of spinal cholinergic interneurons in restoring skilled motor function.
AbstractList The corticospinal tract ( CST ) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid‐adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral CST connections are eliminated. Unilateral brain damage during refinement leads to bilateral developmental impairments. The damaged side develops sparse and weak contralateral spinal connections and the non‐involved hemisphere maintains its ipsilateral projection to develop an aberrant bilateral spinal projection. In a kitten model of unilateral spastic cerebral palsy, we replicate key features of the CST circuit changes: robust bilateral CST projections from the non‐involved hemisphere, sparse contralateral connections from the affected hemisphere, and motor impairments. We discuss the role of activity‐dependent synaptic competition in development of bilateral CST s and consider several experimental strategies for restoring a more normal pattern of CST connections from the damaged and non‐involved sides. We highlight recent results stressing the importance of combined repair of CST axons, restoration of a more normal motor cortex motor representation, and key involvement of spinal cholinergic interneurons in restoring skilled motor function.
The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid-adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral CST connections are eliminated. Unilateral brain damage during refinement leads to bilateral developmental impairments. The damaged side develops sparse and weak contralateral spinal connections and the non-involved hemisphere maintains its ipsilateral projection to develop an aberrant bilateral spinal projection. In a kitten model of unilateral spastic cerebral palsy, we replicate key features of the CST circuit changes: robust bilateral CST projections from the non-involved hemisphere, sparse contralateral connections from the affected hemisphere, and motor impairments. We discuss the role of activity-dependent synaptic competition in development of bilateral CSTs and consider several experimental strategies for restoring a more normal pattern of CST connections from the damaged and non-involved sides. We highlight recent results stressing the importance of combined repair of CST axons, restoration of a more normal motor cortex motor representation, and key involvement of spinal cholinergic interneurons in restoring skilled motor function.
The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid‐adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral CST connections are eliminated. Unilateral brain damage during refinement leads to bilateral developmental impairments. The damaged side develops sparse and weak contralateral spinal connections and the non‐involved hemisphere maintains its ipsilateral projection to develop an aberrant bilateral spinal projection. In a kitten model of unilateral spastic cerebral palsy, we replicate key features of the CST circuit changes: robust bilateral CST projections from the non‐involved hemisphere, sparse contralateral connections from the affected hemisphere, and motor impairments. We discuss the role of activity‐dependent synaptic competition in development of bilateral CSTs and consider several experimental strategies for restoring a more normal pattern of CST connections from the damaged and non‐involved sides. We highlight recent results stressing the importance of combined repair of CST axons, restoration of a more normal motor cortex motor representation, and key involvement of spinal cholinergic interneurons in restoring skilled motor function.
Author Friel, Kathleen M
Chakrabarty, Samit
Martin, John H
Author_xml – sequence: 1
  givenname: Kathleen M
  surname: Friel
  fullname: Friel, Kathleen M
  organization: City College of the City University of New York
– sequence: 2
  givenname: Samit
  surname: Chakrabarty
  fullname: Chakrabarty, Samit
  organization: University of Leeds
– sequence: 3
  givenname: John H
  surname: Martin
  fullname: Martin, John H
  organization: Columbia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24237276$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtq3DAUQEVJaCZpN_2AoGUJONHDlu1lmbwKeXTRro0sXc8o6OFIdop_IV8dTSftslpIIM49XM4xOvDBA0JfKDmn-Vxop_w5ZZzwD2hFS9EWTV22B2hFCGUFFYwdoeOUngghXFTlR3TESsZrVosVev0hp20Yt0sywYaNUdJiB2orvUku4TBg40ZpImhsjevxnABLr3GE3S9OU5QTbAwkPISIXZjynZY0QR6WwwQRz97YzMQsNv5pjstOOm0Ba3gBG0bjN7iP0vhP6HCQNsHn9_cE_bq--rm-Le4eb76vv90VKm_PC17pXtdCtVJwzaqGMaUIqTUBWuuyqWjTDqWoJAfdKNUrBTWjJZeato0iveAn6OveO8bwPEOaOmeSAmulhzCnLhdktBFtU2b0bI-qGFKKMHRjNE7GpaOk27Xvdu27P-0zfPrunXsH-h_6N3YG6B74bSws_1F1l_frh730DUaHk_Q
CitedBy_id crossref_primary_10_1111_dmcn_14860
crossref_primary_10_1186_1471_2431_14_141
crossref_primary_10_1016_j_nicl_2018_07_023
crossref_primary_10_1097_PHM_0000000000000372
crossref_primary_10_1111_cch_13262
crossref_primary_10_3390_children7090136
crossref_primary_10_1016_j_earlhumdev_2018_03_001
crossref_primary_10_1371_journal_pone_0163775
crossref_primary_10_1111_dmcn_13192
crossref_primary_10_3389_fnint_2014_00051
crossref_primary_10_3390_jcm9072041
crossref_primary_10_1016_j_apmr_2014_10_013
crossref_primary_10_1016_j_tins_2014_08_009
crossref_primary_10_1186_s12887_016_0711_x
crossref_primary_10_1016_j_celrep_2020_107778
crossref_primary_10_1111_1440_1681_13379
crossref_primary_10_3109_01942638_2014_880260
crossref_primary_10_1002_hbm_23904
crossref_primary_10_1016_j_arrct_2022_100203
crossref_primary_10_1177_1545968318801546
crossref_primary_10_1038_s41598_022_08741_9
crossref_primary_10_1111_dmcn_12304
crossref_primary_10_1111_sms_12575
crossref_primary_10_1136_bmjopen_2023_078383
crossref_primary_10_3389_fneur_2014_00258
crossref_primary_10_3390_brainsci13071102
crossref_primary_10_3389_fnhum_2020_00159
crossref_primary_10_1136_bmjopen_2017_018084
crossref_primary_10_1177_1545968315625838
crossref_primary_10_3389_fnins_2020_00464
crossref_primary_10_1186_s12887_015_0498_1
crossref_primary_10_1002_hbm_24744
crossref_primary_10_1177_1545968317745991
crossref_primary_10_1111_dmcn_13524
crossref_primary_10_1111_dmcn_14855
crossref_primary_10_1016_j_pmr_2018_01_004
Cites_doi 10.1016/S1047-9651(02)00054-2
10.1177/154596830001400304
10.1002/cne.20483
10.1152/jn.2000.83.2.895
10.1016/0165-3806(94)90025-6
10.1523/JNEUROSCI.0080-08.2008
10.1016/S0166-4328(01)00199-1
10.1016/j.neuroimage.2005.04.046
10.1146/annurev.neuro.31.060407.125547
10.1523/JNEUROSCI.1198-12.2012
10.1523/JNEUROSCI.4616-03.2004
10.1523/JNEUROSCI.2814-07.2007
10.1152/jn.2000.84.5.2582
10.1073/pnas.95.22.13248
10.1212/WNL.57.9.1543
10.1007/s002210050673
10.1177/154596830001400406
10.1080/09602011.2010.499309
10.1523/JNEUROSCI.0735-09.2009
10.1016/j.neuroscience.2007.10.010
10.1016/S0387-7604(96)00552-9
10.1016/j.clineuro.2012.01.011
10.1093/brain/123.1.51
10.1016/0168-0102(95)00895-9
10.1080/11038120510031833
10.1002/(SICI)1096-9861(19970922)386:2<293::AID-CNE9>3.0.CO;2-X
10.1073/pnas.0906551107
10.1177/1073858405278015
10.1152/jn.00750.2006
10.1523/JNEUROSCI.1078-08.2008
10.1016/B978-008045046-9.01318-8
10.1523/JNEUROSCI.5286-09.2010
10.1002/cne.902290306
10.1016/S0165-0173(02)00195-9
10.1002/ana.21108
10.1111/j.1469-8749.2003.tb00409.x
10.1146/annurev.bioeng.6.040803.140103
10.1111/j.1469-8749.2011.04055.x
10.1007/s00415-004-0653-3
10.1006/nlme.1999.3934
ContentType Journal Article
Copyright The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press
The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.
Copyright_xml – notice: The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press
– notice: The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1111/dmcn.12303
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1469-8749
EndPage 31
ExternalDocumentID 10_1111_dmcn_12303
24237276
DMCN12303
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: K01 NS062116
– fundername: National Institutes of Health
  funderid: R01 NS36835
– fundername: National Institutes of Health Clinical and Translational Science Award
  funderid: KL2 RR024157; UL1 RR024156; TL1 RR024158
– fundername: NCRR NIH HHS
  grantid: KL2 RR024157
– fundername: NINDS NIH HHS
  grantid: K01 NS062116
– fundername: NCRR NIH HHS
  grantid: UL1 RR024156
– fundername: NINDS NIH HHS
  grantid: R01 NS36835
– fundername: NCRR NIH HHS
  grantid: TL1 RR024158
GroupedDBID ---
--Z
.3N
.55
.GA
.GJ
.Y3
0-V
05W
0R~
10A
1CY
1OB
1OC
24P
29F
2WC
31~
33P
36B
3O-
3SF
3V.
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
7RV
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8AO
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAGKA
AAHHS
AANLZ
AAONW
AAQOH
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABGDZ
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACMXC
ACNCT
ACPOU
ACQPF
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKRA
AFKSM
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALUQN
AMBMR
AMYDB
AN0
ARALO
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BAWUL
BDRZF
BENPR
BFHJK
BHBCM
BKEYQ
BMXJE
BNQBC
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C45
CAG
CCPQU
CHEAL
CJNVE
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
FYUFA
G-S
G.N
GNUQQ
GODZA
H.X
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
IX1
J0M
K48
KBYEO
L98
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0P
M1P
M2M
M2P
M2Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NAPCQ
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PCD
PQEDU
PQQKQ
PROAC
PSQYO
PSYQQ
Q.N
Q11
QB0
R.K
RCA
RIWAO
RJQFR
ROL
RX1
S0X
SAMSI
SUPJJ
TEORI
TWZ
UB1
UKHRP
V9Y
VH1
W8V
W99
WBKPD
WH7
WHG
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XOL
YCJ
YQJ
YYQ
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c3653-35dbd76c9a63d25822cc007d0e17d485189f465a3ed8ccbcce72143ad198c0b63
IEDL.DBID DR2
ISSN 0012-1622
IngestDate Fri Aug 16 21:09:29 EDT 2024
Fri Aug 23 03:36:43 EDT 2024
Sat Sep 28 07:54:36 EDT 2024
Sat Aug 24 00:57:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue s4
Language English
License The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3653-35dbd76c9a63d25822cc007d0e17d485189f465a3ed8ccbcce72143ad198c0b63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/dmcn.12303
PMID 24237276
PQID 1462186984
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1462186984
crossref_primary_10_1111_dmcn_12303
pubmed_primary_24237276
wiley_primary_10_1111_dmcn_12303_DMCN12303
PublicationCentury 2000
PublicationDate November 2013
2013-Nov
2013-11-00
20131101
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: November 2013
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Developmental medicine and child neurology
PublicationTitleAlternate Dev Med Child Neurol
PublicationYear 2013
References 2001; 123
2006; 30
2010; 107
2006; 13
2004; 24
2009
2011; 53
2003; 14
1984; 229
1999; 125
2008; 31
2007; 97
2012; 32
2009; 29
2010; 20
2007; 150
2000; 14
2005; 485
2002; 40
2004; 251
1995; 22
1997; 386
2000; 74
2008; 28
1997; 19
1994; 78
2000; 83
2000; 84
2005; 7
2007; 62
2000; 123
2012; 114
1998; 95
2001; 57
2010; 30
2005; 11
2007; 27
2003; 45
e_1_2_13_25_1
e_1_2_13_24_1
e_1_2_13_27_1
e_1_2_13_26_1
e_1_2_13_21_1
e_1_2_13_20_1
e_1_2_13_23_1
e_1_2_13_22_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_7_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_32_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_30_1
e_1_2_13_5_1
e_1_2_13_4_1
e_1_2_13_3_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_28_1
References_xml – volume: 32
  start-page: 9265
  year: 2012
  end-page: 76
  article-title: Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development
  publication-title: J Neurosci
– volume: 251
  start-page: 1429
  year: 2004
  end-page: 42
  article-title: Development and malformations of the human pyramidal tract
  publication-title: J Neurol
– volume: 114
  start-page: 515
  year: 2012
  end-page: 23
  article-title: Systems neurobiology of restorative neurology and future directions for repair of the damaged motor systems
  publication-title: Clin Neurol Neurosurg
– volume: 24
  start-page: 2122
  year: 2004
  end-page: 32
  article-title: Corticospinal development depends on experience
  publication-title: J Neurosci
– volume: 30
  start-page: 2277
  year: 2010
  end-page: 88
  article-title: Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits
  publication-title: J Neurosci
– volume: 485
  start-page: 43
  year: 2005
  end-page: 56
  article-title: Role of sensory‐motor cortex activity in postnatal development of corticospinal axon terminals in the cat
  publication-title: J Comp Neurol
– volume: 14
  start-page: S57
  year: 2003
  end-page: 76
  article-title: Functional and structural plasticity in motor cortex: implications for stroke recovery
  publication-title: Phys Med Rehabil Clin N Am
– volume: 29
  start-page: 8816
  year: 2009
  end-page: 27
  article-title: Activity‐dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord
  publication-title: J Neurosci
– volume: 62
  start-page: 493
  year: 2007
  end-page: 503
  article-title: Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?
  publication-title: Ann Neurol
– volume: 22
  start-page: 139
  year: 1995
  end-page: 61
  article-title: Anatomy, development and lesion‐induced plasticity of rodent corticospinal tract
  publication-title: Neurosci Res
– volume: 229
  start-page: 347
  year: 1984
  end-page: 61
  article-title: Postnatal development of neurons containing choline acetyltransferase in rat spinal cord: an immunocytochemical study
  publication-title: J Comp Neurol
– volume: 57
  start-page: 1543
  year: 2001
  end-page: 54
  article-title: Evidence of activity‐dependent withdrawal of corticospinal projections during human development
  publication-title: Neurology
– volume: 45
  start-page: 357
  year: 2003
  end-page: 9
  article-title: Clinical experience of constraint induced movement therapy in adolescents with hemiplegic cerebral palsy–a day camp model
  publication-title: Dev Med Child Neurol
– volume: 28
  start-page: 6022
  year: 2008
  end-page: 9
  article-title: Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats
  publication-title: J Neurosci
– volume: 78
  start-page: 182
  year: 1994
  end-page: 90
  article-title: Selective elimination of transient corticospinal projections in the rat cervical spinal cord gray matter
  publication-title: Dev Brain Res
– volume: 123
  start-page: 133
  year: 2001
  end-page: 41
  article-title: Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization
  publication-title: Behav Brain Res
– volume: 84
  start-page: 2582
  year: 2000
  end-page: 94
  article-title: Postnatal development of the motor representation in primary motor cortex
  publication-title: J Neurophysiol
– volume: 74
  start-page: 27
  year: 2000
  end-page: 55
  article-title: Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning
  publication-title: Neurobiol Learn Mem
– volume: 13
  start-page: 13
  year: 2006
  end-page: 22
  article-title: Effects of constraint‐induced movement therapy in adolescents with hemiplegic cerebral palsy: a day camp model
  publication-title: Scand J Occup Ther
– volume: 386
  start-page: 293
  year: 1997
  end-page: 303
  article-title: Cells of origin, course, and termination patterns of the ventral, uncrossed component of the mature rat corticospinal tract
  publication-title: J Comp Neurol
– volume: 14
  start-page: 187
  year: 2000
  end-page: 98
  article-title: Effects of postlesion experience on behavioral recovery and neurophysiologic reorganization after cortical injury in primates
  publication-title: Neurorehabil Neural Repair
– volume: 20
  start-page: 854
  year: 2010
  end-page: 68
  article-title: Constraint therapy versus intensive training: implications for motor control and brain plasticity after stroke
  publication-title: Neuropsychol Rehabil
– start-page: 203
  year: 2009
  end-page: 14
– volume: 28
  start-page: 7426
  year: 2008
  end-page: 34
  article-title: Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade
  publication-title: J Neurosci
– volume: 150
  start-page: 829
  year: 2007
  end-page: 40
  article-title: Optical and electrophysiological recordings of corticospinal synaptic activity and its developmental change in rat slice co‐cultures
  publication-title: Neuroscience
– volume: 53
  start-page: 9
  issue: Suppl. 4
  year: 2011
  end-page: 13
  article-title: Harnessing activity‐dependent plasticity to repair the damaged corticospinal tract in an animal model of cerebral palsy
  publication-title: Dev Med Child Neurol
– volume: 83
  start-page: 895
  year: 2000
  end-page: 906
  article-title: Impairments in prehension produced by early postnatal sensorimotor cortex activity blockade
  publication-title: J Neurophysiol
– volume: 31
  start-page: 195
  year: 2008
  end-page: 218
  article-title: Descending pathways in motor control
  publication-title: Annu Rev Neurosci
– volume: 107
  start-page: 15252
  year: 2010
  end-page: 7
  article-title: Specific involvement of postsynaptic GluN2B‐containing NMDA receptors in the developmental elimination of corticospinal synapses
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 301
  year: 2000
  end-page: 10
  article-title: Factors contributing to motor impairment and recovery after stroke
  publication-title: Neurorehabil Neural Repair
– volume: 7
  start-page: 327
  year: 2005
  end-page: 60
  article-title: Functional electrical stimulation for neuromuscular applications
  publication-title: Annu Rev Biomed Eng
– volume: 30
  start-page: 857
  year: 2006
  end-page: 70
  article-title: Transcranial magnetic stimulation and stroke: a computer‐based human model study
  publication-title: Neuroimage
– volume: 19
  start-page: 176
  year: 1997
  end-page: 80
  article-title: Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application
  publication-title: Brain Dev
– volume: 97
  start-page: 3396
  year: 2007
  end-page: 406
  article-title: Differential activity‐dependent development of corticospinal control of movement and final limb position during visually‐guided locomotion
  publication-title: J Neurophysiol
– volume: 125
  start-page: 184
  year: 1999
  end-page: 99
  article-title: Activity‐dependent development of cortical axon terminations in the spinal cord and brain stem
  publication-title: Exp Brain Res
– volume: 123
  start-page: 51
  year: 2000
  end-page: 64
  article-title: Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres
  publication-title: Brain
– volume: 95
  start-page: 13248
  year: 1998
  end-page: 53
  article-title: EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract
  publication-title: Proc Natl Acad Sci USA
– volume: 40
  start-page: 118
  year: 2002
  end-page: 29
  article-title: Development of posture and locomotion: an interplay of endogenously generated activities and neurotrophic actions by descending pathways
  publication-title: Brain Res Brain Res Rev
– volume: 11
  start-page: 471
  year: 2005
  end-page: 83
  article-title: In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience
  publication-title: Neuroscientist
– volume: 27
  start-page: 11083
  year: 2007
  end-page: 90
  article-title: Bilateral activity‐dependent interactions in the developing corticospinal system
  publication-title: J Neurosci
– ident: e_1_2_13_27_1
  doi: 10.1016/S1047-9651(02)00054-2
– ident: e_1_2_13_28_1
  doi: 10.1177/154596830001400304
– ident: e_1_2_13_18_1
  doi: 10.1002/cne.20483
– ident: e_1_2_13_20_1
  doi: 10.1152/jn.2000.83.2.895
– ident: e_1_2_13_9_1
  doi: 10.1016/0165-3806(94)90025-6
– ident: e_1_2_13_39_1
  doi: 10.1523/JNEUROSCI.0080-08.2008
– ident: e_1_2_13_24_1
  doi: 10.1016/S0166-4328(01)00199-1
– ident: e_1_2_13_40_1
  doi: 10.1016/j.neuroimage.2005.04.046
– ident: e_1_2_13_2_1
  doi: 10.1146/annurev.neuro.31.060407.125547
– ident: e_1_2_13_23_1
  doi: 10.1523/JNEUROSCI.1198-12.2012
– ident: e_1_2_13_41_1
  doi: 10.1523/JNEUROSCI.4616-03.2004
– ident: e_1_2_13_22_1
  doi: 10.1523/JNEUROSCI.2814-07.2007
– ident: e_1_2_13_30_1
  doi: 10.1152/jn.2000.84.5.2582
– ident: e_1_2_13_7_1
  doi: 10.1073/pnas.95.22.13248
– ident: e_1_2_13_14_1
  doi: 10.1212/WNL.57.9.1543
– ident: e_1_2_13_16_1
  doi: 10.1007/s002210050673
– ident: e_1_2_13_26_1
  doi: 10.1177/154596830001400406
– ident: e_1_2_13_36_1
  doi: 10.1080/09602011.2010.499309
– ident: e_1_2_13_32_1
  doi: 10.1523/JNEUROSCI.0735-09.2009
– ident: e_1_2_13_11_1
  doi: 10.1016/j.neuroscience.2007.10.010
– ident: e_1_2_13_6_1
  doi: 10.1016/S0387-7604(96)00552-9
– ident: e_1_2_13_15_1
  doi: 10.1016/j.clineuro.2012.01.011
– ident: e_1_2_13_4_1
  doi: 10.1093/brain/123.1.51
– ident: e_1_2_13_8_1
  doi: 10.1016/0168-0102(95)00895-9
– ident: e_1_2_13_34_1
  doi: 10.1080/11038120510031833
– ident: e_1_2_13_10_1
  doi: 10.1002/(SICI)1096-9861(19970922)386:2<293::AID-CNE9>3.0.CO;2-X
– ident: e_1_2_13_12_1
  doi: 10.1073/pnas.0906551107
– ident: e_1_2_13_37_1
  doi: 10.1177/1073858405278015
– ident: e_1_2_13_19_1
  doi: 10.1152/jn.00750.2006
– ident: e_1_2_13_21_1
  doi: 10.1523/JNEUROSCI.1078-08.2008
– ident: e_1_2_13_5_1
  doi: 10.1016/B978-008045046-9.01318-8
– ident: e_1_2_13_17_1
  doi: 10.1523/JNEUROSCI.5286-09.2010
– ident: e_1_2_13_33_1
  doi: 10.1002/cne.902290306
– ident: e_1_2_13_31_1
  doi: 10.1016/S0165-0173(02)00195-9
– ident: e_1_2_13_13_1
  doi: 10.1002/ana.21108
– ident: e_1_2_13_35_1
  doi: 10.1111/j.1469-8749.2003.tb00409.x
– ident: e_1_2_13_38_1
  doi: 10.1146/annurev.bioeng.6.040803.140103
– ident: e_1_2_13_29_1
  doi: 10.1111/j.1469-8749.2011.04055.x
– ident: e_1_2_13_3_1
  doi: 10.1007/s00415-004-0653-3
– ident: e_1_2_13_25_1
  doi: 10.1006/nlme.1999.3934
SSID ssj0003654
Score 2.3193388
SecondaryResourceType review_article
Snippet The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until...
The corticospinal tract ( CST ) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 27
SubjectTerms Cerebral Palsy - complications
Cerebral Palsy - physiopathology
Cerebral Palsy - therapy
Extremities - physiology
Humans
Infant
Motor Skills Disorders - etiology
Motor Skills Disorders - physiopathology
Motor Skills Disorders - therapy
Neuronal Plasticity - physiology
Prenatal Injuries - etiology
Prenatal Injuries - physiopathology
Prenatal Injuries - therapy
Pyramidal Tracts - physiopathology
Title Pathophysiological mechanisms of impaired limb use and repair strategies for motor systems after unilateral injury of the developing brain
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdmcn.12303
https://www.ncbi.nlm.nih.gov/pubmed/24237276
https://search.proquest.com/docview/1462186984
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7Eg3jx_agvRvQkpDSvTQJeRC1FqIhY6EXCvgLVNpWmufgT_NXObhrrAwS9hBCSTbKzM_vN7sw3AKduoD0eCfJNdJLRgWUOz1qavNYWp_mPaWmjCbu3rNMLbvphfwHO61yYih_iY8HNaIa110bBuSg-KbkaybxJdtdSfbp-ZOK5ru7n3FE-CysKZtdzXOZ5M25SE8Yzf_TrbPQDYn5FrHbKaa_CY_2xVaTJc7OciqZ8_cbj-N-_WYOVGRbFi2rwrMOCzjdgqTvbbd-EtzuCh2O79lGbSBxpkyo8KEYFjjM0OZZkMxUOByOBZaGR5won2lzFYlrTUCAhY6QxQceKObpAW5scy3ww5CYHeoiD_InEaxolSIrzXC4UpojFFvTa1w-XHWdWu8GR1PG-44dKqIjJhDNfeSHBECkJjqiWdiMVEMyLkyxgIfe1iqUUUmpyRQOfKzeJZUswfxsW83GudwGFIliSRC5PsiggBMoJEyVBFgsdchnHugEntQzTl4qiI61dG9Otqe3WBhzX4k1Jg8y2CM_1uCyM82MLc8VBA3YquX-0Y9AmITzWgDMrvV9ekF51L2_t2d5fbt6HZc9U2LDpjQewOJ2U-pBwzlQc2fH8Do0z-y4
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6KA00u6TOpm7aZ0p4KMnqupGOwa9zUNqXY4JvYl8CpLYfIuvQn9FdnZiXZdQOF9rIIIa3Qzs7sN7sz3zD20QuNL2KJvolJc2x47ojcNei1ugLXP26UjSacTPloHl4vokUTm0O5MDU_xG7DjTTD2mtScNqQ_k3L9VoVPTS8xPV5hPoeUOWGwfc9e1TAo5qE2fMdj_t-w05KgTz7dw_Xowcg8xCz2kVn-KSurFparkKKNfnRq7ayp37-weT43__zlJ02cBSu6vnzjD0yxXP2eNIcuL9gv74hQtzY7Y_WSsLaULbwslyXsMmB0izRbGpYLdcSqtKAKDTcGboL5bZlogAEx4DTAtuaPLoEW54cqmK5EpQGvYJlcYMSpk4RlcI-nQsk1bF4yebDz7P-yGnKNzgKRz5wgkhLHXOVCh5oP0IkohQiEu0aL9YhIr0kzUMeicDoRCmplEFvNAyE9tJEuZIHZ6xTbArzioHUiEzS2BNpHocIQgXCojTME2kioZLEdNmHVojZbc3SkbXeDQ1rZoe1y9638s1QiehkRBRmU5Xk_9jaXEnYZee14Hf9EOBEkMe77JMV318-kA0m_am9ev0vD1-y49FsMs7GX6ZfL9iJTwU3bLbjG9bZ3lXmLcKerXxnJ_c9Jvb_Rg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS9xAFMcPYkH6Yqv1stXWU_SpkGWTTCYJ-FJ2XbztIlLBlxLmFth2Nytm8-JH8FN7ZrJx1YKgLyGEXOfM5Xcmc_4H4MBnJhCxJN_EpDlteO6JvGPIa-0IGv-4UW414WDIj6_Y6XV0vQSHTSxMrQ_xOOFmW4brr20Dv9H5k0auJ6poU79rpT4_ME7oa5HociEeFfKo1mD2A8_nQTAXJ7XreBbXPh-O_mPM58jqxpz-J_jTvG291ORfu5rJtrp7IeT43s_5DKtzGMVfde1ZgyVTrMPKYP67_QvcXxAfTt3kR9NH4sTYWOFROSlxmqMNsqROU-N4NJFYlQZFofHW2KNYzhodCiQ0RqoUtK2lo0t0ycmxKkZjYYOgxzgq_pJ97U2JSXERzIXSZrHYgKv-0e_usTdP3uApKvjQCyMtdcxVKniog4g4RCniEd0xfqwZcV6S5oxHIjQ6UUoqZcgXZaHQfpqojuThJiwX08JsA0pNXJLGvkjzmBGCCoKilOWJNJFQSWJasN_YMLupNTqyxrexxZq5Ym3Bj8a8GTUh-19EFGZaldb7cZm5EtaCrdruj_exuEmIx1vw01nvlQdkvUF36Pa-vuXkPVi56PWz85Ph2Q58DGy2DRfquAvLs9vKfCPmmcnvrmo_ADY0_fU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathophysiological+mechanisms+of+impaired+limb+use+and+repair+strategies+for+motor+systems+after+unilateral+injury+of+the+developing+brain&rft.jtitle=Developmental+medicine+and+child+neurology&rft.au=Friel%2C+Kathleen+M&rft.au=Chakrabarty%2C+Samit&rft.au=Martin%2C+John+H&rft.date=2013-11-01&rft.eissn=1469-8749&rft.volume=55+Suppl+4&rft.spage=27&rft.epage=31&rft_id=info:doi/10.1111%2Fdmcn.12303&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1622&client=summon