The end-Cretaceous plant extinction: Heterogeneity, ecosystem transformation, and insights for the future

The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K–Pg the most comparable past event to today’s projected...

Full description

Saved in:
Bibliographic Details
Published inCambridge Prisms: Extinction Vol. 1; p. e14
Main Authors Wilf, Peter, Carvalho, Mónica R., Stiles, Elena
Format Journal Article
LanguageEnglish
Published England Cambridge University Press 2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K–Pg the most comparable past event to today’s projected “sixth” mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K–Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world’s forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K–Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity.
AbstractList The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K–Pg the most comparable past event to today’s projected “sixth” mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K–Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world’s forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K–Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity.
The Cretaceous-Paleogene (K-Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth's History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K-Pg the most comparable past event to today's projected "sixth" mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K-Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world's forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K-Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity.The Cretaceous-Paleogene (K-Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth's History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K-Pg the most comparable past event to today's projected "sixth" mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K-Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world's forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K-Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity.
ArticleNumber e14
Author Stiles, Elena
Carvalho, Mónica R.
Wilf, Peter
AuthorAffiliation 2 Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan , Ann Arbor , MI , USA
1 Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University , University Park , PA , USA
3 Department of Biology, University of Washington , Seattle , WA , USA
AuthorAffiliation_xml – name: 2 Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan , Ann Arbor , MI , USA
– name: 3 Department of Biology, University of Washington , Seattle , WA , USA
– name: 1 Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University , University Park , PA , USA
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0001-6813-1937
  surname: Wilf
  fullname: Wilf, Peter
– sequence: 2
  givenname: Mónica R.
  surname: Carvalho
  fullname: Carvalho, Mónica R.
– sequence: 3
  givenname: Elena
  surname: Stiles
  fullname: Stiles, Elena
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40078678$$D View this record in MEDLINE/PubMed
BookMark eNptks9vFCEUgCemxtbak3czRxM7K79hvBizqbZJEy_1TBh4s0szCyswjfvfl-3WpjWeII-P78F7721zFGKApnmP0QIjLD_Dn7IgiNAFpq-aEyI571DP1dGz_XFzlvMtQoioHlPG3jTHDCGphFQnjb9ZQwvBdcsExViIc263kwmlrWYfbPExfGkvoUCKKwjgy-68BRvzLhfYtCWZkMeYNmYPnrcmuNaH7Ffrktsab0vVj3OZE7xrXo9mynD2uJ42v75f3Cwvu-ufP66W3647SwWnHWHOOakAGWUQM4o7higZjGJU9DDwoQcyWOeIkGCFkgIUl_0wjnLkDBtBT5urg9dFc6u3yW9M2ulovH4IxLTSJhVvJ9BcyoEpN2IgjhlqB2tGbi0StCfUybG6vh5c23nYgLMQ6oenF9KXJ8Gv9SreaYxVzyVR1fDx0ZDi7xly0RufLUy1xPtaa4qlEKonTFb0w_NkT1n-NqsCnw6ATTHnBOMTgpHeT4OuPdP7adCYVhr_Q1tfHtpUX-qn_965B2MPusk
CitedBy_id crossref_primary_10_1111_nph_19389
crossref_primary_10_1002_ajb2_16372
crossref_primary_10_1098_rsbl_2023_0314
crossref_primary_10_1144_SP549_2023_174
crossref_primary_10_1098_rsbl_2024_0265
Cites_doi 10.1093/sysbio/syr116
10.1073/pnas.0905130106
10.1126/science.225.4666.1030
10.1016/j.jsames.2022.103717
10.1093/aob/mcaa154
10.2113/gsrocky.38.1.45
10.1002/ajb2.1113
10.1080/00288306.2003.9515008
10.2113/gsrocky.38.1.101
10.1029/2020GL092260
10.1130/G23889A.1
10.1073/pnas.1909479116
10.1130/GSAB-51-213
10.1130/GSAT01712A.1
10.1073/pnas.1708980114
10.1017/S0094837300008769
10.1080/08912968809386480
10.1093/sysbio/syaa041
10.3732/ajb.1700158
10.1016/j.cretres.2020.104734
10.1126/science.abn7950
10.1038/s41586-020-2176-1
10.1127/njgpa/2019/0794
10.1098/rspb.2009.1255
10.1038/s41559-020-1241-3
10.1126/science.aay2268
10.1101/gr.168997.113
10.1126/sciadv.abb2824
10.3732/ajb.1200554
10.1073/pnas.0801921105
10.1016/j.cretres.2021.104889
10.1002/ppp3.10146
10.1111/jbi.12630
10.1146/annurev-earth-081320-064052
10.35535/acpa-2020-0016
10.1016/j.cretres.2012.02.002
10.3732/ajb.2007216
10.1086/723565
10.1073/pnas.042492999
10.1130/B36487.1
10.1130/B30915.1
10.2113/4
10.1093/aob/mcx173
10.1007/s12229-012-9100-9
10.1086/658920
10.1111/ter.12086
10.1016/j.tree.2007.09.003
10.1016/0031-0182(94)00109-L
10.1073/pnas.2201926119
10.14446/AMNP.2014.153
10.1126/science.aay5055
10.1002/fee.2420
10.1371/journal.pone.0052455
10.1126/science.abf1969
10.1111/nph.17822
10.1126/science.1072102
10.3732/ajb.0900093
10.1038/s41559-016-0012
10.1146/annurev-earth-050212-124217
10.1002/ajb2.1127
10.1038/324148a0
10.1111/jse.12842
10.1073/pnas.2004596117
10.2113/gsrocky.38.1.173
10.1016/j.gloplacha.2014.07.014
10.1371/journal.pone.0103542
10.1071/SB19001
10.1073/pnas.1423147112
10.1002/2016GL072241
10.1126/science.1177265
10.1371/journal.pone.0176164
10.1111/pala.12297
10.1002/ajb2.1092
10.1017/pab.2019.24
10.1371/journal.pone.0104749
10.1126/science.1064706
10.1080/03115518.2018.1517222
10.3732/ajb.1000539
10.3389/fpls.2022.894690
10.1098/rsbl.2019.0114
10.1016/j.gr.2014.05.009
10.3732/ajb.1500159
10.1146/annurev-earth-042711-105403
10.1016/j.epsl.2016.07.041
10.1038/s43017-022-00283-y
10.1126/science.11536548
10.1017/CBO9780511535536
10.1038/340708a0
10.3732/ajb.0800378
10.1130/G46152.1
10.1126/science.aal4760
10.3732/ajb.1400427
10.1666/0094-8373(2004)030<0347:LPEATE>2.0.CO;2
10.1111/nph.13831
10.1017/S1089332600001741
10.1126/science.208.4448.1095
10.1111/nph.15104
10.1038/nature09678
10.1016/j.pbi.2016.01.006
10.1126/science.215.4539.1501
10.1017/CBO9780511607370.004
10.1017/pab.2020.45
ContentType Journal Article
Copyright The Author(s) 2023.
The Author(s) 2023 2023 The Author(s)
Copyright_xml – notice: The Author(s) 2023.
– notice: The Author(s) 2023 2023 The Author(s)
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1017/ext.2023.13
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2755-0958
ExternalDocumentID oai_doaj_org_article_577b48df1e2d4a3cbcaf5cc063923d7f
PMC11895728
40078678
10_1017_ext_2023_13
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: EAR-1925755
– fundername: ;
  grantid: EAR-1829299
– fundername: ;
  grantid: 1556666
GroupedDBID 0R~
AAWEA
AAYXX
ABDBF
ABGDZ
ABXHF
ACAJB
ACDLN
AFKRZ
AHRGI
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
IKXGN
IPYYG
RCA
ROL
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c3653-24ddd78e0a8a04a85d4032ba84369eb5b9e2bcdd267ec6876e8579bff7f541a63
IEDL.DBID DOA
ISSN 2755-0958
IngestDate Wed Aug 27 01:27:51 EDT 2025
Thu Aug 21 18:34:39 EDT 2025
Fri Jul 11 09:09:15 EDT 2025
Sat Mar 15 01:20:58 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Tue Jul 01 03:40:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords anthropogenic extinctions
mass extinction
extinction legacies
Angiosperms
land plants
Language English
License http://creativecommons.org/licenses/by/4.0
The Author(s) 2023.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3653-24ddd78e0a8a04a85d4032ba84369eb5b9e2bcdd267ec6876e8579bff7f541a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6813-1937
OpenAccessLink https://doaj.org/article/577b48df1e2d4a3cbcaf5cc063923d7f
PMID 40078678
PQID 3176689247
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_577b48df1e2d4a3cbcaf5cc063923d7f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11895728
proquest_miscellaneous_3176689247
pubmed_primary_40078678
crossref_primary_10_1017_ext_2023_13
crossref_citationtrail_10_1017_ext_2023_13
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge, UK
PublicationTitle Cambridge Prisms: Extinction
PublicationTitleAlternate Camb Prism Extinct
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Iglesias (S275509582300013X_r46) 2021; 24
S275509582300013X_r1
Thompson (S275509582300013X_r88) 2023
S275509582300013X_r3
S275509582300013X_r2
S275509582300013X_r5
S275509582300013X_r69
S275509582300013X_r68
S275509582300013X_r4
S275509582300013X_r7
S275509582300013X_r6
S275509582300013X_r9
S275509582300013X_r8
Brown (S275509582300013X_r14) 1962; 375
S275509582300013X_r70
S275509582300013X_r78
S275509582300013X_r77
S275509582300013X_r76
S275509582300013X_r74
S275509582300013X_r73
S275509582300013X_r72
S275509582300013X_r71
S275509582300013X_r59
S275509582300013X_r58
S275509582300013X_r57
S275509582300013X_r67
S275509582300013X_r65
S275509582300013X_r64
S275509582300013X_r63
S275509582300013X_r62
S275509582300013X_r61
S275509582300013X_r60
Marshall (S275509582300013X_r66) 2023; 1
S275509582300013X_r92
S275509582300013X_r91
S275509582300013X_r90
S275509582300013X_r12
S275509582300013X_r11
S275509582300013X_r99
S275509582300013X_r98
S275509582300013X_r10
S275509582300013X_r97
Hickey (S275509582300013X_r42) 1977; 150
S275509582300013X_r96
S275509582300013X_r95
S275509582300013X_r94
O’Meara (S275509582300013X_r75) 2021
S275509582300013X_r93
S275509582300013X_r79
S275509582300013X_r81
S275509582300013X_r80
Hotton (S275509582300013X_r43) 2002; 361
S275509582300013X_r89
S275509582300013X_r87
S275509582300013X_r86
S275509582300013X_r85
S275509582300013X_r84
S275509582300013X_r83
S275509582300013X_r82
S275509582300013X_r29
S275509582300013X_r28
S275509582300013X_r27
S275509582300013X_r26
S275509582300013X_r25
S275509582300013X_r24
S275509582300013X_r104
S275509582300013X_r103
S275509582300013X_r102
S275509582300013X_r101
S275509582300013X_r100
S275509582300013X_r34
S275509582300013X_r33
S275509582300013X_r32
S275509582300013X_r109
S275509582300013X_r31
S275509582300013X_r108
S275509582300013X_r30
S275509582300013X_r107
S275509582300013X_r106
S275509582300013X_r105
S275509582300013X_r19
S275509582300013X_r18
S275509582300013X_r17
S275509582300013X_r16
S275509582300013X_r15
S275509582300013X_r13
Johnson (S275509582300013X_r48) 2002; 361
S275509582300013X_r111
S275509582300013X_r110
Gradstein (S275509582300013X_r38) 2012
S275509582300013X_r23
S275509582300013X_r22
S275509582300013X_r21
S275509582300013X_r20
S275509582300013X_r49
S275509582300013X_r47
S275509582300013X_r56
S275509582300013X_r55
S275509582300013X_r54
S275509582300013X_r53
S275509582300013X_r52
S275509582300013X_r51
S275509582300013X_r50
S275509582300013X_r39
S275509582300013X_r37
S275509582300013X_r36
S275509582300013X_r35
S275509582300013X_r45
S275509582300013X_r44
S275509582300013X_r41
S275509582300013X_r40
References_xml – ident: S275509582300013X_r81
  doi: 10.1093/sysbio/syr116
– year: 2021
  ident: S275509582300013X_r75
  article-title: Potential survival of some, but not all, diversification methods
  publication-title: EcoEvoRxiv
– ident: S275509582300013X_r108
  doi: 10.1073/pnas.0905130106
– ident: S275509582300013X_r90
  doi: 10.1126/science.225.4666.1030
– ident: S275509582300013X_r26
  doi: 10.1016/j.jsames.2022.103717
– ident: S275509582300013X_r53
  doi: 10.1093/aob/mcaa154
– ident: S275509582300013X_r6
  doi: 10.2113/gsrocky.38.1.45
– ident: S275509582300013X_r3
  doi: 10.1002/ajb2.1113
– ident: S275509582300013X_r93
  doi: 10.1080/00288306.2003.9515008
– ident: S275509582300013X_r51
  doi: 10.2113/gsrocky.38.1.101
– ident: S275509582300013X_r15
  doi: 10.1029/2020GL092260
– ident: S275509582300013X_r45
  doi: 10.1130/G23889A.1
– ident: S275509582300013X_r40
  doi: 10.1073/pnas.1909479116
– ident: S275509582300013X_r30
  doi: 10.1130/GSAB-51-213
– ident: S275509582300013X_r80
  doi: 10.1130/GSAT01712A.1
– ident: S275509582300013X_r7
  doi: 10.1073/pnas.1708980114
– ident: S275509582300013X_r109
  doi: 10.1017/S0094837300008769
– ident: S275509582300013X_r89
  doi: 10.1080/08912968809386480
– ident: S275509582300013X_r58
  doi: 10.1093/sysbio/syaa041
– ident: S275509582300013X_r101
  doi: 10.3732/ajb.1700158
– ident: S275509582300013X_r104
  doi: 10.1016/j.cretres.2020.104734
– ident: S275509582300013X_r5
  doi: 10.1126/science.abn7950
– ident: S275509582300013X_r62
  doi: 10.1038/s41586-020-2176-1
– ident: S275509582300013X_r11
  doi: 10.1127/njgpa/2019/0794
– ident: S275509582300013X_r98
  doi: 10.1098/rspb.2009.1255
– ident: S275509582300013X_r78
  doi: 10.1038/s41559-020-1241-3
– ident: S275509582300013X_r64
  doi: 10.1126/science.aay2268
– ident: S275509582300013X_r95
  doi: 10.1101/gr.168997.113
– ident: S275509582300013X_r27
  doi: 10.1126/sciadv.abb2824
– ident: S275509582300013X_r107
  doi: 10.3732/ajb.1200554
– ident: S275509582300013X_r97
  doi: 10.1073/pnas.0801921105
– ident: S275509582300013X_r21
  doi: 10.1016/j.cretres.2021.104889
– ident: S275509582300013X_r72
  doi: 10.1002/ppp3.10146
– ident: S275509582300013X_r77
  doi: 10.1111/jbi.12630
– ident: S275509582300013X_r85
  doi: 10.1146/annurev-earth-081320-064052
– ident: S275509582300013X_r12
  doi: 10.35535/acpa-2020-0016
– ident: S275509582300013X_r83
  doi: 10.1016/j.cretres.2012.02.002
– ident: S275509582300013X_r31
  doi: 10.3732/ajb.2007216
– ident: S275509582300013X_r13
  doi: 10.1086/723565
– ident: S275509582300013X_r59
  doi: 10.1073/pnas.042492999
– ident: S275509582300013X_r52
  doi: 10.1130/B36487.1
– ident: S275509582300013X_r23
  doi: 10.1130/B30915.1
– ident: S275509582300013X_r73
  doi: 10.2113/4
– volume: 361
  start-page: 329
  year: 2002
  ident: S275509582300013X_r48
  article-title: The megaflora of the Hell Creek and lower Fort Union formations in the western Dakotas: Vegetational response to climate change, the Cretaceous-Tertiary boundary event, and rapid marine transgression
  publication-title: Geological Society of America Special Papers
– ident: S275509582300013X_r55
  doi: 10.1093/aob/mcx173
– ident: S275509582300013X_r36
  doi: 10.1007/s12229-012-9100-9
– ident: S275509582300013X_r69
  doi: 10.1086/658920
– ident: S275509582300013X_r20
  doi: 10.1111/ter.12086
– ident: S275509582300013X_r68
  doi: 10.1016/j.tree.2007.09.003
– volume: 24
  start-page: a02
  year: 2021
  ident: S275509582300013X_r46
  article-title: Patagonia’s diverse but homogeneous early Paleocene forests: Angiosperm leaves from the Danian Salamanca and Peñas Coloradas formations, San Jorge Basin, Chubut, Argentina
  publication-title: Palaeontologia Electronica
– ident: S275509582300013X_r106
  doi: 10.1016/0031-0182(94)00109-L
– ident: S275509582300013X_r57
  doi: 10.1073/pnas.2201926119
– ident: S275509582300013X_r65
  doi: 10.14446/AMNP.2014.153
– ident: S275509582300013X_r44
  doi: 10.1126/science.aay5055
– ident: S275509582300013X_r76
  doi: 10.1002/fee.2420
– ident: S275509582300013X_r9
  doi: 10.1371/journal.pone.0052455
– ident: S275509582300013X_r19
  doi: 10.1126/science.abf1969
– ident: S275509582300013X_r10
  doi: 10.1111/nph.17822
– ident: S275509582300013X_r49
  doi: 10.1126/science.1072102
– ident: S275509582300013X_r24
  doi: 10.3732/ajb.0900093
– ident: S275509582300013X_r28
  doi: 10.1038/s41559-016-0012
– ident: S275509582300013X_r100
  doi: 10.1146/annurev-earth-050212-124217
– ident: S275509582300013X_r34
  doi: 10.1002/ajb2.1127
– volume-title: The Geologic Time Scale 2012
  year: 2012
  ident: S275509582300013X_r38
– volume: 1
  start-page: 1
  year: 2023
  ident: S275509582300013X_r66
  article-title: Forty years later: The status of the “Big Five” mass extinctions
  publication-title: Cambridge Prisms: Extinction
– ident: S275509582300013X_r110
  doi: 10.1038/324148a0
– ident: S275509582300013X_r4
  doi: 10.1111/jse.12842
– ident: S275509582300013X_r63
  doi: 10.1073/pnas.2004596117
– ident: S275509582300013X_r32
  doi: 10.2113/gsrocky.38.1.173
– ident: S275509582300013X_r91
  doi: 10.1016/j.gloplacha.2014.07.014
– ident: S275509582300013X_r29
  doi: 10.1371/journal.pone.0103542
– ident: S275509582300013X_r41
  doi: 10.1071/SB19001
– ident: S275509582300013X_r86
  doi: 10.1073/pnas.1423147112
– ident: S275509582300013X_r16
  doi: 10.1002/2016GL072241
– ident: S275509582300013X_r84
  doi: 10.1126/science.1177265
– ident: S275509582300013X_r54
  doi: 10.1371/journal.pone.0176164
– ident: S275509582300013X_r96
  doi: 10.1111/pala.12297
– ident: S275509582300013X_r56
  doi: 10.1002/ajb2.1092
– ident: S275509582300013X_r35
  doi: 10.1017/pab.2019.24
– ident: S275509582300013X_r25
  doi: 10.1371/journal.pone.0104749
– volume: 361
  start-page: 473
  year: 2002
  ident: S275509582300013X_r43
  article-title: Palynology of the Cretaceous-Tertiary boundary in Central Montana: Evidence for extraterrestrial impact as a cause of the terminal Cretaceous extinctions
  publication-title: Geological Society of America Special Papers
– ident: S275509582300013X_r94
  doi: 10.1126/science.1064706
– ident: S275509582300013X_r2
  doi: 10.1080/03115518.2018.1517222
– ident: S275509582300013X_r18
  doi: 10.3732/ajb.1000539
– ident: S275509582300013X_r17
  doi: 10.3389/fpls.2022.894690
– ident: S275509582300013X_r33
  doi: 10.1098/rsbl.2019.0114
– volume: 375
  start-page: 1
  year: 1962
  ident: S275509582300013X_r14
  article-title: Paleocene flora of the Rocky Mountains and Great Plains
  publication-title: U. S. Geological Survey Professional Paper
– ident: S275509582300013X_r92
  doi: 10.1016/j.gr.2014.05.009
– ident: S275509582300013X_r70
  doi: 10.3732/ajb.1500159
– ident: S275509582300013X_r47
  doi: 10.1146/annurev-earth-042711-105403
– ident: S275509582300013X_r22
  doi: 10.1016/j.epsl.2016.07.041
– ident: S275509582300013X_r71
  doi: 10.1038/s43017-022-00283-y
– ident: S275509582300013X_r60
  doi: 10.1126/science.11536548
– ident: S275509582300013X_r74
  doi: 10.1017/CBO9780511535536
– ident: S275509582300013X_r50
  doi: 10.1038/340708a0
– ident: S275509582300013X_r37
  doi: 10.3732/ajb.0800378
– ident: S275509582300013X_r39
  doi: 10.1130/G46152.1
– ident: S275509582300013X_r111
  doi: 10.1126/science.aal4760
– year: 2023
  ident: S275509582300013X_r88
  article-title: No evidence for angiosperm mass extinction at the Cretaceous–Paleogene (K–Pg) boundary
  publication-title: bioRxiv
– ident: S275509582300013X_r67
  doi: 10.3732/ajb.1400427
– volume: 150
  start-page: 1
  year: 1977
  ident: S275509582300013X_r42
  article-title: Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North Dakota
  publication-title: Geological Society of America Memoir
– ident: S275509582300013X_r103
  doi: 10.1666/0094-8373(2004)030<0347:LPEATE>2.0.CO;2
– ident: S275509582300013X_r102
  doi: 10.1111/nph.13831
– ident: S275509582300013X_r99
  doi: 10.1017/S1089332600001741
– ident: S275509582300013X_r1
  doi: 10.1126/science.208.4448.1095
– ident: S275509582300013X_r82
  doi: 10.1111/nph.15104
– ident: S275509582300013X_r8
  doi: 10.1038/nature09678
– ident: S275509582300013X_r61
  doi: 10.1016/j.pbi.2016.01.006
– ident: S275509582300013X_r79
  doi: 10.1126/science.215.4539.1501
– ident: S275509582300013X_r105
  doi: 10.1017/CBO9780511607370.004
– ident: S275509582300013X_r87
  doi: 10.1017/pab.2020.45
SSID ssj0002891344
Score 2.300093
SecondaryResourceType review_article
Snippet The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species...
The Cretaceous-Paleogene (K-Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth's History. The rapid species...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e14
SubjectTerms Angiosperms
anthropogenic extinctions
extinction legacies
land plants
Mass Extinction
Review
Species Extinction
Title The end-Cretaceous plant extinction: Heterogeneity, ecosystem transformation, and insights for the future
URI https://www.ncbi.nlm.nih.gov/pubmed/40078678
https://www.proquest.com/docview/3176689247
https://pubmed.ncbi.nlm.nih.gov/PMC11895728
https://doaj.org/article/577b48df1e2d4a3cbcaf5cc063923d7f
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovuqLCJ7EyrZJmtSbLi6LoCcFbyFPXJGs6Pr_nWnqsiuCF69taNL5JpmZZPINIae-9a2NXJZVVKzk0uL5rjClUeiNG9u2Fvc77u6b8SO_fRJPC6W-MCcs0wNnwUHALi1XPlah9twwZ52Jwjm0rDXzMuLqCzZvIZh6ycdnFeO8v5CHHNGYGY-lwi8qtmSCOqb-39zLn1mSC2ZntEHWe3-RXuVxbpKVkLbIBMClIflyiNmCLkD0Tt9eQUYU-p-k7qrCJR1jpssUFCSAp31OIc7MtM10tuCsTtM5NcnTSfrAMP2DwnMKTiHNZCPb5HF08zAcl33NhNKxRrCy5t57qcLAKDPgRgnPB6y2IHrWtMEK24baOu_rRgbXwFIYlJCAVpRR8Mo0bIespmkKe4RyySSsfjzyAF9qBjCzI_PCGtnGKjamIGffYtSuJxTHuhavOmeOSQ3_rFHmumIFOZ03fss8Gr83u0Y85k2Q_Lp7ACqhe5XQf6lEQU6-0dQwWfAExCSEQjOkw1QQcsqC7GZ0511hgXgFprsgagn3pbEsv0mT546QG4K0Vsha7f_H6A_IGgojb_McktXZ-2c4AsdnZo87HT_udqS-ACo1B-c
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+end-Cretaceous+plant+extinction%3A+Heterogeneity%2C+ecosystem+transformation%2C+and+insights+for+the+future&rft.jtitle=Cambridge+Prisms%3A+Extinction&rft.au=Peter+Wilf&rft.au=M%C3%B3nica+R.+Carvalho&rft.au=Elena+Stiles&rft.date=2023&rft.pub=Cambridge+University+Press&rft.eissn=2755-0958&rft.volume=1&rft_id=info:doi/10.1017%2Fext.2023.13&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_577b48df1e2d4a3cbcaf5cc063923d7f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2755-0958&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2755-0958&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2755-0958&client=summon