The end-Cretaceous plant extinction: Heterogeneity, ecosystem transformation, and insights for the future
The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K–Pg the most comparable past event to today’s projected...
Saved in:
Published in | Cambridge Prisms: Extinction Vol. 1; p. e14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Cambridge University Press
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K–Pg the most comparable past event to today’s projected “sixth” mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K–Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world’s forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K–Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity. |
---|---|
AbstractList | The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K–Pg the most comparable past event to today’s projected “sixth” mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K–Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world’s forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K–Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity. The Cretaceous-Paleogene (K-Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth's History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K-Pg the most comparable past event to today's projected "sixth" mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K-Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world's forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K-Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity.The Cretaceous-Paleogene (K-Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth's History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K-Pg the most comparable past event to today's projected "sixth" mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K-Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world's forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K-Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity. |
ArticleNumber | e14 |
Author | Stiles, Elena Carvalho, Mónica R. Wilf, Peter |
AuthorAffiliation | 2 Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan , Ann Arbor , MI , USA 1 Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University , University Park , PA , USA 3 Department of Biology, University of Washington , Seattle , WA , USA |
AuthorAffiliation_xml | – name: 2 Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan , Ann Arbor , MI , USA – name: 3 Department of Biology, University of Washington , Seattle , WA , USA – name: 1 Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University , University Park , PA , USA |
Author_xml | – sequence: 1 givenname: Peter orcidid: 0000-0001-6813-1937 surname: Wilf fullname: Wilf, Peter – sequence: 2 givenname: Mónica R. surname: Carvalho fullname: Carvalho, Mónica R. – sequence: 3 givenname: Elena surname: Stiles fullname: Stiles, Elena |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40078678$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9vFCEUgCemxtbak3czRxM7K79hvBizqbZJEy_1TBh4s0szCyswjfvfl-3WpjWeII-P78F7721zFGKApnmP0QIjLD_Dn7IgiNAFpq-aEyI571DP1dGz_XFzlvMtQoioHlPG3jTHDCGphFQnjb9ZQwvBdcsExViIc263kwmlrWYfbPExfGkvoUCKKwjgy-68BRvzLhfYtCWZkMeYNmYPnrcmuNaH7Ffrktsab0vVj3OZE7xrXo9mynD2uJ42v75f3Cwvu-ufP66W3647SwWnHWHOOakAGWUQM4o7higZjGJU9DDwoQcyWOeIkGCFkgIUl_0wjnLkDBtBT5urg9dFc6u3yW9M2ulovH4IxLTSJhVvJ9BcyoEpN2IgjhlqB2tGbi0StCfUybG6vh5c23nYgLMQ6oenF9KXJ8Gv9SreaYxVzyVR1fDx0ZDi7xly0RufLUy1xPtaa4qlEKonTFb0w_NkT1n-NqsCnw6ATTHnBOMTgpHeT4OuPdP7adCYVhr_Q1tfHtpUX-qn_965B2MPusk |
CitedBy_id | crossref_primary_10_1111_nph_19389 crossref_primary_10_1002_ajb2_16372 crossref_primary_10_1098_rsbl_2023_0314 crossref_primary_10_1144_SP549_2023_174 crossref_primary_10_1098_rsbl_2024_0265 |
Cites_doi | 10.1093/sysbio/syr116 10.1073/pnas.0905130106 10.1126/science.225.4666.1030 10.1016/j.jsames.2022.103717 10.1093/aob/mcaa154 10.2113/gsrocky.38.1.45 10.1002/ajb2.1113 10.1080/00288306.2003.9515008 10.2113/gsrocky.38.1.101 10.1029/2020GL092260 10.1130/G23889A.1 10.1073/pnas.1909479116 10.1130/GSAB-51-213 10.1130/GSAT01712A.1 10.1073/pnas.1708980114 10.1017/S0094837300008769 10.1080/08912968809386480 10.1093/sysbio/syaa041 10.3732/ajb.1700158 10.1016/j.cretres.2020.104734 10.1126/science.abn7950 10.1038/s41586-020-2176-1 10.1127/njgpa/2019/0794 10.1098/rspb.2009.1255 10.1038/s41559-020-1241-3 10.1126/science.aay2268 10.1101/gr.168997.113 10.1126/sciadv.abb2824 10.3732/ajb.1200554 10.1073/pnas.0801921105 10.1016/j.cretres.2021.104889 10.1002/ppp3.10146 10.1111/jbi.12630 10.1146/annurev-earth-081320-064052 10.35535/acpa-2020-0016 10.1016/j.cretres.2012.02.002 10.3732/ajb.2007216 10.1086/723565 10.1073/pnas.042492999 10.1130/B36487.1 10.1130/B30915.1 10.2113/4 10.1093/aob/mcx173 10.1007/s12229-012-9100-9 10.1086/658920 10.1111/ter.12086 10.1016/j.tree.2007.09.003 10.1016/0031-0182(94)00109-L 10.1073/pnas.2201926119 10.14446/AMNP.2014.153 10.1126/science.aay5055 10.1002/fee.2420 10.1371/journal.pone.0052455 10.1126/science.abf1969 10.1111/nph.17822 10.1126/science.1072102 10.3732/ajb.0900093 10.1038/s41559-016-0012 10.1146/annurev-earth-050212-124217 10.1002/ajb2.1127 10.1038/324148a0 10.1111/jse.12842 10.1073/pnas.2004596117 10.2113/gsrocky.38.1.173 10.1016/j.gloplacha.2014.07.014 10.1371/journal.pone.0103542 10.1071/SB19001 10.1073/pnas.1423147112 10.1002/2016GL072241 10.1126/science.1177265 10.1371/journal.pone.0176164 10.1111/pala.12297 10.1002/ajb2.1092 10.1017/pab.2019.24 10.1371/journal.pone.0104749 10.1126/science.1064706 10.1080/03115518.2018.1517222 10.3732/ajb.1000539 10.3389/fpls.2022.894690 10.1098/rsbl.2019.0114 10.1016/j.gr.2014.05.009 10.3732/ajb.1500159 10.1146/annurev-earth-042711-105403 10.1016/j.epsl.2016.07.041 10.1038/s43017-022-00283-y 10.1126/science.11536548 10.1017/CBO9780511535536 10.1038/340708a0 10.3732/ajb.0800378 10.1130/G46152.1 10.1126/science.aal4760 10.3732/ajb.1400427 10.1666/0094-8373(2004)030<0347:LPEATE>2.0.CO;2 10.1111/nph.13831 10.1017/S1089332600001741 10.1126/science.208.4448.1095 10.1111/nph.15104 10.1038/nature09678 10.1016/j.pbi.2016.01.006 10.1126/science.215.4539.1501 10.1017/CBO9780511607370.004 10.1017/pab.2020.45 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. The Author(s) 2023 2023 The Author(s) |
Copyright_xml | – notice: The Author(s) 2023. – notice: The Author(s) 2023 2023 The Author(s) |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1017/ext.2023.13 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2755-0958 |
ExternalDocumentID | oai_doaj_org_article_577b48df1e2d4a3cbcaf5cc063923d7f PMC11895728 40078678 10_1017_ext_2023_13 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: EAR-1925755 – fundername: ; grantid: EAR-1829299 – fundername: ; grantid: 1556666 |
GroupedDBID | 0R~ AAWEA AAYXX ABDBF ABGDZ ABXHF ACAJB ACDLN AFKRZ AHRGI ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ IKXGN IPYYG RCA ROL RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c3653-24ddd78e0a8a04a85d4032ba84369eb5b9e2bcdd267ec6876e8579bff7f541a63 |
IEDL.DBID | DOA |
ISSN | 2755-0958 |
IngestDate | Wed Aug 27 01:27:51 EDT 2025 Thu Aug 21 18:34:39 EDT 2025 Fri Jul 11 09:09:15 EDT 2025 Sat Mar 15 01:20:58 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Tue Jul 01 03:40:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | anthropogenic extinctions mass extinction extinction legacies Angiosperms land plants |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 The Author(s) 2023. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3653-24ddd78e0a8a04a85d4032ba84369eb5b9e2bcdd267ec6876e8579bff7f541a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6813-1937 |
OpenAccessLink | https://doaj.org/article/577b48df1e2d4a3cbcaf5cc063923d7f |
PMID | 40078678 |
PQID | 3176689247 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_577b48df1e2d4a3cbcaf5cc063923d7f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11895728 proquest_miscellaneous_3176689247 pubmed_primary_40078678 crossref_primary_10_1017_ext_2023_13 crossref_citationtrail_10_1017_ext_2023_13 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge, UK |
PublicationTitle | Cambridge Prisms: Extinction |
PublicationTitleAlternate | Camb Prism Extinct |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Iglesias (S275509582300013X_r46) 2021; 24 S275509582300013X_r1 Thompson (S275509582300013X_r88) 2023 S275509582300013X_r3 S275509582300013X_r2 S275509582300013X_r5 S275509582300013X_r69 S275509582300013X_r68 S275509582300013X_r4 S275509582300013X_r7 S275509582300013X_r6 S275509582300013X_r9 S275509582300013X_r8 Brown (S275509582300013X_r14) 1962; 375 S275509582300013X_r70 S275509582300013X_r78 S275509582300013X_r77 S275509582300013X_r76 S275509582300013X_r74 S275509582300013X_r73 S275509582300013X_r72 S275509582300013X_r71 S275509582300013X_r59 S275509582300013X_r58 S275509582300013X_r57 S275509582300013X_r67 S275509582300013X_r65 S275509582300013X_r64 S275509582300013X_r63 S275509582300013X_r62 S275509582300013X_r61 S275509582300013X_r60 Marshall (S275509582300013X_r66) 2023; 1 S275509582300013X_r92 S275509582300013X_r91 S275509582300013X_r90 S275509582300013X_r12 S275509582300013X_r11 S275509582300013X_r99 S275509582300013X_r98 S275509582300013X_r10 S275509582300013X_r97 Hickey (S275509582300013X_r42) 1977; 150 S275509582300013X_r96 S275509582300013X_r95 S275509582300013X_r94 O’Meara (S275509582300013X_r75) 2021 S275509582300013X_r93 S275509582300013X_r79 S275509582300013X_r81 S275509582300013X_r80 Hotton (S275509582300013X_r43) 2002; 361 S275509582300013X_r89 S275509582300013X_r87 S275509582300013X_r86 S275509582300013X_r85 S275509582300013X_r84 S275509582300013X_r83 S275509582300013X_r82 S275509582300013X_r29 S275509582300013X_r28 S275509582300013X_r27 S275509582300013X_r26 S275509582300013X_r25 S275509582300013X_r24 S275509582300013X_r104 S275509582300013X_r103 S275509582300013X_r102 S275509582300013X_r101 S275509582300013X_r100 S275509582300013X_r34 S275509582300013X_r33 S275509582300013X_r32 S275509582300013X_r109 S275509582300013X_r31 S275509582300013X_r108 S275509582300013X_r30 S275509582300013X_r107 S275509582300013X_r106 S275509582300013X_r105 S275509582300013X_r19 S275509582300013X_r18 S275509582300013X_r17 S275509582300013X_r16 S275509582300013X_r15 S275509582300013X_r13 Johnson (S275509582300013X_r48) 2002; 361 S275509582300013X_r111 S275509582300013X_r110 Gradstein (S275509582300013X_r38) 2012 S275509582300013X_r23 S275509582300013X_r22 S275509582300013X_r21 S275509582300013X_r20 S275509582300013X_r49 S275509582300013X_r47 S275509582300013X_r56 S275509582300013X_r55 S275509582300013X_r54 S275509582300013X_r53 S275509582300013X_r52 S275509582300013X_r51 S275509582300013X_r50 S275509582300013X_r39 S275509582300013X_r37 S275509582300013X_r36 S275509582300013X_r35 S275509582300013X_r45 S275509582300013X_r44 S275509582300013X_r41 S275509582300013X_r40 |
References_xml | – ident: S275509582300013X_r81 doi: 10.1093/sysbio/syr116 – year: 2021 ident: S275509582300013X_r75 article-title: Potential survival of some, but not all, diversification methods publication-title: EcoEvoRxiv – ident: S275509582300013X_r108 doi: 10.1073/pnas.0905130106 – ident: S275509582300013X_r90 doi: 10.1126/science.225.4666.1030 – ident: S275509582300013X_r26 doi: 10.1016/j.jsames.2022.103717 – ident: S275509582300013X_r53 doi: 10.1093/aob/mcaa154 – ident: S275509582300013X_r6 doi: 10.2113/gsrocky.38.1.45 – ident: S275509582300013X_r3 doi: 10.1002/ajb2.1113 – ident: S275509582300013X_r93 doi: 10.1080/00288306.2003.9515008 – ident: S275509582300013X_r51 doi: 10.2113/gsrocky.38.1.101 – ident: S275509582300013X_r15 doi: 10.1029/2020GL092260 – ident: S275509582300013X_r45 doi: 10.1130/G23889A.1 – ident: S275509582300013X_r40 doi: 10.1073/pnas.1909479116 – ident: S275509582300013X_r30 doi: 10.1130/GSAB-51-213 – ident: S275509582300013X_r80 doi: 10.1130/GSAT01712A.1 – ident: S275509582300013X_r7 doi: 10.1073/pnas.1708980114 – ident: S275509582300013X_r109 doi: 10.1017/S0094837300008769 – ident: S275509582300013X_r89 doi: 10.1080/08912968809386480 – ident: S275509582300013X_r58 doi: 10.1093/sysbio/syaa041 – ident: S275509582300013X_r101 doi: 10.3732/ajb.1700158 – ident: S275509582300013X_r104 doi: 10.1016/j.cretres.2020.104734 – ident: S275509582300013X_r5 doi: 10.1126/science.abn7950 – ident: S275509582300013X_r62 doi: 10.1038/s41586-020-2176-1 – ident: S275509582300013X_r11 doi: 10.1127/njgpa/2019/0794 – ident: S275509582300013X_r98 doi: 10.1098/rspb.2009.1255 – ident: S275509582300013X_r78 doi: 10.1038/s41559-020-1241-3 – ident: S275509582300013X_r64 doi: 10.1126/science.aay2268 – ident: S275509582300013X_r95 doi: 10.1101/gr.168997.113 – ident: S275509582300013X_r27 doi: 10.1126/sciadv.abb2824 – ident: S275509582300013X_r107 doi: 10.3732/ajb.1200554 – ident: S275509582300013X_r97 doi: 10.1073/pnas.0801921105 – ident: S275509582300013X_r21 doi: 10.1016/j.cretres.2021.104889 – ident: S275509582300013X_r72 doi: 10.1002/ppp3.10146 – ident: S275509582300013X_r77 doi: 10.1111/jbi.12630 – ident: S275509582300013X_r85 doi: 10.1146/annurev-earth-081320-064052 – ident: S275509582300013X_r12 doi: 10.35535/acpa-2020-0016 – ident: S275509582300013X_r83 doi: 10.1016/j.cretres.2012.02.002 – ident: S275509582300013X_r31 doi: 10.3732/ajb.2007216 – ident: S275509582300013X_r13 doi: 10.1086/723565 – ident: S275509582300013X_r59 doi: 10.1073/pnas.042492999 – ident: S275509582300013X_r52 doi: 10.1130/B36487.1 – ident: S275509582300013X_r23 doi: 10.1130/B30915.1 – ident: S275509582300013X_r73 doi: 10.2113/4 – volume: 361 start-page: 329 year: 2002 ident: S275509582300013X_r48 article-title: The megaflora of the Hell Creek and lower Fort Union formations in the western Dakotas: Vegetational response to climate change, the Cretaceous-Tertiary boundary event, and rapid marine transgression publication-title: Geological Society of America Special Papers – ident: S275509582300013X_r55 doi: 10.1093/aob/mcx173 – ident: S275509582300013X_r36 doi: 10.1007/s12229-012-9100-9 – ident: S275509582300013X_r69 doi: 10.1086/658920 – ident: S275509582300013X_r20 doi: 10.1111/ter.12086 – ident: S275509582300013X_r68 doi: 10.1016/j.tree.2007.09.003 – volume: 24 start-page: a02 year: 2021 ident: S275509582300013X_r46 article-title: Patagonia’s diverse but homogeneous early Paleocene forests: Angiosperm leaves from the Danian Salamanca and Peñas Coloradas formations, San Jorge Basin, Chubut, Argentina publication-title: Palaeontologia Electronica – ident: S275509582300013X_r106 doi: 10.1016/0031-0182(94)00109-L – ident: S275509582300013X_r57 doi: 10.1073/pnas.2201926119 – ident: S275509582300013X_r65 doi: 10.14446/AMNP.2014.153 – ident: S275509582300013X_r44 doi: 10.1126/science.aay5055 – ident: S275509582300013X_r76 doi: 10.1002/fee.2420 – ident: S275509582300013X_r9 doi: 10.1371/journal.pone.0052455 – ident: S275509582300013X_r19 doi: 10.1126/science.abf1969 – ident: S275509582300013X_r10 doi: 10.1111/nph.17822 – ident: S275509582300013X_r49 doi: 10.1126/science.1072102 – ident: S275509582300013X_r24 doi: 10.3732/ajb.0900093 – ident: S275509582300013X_r28 doi: 10.1038/s41559-016-0012 – ident: S275509582300013X_r100 doi: 10.1146/annurev-earth-050212-124217 – ident: S275509582300013X_r34 doi: 10.1002/ajb2.1127 – volume-title: The Geologic Time Scale 2012 year: 2012 ident: S275509582300013X_r38 – volume: 1 start-page: 1 year: 2023 ident: S275509582300013X_r66 article-title: Forty years later: The status of the “Big Five” mass extinctions publication-title: Cambridge Prisms: Extinction – ident: S275509582300013X_r110 doi: 10.1038/324148a0 – ident: S275509582300013X_r4 doi: 10.1111/jse.12842 – ident: S275509582300013X_r63 doi: 10.1073/pnas.2004596117 – ident: S275509582300013X_r32 doi: 10.2113/gsrocky.38.1.173 – ident: S275509582300013X_r91 doi: 10.1016/j.gloplacha.2014.07.014 – ident: S275509582300013X_r29 doi: 10.1371/journal.pone.0103542 – ident: S275509582300013X_r41 doi: 10.1071/SB19001 – ident: S275509582300013X_r86 doi: 10.1073/pnas.1423147112 – ident: S275509582300013X_r16 doi: 10.1002/2016GL072241 – ident: S275509582300013X_r84 doi: 10.1126/science.1177265 – ident: S275509582300013X_r54 doi: 10.1371/journal.pone.0176164 – ident: S275509582300013X_r96 doi: 10.1111/pala.12297 – ident: S275509582300013X_r56 doi: 10.1002/ajb2.1092 – ident: S275509582300013X_r35 doi: 10.1017/pab.2019.24 – ident: S275509582300013X_r25 doi: 10.1371/journal.pone.0104749 – volume: 361 start-page: 473 year: 2002 ident: S275509582300013X_r43 article-title: Palynology of the Cretaceous-Tertiary boundary in Central Montana: Evidence for extraterrestrial impact as a cause of the terminal Cretaceous extinctions publication-title: Geological Society of America Special Papers – ident: S275509582300013X_r94 doi: 10.1126/science.1064706 – ident: S275509582300013X_r2 doi: 10.1080/03115518.2018.1517222 – ident: S275509582300013X_r18 doi: 10.3732/ajb.1000539 – ident: S275509582300013X_r17 doi: 10.3389/fpls.2022.894690 – ident: S275509582300013X_r33 doi: 10.1098/rsbl.2019.0114 – volume: 375 start-page: 1 year: 1962 ident: S275509582300013X_r14 article-title: Paleocene flora of the Rocky Mountains and Great Plains publication-title: U. S. Geological Survey Professional Paper – ident: S275509582300013X_r92 doi: 10.1016/j.gr.2014.05.009 – ident: S275509582300013X_r70 doi: 10.3732/ajb.1500159 – ident: S275509582300013X_r47 doi: 10.1146/annurev-earth-042711-105403 – ident: S275509582300013X_r22 doi: 10.1016/j.epsl.2016.07.041 – ident: S275509582300013X_r71 doi: 10.1038/s43017-022-00283-y – ident: S275509582300013X_r60 doi: 10.1126/science.11536548 – ident: S275509582300013X_r74 doi: 10.1017/CBO9780511535536 – ident: S275509582300013X_r50 doi: 10.1038/340708a0 – ident: S275509582300013X_r37 doi: 10.3732/ajb.0800378 – ident: S275509582300013X_r39 doi: 10.1130/G46152.1 – ident: S275509582300013X_r111 doi: 10.1126/science.aal4760 – year: 2023 ident: S275509582300013X_r88 article-title: No evidence for angiosperm mass extinction at the Cretaceous–Paleogene (K–Pg) boundary publication-title: bioRxiv – ident: S275509582300013X_r67 doi: 10.3732/ajb.1400427 – volume: 150 start-page: 1 year: 1977 ident: S275509582300013X_r42 article-title: Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North Dakota publication-title: Geological Society of America Memoir – ident: S275509582300013X_r103 doi: 10.1666/0094-8373(2004)030<0347:LPEATE>2.0.CO;2 – ident: S275509582300013X_r102 doi: 10.1111/nph.13831 – ident: S275509582300013X_r99 doi: 10.1017/S1089332600001741 – ident: S275509582300013X_r1 doi: 10.1126/science.208.4448.1095 – ident: S275509582300013X_r82 doi: 10.1111/nph.15104 – ident: S275509582300013X_r8 doi: 10.1038/nature09678 – ident: S275509582300013X_r61 doi: 10.1016/j.pbi.2016.01.006 – ident: S275509582300013X_r79 doi: 10.1126/science.215.4539.1501 – ident: S275509582300013X_r105 doi: 10.1017/CBO9780511607370.004 – ident: S275509582300013X_r87 doi: 10.1017/pab.2020.45 |
SSID | ssj0002891344 |
Score | 2.300093 |
SecondaryResourceType | review_article |
Snippet | The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species... The Cretaceous-Paleogene (K-Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth's History. The rapid species... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e14 |
SubjectTerms | Angiosperms anthropogenic extinctions extinction legacies land plants Mass Extinction Review Species Extinction |
Title | The end-Cretaceous plant extinction: Heterogeneity, ecosystem transformation, and insights for the future |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40078678 https://www.proquest.com/docview/3176689247 https://pubmed.ncbi.nlm.nih.gov/PMC11895728 https://doaj.org/article/577b48df1e2d4a3cbcaf5cc063923d7f |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovuqLCJ7EyrZJmtSbLi6LoCcFbyFPXJGs6Pr_nWnqsiuCF69taNL5JpmZZPINIae-9a2NXJZVVKzk0uL5rjClUeiNG9u2Fvc77u6b8SO_fRJPC6W-MCcs0wNnwUHALi1XPlah9twwZ52Jwjm0rDXzMuLqCzZvIZh6ycdnFeO8v5CHHNGYGY-lwi8qtmSCOqb-39zLn1mSC2ZntEHWe3-RXuVxbpKVkLbIBMClIflyiNmCLkD0Tt9eQUYU-p-k7qrCJR1jpssUFCSAp31OIc7MtM10tuCsTtM5NcnTSfrAMP2DwnMKTiHNZCPb5HF08zAcl33NhNKxRrCy5t57qcLAKDPgRgnPB6y2IHrWtMEK24baOu_rRgbXwFIYlJCAVpRR8Mo0bIespmkKe4RyySSsfjzyAF9qBjCzI_PCGtnGKjamIGffYtSuJxTHuhavOmeOSQ3_rFHmumIFOZ03fss8Gr83u0Y85k2Q_Lp7ACqhe5XQf6lEQU6-0dQwWfAExCSEQjOkw1QQcsqC7GZ0511hgXgFprsgagn3pbEsv0mT546QG4K0Vsha7f_H6A_IGgojb_McktXZ-2c4AsdnZo87HT_udqS-ACo1B-c |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+end-Cretaceous+plant+extinction%3A+Heterogeneity%2C+ecosystem+transformation%2C+and+insights+for+the+future&rft.jtitle=Cambridge+Prisms%3A+Extinction&rft.au=Peter+Wilf&rft.au=M%C3%B3nica+R.+Carvalho&rft.au=Elena+Stiles&rft.date=2023&rft.pub=Cambridge+University+Press&rft.eissn=2755-0958&rft.volume=1&rft_id=info:doi/10.1017%2Fext.2023.13&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_577b48df1e2d4a3cbcaf5cc063923d7f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2755-0958&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2755-0958&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2755-0958&client=summon |