Physalin B attenuates liver fibrosis via suppressing LAP2α–HDAC1‐mediated deacetylation of the transcription factor GLI1 and hepatic stellate cell activation
Background and Purpose Liver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription factor glioma‐associated oncogene homologue 1 (GLI1) is a potentially important therapeutic target in liver fibrosis. This study investigates th...
Saved in:
Published in | British journal of pharmacology Vol. 178; no. 17; pp. 3428 - 3447 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing Ltd
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and Purpose
Liver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription factor glioma‐associated oncogene homologue 1 (GLI1) is a potentially important therapeutic target in liver fibrosis. This study investigates the anti‐fibrotic activities and potential mechanisms of the phytochemical, physalin B.
Experimental Approach
Two mouse models (CCl4 challenge and bile duct ligation) were used to assess antifibrotic effects of physalin B in vivo. Mouse primary hepatic stellate cells (pHSCs) and human HSC line LX‐2 also served as in vitro liver fibrosis models. Liver fibrogenic genes, GLI1 and GLI1 downstream genes were examined using Western blot and quantitative real‐time PCR (qRT‐PCR). GLI1 acetylation and LAP2α–HDAC1 interaction were analysed by co‐immunoprecipitation.
Key Results
In vivo, physalin B administration attenuated hepatic histopathological injury and collagen accumulation and decreased expression of fibrogenic genes. Physalin B dose‐dependently suppressed fibrotic marker expression in LX‐2 cells and mouse pHSCs. Mechanistic studies showed that physalin B inhibited GLI activity by non‐canonical Hedgehog signalling. Physalin B blocked formation of lamina‐associated polypeptide 2α (LAP2α)/histone deacetylase 1 (HDAC1) complexes, thus inhibiting HDAC1‐mediated GLI1 deacetylation. Physalin B up‐regulated acetylation of GLI1, down‐regulated expression of GLI1 and subsequently inhibited HSC activation.
Conclusion and Implications
Physalin B exerted potent antifibrotic effects in vitro and in vivo by disrupting LAP2α/HDAC1 complexes, increasing GLI1 acetylation and inactivating GLI1. This indicates that the phytochemical physalin B may be a potential therapeutic candidate for the treatment of liver fibrosis. |
---|---|
AbstractList | Background and PurposeLiver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription factor glioma‐associated oncogene homologue 1 (GLI1) is a potentially important therapeutic target in liver fibrosis. This study investigates the anti‐fibrotic activities and potential mechanisms of the phytochemical, physalin B.Experimental ApproachTwo mouse models (CCl4 challenge and bile duct ligation) were used to assess antifibrotic effects of physalin B in vivo. Mouse primary hepatic stellate cells (pHSCs) and human HSC line LX‐2 also served as in vitro liver fibrosis models. Liver fibrogenic genes, GLI1 and GLI1 downstream genes were examined using Western blot and quantitative real‐time PCR (qRT‐PCR). GLI1 acetylation and LAP2α–HDAC1 interaction were analysed by co‐immunoprecipitation.Key ResultsIn vivo, physalin B administration attenuated hepatic histopathological injury and collagen accumulation and decreased expression of fibrogenic genes. Physalin B dose‐dependently suppressed fibrotic marker expression in LX‐2 cells and mouse pHSCs. Mechanistic studies showed that physalin B inhibited GLI activity by non‐canonical Hedgehog signalling. Physalin B blocked formation of lamina‐associated polypeptide 2α (LAP2α)/histone deacetylase 1 (HDAC1) complexes, thus inhibiting HDAC1‐mediated GLI1 deacetylation. Physalin B up‐regulated acetylation of GLI1, down‐regulated expression of GLI1 and subsequently inhibited HSC activation.Conclusion and ImplicationsPhysalin B exerted potent antifibrotic effects in vitro and in vivo by disrupting LAP2α/HDAC1 complexes, increasing GLI1 acetylation and inactivating GLI1. This indicates that the phytochemical physalin B may be a potential therapeutic candidate for the treatment of liver fibrosis. Background and Purpose Liver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription factor glioma‐associated oncogene homologue 1 (GLI1) is a potentially important therapeutic target in liver fibrosis. This study investigates the anti‐fibrotic activities and potential mechanisms of the phytochemical, physalin B. Experimental Approach Two mouse models (CCl4 challenge and bile duct ligation) were used to assess antifibrotic effects of physalin B in vivo. Mouse primary hepatic stellate cells (pHSCs) and human HSC line LX‐2 also served as in vitro liver fibrosis models. Liver fibrogenic genes, GLI1 and GLI1 downstream genes were examined using Western blot and quantitative real‐time PCR (qRT‐PCR). GLI1 acetylation and LAP2α–HDAC1 interaction were analysed by co‐immunoprecipitation. Key Results In vivo, physalin B administration attenuated hepatic histopathological injury and collagen accumulation and decreased expression of fibrogenic genes. Physalin B dose‐dependently suppressed fibrotic marker expression in LX‐2 cells and mouse pHSCs. Mechanistic studies showed that physalin B inhibited GLI activity by non‐canonical Hedgehog signalling. Physalin B blocked formation of lamina‐associated polypeptide 2α (LAP2α)/histone deacetylase 1 (HDAC1) complexes, thus inhibiting HDAC1‐mediated GLI1 deacetylation. Physalin B up‐regulated acetylation of GLI1, down‐regulated expression of GLI1 and subsequently inhibited HSC activation. Conclusion and Implications Physalin B exerted potent antifibrotic effects in vitro and in vivo by disrupting LAP2α/HDAC1 complexes, increasing GLI1 acetylation and inactivating GLI1. This indicates that the phytochemical physalin B may be a potential therapeutic candidate for the treatment of liver fibrosis. Liver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription factor glioma-associated oncogene homologue 1 (GLI1) is a potentially important therapeutic target in liver fibrosis. This study investigates the anti-fibrotic activities and potential mechanisms of the phytochemical, physalin B.BACKGROUND AND PURPOSELiver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription factor glioma-associated oncogene homologue 1 (GLI1) is a potentially important therapeutic target in liver fibrosis. This study investigates the anti-fibrotic activities and potential mechanisms of the phytochemical, physalin B.Two mouse models (CCl4 challenge and bile duct ligation) were used to assess antifibrotic effects of physalin B in vivo. Mouse primary hepatic stellate cells (pHSCs) and human HSC line LX-2 also served as in vitro liver fibrosis models. Liver fibrogenic genes, GLI1 and GLI1 downstream genes were examined using Western blot and quantitative real-time PCR (qRT-PCR). GLI1 acetylation and LAP2α-HDAC1 interaction were analysed by co-immunoprecipitation.EXPERIMENTAL APPROACHTwo mouse models (CCl4 challenge and bile duct ligation) were used to assess antifibrotic effects of physalin B in vivo. Mouse primary hepatic stellate cells (pHSCs) and human HSC line LX-2 also served as in vitro liver fibrosis models. Liver fibrogenic genes, GLI1 and GLI1 downstream genes were examined using Western blot and quantitative real-time PCR (qRT-PCR). GLI1 acetylation and LAP2α-HDAC1 interaction were analysed by co-immunoprecipitation.In vivo, physalin B administration attenuated hepatic histopathological injury and collagen accumulation and decreased expression of fibrogenic genes. Physalin B dose-dependently suppressed fibrotic marker expression in LX-2 cells and mouse pHSCs. Mechanistic studies showed that physalin B inhibited GLI activity by non-canonical Hedgehog signalling. Physalin B blocked formation of lamina-associated polypeptide 2α (LAP2α)/histone deacetylase 1 (HDAC1) complexes, thus inhibiting HDAC1-mediated GLI1 deacetylation. Physalin B up-regulated acetylation of GLI1, down-regulated expression of GLI1 and subsequently inhibited HSC activation.KEY RESULTSIn vivo, physalin B administration attenuated hepatic histopathological injury and collagen accumulation and decreased expression of fibrogenic genes. Physalin B dose-dependently suppressed fibrotic marker expression in LX-2 cells and mouse pHSCs. Mechanistic studies showed that physalin B inhibited GLI activity by non-canonical Hedgehog signalling. Physalin B blocked formation of lamina-associated polypeptide 2α (LAP2α)/histone deacetylase 1 (HDAC1) complexes, thus inhibiting HDAC1-mediated GLI1 deacetylation. Physalin B up-regulated acetylation of GLI1, down-regulated expression of GLI1 and subsequently inhibited HSC activation.Physalin B exerted potent antifibrotic effects in vitro and in vivo by disrupting LAP2α/HDAC1 complexes, increasing GLI1 acetylation and inactivating GLI1. This indicates that the phytochemical physalin B may be a potential therapeutic candidate for the treatment of liver fibrosis.CONCLUSION AND IMPLICATIONSPhysalin B exerted potent antifibrotic effects in vitro and in vivo by disrupting LAP2α/HDAC1 complexes, increasing GLI1 acetylation and inactivating GLI1. This indicates that the phytochemical physalin B may be a potential therapeutic candidate for the treatment of liver fibrosis. |
Author | Zhang, Meihui Luo, Jianguang Ye, Shengtao Kong, Lingyi Li, Jie Zhang, Yanqiu Leng, Yingrong Zhu, Xiaoyun Yang, Ting Zhang, Hao Yu, Dongke Chen, Xinlin |
Author_xml | – sequence: 1 givenname: Xiaoyun surname: Zhu fullname: Zhu, Xiaoyun organization: China Pharmaceutical University – sequence: 2 givenname: Shengtao surname: Ye fullname: Ye, Shengtao organization: China Pharmaceutical University – sequence: 3 givenname: Dongke surname: Yu fullname: Yu, Dongke organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Yanqiu surname: Zhang fullname: Zhang, Yanqiu organization: China Pharmaceutical University – sequence: 5 givenname: Jie surname: Li fullname: Li, Jie organization: China Pharmaceutical University – sequence: 6 givenname: Meihui surname: Zhang fullname: Zhang, Meihui organization: China Pharmaceutical University – sequence: 7 givenname: Yingrong surname: Leng fullname: Leng, Yingrong organization: China Pharmaceutical University – sequence: 8 givenname: Ting surname: Yang fullname: Yang, Ting organization: China Pharmaceutical University – sequence: 9 givenname: Jianguang surname: Luo fullname: Luo, Jianguang organization: China Pharmaceutical University – sequence: 10 givenname: Xinlin surname: Chen fullname: Chen, Xinlin organization: China Pharmaceutical University – sequence: 11 givenname: Hao orcidid: 0000-0001-9366-7151 surname: Zhang fullname: Zhang, Hao email: zhanghao@cpu.edu.cn organization: China Pharmaceutical University – sequence: 12 givenname: Lingyi surname: Kong fullname: Kong, Lingyi email: cpu_lykong@126.com organization: China Pharmaceutical University |
BookMark | eNp1kcFOGzEQhq2KSg2UQ9_AUi9wWLCza-_6GNJCkCI1h3JeTbzjxmjj3dreVLnxCJV4A96AF-EheBJMwgm1vozk-f5fM_MfkgPXOSTkC2dnPL3zZb8646JQ7AMZ8aKUmcgrfkBGjLEy47yqPpHDEG4ZS81SjMjDYrUN0FpHLyjEiG6AiIG2doOeGrv0XbCBbizQMPS9xxCs-0Xnk8X46fH57n72bTLlz3d_19jYJGxog6AxbluItnO0MzSukEYPLmhv-92nAR07T6_m15yCa-gK-0RrGiK2SYdUp0oTZDc7l8_ko4E24PFbPSI3l99_TmfZ_MfV9XQyz3QuBcsqhah5YbgEmUtTFONlmWsl0DSSKxCGcdB6mQNDIwqpUKJBAUJJHAMzKj8iJ3vf3ne_BwyxXtvwOgs47IZQjwUvJCvzokro13fobTd4l6ZLlFCs4kyJRJ3vKZ2uGDyaWtu4WykdxLY1Z_VrZnXKrN5llhSn7xS9t2vw23-yb-5_bIvb_4P1xWK2V7wAVwatVQ |
CitedBy_id | crossref_primary_10_1016_j_phymed_2023_154721 crossref_primary_10_1016_j_phymed_2022_154466 crossref_primary_10_3389_fmolb_2021_766855 crossref_primary_10_1016_j_jep_2024_117830 crossref_primary_10_1177_1934578X241275820 crossref_primary_10_1016_j_ijpharm_2024_124607 crossref_primary_10_1002_EXP_70000 crossref_primary_10_1021_acs_molpharmaceut_4c00173 crossref_primary_10_1016_j_apsb_2023_10_023 crossref_primary_10_1186_s13020_025_01090_5 crossref_primary_10_3892_br_2024_1735 crossref_primary_10_1152_ajpendo_00165_2023 crossref_primary_10_1016_j_bcp_2024_116205 crossref_primary_10_1089_rej_2024_0053 crossref_primary_10_1111_bph_17300 crossref_primary_10_2174_0109298673288458240203064112 crossref_primary_10_3390_ijms24119671 crossref_primary_10_1111_bph_15588 crossref_primary_10_3389_fphar_2025_1512184 crossref_primary_10_1016_S1875_5364_24_60690_4 crossref_primary_10_2174_0115680266280850231221074340 crossref_primary_10_3390_biom14121485 |
Cites_doi | 10.1111/liv.12034 10.1111/bph.14873 10.1038/nprot.2015.017 10.1002/hep.29275 10.1016/j.stem.2014.11.004 10.1155/2018/7575201 10.1016/j.stem.2017.05.003 10.1016/j.fct.2011.12.017 10.4161/nucl.1.5.12394 10.1111/bph.14153 10.1158/0008-5472.CAN-07-0491 10.1016/j.jhep.2014.07.015 10.1111/bph.14752 10.1016/j.jhep.2015.10.007 10.1111/bph.15178 10.1073/pnas.1522163112 10.1146/annurev-pathol-011110-130246 10.1186/s12885-017-3477-0 10.1074/jbc.M806075200 10.1016/S0168-8278(20)31497-5 10.1038/cdd.2015.175 10.2147/CMAR.S167330 10.1002/hep.28381 10.1128/MCB.01220-06 10.1016/j.jhep.2017.10.017 10.1111/bph.14112 10.1101/gad.263939.115 10.1038/ncb2013 10.1002/bmc.3678 10.1111/bph.15289 10.1038/cdd.2013.120 10.1053/j.gastro.2008.03.003 10.1371/journal.pone.0065718 10.1211/jpp.58.2.0011 10.1038/aps.2014.157 10.1042/BJ20091445 10.1016/j.intimp.2005.09.007 10.1158/1541-7786.MCR-13-0170 10.1016/j.cell.2018.10.054 10.3892/ijo_00000328 10.1016/0168-8278(95)80226-6 10.1111/bph.14748 10.1038/ncomms13498 10.1371/journal.pbio.3000410 10.1038/srep44079 10.1111/bph.12590 10.1038/nn.2471 10.1016/j.bcp.2008.05.031 10.1111/bph.14768 10.1111/bph.15010 10.1074/jbc.M113.545194 10.1136/gutjnl-2014-306842 |
ContentType | Journal Article |
Copyright | 2021 The British Pharmacological Society 2021 The British Pharmacological Society. |
Copyright_xml | – notice: 2021 The British Pharmacological Society – notice: 2021 The British Pharmacological Society. |
DBID | AAYXX CITATION 7QP 7TK K9. NAPCQ 7X8 |
DOI | 10.1111/bph.15490 |
DatabaseName | CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1476-5381 |
EndPage | 3447 |
ExternalDocumentID | 10_1111_bph_15490 BPH15490 |
Genre | article |
GrantInformation_xml | – fundername: The “Double First‐Class” University Project funderid: CPU2018GF03 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20181332 – fundername: The Drug Innovation Major Project funderid: 2018ZX09711‐001‐007; 2018ZX09735002‐003 – fundername: The Applied Basic Research Fund of Science & Technology Department of Sichuan Province funderid: 2018JY0650 – fundername: National Natural Science Foundation of China funderid: 81872889; 82074068 |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ PROAC PSQYO Q.N Q2X QB0 RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- AAFWJ AAYXX AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT 7QP 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3650-89eec14f16a636f442b73c95efd619a5f01accb3a0ef5469e6efe5a596e2a0f93 |
ISSN | 0007-1188 1476-5381 |
IngestDate | Thu Jul 10 22:24:24 EDT 2025 Fri Jul 25 19:18:23 EDT 2025 Tue Jul 01 03:00:43 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Wed Jan 22 16:28:32 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3650-89eec14f16a636f442b73c95efd619a5f01accb3a0ef5469e6efe5a596e2a0f93 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Numbers: 81872889, 82074068; Natural Science Foundation of Jiangsu Province, Grant/Award Number: BK20181332; The Applied Basic Research Fund of Science & Technology Department of Sichuan Province, Grant/Award Number: 2018JY0650; The Drug Innovation Major Project, Grant/Award Numbers: 2018ZX09711‐001‐007, 2018ZX09735002‐003; The “Double First‐Class” University Project, Grant/Award Number: CPU2018GF03 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9366-7151 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.15490 |
PQID | 2559081095 |
PQPubID | 42104 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2514607348 proquest_journals_2559081095 crossref_citationtrail_10_1111_bph_15490 crossref_primary_10_1111_bph_15490 wiley_primary_10_1111_bph_15490_BPH15490 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | British journal of pharmacology |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 12 2017; 7 2017; 20 2015; 36 2015; 16 2010; 13 2010; 427 2015; 50 2017; 66 2006; 58 2013; 20 2015; 10 2016; 30 2006; 6 2008; 76 2014; 171 2013; 8 2011; 6 2014; 61 2018; 68 2020; 18 2018; 175 2012; 50 2009; 35 2016; 7 2018; 2018 2010; 1 2015; 29 2013; 11 2013; 33 2020; 73 2017; 17 2015; 64 2015; 112 1995; 22 2006; 26 2016; 64 2016; 63 2020; 177 2020; 178 2009; 284 2008; 134 2018; 10 2007; 67 2016; 23 2019; 176 2014; 289 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_35_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_39_1 Zhao S. S. (e_1_2_12_52_1) 2015; 50 e_1_2_12_42_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_32_1 e_1_2_12_34_1 e_1_2_12_36_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_9_1 |
References_xml | – volume: 68 start-page: 550 issue: 3 year: 2018 end-page: 562 article-title: Hedgehog signalling in liver pathophysiology publication-title: Journal of Hepatology – volume: 176 start-page: S297 year: 2019 end-page: S396 article-title: The Concise Guide to PHARMACOLOGY 2019/20: Enzymes publication-title: British Journal of Pharmacology – volume: 64 start-page: 618 issue: 3 year: 2016 end-page: 627 article-title: Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model publication-title: Journal of Hepatology – volume: 176 start-page: 3775 issue: 19 year: 2019 end-page: 3790 article-title: Inhibitors of class I histone deacetylases attenuate thioacetamide‐induced liver fibrosis in mice by suppressing hepatic type 2 inflammation publication-title: British Journal of Pharmacology – volume: 13 start-page: 180 issue: 2 year: 2010 end-page: U163 article-title: HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage publication-title: Nature Neuroscience – volume: 176 start-page: 198 issue: 1–2 year: 2019 end-page: 212 article-title: LAP2 proteins chaperone GLI1 movement between the lamina and chromatin to regulate transcription publication-title: Cell – volume: 67 start-page: 6981 issue: 14 year: 2007 end-page: 6986 article-title: Induction of sonic hedgehog mediators by transforming growth factor‐β: Smad3‐dependent activation of Gli2 and Gli1 expression in vitro and in vivo publication-title: Cancer Research – volume: 35 start-page: 187 issue: 1 year: 2009 end-page: 192 article-title: Integrative genomic analyses on GLI1: Positive regulation of GLI1 by Hedgehog‐GLI, TGFβ‐Smads, and RTK‐PI3K‐AKT signals, and negative regulation of GLI1 by Notch‐CSL‐HES/HEY, and GPCR‐Gs‐PKA signals publication-title: International Journal of Oncology – volume: 178 start-page: 2246 issue: 11 year: 2020 end-page: 2265 article-title: Reregulation of hepatic stellate cell contraction and cirrhotic portal hypertension by Wnt/β‐catenin signaling via interaction with Gli1 publication-title: British Journal of Pharmacology – volume: 29 start-page: 2022 issue: 19 year: 2015 end-page: 2036 article-title: Proliferation of progeria cells is enhanced by lamina‐associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins publication-title: Genes & Development – volume: 50 start-page: 619 issue: 3–4 year: 2012 end-page: 624 article-title: Physalin B from triggers the NOXA‐related apoptosis pathway of human melanoma A375 cells publication-title: Food and Chemical Toxicology – volume: 63 start-page: 1071 issue: 4 year: 2016 end-page: 1073 article-title: HEDGEHOG signal in hepatocytes mediates macrophage recruitment: A new mechanism and potential therapeutic target for fatty liver disease publication-title: Hepatology – volume: 134 start-page: 1655 issue: 6 year: 2008 end-page: 1669 article-title: Mechanisms of hepatic fibrogenesis publication-title: Gastroenterology – volume: 20 start-page: 1688 issue: 12 year: 2013 end-page: 1697 article-title: PCAF ubiquitin ligase activity inhibits Hedgehog/Gli1 signaling in p53‐dependent response to genotoxic stress publication-title: Cell Death and Differentiation – volume: 33 start-page: 504 issue: 4 year: 2013 end-page: 515 article-title: A histone deacetylase inhibitor, largazole, decreases liver fibrosis and angiogenesis by inhibiting transforming growth factor‐β and vascular endothelial growth factor signalling publication-title: Liver International – volume: 427 start-page: 413 issue: 3 year: 2010 end-page: 422 article-title: SHP (small heterodimer partner) suppresses the transcriptional activity and nuclear localization of Hedgehog signalling protein Gli1 publication-title: The Biochemical Journal – volume: 76 start-page: 453 issue: 4 year: 2008 end-page: 462 article-title: Physalin B, a novel inhibitor of the ubiquitin‐proteasome pathway, triggers NOXA‐associated apoptosis publication-title: Biochemical Pharmacology – volume: 10 start-page: 2905 year: 2018 end-page: 2914 article-title: Trichostatin A promotes GLI1 degradation and P21 expression in multiple myeloma cells publication-title: Cancer Management and Research – volume: 64 start-page: 830 issue: 5 year: 2015 end-page: 841 article-title: Pathobiology of liver fibrosis: A translational success story publication-title: Gut – volume: 8 issue: 6 year: 2013 article-title: Gli2 acetylation at lysine 757 regulates hedgehog‐dependent transcriptional output by preventing its promoter occupancy publication-title: PLoS One – volume: 66 start-page: 1242 issue: 4 year: 2017 end-page: 1257 article-title: Targeting CCl ‐induced liver fibrosis by RNA interference‐mediated inhibition of cyclin E1 in mice publication-title: Hepatology – volume: 22 start-page: 696 issue: 6 year: 1995 end-page: 699 article-title: Histological grading and staging of chronic hepatitis publication-title: Journal of Hepatology – volume: 26 start-page: 7913 issue: 21 year: 2006 end-page: 7928 article-title: Negative and positive regulation of gene expression by mouse histone deacetylase 1 publication-title: Molecular and Cellular Biology – volume: 73 start-page: S511 year: 2020 end-page: S511 article-title: GLI1, but not smoothened‐dependent, signaling in hepatic progenitor cells promotes a ductular reaction, which aggravates liver fibrosis publication-title: Journal of Hepatology – volume: 10 start-page: 305 issue: 2 year: 2015 end-page: 315 article-title: High‐yield and high‐purity isolation of hepatic stellate cells from normal and fibrotic mouse livers publication-title: Nature Protocols – volume: 23 start-page: 1209 issue: 7 year: 2016 end-page: 1218 article-title: A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity publication-title: Cell Death and Differentiation – volume: 6 start-page: 425 issue: 6 year: 2011 end-page: 456 article-title: Pathogenesis of liver fibrosis publication-title: Annual Review of Pathology: Mechanisms of Disease – volume: 16 start-page: 51 issue: 1 year: 2015 end-page: 66 article-title: Perivascular Gli1 progenitors are key contributors to injury‐induced organ fibrosis publication-title: Cell Stem Cell – volume: 171 start-page: 4820 issue: 21 year: 2014 end-page: 4830 article-title: A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells publication-title: British Journal of Pharmacology – volume: 7 year: 2017 article-title: Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma publication-title: Scientific Reports – volume: 112 start-page: 15713 issue: 51 year: 2015 end-page: 15718 article-title: BRD4 is a novel therapeutic target for liver fibrosis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 175 start-page: 407 issue: 3 year: 2018 end-page: 411 article-title: Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology publication-title: British Journal of Pharmacology – volume: 50 start-page: 169 issue: 2 year: 2015 end-page: 173 article-title: Establishment and application of a high‐throughput drug screening model based on COL1A1 promoter for anti‐liver fibrosis publication-title: Yao Xue Xue Bao – volume: 12 start-page: 132 issue: 2 year: 2010 end-page: 142 article-title: Histone deacetylase and Cullin3–REN (KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation publication-title: Nature Cell Biology – volume: 177 start-page: 2830 issue: 12 year: 2020 end-page: 2847 article-title: The peripheral CB receptor antagonist JD5037 attenuates liver fibrosis via a CB receptor/β‐arrestin1/Akt pathway publication-title: British Journal of Pharmacology – volume: 177 start-page: 372 issue: 2 year: 2020 end-page: 387 article-title: Costunolide represses hepatic fibrosis through WW domain‐containing protein 2‐mediated Notch3 degradation publication-title: British Journal of Pharmacology – volume: 58 start-page: 235 issue: 2 year: 2006 end-page: 241 article-title: In‐vitro and in‐vivo antitumour activity of physalins B and D from publication-title: The Journal of Pharmacy and Pharmacology – volume: 7 start-page: 13498 year: 2016 end-page: 13511 article-title: CUG‐binding protein 1 regulates HSC activation and liver fibrogenesis publication-title: Nature Communications – volume: 61 start-page: 1260 issue: 6 year: 2014 end-page: 1266 article-title: Gli1 activation and protection against hepatic encephalopathy is suppressed by circulating transforming growth factor β1 in mice publication-title: Journal of Hepatology – volume: 1 start-page: 397 issue: 5 year: 2010 end-page: 401 article-title: Multiple novel functions of lamina associated polypeptide 2α in striated muscle publication-title: Nucleus – volume: 20 start-page: 735 issue: 6 year: 2017 end-page: 736 article-title: Gli‐fully halting the progression of fibrosis publication-title: Cell Stem Cell – volume: 18 issue: 7 year: 2020 article-title: The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research publication-title: PLoS Biology – volume: 17 start-page: 488 issue: 1 year: 2017 end-page: 499 article-title: ‐mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self‐renewal of SHH medulloblastoma cancer stem cells publication-title: BMC Cancer – volume: 6 start-page: 408 issue: 3 year: 2006 end-page: 414 article-title: Physalins B, F and G, seco‐steroids purified from L., inhibit lymphocyte function and allogeneic transplant rejection publication-title: International Immunopharmacology – volume: 175 start-page: 987 issue: 7 year: 2018 end-page: 993 article-title: Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers publication-title: British Journal of Pharmacology – volume: 36 start-page: 517 issue: 4 year: 2015 end-page: 527 article-title: Physalin B not only inhibits the ubiquitin‐proteasome pathway but also induces incomplete autophagic response in human colon cancer cells in vitro publication-title: Acta Pharmacologica Sinica – volume: 289 start-page: 15495 issue: 22 year: 2014 end-page: 15506 article-title: The transcription factor GLI1 interacts with SMAD proteins to modulate transforming growth factor β‐induced gene expression in a p300/CREB‐binding protein‐associated factor (PCAF)‐dependent manner publication-title: The Journal of Biological Chemistry – volume: 30 start-page: 1278 issue: 8 year: 2016 end-page: 1284 article-title: In vivo pharmacokinetics of and tissue distribution study of physalin B after intravenous administration in rats by liquid chromatography with tandem mass spectrometry publication-title: Biomedical Chromatography – volume: 11 start-page: 1215 issue: 10 year: 2013 end-page: 1222 article-title: Menin directly represses Gli1 expression independent of canonical Hedgehog signaling publication-title: Molecular Cancer Research – volume: 284 start-page: 1343 issue: 3 year: 2009 end-page: 1352 article-title: Autoacetylation regulates P/CAF nuclear localization publication-title: The Journal of Biological Chemistry – volume: 177 start-page: 3611 issue: 16 year: 2020 end-page: 3616 article-title: ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020 publication-title: British Journal of Pharmacology – volume: 176 start-page: S21 year: 2019 end-page: S141 article-title: The Concise Guide to PHARMACOLOGY 2019/20: G protein‐coupled receptors publication-title: British Journal of Pharmacology – volume: 2018 start-page: 1 year: 2018 end-page: 6 article-title: Physalin B suppresses inflammatory response to lipopolysaccharide in RAW264.7 cells by inhibiting NF‐κB signaling publication-title: Journal of Chemistry – volume: 50 start-page: 169 issue: 2 year: 2015 ident: e_1_2_12_52_1 article-title: Establishment and application of a high‐throughput drug screening model based on COL1A1 promoter for anti‐liver fibrosis publication-title: Yao Xue Xue Bao – ident: e_1_2_12_31_1 doi: 10.1111/liv.12034 – ident: e_1_2_12_17_1 doi: 10.1111/bph.14873 – ident: e_1_2_12_38_1 doi: 10.1038/nprot.2015.017 – ident: e_1_2_12_5_1 doi: 10.1002/hep.29275 – ident: e_1_2_12_28_1 doi: 10.1016/j.stem.2014.11.004 – ident: e_1_2_12_50_1 doi: 10.1155/2018/7575201 – ident: e_1_2_12_20_1 doi: 10.1016/j.stem.2017.05.003 – ident: e_1_2_12_23_1 doi: 10.1016/j.fct.2011.12.017 – ident: e_1_2_12_19_1 doi: 10.4161/nucl.1.5.12394 – ident: e_1_2_12_12_1 doi: 10.1111/bph.14153 – ident: e_1_2_12_13_1 doi: 10.1158/0008-5472.CAN-07-0491 – ident: e_1_2_12_37_1 doi: 10.1016/j.jhep.2014.07.015 – ident: e_1_2_12_3_1 doi: 10.1111/bph.14752 – ident: e_1_2_12_9_1 doi: 10.1016/j.jhep.2015.10.007 – ident: e_1_2_12_30_1 doi: 10.1111/bph.15178 – ident: e_1_2_12_14_1 doi: 10.1073/pnas.1522163112 – ident: e_1_2_12_22_1 doi: 10.1146/annurev-pathol-011110-130246 – ident: e_1_2_12_39_1 doi: 10.1186/s12885-017-3477-0 – ident: e_1_2_12_6_1 doi: 10.1074/jbc.M806075200 – ident: e_1_2_12_8_1 doi: 10.1016/S0168-8278(20)31497-5 – ident: e_1_2_12_15_1 doi: 10.1038/cdd.2015.175 – ident: e_1_2_12_18_1 doi: 10.2147/CMAR.S167330 – ident: e_1_2_12_44_1 doi: 10.1002/hep.28381 – ident: e_1_2_12_54_1 doi: 10.1128/MCB.01220-06 – ident: e_1_2_12_34_1 doi: 10.1016/j.jhep.2017.10.017 – ident: e_1_2_12_4_1 doi: 10.1111/bph.14112 – ident: e_1_2_12_48_1 doi: 10.1101/gad.263939.115 – ident: e_1_2_12_7_1 doi: 10.1038/ncb2013 – ident: e_1_2_12_53_1 doi: 10.1002/bmc.3678 – ident: e_1_2_12_51_1 doi: 10.1111/bph.15289 – ident: e_1_2_12_36_1 doi: 10.1038/cdd.2013.120 – ident: e_1_2_12_16_1 doi: 10.1053/j.gastro.2008.03.003 – ident: e_1_2_12_10_1 doi: 10.1371/journal.pone.0065718 – ident: e_1_2_12_35_1 doi: 10.1211/jpp.58.2.0011 – ident: e_1_2_12_33_1 doi: 10.1038/aps.2014.157 – ident: e_1_2_12_27_1 doi: 10.1042/BJ20091445 – ident: e_1_2_12_45_1 doi: 10.1016/j.intimp.2005.09.007 – ident: e_1_2_12_21_1 doi: 10.1158/1541-7786.MCR-13-0170 – ident: e_1_2_12_40_1 doi: 10.1016/j.cell.2018.10.054 – ident: e_1_2_12_25_1 doi: 10.3892/ijo_00000328 – ident: e_1_2_12_24_1 doi: 10.1016/0168-8278(95)80226-6 – ident: e_1_2_12_2_1 doi: 10.1111/bph.14748 – ident: e_1_2_12_49_1 doi: 10.1038/ncomms13498 – ident: e_1_2_12_43_1 doi: 10.1371/journal.pbio.3000410 – ident: e_1_2_12_11_1 doi: 10.1038/srep44079 – ident: e_1_2_12_42_1 doi: 10.1111/bph.12590 – ident: e_1_2_12_26_1 doi: 10.1038/nn.2471 – ident: e_1_2_12_47_1 doi: 10.1016/j.bcp.2008.05.031 – ident: e_1_2_12_32_1 doi: 10.1111/bph.14768 – ident: e_1_2_12_46_1 doi: 10.1111/bph.15010 – ident: e_1_2_12_41_1 doi: 10.1074/jbc.M113.545194 – ident: e_1_2_12_29_1 doi: 10.1136/gutjnl-2014-306842 |
SSID | ssj0014775 |
Score | 2.480281 |
Snippet | Background and Purpose
Liver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription... Background and PurposeLiver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription... Liver fibrosis is one of the leading causes of morbidity and mortality worldwide but lacks any acceptable therapy. The transcription factor glioma-associated... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3428 |
SubjectTerms | Acetylation Animal models Bile ducts Carbon tetrachloride Cell activation Collagen Deacetylation Fibrosis GLI1 Glioma HDAC1 Hedgehog protein Histone deacetylase Immunoprecipitation LAP2α Liver liver fibrosis Morbidity physalin B Phytochemicals Stellate cells Therapeutic targets Transcription factors |
Title | Physalin B attenuates liver fibrosis via suppressing LAP2α–HDAC1‐mediated deacetylation of the transcription factor GLI1 and hepatic stellate cell activation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.15490 https://www.proquest.com/docview/2559081095 https://www.proquest.com/docview/2514607348 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKdsMN4ld0DGQQm5C6oCRO4uay6VoKqkYvWqnjJnISe62okkKTSeVVkHgHXoRn4jg_Tjp10uAmilzXjfp9OT7HPuczQm8piWxOCNcEt2zNCiFmDQJCNGLagW4FLnNZnm1x4Yxm1qe5PW-1fjaylrI0eB_-2FtX8j-oQhvgKqtk_wFZNSg0wD3gC1dAGK53wlimbzKZSe51pExmnEnHsbOSqRYdAXFwItVGrpess8nWRcKrLGnqTcyT_uDEM7TRea9vaHnxiHQ8IzCPPN2ulBcpndJUTmbKtBTH83Q-jD8a-bbDgq9zydeNLEaBQTpyIyAX6LiuIb-hn9QQq1jXwtlqaf_LIpO4z5cs2WaKupfFUvmCx1cpS1RrVgQB8dVXXn-_XAK_ZPG3ZdZc1jANlbdVWWKLOhpY46KJ72mrzDftNnlKG9aYWEXh-S3TRLBeyIW14rjSXSnui8_-cDYe-9PBfHoPHZoQg4ARPex5595QbVJZNNdxVk9VClfJRDE19K67U8cwzUgod2WmD9GDMgbBvYJQj1CLx4_R6aTAYnuGp3VN3uYMn-JJA6Un6FfFOuzhmnU4Zx2uWIeBdbjBOixZ9-f3DcbhHcbhRGBgHN5hHC4YhyXjMDAOl4zDFeOwZByuGfcUzYaDaX-klad8aCGB8EDrupyHhiUMhznEEZZlBpSErs1FBME9s4VusDAMCNO5sC3H5Q4X3Ga263CT6cIlz9BBnMT8OcLUpoYgNKQOzDKRGXWFIF0SGU6X64JS0UbvKjD8sJTAlyexrPwqFAbc_By3Nnqjuq4L3Zd9nY4rRP3y3dn4MkYHPxtClzZ6rT4Goy3_DhbzJJN9wEHRpbAUPFLOhNt_xPcmo_zm6A7DvUD365fpGB2k3zP-ErzmNHhVsvcv6YnKrA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physalin+B+attenuates+liver+fibrosis+via+suppressing+LAP2%CE%B1-HDAC1-mediated+deacetylation+of+the+transcription+factor+GLI1+and+hepatic+stellate+cell+activation&rft.jtitle=British+journal+of+pharmacology&rft.au=Zhu%2C+Xiaoyun&rft.au=Ye%2C+Shengtao&rft.au=Yu%2C+Dongke&rft.au=Zhang%2C+Yanqiu&rft.date=2021-09-01&rft.issn=1476-5381&rft.eissn=1476-5381&rft.volume=178&rft.issue=17&rft.spage=3428&rft_id=info:doi/10.1111%2Fbph.15490&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |