Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions

Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply genera...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 6; no. 1; p. 7
Main Author Popolizio, Marina
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2018
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math6010007

Cover

Abstract Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply general purpose methods for fractional differential equations (FDEs) to this case. In this paper, we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford; in this way, the solution can be expressed in terms of Mittag–Leffler (ML) functions evaluated at matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix approach is very accurate and fast, also in comparison with other numerical methods.
AbstractList Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply general purpose methods for fractional differential equations (FDEs) to this case. In this paper, we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford; in this way, the solution can be expressed in terms of Mittag–Leffler (ML) functions evaluated at matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix approach is very accurate and fast, also in comparison with other numerical methods.
Author Popolizio, Marina
Author_xml – sequence: 1
  givenname: Marina
  orcidid: 0000-0003-0474-2573
  surname: Popolizio
  fullname: Popolizio, Marina
BookMark eNptkctOWzEQhi0EEpey6gtYYokCvsWXJQICSEm7oKwtx5fg6JxjsH0k2PUd-oZ9kjpJKyHU1cz8882v0cwx2B_S4AH4itEFpQpd9qY-c4QRQmIPHBFCxEQ0ff9DfghOS1k3AilMJVNHoP829j5Hazr4mLqxxjTAFOBi7GqsPvdwlo3dqA24iSH47IcaW3H7OpqNXuBTicMK1mcPF6bm-AYXsVaz-v3z19yH0PkMZ-Ow9ShfwEEwXfGnf-MJeJrd_ri-n8y_3z1cX80nlnJWJyE4geVUOU4cl4ERxFVrMMQlw0IpabHBjLslX04VsdQwaZ3lFLEldYwZegIedr4umbV-ybE3-V0nE_VWSHmlTa7Rdl5PhWB-6uSSMsEYC5IrYZxkCPlAPBHN62zn9ZLT6-hL1es05naPoglCRHLMBW8U3lE2p1KyD9rGuj1QzSZ2GiO9eZL-8KQ2c_5p5t-m_6P_ANXxlYA
CitedBy_id crossref_primary_10_1007_s00366_020_01170_0
crossref_primary_10_1007_s10915_020_01150_y
crossref_primary_10_3390_axioms7020025
crossref_primary_10_3390_sym16080963
crossref_primary_10_1007_s10915_018_0699_5
crossref_primary_10_3390_math8111972
crossref_primary_10_32628_IJSRSET207383
crossref_primary_10_3390_math6020016
crossref_primary_10_1016_j_arcontrol_2020_03_003
crossref_primary_10_1186_s13662_021_03587_3
crossref_primary_10_1007_s00009_018_1193_x
crossref_primary_10_3390_sym12071195
crossref_primary_10_1007_s11071_020_05539_0
crossref_primary_10_3390_math6090145
crossref_primary_10_3390_sym13040622
crossref_primary_10_3390_fractalfract6010010
crossref_primary_10_1007_s10092_019_0329_0
crossref_primary_10_1007_s12065_020_00481_x
crossref_primary_10_1088_1361_6420_ac6b31
crossref_primary_10_3390_math7121140
crossref_primary_10_1007_s40819_022_01475_2
crossref_primary_10_3390_math8010096
crossref_primary_10_1063_1_5117285
crossref_primary_10_1137_20M1365326
crossref_primary_10_3390_sym10100503
crossref_primary_10_1063_1_5112177
Cites_doi 10.1016/j.amc.2014.12.127
10.1137/140971191
10.1142/9781848163300
10.1023/B:NUMA.0000027736.85078.be
10.1137/0517050
10.1090/S0025-5718-1983-0701626-6
10.1007/978-3-642-14574-2
10.1016/j.cam.2008.04.004
10.1080/01630563.2012.748669
10.1016/j.matcom.2013.09.012
10.1155/2011/298628
10.1016/j.cam.2008.03.025
10.1007/978-3-662-43930-2
10.1007/978-3-7091-2664-6
10.1090/S0025-5718-1985-0804935-7
10.1142/9789814355216
10.1016/0960-0779(95)00125-5
10.1007/s10444-012-9274-z
10.1142/S0218127412500733
10.1515/fca-2016-0060
10.1137/1.9780898717778
10.1016/j.cam.2010.07.008
10.1016/j.cam.2008.04.003
10.1023/A:1021973025166
10.1016/S0096-3003(03)00739-2
10.1137/080738374
10.1016/j.camwa.2016.11.028
10.1016/S0377-0427(02)00558-7
10.3390/math6020016
10.24200/sci.2017.4503
10.1016/j.jmaa.2010.08.048
10.1115/1.3167615
10.1016/0377-0427(84)90027-X
10.1016/j.jcp.2014.09.023
10.1016/j.cam.2005.03.023
ContentType Journal Article
Copyright Copyright MDPI AG 2018
Copyright_xml – notice: Copyright MDPI AG 2018
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math6010007
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_5774e5d8b347444f8697ad8400ef2e27
10_3390_math6010007
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c364t-ffd71859d62d68f420693644068417998c1a146db6b592c3a48cdc6304b3d44a3
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:32:05 EDT 2025
Fri Jul 25 12:00:21 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Jul 01 02:22:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-ffd71859d62d68f420693644068417998c1a146db6b592c3a48cdc6304b3d44a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0474-2573
OpenAccessLink https://doaj.org/article/5774e5d8b347444f8697ad8400ef2e27
PQID 2002861676
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_5774e5d8b347444f8697ad8400ef2e27
proquest_journals_2002861676
crossref_citationtrail_10_3390_math6010007
crossref_primary_10_3390_math6010007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Garrappa (ref_39) 2017; 5
Carpinteri (ref_1) 1997; Volume 378
Garrappa (ref_11) 2009; 229
Edwards (ref_43) 2002; 148
Diethelm (ref_9) 2006; 186
Garrappa (ref_19) 2012; 22
ref_14
ref_36
ref_34
Moret (ref_31) 2013; 34
ref_32
Lubich (ref_8) 1986; 17
Diethelm (ref_25) 2002; 42
Diethelm (ref_16) 2004; 154
Luchko (ref_18) 2011; 374
Diethelm (ref_35) 2004; 36
ref_37
Lubich (ref_7) 1985; 45
Garrappa (ref_13) 2015; 110
Cameron (ref_33) 1984; 11
Garrappa (ref_29) 2015; 53
Luchko (ref_15) 1999; 24
Mainardi (ref_24) 1996; 7
Garrappa (ref_28) 2013; 39
Galeone (ref_10) 2009; 228
ref_22
Moret (ref_30) 2011; 49
ref_21
Diethelm (ref_17) 2004; 6
ref_41
ref_40
Garrappa (ref_42) 2016; 19
ref_3
ref_2
Garrappa (ref_12) 2011; 235
ref_27
ref_26
Lubich (ref_6) 1983; 41
Torvik (ref_23) 1984; 51
Luchko (ref_20) 2015; 257
Garrappa (ref_38) 2015; 293
ref_5
ref_4
Ford (ref_44) 2009; 229
References_xml – volume: 257
  start-page: 40
  year: 2015
  ident: ref_20
  article-title: Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.12.127
– volume: 24
  start-page: 207
  year: 1999
  ident: ref_15
  article-title: An operational method for solving fractional differential equations with the Caputo derivatives
  publication-title: Acta Math. Vietnam.
– volume: 53
  start-page: 1350
  year: 2015
  ident: ref_29
  article-title: Numerical evaluation of two and three parameter Mittag-Leffler functions
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/140971191
– ident: ref_5
  doi: 10.1142/9781848163300
– ident: ref_32
– volume: 36
  start-page: 31
  year: 2004
  ident: ref_35
  article-title: Detailed error analysis for a fractional Adams method
  publication-title: Numer. Algorithms
  doi: 10.1023/B:NUMA.0000027736.85078.be
– ident: ref_3
– volume: 17
  start-page: 704
  year: 1986
  ident: ref_8
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– ident: ref_34
– volume: 41
  start-page: 87
  year: 1983
  ident: ref_6
  article-title: Runge-Kutta theory for Volterra and Abel integral equations of the second kind
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1983-0701626-6
– ident: ref_4
  doi: 10.1007/978-3-642-14574-2
– volume: 229
  start-page: 392
  year: 2009
  ident: ref_11
  article-title: On some explicit Adams multistep methods for fractional differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.04.004
– volume: 34
  start-page: 539
  year: 2013
  ident: ref_31
  article-title: A note on Krylov methods for fractional evolution problems
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2012.748669
– volume: 110
  start-page: 96
  year: 2015
  ident: ref_13
  article-title: Trapezoidal methods for fractional differential equations: Theoretical and computational aspects
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2013.09.012
– ident: ref_26
  doi: 10.1155/2011/298628
– volume: 228
  start-page: 548
  year: 2009
  ident: ref_10
  article-title: Explicit methods for fractional differential equations and their stability properties
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.03.025
– ident: ref_27
  doi: 10.1007/978-3-662-43930-2
– ident: ref_2
  doi: 10.1007/978-3-7091-2664-6
– ident: ref_40
– volume: 45
  start-page: 463
  year: 1985
  ident: ref_7
  article-title: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1985-0804935-7
– ident: ref_14
  doi: 10.1142/9789814355216
– volume: Volume 378
  start-page: 223
  year: 1997
  ident: ref_1
  article-title: Fractional calculus: Integral and differential equations of fractional order
  publication-title: Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996)
– volume: 7
  start-page: 1461
  year: 1996
  ident: ref_24
  article-title: Fractional relaxation-oscillation and fractional diffusion-wave phenomena
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/0960-0779(95)00125-5
– volume: 39
  start-page: 205
  year: 2013
  ident: ref_28
  article-title: Evaluation of generalized Mittag–Leffler functions on the real line
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-012-9274-z
– volume: 22
  start-page: 1250073
  year: 2012
  ident: ref_19
  article-title: Stability-preserving high-order methods for multiterm fractional differential equations
  publication-title: Int. J. Bifurc. Chaos Appl. Sci. Eng.
  doi: 10.1142/S0218127412500733
– volume: 19
  start-page: 1105
  year: 2016
  ident: ref_42
  article-title: Models of dielectric relaxation based on completely monotone functions
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2016-0060
– ident: ref_37
  doi: 10.1137/1.9780898717778
– volume: 235
  start-page: 1085
  year: 2011
  ident: ref_12
  article-title: On accurate product integration rules for linear fractional differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.07.008
– volume: 6
  start-page: 243
  year: 2004
  ident: ref_17
  article-title: Numerical solution of linear multi-term initial value problems of fractional order
  publication-title: J. Comput. Anal. Appl.
– volume: 229
  start-page: 382
  year: 2009
  ident: ref_44
  article-title: Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.04.003
– volume: 42
  start-page: 490
  year: 2002
  ident: ref_25
  article-title: Numerical Solution of the Bagley-Torvik Equation
  publication-title: BIT Numer. Math.
  doi: 10.1023/A:1021973025166
– volume: 154
  start-page: 621
  year: 2004
  ident: ref_16
  article-title: Multi-order Fractional Differential Equations and Their Numerical Solution
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(03)00739-2
– volume: 49
  start-page: 2144
  year: 2011
  ident: ref_30
  article-title: On the Convergence of Krylov Subspace Methods for Matrix Mittag–Leffler Functions
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080738374
– volume: 5
  start-page: 977
  year: 2017
  ident: ref_39
  article-title: On the time-fractional Schrödinger equation: Theoretical analysis and numerical solution by matrix Mittag-Leffler functions
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.11.028
– volume: 148
  start-page: 401
  year: 2002
  ident: ref_43
  article-title: The numerical solution of linear multi-term fractional differential equations: Systems of equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00558-7
– ident: ref_21
  doi: 10.3390/math6020016
– ident: ref_22
  doi: 10.24200/sci.2017.4503
– ident: ref_41
– volume: 374
  start-page: 538
  year: 2011
  ident: ref_18
  article-title: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.08.048
– volume: 51
  start-page: 294
  year: 1984
  ident: ref_23
  article-title: On the appearance of the fractional derivative in the behavior of real materials
  publication-title: J. Appl. Mech. Trans. ASME
  doi: 10.1115/1.3167615
– ident: ref_36
– volume: 11
  start-page: 1
  year: 1984
  ident: ref_33
  article-title: Product integration methods for second-kind Abel integral equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(84)90027-X
– volume: 293
  start-page: 115
  year: 2015
  ident: ref_38
  article-title: Solving the time-fractional Schrödinger equation by Krylov projection methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.09.023
– volume: 186
  start-page: 482
  year: 2006
  ident: ref_9
  article-title: Pitfalls in fast numerical solvers for fractional differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.03.023
SSID ssj0000913849
Score 2.1874719
Snippet Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used tool to model many important processes, particularly for multirate...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7
SubjectTerms Differential equations
fractional calculus
fractional differential equations
Mathematical models
matrix function
Mittag–Leffler function
multiterm differential equations
Numerical methods
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgXOCAWEWhIB96QoqaxXGcE2JpqBDtiUq9RYmXgqi6pKnE5zOTuKUSiGtm5MPYni3j9whp81CCgPsOhDssUFzjCG6kk7mRilzmIf02TlsMeG_IXkbhyDbclnascu0TK0etZhJ75B0cJhDc4xG_my8cZI3Cv6uWQmOX7HkQafCci-R502NBzEvB4vpZXgDVfQeywHcsQVykj90KRBVe_y93XMWY5Igc2uSQ3te7eUx29PSEHPQ3yKrLU_I5WNX_WCZ03dGiM0Prd7TgZWlS1E8VQOHJkp_AJZ7Q7qIG9V7SakqAwpq0j_j8X7T_UZbZ2HnVxkx0QRMIdZXmGRkm3bfHnmMJExwZcFY6xigINWGsuK-4MMx3eQwCiNkCicZiIb0MrK9ynoexL4OMCakkD1yWB4qxLDgnjelsqi8IzUNINRjUEzzOmdI8BqmG8sPzXZYprZvkdm29VFo0cSS1mKRQVaCp0y1TN0l7ozyvQTT-VnvAbdioIPJ19WFWjFN7kdIQ8lUdKpEHLGKMGcHjKFNQprra-NqHRVrrTUztdVymP4fn8n_xFdmHjEjUPZYWaZTFSl9D1lHmN9XR-gZAodam
  priority: 102
  providerName: ProQuest
Title Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions
URI https://www.proquest.com/docview/2002861676
https://doaj.org/article/5774e5d8b347444f8697ad8400ef2e27
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58XPQgPrE-yh48CcFNMtnsHq02FrFFRKG3kGR3Vaittil49D_4D_0lzmbTUlDw4jU7JGF2dme-ZOf7CDnhUYEDPPAw3VmAwownuCm8jMUqZuBb-W172qLHOw9w3Y_6C1Jf9kyYowd2jkPAHoOOlMhDiAHACC7jTCEsYdoEOqj6yJlkC2Cq2oOlHwqQriEvRFx_hvXfkwUfzArHLqSgiqn_x0ZcZZdkk2zUZSE9d6-zRZb0cJusd-ecqpMd8tKbur8rAzr7lkVHhroOWtxfaTJ2TQpocFnLnuDyHdD2m6PzntDqfADFe9KuZeZ_p93nsswevz4-b7QxAz2mCaa5ynaXPCTt-4uOV4sleEXIofSMUZhmIql4oLgwEDAucQDztbAiY1IUfoaeVznPIxkUYQaiUAUPGeShAsjCPbIyHA31PqF5hGUGIJbgMgelucRRjdDDDxhkSusGOZ35Ly1qJnEraDFIEVFYZ6cLzm6Qk7nxqyPQ-N2sZSdibmJZr6sLGAtpHQvpX7HQIEezaUzrpTixOpuB4D6P-cF_POOQrGHNJNxXmCOyUo6n-hjrkjJvkmWRXDXJaqvdu71rVgH5DWC84qI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcGg5VPQlaGnZA70gWTjr9Xr3UKECiUJJIlSBxM2190ErogQSo5Y_1d_YGa-dIlH1xtUzWlmz43l5Zj6AHZkaJEgeobujBCX2kZLeREWc2SwWXYLfpm6LsRyciy8X6cUK_G5nYaitsrWJtaG2M0M18j1qJlCyKzO5f30TEWoU_V1tITSCWpy4u5-Ysi0-HR_h_X7kvN87OxxEDapAZBIpqsh7i_Y41VZyK5UXPJYaCejYFKFxaWW6Bb6iLWWZam6SQihjjcS0v0ysEEWC5z6BVUETrR1YPeiNT78uqzq0ZVMJHQYBk0THexh3fqekJybA2nuur0YIeOAAaq_WX4fnTTjKPgf9eQErbvoS1kbLXa6LV3A1vg1_dSasraGxmWdhchftOuvPw3AEMhw1cCtoNiasdxPWiC9Y3ZfA8Ew2IkSAX2z0o6qKy2jovJ-4Oeujc605X8P5owjzDXSms6nbAFamGNwIzGCkLoV1UiPVYcLT5bEorHObsNtKLzfN_nKC0ZjkmMeQqPN7ot6EnSXzdVjb8W-2A7qGJQvt2q4fzOaXefPp5ilGyC61qkxEJoTwSuqssJgYx85zx_GQrfYS88YALPK_6vr2_-RteDo4Gw3z4fH45B08w3hMhQrPFnSq-a17jzFPVX5oFI3Bt8fW7T8IsRMS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN8gJkQejIpGEGUf4IWkub3d7Xb3gRj1qCDcxQdJeKvtfiDhcgd3JcC_5l_nTLc9STC-8dqZbJrZ6Xx1Zn6EbKvUAkHxBNwdJigsJFoFm5QscxmTfYTfxm6LkTo4kd9O09Ml8rubhcG2ys4mNobaTS3WyHvYTKBVX2WqF9q2iO-D_OPlVYIIUvintYPTiCpy5O9uIH2b7x0O4K53OM_3f3w5SFqEgcQKJeskBAe2OTVOcad0kJwpAwRwchqRuYy2_RJe11WqSg23opTaOqsEk5VwUpYCzn1CnmYiM5j46fzror6D-za1NHEkUAjDehCB_sL0hyF07T0n2GAFPHAFjX_LX5DnbWBKP0VNekmW_OQVWR0utrrO18jF6Dr-3xnTrppGp4HGGV6w8DSfxTEJYBi0wCtgQMZ0_youFJ_TpkOBwpl0iNgAt3R4XtflWXLsQxj7Gc3BzTacr8nJo4jyDVmeTCf-LaFVCmGOhFxGmUo6rwxQPaQ-fc5k6bxfJ7ud9ArbbjJHQI1xARkNirq4J-p1sr1gvowLPP7N9hmvYcGCW7ebB9PZWdF-xEUKsbJPna6EzKSUQSuTlQ5SZOYD9xwO2ewusWhNwbz4q7gb_ydvkRXQ6OL4cHT0jjyDwEzHUs8mWa5n1_49BD919aHRMkp-PrZa_wHq7BXi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Solution+of+Multiterm+Fractional+Differential+Equations+Using+the+Matrix+Mittag%E2%80%93Leffler+Functions&rft.jtitle=Mathematics+%28Basel%29&rft.au=Popolizio%2C+Marina&rft.date=2018-01-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=6&rft.issue=1&rft.spage=7&rft_id=info:doi/10.3390%2Fmath6010007&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math6010007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon