Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions
Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply genera...
Saved in:
Published in | Mathematics (Basel) Vol. 6; no. 1; p. 7 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math6010007 |
Cover
Abstract | Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply general purpose methods for fractional differential equations (FDEs) to this case. In this paper, we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford; in this way, the solution can be expressed in terms of Mittag–Leffler (ML) functions evaluated at matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix approach is very accurate and fast, also in comparison with other numerical methods. |
---|---|
AbstractList | Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply general purpose methods for fractional differential equations (FDEs) to this case. In this paper, we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford; in this way, the solution can be expressed in terms of Mittag–Leffler (ML) functions evaluated at matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix approach is very accurate and fast, also in comparison with other numerical methods. |
Author | Popolizio, Marina |
Author_xml | – sequence: 1 givenname: Marina orcidid: 0000-0003-0474-2573 surname: Popolizio fullname: Popolizio, Marina |
BookMark | eNptkctOWzEQhi0EEpey6gtYYokCvsWXJQICSEm7oKwtx5fg6JxjsH0k2PUd-oZ9kjpJKyHU1cz8882v0cwx2B_S4AH4itEFpQpd9qY-c4QRQmIPHBFCxEQ0ff9DfghOS1k3AilMJVNHoP829j5Hazr4mLqxxjTAFOBi7GqsPvdwlo3dqA24iSH47IcaW3H7OpqNXuBTicMK1mcPF6bm-AYXsVaz-v3z19yH0PkMZ-Ow9ShfwEEwXfGnf-MJeJrd_ri-n8y_3z1cX80nlnJWJyE4geVUOU4cl4ERxFVrMMQlw0IpabHBjLslX04VsdQwaZ3lFLEldYwZegIedr4umbV-ybE3-V0nE_VWSHmlTa7Rdl5PhWB-6uSSMsEYC5IrYZxkCPlAPBHN62zn9ZLT6-hL1es05naPoglCRHLMBW8U3lE2p1KyD9rGuj1QzSZ2GiO9eZL-8KQ2c_5p5t-m_6P_ANXxlYA |
CitedBy_id | crossref_primary_10_1007_s00366_020_01170_0 crossref_primary_10_1007_s10915_020_01150_y crossref_primary_10_3390_axioms7020025 crossref_primary_10_3390_sym16080963 crossref_primary_10_1007_s10915_018_0699_5 crossref_primary_10_3390_math8111972 crossref_primary_10_32628_IJSRSET207383 crossref_primary_10_3390_math6020016 crossref_primary_10_1016_j_arcontrol_2020_03_003 crossref_primary_10_1186_s13662_021_03587_3 crossref_primary_10_1007_s00009_018_1193_x crossref_primary_10_3390_sym12071195 crossref_primary_10_1007_s11071_020_05539_0 crossref_primary_10_3390_math6090145 crossref_primary_10_3390_sym13040622 crossref_primary_10_3390_fractalfract6010010 crossref_primary_10_1007_s10092_019_0329_0 crossref_primary_10_1007_s12065_020_00481_x crossref_primary_10_1088_1361_6420_ac6b31 crossref_primary_10_3390_math7121140 crossref_primary_10_1007_s40819_022_01475_2 crossref_primary_10_3390_math8010096 crossref_primary_10_1063_1_5117285 crossref_primary_10_1137_20M1365326 crossref_primary_10_3390_sym10100503 crossref_primary_10_1063_1_5112177 |
Cites_doi | 10.1016/j.amc.2014.12.127 10.1137/140971191 10.1142/9781848163300 10.1023/B:NUMA.0000027736.85078.be 10.1137/0517050 10.1090/S0025-5718-1983-0701626-6 10.1007/978-3-642-14574-2 10.1016/j.cam.2008.04.004 10.1080/01630563.2012.748669 10.1016/j.matcom.2013.09.012 10.1155/2011/298628 10.1016/j.cam.2008.03.025 10.1007/978-3-662-43930-2 10.1007/978-3-7091-2664-6 10.1090/S0025-5718-1985-0804935-7 10.1142/9789814355216 10.1016/0960-0779(95)00125-5 10.1007/s10444-012-9274-z 10.1142/S0218127412500733 10.1515/fca-2016-0060 10.1137/1.9780898717778 10.1016/j.cam.2010.07.008 10.1016/j.cam.2008.04.003 10.1023/A:1021973025166 10.1016/S0096-3003(03)00739-2 10.1137/080738374 10.1016/j.camwa.2016.11.028 10.1016/S0377-0427(02)00558-7 10.3390/math6020016 10.24200/sci.2017.4503 10.1016/j.jmaa.2010.08.048 10.1115/1.3167615 10.1016/0377-0427(84)90027-X 10.1016/j.jcp.2014.09.023 10.1016/j.cam.2005.03.023 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2018 |
Copyright_xml | – notice: Copyright MDPI AG 2018 |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math6010007 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_5774e5d8b347444f8697ad8400ef2e27 10_3390_math6010007 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c364t-ffd71859d62d68f420693644068417998c1a146db6b592c3a48cdc6304b3d44a3 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:32:05 EDT 2025 Fri Jul 25 12:00:21 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Jul 01 02:22:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-ffd71859d62d68f420693644068417998c1a146db6b592c3a48cdc6304b3d44a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0474-2573 |
OpenAccessLink | https://doaj.org/article/5774e5d8b347444f8697ad8400ef2e27 |
PQID | 2002861676 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5774e5d8b347444f8697ad8400ef2e27 proquest_journals_2002861676 crossref_citationtrail_10_3390_math6010007 crossref_primary_10_3390_math6010007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Garrappa (ref_39) 2017; 5 Carpinteri (ref_1) 1997; Volume 378 Garrappa (ref_11) 2009; 229 Edwards (ref_43) 2002; 148 Diethelm (ref_9) 2006; 186 Garrappa (ref_19) 2012; 22 ref_14 ref_36 ref_34 Moret (ref_31) 2013; 34 ref_32 Lubich (ref_8) 1986; 17 Diethelm (ref_25) 2002; 42 Diethelm (ref_16) 2004; 154 Luchko (ref_18) 2011; 374 Diethelm (ref_35) 2004; 36 ref_37 Lubich (ref_7) 1985; 45 Garrappa (ref_13) 2015; 110 Cameron (ref_33) 1984; 11 Garrappa (ref_29) 2015; 53 Luchko (ref_15) 1999; 24 Mainardi (ref_24) 1996; 7 Garrappa (ref_28) 2013; 39 Galeone (ref_10) 2009; 228 ref_22 Moret (ref_30) 2011; 49 ref_21 Diethelm (ref_17) 2004; 6 ref_41 ref_40 Garrappa (ref_42) 2016; 19 ref_3 ref_2 Garrappa (ref_12) 2011; 235 ref_27 ref_26 Lubich (ref_6) 1983; 41 Torvik (ref_23) 1984; 51 Luchko (ref_20) 2015; 257 Garrappa (ref_38) 2015; 293 ref_5 ref_4 Ford (ref_44) 2009; 229 |
References_xml | – volume: 257 start-page: 40 year: 2015 ident: ref_20 article-title: Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.12.127 – volume: 24 start-page: 207 year: 1999 ident: ref_15 article-title: An operational method for solving fractional differential equations with the Caputo derivatives publication-title: Acta Math. Vietnam. – volume: 53 start-page: 1350 year: 2015 ident: ref_29 article-title: Numerical evaluation of two and three parameter Mittag-Leffler functions publication-title: SIAM J. Numer. Anal. doi: 10.1137/140971191 – ident: ref_5 doi: 10.1142/9781848163300 – ident: ref_32 – volume: 36 start-page: 31 year: 2004 ident: ref_35 article-title: Detailed error analysis for a fractional Adams method publication-title: Numer. Algorithms doi: 10.1023/B:NUMA.0000027736.85078.be – ident: ref_3 – volume: 17 start-page: 704 year: 1986 ident: ref_8 article-title: Discretized fractional calculus publication-title: SIAM J. Math. Anal. doi: 10.1137/0517050 – ident: ref_34 – volume: 41 start-page: 87 year: 1983 ident: ref_6 article-title: Runge-Kutta theory for Volterra and Abel integral equations of the second kind publication-title: Math. Comput. doi: 10.1090/S0025-5718-1983-0701626-6 – ident: ref_4 doi: 10.1007/978-3-642-14574-2 – volume: 229 start-page: 392 year: 2009 ident: ref_11 article-title: On some explicit Adams multistep methods for fractional differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.04.004 – volume: 34 start-page: 539 year: 2013 ident: ref_31 article-title: A note on Krylov methods for fractional evolution problems publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2012.748669 – volume: 110 start-page: 96 year: 2015 ident: ref_13 article-title: Trapezoidal methods for fractional differential equations: Theoretical and computational aspects publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2013.09.012 – ident: ref_26 doi: 10.1155/2011/298628 – volume: 228 start-page: 548 year: 2009 ident: ref_10 article-title: Explicit methods for fractional differential equations and their stability properties publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.03.025 – ident: ref_27 doi: 10.1007/978-3-662-43930-2 – ident: ref_2 doi: 10.1007/978-3-7091-2664-6 – ident: ref_40 – volume: 45 start-page: 463 year: 1985 ident: ref_7 article-title: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind publication-title: Math. Comput. doi: 10.1090/S0025-5718-1985-0804935-7 – ident: ref_14 doi: 10.1142/9789814355216 – volume: Volume 378 start-page: 223 year: 1997 ident: ref_1 article-title: Fractional calculus: Integral and differential equations of fractional order publication-title: Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996) – volume: 7 start-page: 1461 year: 1996 ident: ref_24 article-title: Fractional relaxation-oscillation and fractional diffusion-wave phenomena publication-title: Chaos Solitons Fractals doi: 10.1016/0960-0779(95)00125-5 – volume: 39 start-page: 205 year: 2013 ident: ref_28 article-title: Evaluation of generalized Mittag–Leffler functions on the real line publication-title: Adv. Comput. Math. doi: 10.1007/s10444-012-9274-z – volume: 22 start-page: 1250073 year: 2012 ident: ref_19 article-title: Stability-preserving high-order methods for multiterm fractional differential equations publication-title: Int. J. Bifurc. Chaos Appl. Sci. Eng. doi: 10.1142/S0218127412500733 – volume: 19 start-page: 1105 year: 2016 ident: ref_42 article-title: Models of dielectric relaxation based on completely monotone functions publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2016-0060 – ident: ref_37 doi: 10.1137/1.9780898717778 – volume: 235 start-page: 1085 year: 2011 ident: ref_12 article-title: On accurate product integration rules for linear fractional differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.07.008 – volume: 6 start-page: 243 year: 2004 ident: ref_17 article-title: Numerical solution of linear multi-term initial value problems of fractional order publication-title: J. Comput. Anal. Appl. – volume: 229 start-page: 382 year: 2009 ident: ref_44 article-title: Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.04.003 – volume: 42 start-page: 490 year: 2002 ident: ref_25 article-title: Numerical Solution of the Bagley-Torvik Equation publication-title: BIT Numer. Math. doi: 10.1023/A:1021973025166 – volume: 154 start-page: 621 year: 2004 ident: ref_16 article-title: Multi-order Fractional Differential Equations and Their Numerical Solution publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(03)00739-2 – volume: 49 start-page: 2144 year: 2011 ident: ref_30 article-title: On the Convergence of Krylov Subspace Methods for Matrix Mittag–Leffler Functions publication-title: SIAM J. Numer. Anal. doi: 10.1137/080738374 – volume: 5 start-page: 977 year: 2017 ident: ref_39 article-title: On the time-fractional Schrödinger equation: Theoretical analysis and numerical solution by matrix Mittag-Leffler functions publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.11.028 – volume: 148 start-page: 401 year: 2002 ident: ref_43 article-title: The numerical solution of linear multi-term fractional differential equations: Systems of equations publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00558-7 – ident: ref_21 doi: 10.3390/math6020016 – ident: ref_22 doi: 10.24200/sci.2017.4503 – ident: ref_41 – volume: 374 start-page: 538 year: 2011 ident: ref_18 article-title: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.08.048 – volume: 51 start-page: 294 year: 1984 ident: ref_23 article-title: On the appearance of the fractional derivative in the behavior of real materials publication-title: J. Appl. Mech. Trans. ASME doi: 10.1115/1.3167615 – ident: ref_36 – volume: 11 start-page: 1 year: 1984 ident: ref_33 article-title: Product integration methods for second-kind Abel integral equations publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(84)90027-X – volume: 293 start-page: 115 year: 2015 ident: ref_38 article-title: Solving the time-fractional Schrödinger equation by Krylov projection methods publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.09.023 – volume: 186 start-page: 482 year: 2006 ident: ref_9 article-title: Pitfalls in fast numerical solvers for fractional differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.03.023 |
SSID | ssj0000913849 |
Score | 2.1874719 |
Snippet | Multiterm fractional differential equations (MTFDEs) nowadays represent a widely used tool to model many important processes, particularly for multirate... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7 |
SubjectTerms | Differential equations fractional calculus fractional differential equations Mathematical models matrix function Mittag–Leffler function multiterm differential equations Numerical methods |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgXOCAWEWhIB96QoqaxXGcE2JpqBDtiUq9RYmXgqi6pKnE5zOTuKUSiGtm5MPYni3j9whp81CCgPsOhDssUFzjCG6kk7mRilzmIf02TlsMeG_IXkbhyDbclnascu0TK0etZhJ75B0cJhDc4xG_my8cZI3Cv6uWQmOX7HkQafCci-R502NBzEvB4vpZXgDVfQeywHcsQVykj90KRBVe_y93XMWY5Igc2uSQ3te7eUx29PSEHPQ3yKrLU_I5WNX_WCZ03dGiM0Prd7TgZWlS1E8VQOHJkp_AJZ7Q7qIG9V7SakqAwpq0j_j8X7T_UZbZ2HnVxkx0QRMIdZXmGRkm3bfHnmMJExwZcFY6xigINWGsuK-4MMx3eQwCiNkCicZiIb0MrK9ynoexL4OMCakkD1yWB4qxLDgnjelsqi8IzUNINRjUEzzOmdI8BqmG8sPzXZYprZvkdm29VFo0cSS1mKRQVaCp0y1TN0l7ozyvQTT-VnvAbdioIPJ19WFWjFN7kdIQ8lUdKpEHLGKMGcHjKFNQprra-NqHRVrrTUztdVymP4fn8n_xFdmHjEjUPZYWaZTFSl9D1lHmN9XR-gZAodam priority: 102 providerName: ProQuest |
Title | Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions |
URI | https://www.proquest.com/docview/2002861676 https://doaj.org/article/5774e5d8b347444f8697ad8400ef2e27 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58XPQgPrE-yh48CcFNMtnsHq02FrFFRKG3kGR3Vaittil49D_4D_0lzmbTUlDw4jU7JGF2dme-ZOf7CDnhUYEDPPAw3VmAwownuCm8jMUqZuBb-W172qLHOw9w3Y_6C1Jf9kyYowd2jkPAHoOOlMhDiAHACC7jTCEsYdoEOqj6yJlkC2Cq2oOlHwqQriEvRFx_hvXfkwUfzArHLqSgiqn_x0ZcZZdkk2zUZSE9d6-zRZb0cJusd-ecqpMd8tKbur8rAzr7lkVHhroOWtxfaTJ2TQpocFnLnuDyHdD2m6PzntDqfADFe9KuZeZ_p93nsswevz4-b7QxAz2mCaa5ynaXPCTt-4uOV4sleEXIofSMUZhmIql4oLgwEDAucQDztbAiY1IUfoaeVznPIxkUYQaiUAUPGeShAsjCPbIyHA31PqF5hGUGIJbgMgelucRRjdDDDxhkSusGOZ35Ly1qJnEraDFIEVFYZ6cLzm6Qk7nxqyPQ-N2sZSdibmJZr6sLGAtpHQvpX7HQIEezaUzrpTixOpuB4D6P-cF_POOQrGHNJNxXmCOyUo6n-hjrkjJvkmWRXDXJaqvdu71rVgH5DWC84qI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcGg5VPQlaGnZA70gWTjr9Xr3UKECiUJJIlSBxM2190ErogQSo5Y_1d_YGa-dIlH1xtUzWlmz43l5Zj6AHZkaJEgeobujBCX2kZLeREWc2SwWXYLfpm6LsRyciy8X6cUK_G5nYaitsrWJtaG2M0M18j1qJlCyKzO5f30TEWoU_V1tITSCWpy4u5-Ysi0-HR_h_X7kvN87OxxEDapAZBIpqsh7i_Y41VZyK5UXPJYaCejYFKFxaWW6Bb6iLWWZam6SQihjjcS0v0ysEEWC5z6BVUETrR1YPeiNT78uqzq0ZVMJHQYBk0THexh3fqekJybA2nuur0YIeOAAaq_WX4fnTTjKPgf9eQErbvoS1kbLXa6LV3A1vg1_dSasraGxmWdhchftOuvPw3AEMhw1cCtoNiasdxPWiC9Y3ZfA8Ew2IkSAX2z0o6qKy2jovJ-4Oeujc605X8P5owjzDXSms6nbAFamGNwIzGCkLoV1UiPVYcLT5bEorHObsNtKLzfN_nKC0ZjkmMeQqPN7ot6EnSXzdVjb8W-2A7qGJQvt2q4fzOaXefPp5ilGyC61qkxEJoTwSuqssJgYx85zx_GQrfYS88YALPK_6vr2_-RteDo4Gw3z4fH45B08w3hMhQrPFnSq-a17jzFPVX5oFI3Bt8fW7T8IsRMS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN8gJkQejIpGEGUf4IWkub3d7Xb3gRj1qCDcxQdJeKvtfiDhcgd3JcC_5l_nTLc9STC-8dqZbJrZ6Xx1Zn6EbKvUAkHxBNwdJigsJFoFm5QscxmTfYTfxm6LkTo4kd9O09Ml8rubhcG2ys4mNobaTS3WyHvYTKBVX2WqF9q2iO-D_OPlVYIIUvintYPTiCpy5O9uIH2b7x0O4K53OM_3f3w5SFqEgcQKJeskBAe2OTVOcad0kJwpAwRwchqRuYy2_RJe11WqSg23opTaOqsEk5VwUpYCzn1CnmYiM5j46fzror6D-za1NHEkUAjDehCB_sL0hyF07T0n2GAFPHAFjX_LX5DnbWBKP0VNekmW_OQVWR0utrrO18jF6Dr-3xnTrppGp4HGGV6w8DSfxTEJYBi0wCtgQMZ0_youFJ_TpkOBwpl0iNgAt3R4XtflWXLsQxj7Gc3BzTacr8nJo4jyDVmeTCf-LaFVCmGOhFxGmUo6rwxQPaQ-fc5k6bxfJ7ud9ArbbjJHQI1xARkNirq4J-p1sr1gvowLPP7N9hmvYcGCW7ebB9PZWdF-xEUKsbJPna6EzKSUQSuTlQ5SZOYD9xwO2ewusWhNwbz4q7gb_ydvkRXQ6OL4cHT0jjyDwEzHUs8mWa5n1_49BD919aHRMkp-PrZa_wHq7BXi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Solution+of+Multiterm+Fractional+Differential+Equations+Using+the+Matrix+Mittag%E2%80%93Leffler+Functions&rft.jtitle=Mathematics+%28Basel%29&rft.au=Popolizio%2C+Marina&rft.date=2018-01-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=6&rft.issue=1&rft.spage=7&rft_id=info:doi/10.3390%2Fmath6010007&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math6010007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |