Topic modeling for conversations for mental health helplines with utterance embedding

Conversations with topics that are locally contextual often produces incoherent topic modeling results using standard methods. Splitting a conversation into its individual utterances makes it possible to avoid this problem. However, with increased data sparsity, different methods need to be consider...

Full description

Saved in:
Bibliographic Details
Published inTelematics and Informatics Reports Vol. 13; p. 100126
Main Authors Salmi, Salim, van der Mei, Rob, Mérelle, Saskia, Bhulai, Sandjai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2772-5030
2772-5030
DOI10.1016/j.teler.2024.100126

Cover

Abstract Conversations with topics that are locally contextual often produces incoherent topic modeling results using standard methods. Splitting a conversation into its individual utterances makes it possible to avoid this problem. However, with increased data sparsity, different methods need to be considered. Baseline bag-of-word topic modeling methods for regular and short-text, as well as topic modeling methods using transformer-based sentence embeddings were implemented. These models were evaluated on topic coherence and word embedding similarity. Each method was trained using single utterances, segments of the conversation, and on the full conversation. The results showed that utterance-level and segment-level data combined with sentence embedding methods performs better compared to other non-sentence embedding methods or conversation-level data. Among the sentence embedding methods, clustering using HDBScan showed the best performance. We suspect that ignoring noisy utterances is the reason for better topic coherence and a relatively large improvement in topic word similarity.
AbstractList Conversations with topics that are locally contextual often produces incoherent topic modeling results using standard methods. Splitting a conversation into its individual utterances makes it possible to avoid this problem. However, with increased data sparsity, different methods need to be considered. Baseline bag-of-word topic modeling methods for regular and short-text, as well as topic modeling methods using transformer-based sentence embeddings were implemented. These models were evaluated on topic coherence and word embedding similarity. Each method was trained using single utterances, segments of the conversation, and on the full conversation. The results showed that utterance-level and segment-level data combined with sentence embedding methods performs better compared to other non-sentence embedding methods or conversation-level data. Among the sentence embedding methods, clustering using HDBScan showed the best performance. We suspect that ignoring noisy utterances is the reason for better topic coherence and a relatively large improvement in topic word similarity.
ArticleNumber 100126
Author Bhulai, Sandjai
van der Mei, Rob
Salmi, Salim
Mérelle, Saskia
Author_xml – sequence: 1
  givenname: Salim
  orcidid: 0000-0002-8342-4815
  surname: Salmi
  fullname: Salmi, Salim
  email: s.salmi@cwi.nl
  organization: Centrum Wiskunde & Informatica, Netherlands
– sequence: 2
  givenname: Rob
  surname: van der Mei
  fullname: van der Mei, Rob
  organization: Centrum Wiskunde & Informatica, Netherlands
– sequence: 3
  givenname: Saskia
  surname: Mérelle
  fullname: Mérelle, Saskia
  organization: 113 Suicide Prevention, Netherlands
– sequence: 4
  givenname: Sandjai
  orcidid: 0000-0003-1124-8821
  surname: Bhulai
  fullname: Bhulai, Sandjai
  organization: Vrije Universiteit Amsterdam, Netherlands
BookMark eNp9kMtOwzAQRS1UJErpF7DJD7T4FSdZsEAVj0qV2LRry7EnraMkrmxTxN_jNgixYjWe67ln7HuLJoMbAKF7gpcEE_HQLiN04JcUU54UTKi4QlNaFHSRY4Ynf843aB5CizGmZS7KSkzRbuuOVme9M9DZYZ81zmfaDSfwQUXrhnBRehii6rIDqC4eUumOaRhC9mlT-xEjeDVoyKCvwZiEuUPXjeoCzH_qDO1enrert8Xm_XW9etosNBM8LhognJG6NiVnXBCoalqpgmvNmyrPIVeiaLSgQhRFDUlQijZQMVVqpkVeEDZD65FrnGrl0dte-S_plJUXwfm9VD5a3YGkpSprQgtqCOGlqSpGFJQ51k2VVhueWGxkae9C8ND88giW56BlKy9By3PQcgw6uR5HF6Rvnmy6DdpCCsNYDzqmd9h__d8jI4nR
Cites_doi 10.1162/tacl_a_00325
10.1007/s10115-011-0425-1
10.1016/j.jbi.2016.04.008
10.1016/j.ipm.2019.102060
10.1145/3485447.3512034
10.1093/comjnl/bxy037
10.1186/s12889-022-12926-2
10.1016/j.ins.2018.04.071
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.teler.2024.100126
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2772-5030
ExternalDocumentID oai_doaj_org_article_28a8b1272d1148d9931ae850cf9461d4
10_1016_j_teler_2024_100126
S2772503024000124
GroupedDBID 6I.
AAFTH
AAXUO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c364t-fe1431bbd843461e9b29a74cc4f955e5a67fc626677be55eaa2fe93a8c3c65713
IEDL.DBID DOA
ISSN 2772-5030
IngestDate Wed Aug 27 01:29:49 EDT 2025
Tue Jul 01 00:56:08 EDT 2025
Sat Mar 30 16:21:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Topic modeling
Bert
Conversations
Sentence embedding
Mental health
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-fe1431bbd843461e9b29a74cc4f955e5a67fc626677be55eaa2fe93a8c3c65713
ORCID 0000-0003-1124-8821
0000-0002-8342-4815
OpenAccessLink https://doaj.org/article/28a8b1272d1148d9931ae850cf9461d4
ParticipantIDs doaj_primary_oai_doaj_org_article_28a8b1272d1148d9931ae850cf9461d4
crossref_primary_10_1016_j_teler_2024_100126
elsevier_sciencedirect_doi_10_1016_j_teler_2024_100126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Telematics and Informatics Reports
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tian, Gao, He, Liu (b7) 2016
Reimers, Gurevych (b34) 2019
Xing, Carenini (b14) 2021
Hearst (b12) 1997; 23
Yan, Guo, Lan, Cheng (b24) 2013
Blei, Jordan, Griffiths, Tenenbaum (b3) 2003
Vahdat, Kautz (b40) 2021
Yang, Dai, Yang, Carbonell, Salakhutdinov, Le (b11) 2020
Wang, Huang, Gan (b21) 2016; 61
Angelov (b31) 2020
Blei, Ng, Jordan (b1) 2003; 3
Devlin, Chang, Lee, Toutanova (b9) 2019
Campello, Moulavi, Sander (b33) 2013
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b8) 2017
Grootendorst (b17) 2022
Röder, Both, Hinneburg (b39) 2015
Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, Stoyanov (b10) 2019
McInnes, Healy, Melville (b32) 2020
Dinakar, Chen, Lieberman, Picard, Filbin (b20) 2015
Solbiati, Heffernan, Damaskinos, Poddar, Modi, Cali (b15) 2021
Bianchi, Terragni, Hovy (b19) 2021
Dieng, Ruiz, Blei (b30) 2020; 8
Li, Wang, Zhang, Li, Chi, Ouyang (b26) 2018; 456
Sia, Dalmia, Mielke (b35) 2020
Yin, Wang (b16) 2014
Y. Meng, Y. Zhang, J. Huang, Y. Zhang, J. Han, Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, in: The Web Conference, 2022.
Rashid, Shah, Irtaza (b27) 2019; 56
Gao, Wang, Lin, Wu, Yang, Huang, Li (b13) 2023
Du, Buntine, Jin, Chen (b6) 2012; 31
Srivastava, Sutton (b28) 2017
Gruber, Weiss, Rosen-Zvi (b4) 2007; Vol. 2
Wang, Zhang, Zhai (b5) 2011
Weng, Lim, Jiang, He (b22) 2010
Salmi, Mérelle, Gilissen, van der Mei, Bhulai (b2) 2022; 22
Meng, Huang, Wang, Wang, Zhang, Zhang, Han (b36) 2020
Li, Luong, Jurafsky (b41) 2015
Mikolov, Sutskever, Chen, Corrado, Dean (b29) 2013
Hong, Davison (b23) 2010
Wu, Balloccu, Kumar, Helaoui, Reiter, Reforgiato Recupero, Riboni (b37) 2022
Wang, Reimers, Gurevych (b38) 2021
Li, Zhang, Li, Guo, Wang, Ouyang (b25) 2019; 62
Angelov (10.1016/j.teler.2024.100126_b31) 2020
Blei (10.1016/j.teler.2024.100126_b1) 2003; 3
Gao (10.1016/j.teler.2024.100126_b13) 2023
Xing (10.1016/j.teler.2024.100126_b14) 2021
Devlin (10.1016/j.teler.2024.100126_b9) 2019
Dinakar (10.1016/j.teler.2024.100126_b20) 2015
Dieng (10.1016/j.teler.2024.100126_b30) 2020; 8
McInnes (10.1016/j.teler.2024.100126_b32) 2020
Mikolov (10.1016/j.teler.2024.100126_b29) 2013
Blei (10.1016/j.teler.2024.100126_b3) 2003
Vahdat (10.1016/j.teler.2024.100126_b40) 2021
Vaswani (10.1016/j.teler.2024.100126_b8) 2017
Liu (10.1016/j.teler.2024.100126_b10) 2019
Campello (10.1016/j.teler.2024.100126_b33) 2013
Salmi (10.1016/j.teler.2024.100126_b2) 2022; 22
Gruber (10.1016/j.teler.2024.100126_b4) 2007; Vol. 2
Yan (10.1016/j.teler.2024.100126_b24) 2013
Li (10.1016/j.teler.2024.100126_b41) 2015
Li (10.1016/j.teler.2024.100126_b26) 2018; 456
Wang (10.1016/j.teler.2024.100126_b21) 2016; 61
Weng (10.1016/j.teler.2024.100126_b22) 2010
Li (10.1016/j.teler.2024.100126_b25) 2019; 62
Wang (10.1016/j.teler.2024.100126_b38) 2021
Du (10.1016/j.teler.2024.100126_b6) 2012; 31
Röder (10.1016/j.teler.2024.100126_b39) 2015
Wang (10.1016/j.teler.2024.100126_b5) 2011
Solbiati (10.1016/j.teler.2024.100126_b15) 2021
Reimers (10.1016/j.teler.2024.100126_b34) 2019
Sia (10.1016/j.teler.2024.100126_b35) 2020
10.1016/j.teler.2024.100126_b18
Wu (10.1016/j.teler.2024.100126_b37) 2022
Yang (10.1016/j.teler.2024.100126_b11) 2020
Tian (10.1016/j.teler.2024.100126_b7) 2016
Rashid (10.1016/j.teler.2024.100126_b27) 2019; 56
Hong (10.1016/j.teler.2024.100126_b23) 2010
Bianchi (10.1016/j.teler.2024.100126_b19) 2021
Srivastava (10.1016/j.teler.2024.100126_b28) 2017
Meng (10.1016/j.teler.2024.100126_b36) 2020
Yin (10.1016/j.teler.2024.100126_b16) 2014
Grootendorst (10.1016/j.teler.2024.100126_b17) 2022
Hearst (10.1016/j.teler.2024.100126_b12) 1997; 23
References_xml – start-page: 233
  year: 2014
  end-page: 242
  ident: b16
  article-title: A dirichlet multinomial mixture model-based approach for short text clustering
  publication-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 80
  year: 2010
  end-page: 88
  ident: b23
  article-title: Empirical study of topic modeling in Twitter
  publication-title: Proceedings of the First Workshop on Social Media Analytics - SOMA ’10
– year: 2016
  ident: b7
  article-title: Sentence level recurrent topic model: Letting topics speak for themselves
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: b29
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2
– year: 2015
  ident: b41
  article-title: A hierarchical neural autoencoder for paragraphs and documents
– volume: 22
  start-page: 530
  year: 2022
  end-page: 539
  ident: b2
  article-title: Detecting changes in help seeker conversations on a suicide prevention helpline during the COVID- 19 pandemic: in-depth analysis using encoder representations from transformers
  publication-title: BMC Public Health
– year: 2021
  ident: b14
  article-title: Improving unsupervised dialogue topic segmentation with utterance-pair coherence scoring
– year: 2019
  ident: b10
  article-title: RoBERTa: A robustly optimized BERT pretraining approach
– volume: 62
  start-page: 359
  year: 2019
  end-page: 372
  ident: b25
  article-title: Relational biterm topic model: short-text topic modeling using word embeddings
  publication-title: Comput. J.
– start-page: 2121
  year: 2020
  end-page: 2132
  ident: b36
  article-title: Discriminative topic mining via category-name guided text embedding
  publication-title: Proceedings of the Web Conference 2020
– start-page: 6177
  year: 2022
  end-page: 6181
  ident: b37
  article-title: Anno-MI: A dataset of expert-annotated counselling dialogues
  publication-title: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
– year: 2022
  ident: b17
  article-title: BERTopic: Neural topic modeling with a class-based TF-IDF procedure
– start-page: 399
  year: 2015
  end-page: 408
  ident: b39
  article-title: Exploring the space of topic coherence measures
  publication-title: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining
– year: 2021
  ident: b19
  article-title: Pre-training is a hot topic: Contextualized document embeddings improve topic coherence
– year: 2020
  ident: b35
  article-title: Tired of topic models? Clusters of pretrained word embeddings make for fast and good topics too!
– year: 2019
  ident: b9
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– volume: 23
  start-page: 33
  year: 1997
  end-page: 64
  ident: b12
  article-title: TextTiling: segmenting text into multi-paragraph subtopic passages
  publication-title: Comput. Linguist.
– volume: 56
  year: 2019
  ident: b27
  article-title: Fuzzy topic modeling approach for text mining over short text
  publication-title: Inf. Process. Manage.
– start-page: 261
  year: 2010
  ident: b22
  article-title: TwitterRank: finding topic-sensitive influential twitterers
  publication-title: Proceedings of the Third ACM International Conference on Web Search and Data Mining - WSDM ’10
– start-page: 671
  year: 2021
  end-page: 688
  ident: b38
  article-title: TSDAE: Using transformer-based sequential denoising auto-encoderfor unsupervised sentence embedding learning
  publication-title: Findings of the Association for Computational Linguistics: EMNLP 2021
– reference: Y. Meng, Y. Zhang, J. Huang, Y. Zhang, J. Han, Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, in: The Web Conference, 2022.
– start-page: 1526
  year: 2011
  end-page: 1535
  ident: b5
  article-title: Structural topic model for latent topical structure analysis
  publication-title: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1
– year: 2017
  ident: b28
  article-title: Autoencoding variational inference for topic models
– volume: 61
  start-page: 247
  year: 2016
  end-page: 259
  ident: b21
  article-title: On mining latent topics from healthcare chat logs
  publication-title: J. Biomed. Inform.
– volume: 8
  start-page: 439
  year: 2020
  end-page: 453
  ident: b30
  article-title: Topic modeling in embedding spaces
  publication-title: Trans. Assoc. Comput. Linguist.
– year: 2020
  ident: b32
  article-title: UMAP: Uniform manifold approximation and projection for dimension reduction
– year: 2017
  ident: b8
  article-title: Attention is all you need
– start-page: 1445
  year: 2013
  end-page: 1456
  ident: b24
  article-title: A biterm topic model for short texts
  publication-title: Proceedings of the 22nd International Conference on World Wide Web - WWW ’13
– volume: Vol. 2
  start-page: 163
  year: 2007
  end-page: 170
  ident: b4
  article-title: Hidden topic markov models
  publication-title: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
– volume: 31
  start-page: 475
  year: 2012
  end-page: 503
  ident: b6
  article-title: Sequential latent Dirichlet allocation
  publication-title: Knowl. Inf. Syst.
– volume: 456
  start-page: 83
  year: 2018
  end-page: 96
  ident: b26
  article-title: Filtering out the noise in short text topic modeling
  publication-title: Inform. Sci.
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: b1
  article-title: Latent Dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: b40
  article-title: NVAE: A deep hierarchical variational autoencoder
– start-page: 417
  year: 2015
  end-page: 426
  ident: b20
  article-title: Mixed-initiative real-time topic modeling & visualization for crisis counseling
  publication-title: Proceedings of the 20th International Conference on Intelligent User Interfaces
– year: 2020
  ident: b11
  article-title: XLNet: Generalized autoregressive pretraining for language understanding
– year: 2021
  ident: b15
  article-title: Unsupervised topic segmentation of meetings with BERT embeddings
– year: 2019
  ident: b34
  article-title: Sentence-BERT: Sentence embeddings using siamese BERT-networks
– start-page: 160
  year: 2013
  end-page: 172
  ident: b33
  article-title: Density-based clustering based on hierarchical density estimates
  publication-title: Advances in Knowledge Discovery and Data Mining
– start-page: 17
  year: 2003
  end-page: 24
  ident: b3
  article-title: Hierarchical topic models and the nested Chinese restaurant process
  publication-title: Proceedings of the 16th International Conference on Neural Information Processing Systems
– year: 2020
  ident: b31
  article-title: Top2Vec: Distributed representations of topics
– year: 2023
  ident: b13
  article-title: Unsupervised dialogue topic segmentation with topic-aware utterance representation
– year: 2016
  ident: 10.1016/j.teler.2024.100126_b7
– year: 2021
  ident: 10.1016/j.teler.2024.100126_b15
– volume: 8
  start-page: 439
  year: 2020
  ident: 10.1016/j.teler.2024.100126_b30
  article-title: Topic modeling in embedding spaces
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00325
– volume: 23
  start-page: 33
  issue: 1
  year: 1997
  ident: 10.1016/j.teler.2024.100126_b12
  article-title: TextTiling: segmenting text into multi-paragraph subtopic passages
  publication-title: Comput. Linguist.
– volume: Vol. 2
  start-page: 163
  year: 2007
  ident: 10.1016/j.teler.2024.100126_b4
  article-title: Hidden topic markov models
– start-page: 80
  year: 2010
  ident: 10.1016/j.teler.2024.100126_b23
  article-title: Empirical study of topic modeling in Twitter
– year: 2017
  ident: 10.1016/j.teler.2024.100126_b28
– year: 2021
  ident: 10.1016/j.teler.2024.100126_b40
– year: 2021
  ident: 10.1016/j.teler.2024.100126_b14
– year: 2020
  ident: 10.1016/j.teler.2024.100126_b11
– start-page: 399
  year: 2015
  ident: 10.1016/j.teler.2024.100126_b39
  article-title: Exploring the space of topic coherence measures
– start-page: 417
  year: 2015
  ident: 10.1016/j.teler.2024.100126_b20
  article-title: Mixed-initiative real-time topic modeling & visualization for crisis counseling
– year: 2019
  ident: 10.1016/j.teler.2024.100126_b9
– start-page: 261
  year: 2010
  ident: 10.1016/j.teler.2024.100126_b22
  article-title: TwitterRank: finding topic-sensitive influential twitterers
– year: 2015
  ident: 10.1016/j.teler.2024.100126_b41
– start-page: 1445
  year: 2013
  ident: 10.1016/j.teler.2024.100126_b24
  article-title: A biterm topic model for short texts
– year: 2023
  ident: 10.1016/j.teler.2024.100126_b13
– year: 2019
  ident: 10.1016/j.teler.2024.100126_b34
– year: 2020
  ident: 10.1016/j.teler.2024.100126_b35
– start-page: 6177
  year: 2022
  ident: 10.1016/j.teler.2024.100126_b37
  article-title: Anno-MI: A dataset of expert-annotated counselling dialogues
– volume: 31
  start-page: 475
  issue: 3
  year: 2012
  ident: 10.1016/j.teler.2024.100126_b6
  article-title: Sequential latent Dirichlet allocation
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-011-0425-1
– volume: 3
  start-page: 993
  issue: null
  year: 2003
  ident: 10.1016/j.teler.2024.100126_b1
  article-title: Latent Dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– start-page: 1526
  year: 2011
  ident: 10.1016/j.teler.2024.100126_b5
  article-title: Structural topic model for latent topical structure analysis
– year: 2017
  ident: 10.1016/j.teler.2024.100126_b8
– start-page: 233
  year: 2014
  ident: 10.1016/j.teler.2024.100126_b16
  article-title: A dirichlet multinomial mixture model-based approach for short text clustering
– start-page: 671
  year: 2021
  ident: 10.1016/j.teler.2024.100126_b38
  article-title: TSDAE: Using transformer-based sequential denoising auto-encoderfor unsupervised sentence embedding learning
– year: 2021
  ident: 10.1016/j.teler.2024.100126_b19
– volume: 61
  start-page: 247
  year: 2016
  ident: 10.1016/j.teler.2024.100126_b21
  article-title: On mining latent topics from healthcare chat logs
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2016.04.008
– year: 2019
  ident: 10.1016/j.teler.2024.100126_b10
– start-page: 160
  year: 2013
  ident: 10.1016/j.teler.2024.100126_b33
  article-title: Density-based clustering based on hierarchical density estimates
– volume: 56
  issue: 6
  year: 2019
  ident: 10.1016/j.teler.2024.100126_b27
  article-title: Fuzzy topic modeling approach for text mining over short text
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2019.102060
– year: 2020
  ident: 10.1016/j.teler.2024.100126_b32
– year: 2020
  ident: 10.1016/j.teler.2024.100126_b31
– ident: 10.1016/j.teler.2024.100126_b18
  doi: 10.1145/3485447.3512034
– start-page: 2121
  year: 2020
  ident: 10.1016/j.teler.2024.100126_b36
  article-title: Discriminative topic mining via category-name guided text embedding
– volume: 62
  start-page: 359
  issue: 3
  year: 2019
  ident: 10.1016/j.teler.2024.100126_b25
  article-title: Relational biterm topic model: short-text topic modeling using word embeddings
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxy037
– year: 2022
  ident: 10.1016/j.teler.2024.100126_b17
– start-page: 3111
  year: 2013
  ident: 10.1016/j.teler.2024.100126_b29
  article-title: Distributed representations of words and phrases and their compositionality
– volume: 22
  start-page: 530
  issue: 1
  year: 2022
  ident: 10.1016/j.teler.2024.100126_b2
  article-title: Detecting changes in help seeker conversations on a suicide prevention helpline during the COVID- 19 pandemic: in-depth analysis using encoder representations from transformers
  publication-title: BMC Public Health
  doi: 10.1186/s12889-022-12926-2
– start-page: 17
  year: 2003
  ident: 10.1016/j.teler.2024.100126_b3
  article-title: Hierarchical topic models and the nested Chinese restaurant process
– volume: 456
  start-page: 83
  year: 2018
  ident: 10.1016/j.teler.2024.100126_b26
  article-title: Filtering out the noise in short text topic modeling
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.04.071
SSID ssj0002856896
Score 2.255293
Snippet Conversations with topics that are locally contextual often produces incoherent topic modeling results using standard methods. Splitting a conversation into...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100126
SubjectTerms Bert
Conversations
Mental health
Sentence embedding
Topic modeling
Title Topic modeling for conversations for mental health helplines with utterance embedding
URI https://dx.doi.org/10.1016/j.teler.2024.100126
https://doaj.org/article/28a8b1272d1148d9931ae850cf9461d4
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRVKwvcvDo4mbzPqq0FKGeWugt5Akt2pa6Xv3t5rGVPenFyy6EJdl8s-w3E2a-AeCOc1sT7upKel5XxAtcpcbalceYSuSRCSHVDk9f2WROXhZ00Wv1lXLCijxwAe6hEVoY1PDGJc_dRTpF2gta2yAJQy4rgday7gVTq3xkRJmQbC8zlBO62vgfTwqgDcnCQ0lOoUdFWbG_x0g9lhkfg6POPYSP5bVOwIFfn4L5bLNdWpib1kSmgdHPhDlbfNel4uSRotIPS2FjvL2lWlv_AdNJK8ztqJOBoX833iXCOgPz8Wj2PKm6dgiVxYy0VfDRt0HGOEFw3LqXppGaE2tJkJR6qhkPNsYnjHPj44DWTfASa2GxZTQGo-dgsN6s_QWAiCDHcUQ0tXthGMtgiEtK-rwWWgozBPd7ZNS2qF6ofTrYSmUgVQJSFSCH4Cmh9_NokqzOA9GQqjOk-suQQ8D22KuO_Qurx6mWv61--R-rX4HDNGXJLrsGg3b36W-iu9Ga2_xlxev0a_QN17fSYQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topic+modeling+for+conversations+for+mental+health+helplines+with+utterance+embedding&rft.jtitle=Telematics+and+Informatics+Reports&rft.au=Salmi%2C+Salim&rft.au=van+der+Mei%2C+Rob&rft.au=M%C3%A9relle%2C+Saskia&rft.au=Bhulai%2C+Sandjai&rft.date=2024-03-01&rft.issn=2772-5030&rft.eissn=2772-5030&rft.volume=13&rft.spage=100126&rft_id=info:doi/10.1016%2Fj.teler.2024.100126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_teler_2024_100126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-5030&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-5030&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-5030&client=summon