Topic modeling for conversations for mental health helplines with utterance embedding
Conversations with topics that are locally contextual often produces incoherent topic modeling results using standard methods. Splitting a conversation into its individual utterances makes it possible to avoid this problem. However, with increased data sparsity, different methods need to be consider...
Saved in:
Published in | Telematics and Informatics Reports Vol. 13; p. 100126 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2772-5030 2772-5030 |
DOI | 10.1016/j.teler.2024.100126 |
Cover
Abstract | Conversations with topics that are locally contextual often produces incoherent topic modeling results using standard methods. Splitting a conversation into its individual utterances makes it possible to avoid this problem. However, with increased data sparsity, different methods need to be considered. Baseline bag-of-word topic modeling methods for regular and short-text, as well as topic modeling methods using transformer-based sentence embeddings were implemented. These models were evaluated on topic coherence and word embedding similarity. Each method was trained using single utterances, segments of the conversation, and on the full conversation. The results showed that utterance-level and segment-level data combined with sentence embedding methods performs better compared to other non-sentence embedding methods or conversation-level data. Among the sentence embedding methods, clustering using HDBScan showed the best performance. We suspect that ignoring noisy utterances is the reason for better topic coherence and a relatively large improvement in topic word similarity. |
---|---|
AbstractList | Conversations with topics that are locally contextual often produces incoherent topic modeling results using standard methods. Splitting a conversation into its individual utterances makes it possible to avoid this problem. However, with increased data sparsity, different methods need to be considered. Baseline bag-of-word topic modeling methods for regular and short-text, as well as topic modeling methods using transformer-based sentence embeddings were implemented. These models were evaluated on topic coherence and word embedding similarity. Each method was trained using single utterances, segments of the conversation, and on the full conversation. The results showed that utterance-level and segment-level data combined with sentence embedding methods performs better compared to other non-sentence embedding methods or conversation-level data. Among the sentence embedding methods, clustering using HDBScan showed the best performance. We suspect that ignoring noisy utterances is the reason for better topic coherence and a relatively large improvement in topic word similarity. |
ArticleNumber | 100126 |
Author | Bhulai, Sandjai van der Mei, Rob Salmi, Salim Mérelle, Saskia |
Author_xml | – sequence: 1 givenname: Salim orcidid: 0000-0002-8342-4815 surname: Salmi fullname: Salmi, Salim email: s.salmi@cwi.nl organization: Centrum Wiskunde & Informatica, Netherlands – sequence: 2 givenname: Rob surname: van der Mei fullname: van der Mei, Rob organization: Centrum Wiskunde & Informatica, Netherlands – sequence: 3 givenname: Saskia surname: Mérelle fullname: Mérelle, Saskia organization: 113 Suicide Prevention, Netherlands – sequence: 4 givenname: Sandjai orcidid: 0000-0003-1124-8821 surname: Bhulai fullname: Bhulai, Sandjai organization: Vrije Universiteit Amsterdam, Netherlands |
BookMark | eNp9kMtOwzAQRS1UJErpF7DJD7T4FSdZsEAVj0qV2LRry7EnraMkrmxTxN_jNgixYjWe67ln7HuLJoMbAKF7gpcEE_HQLiN04JcUU54UTKi4QlNaFHSRY4Ynf843aB5CizGmZS7KSkzRbuuOVme9M9DZYZ81zmfaDSfwQUXrhnBRehii6rIDqC4eUumOaRhC9mlT-xEjeDVoyKCvwZiEuUPXjeoCzH_qDO1enrert8Xm_XW9etosNBM8LhognJG6NiVnXBCoalqpgmvNmyrPIVeiaLSgQhRFDUlQijZQMVVqpkVeEDZD65FrnGrl0dte-S_plJUXwfm9VD5a3YGkpSprQgtqCOGlqSpGFJQ51k2VVhueWGxkae9C8ND88giW56BlKy9By3PQcgw6uR5HF6Rvnmy6DdpCCsNYDzqmd9h__d8jI4nR |
Cites_doi | 10.1162/tacl_a_00325 10.1007/s10115-011-0425-1 10.1016/j.jbi.2016.04.008 10.1016/j.ipm.2019.102060 10.1145/3485447.3512034 10.1093/comjnl/bxy037 10.1186/s12889-022-12926-2 10.1016/j.ins.2018.04.071 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.teler.2024.100126 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2772-5030 |
ExternalDocumentID | oai_doaj_org_article_28a8b1272d1148d9931ae850cf9461d4 10_1016_j_teler_2024_100126 S2772503024000124 |
GroupedDBID | 6I. AAFTH AAXUO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c364t-fe1431bbd843461e9b29a74cc4f955e5a67fc626677be55eaa2fe93a8c3c65713 |
IEDL.DBID | DOA |
ISSN | 2772-5030 |
IngestDate | Wed Aug 27 01:29:49 EDT 2025 Tue Jul 01 00:56:08 EDT 2025 Sat Mar 30 16:21:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Topic modeling Bert Conversations Sentence embedding Mental health |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-fe1431bbd843461e9b29a74cc4f955e5a67fc626677be55eaa2fe93a8c3c65713 |
ORCID | 0000-0003-1124-8821 0000-0002-8342-4815 |
OpenAccessLink | https://doaj.org/article/28a8b1272d1148d9931ae850cf9461d4 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_28a8b1272d1148d9931ae850cf9461d4 crossref_primary_10_1016_j_teler_2024_100126 elsevier_sciencedirect_doi_10_1016_j_teler_2024_100126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Telematics and Informatics Reports |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tian, Gao, He, Liu (b7) 2016 Reimers, Gurevych (b34) 2019 Xing, Carenini (b14) 2021 Hearst (b12) 1997; 23 Yan, Guo, Lan, Cheng (b24) 2013 Blei, Jordan, Griffiths, Tenenbaum (b3) 2003 Vahdat, Kautz (b40) 2021 Yang, Dai, Yang, Carbonell, Salakhutdinov, Le (b11) 2020 Wang, Huang, Gan (b21) 2016; 61 Angelov (b31) 2020 Blei, Ng, Jordan (b1) 2003; 3 Devlin, Chang, Lee, Toutanova (b9) 2019 Campello, Moulavi, Sander (b33) 2013 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b8) 2017 Grootendorst (b17) 2022 Röder, Both, Hinneburg (b39) 2015 Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, Stoyanov (b10) 2019 McInnes, Healy, Melville (b32) 2020 Dinakar, Chen, Lieberman, Picard, Filbin (b20) 2015 Solbiati, Heffernan, Damaskinos, Poddar, Modi, Cali (b15) 2021 Bianchi, Terragni, Hovy (b19) 2021 Dieng, Ruiz, Blei (b30) 2020; 8 Li, Wang, Zhang, Li, Chi, Ouyang (b26) 2018; 456 Sia, Dalmia, Mielke (b35) 2020 Yin, Wang (b16) 2014 Y. Meng, Y. Zhang, J. Huang, Y. Zhang, J. Han, Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, in: The Web Conference, 2022. Rashid, Shah, Irtaza (b27) 2019; 56 Gao, Wang, Lin, Wu, Yang, Huang, Li (b13) 2023 Du, Buntine, Jin, Chen (b6) 2012; 31 Srivastava, Sutton (b28) 2017 Gruber, Weiss, Rosen-Zvi (b4) 2007; Vol. 2 Wang, Zhang, Zhai (b5) 2011 Weng, Lim, Jiang, He (b22) 2010 Salmi, Mérelle, Gilissen, van der Mei, Bhulai (b2) 2022; 22 Meng, Huang, Wang, Wang, Zhang, Zhang, Han (b36) 2020 Li, Luong, Jurafsky (b41) 2015 Mikolov, Sutskever, Chen, Corrado, Dean (b29) 2013 Hong, Davison (b23) 2010 Wu, Balloccu, Kumar, Helaoui, Reiter, Reforgiato Recupero, Riboni (b37) 2022 Wang, Reimers, Gurevych (b38) 2021 Li, Zhang, Li, Guo, Wang, Ouyang (b25) 2019; 62 Angelov (10.1016/j.teler.2024.100126_b31) 2020 Blei (10.1016/j.teler.2024.100126_b1) 2003; 3 Gao (10.1016/j.teler.2024.100126_b13) 2023 Xing (10.1016/j.teler.2024.100126_b14) 2021 Devlin (10.1016/j.teler.2024.100126_b9) 2019 Dinakar (10.1016/j.teler.2024.100126_b20) 2015 Dieng (10.1016/j.teler.2024.100126_b30) 2020; 8 McInnes (10.1016/j.teler.2024.100126_b32) 2020 Mikolov (10.1016/j.teler.2024.100126_b29) 2013 Blei (10.1016/j.teler.2024.100126_b3) 2003 Vahdat (10.1016/j.teler.2024.100126_b40) 2021 Vaswani (10.1016/j.teler.2024.100126_b8) 2017 Liu (10.1016/j.teler.2024.100126_b10) 2019 Campello (10.1016/j.teler.2024.100126_b33) 2013 Salmi (10.1016/j.teler.2024.100126_b2) 2022; 22 Gruber (10.1016/j.teler.2024.100126_b4) 2007; Vol. 2 Yan (10.1016/j.teler.2024.100126_b24) 2013 Li (10.1016/j.teler.2024.100126_b41) 2015 Li (10.1016/j.teler.2024.100126_b26) 2018; 456 Wang (10.1016/j.teler.2024.100126_b21) 2016; 61 Weng (10.1016/j.teler.2024.100126_b22) 2010 Li (10.1016/j.teler.2024.100126_b25) 2019; 62 Wang (10.1016/j.teler.2024.100126_b38) 2021 Du (10.1016/j.teler.2024.100126_b6) 2012; 31 Röder (10.1016/j.teler.2024.100126_b39) 2015 Wang (10.1016/j.teler.2024.100126_b5) 2011 Solbiati (10.1016/j.teler.2024.100126_b15) 2021 Reimers (10.1016/j.teler.2024.100126_b34) 2019 Sia (10.1016/j.teler.2024.100126_b35) 2020 10.1016/j.teler.2024.100126_b18 Wu (10.1016/j.teler.2024.100126_b37) 2022 Yang (10.1016/j.teler.2024.100126_b11) 2020 Tian (10.1016/j.teler.2024.100126_b7) 2016 Rashid (10.1016/j.teler.2024.100126_b27) 2019; 56 Hong (10.1016/j.teler.2024.100126_b23) 2010 Bianchi (10.1016/j.teler.2024.100126_b19) 2021 Srivastava (10.1016/j.teler.2024.100126_b28) 2017 Meng (10.1016/j.teler.2024.100126_b36) 2020 Yin (10.1016/j.teler.2024.100126_b16) 2014 Grootendorst (10.1016/j.teler.2024.100126_b17) 2022 Hearst (10.1016/j.teler.2024.100126_b12) 1997; 23 |
References_xml | – start-page: 233 year: 2014 end-page: 242 ident: b16 article-title: A dirichlet multinomial mixture model-based approach for short text clustering publication-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 80 year: 2010 end-page: 88 ident: b23 article-title: Empirical study of topic modeling in Twitter publication-title: Proceedings of the First Workshop on Social Media Analytics - SOMA ’10 – year: 2016 ident: b7 article-title: Sentence level recurrent topic model: Letting topics speak for themselves – start-page: 3111 year: 2013 end-page: 3119 ident: b29 article-title: Distributed representations of words and phrases and their compositionality publication-title: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2 – year: 2015 ident: b41 article-title: A hierarchical neural autoencoder for paragraphs and documents – volume: 22 start-page: 530 year: 2022 end-page: 539 ident: b2 article-title: Detecting changes in help seeker conversations on a suicide prevention helpline during the COVID- 19 pandemic: in-depth analysis using encoder representations from transformers publication-title: BMC Public Health – year: 2021 ident: b14 article-title: Improving unsupervised dialogue topic segmentation with utterance-pair coherence scoring – year: 2019 ident: b10 article-title: RoBERTa: A robustly optimized BERT pretraining approach – volume: 62 start-page: 359 year: 2019 end-page: 372 ident: b25 article-title: Relational biterm topic model: short-text topic modeling using word embeddings publication-title: Comput. J. – start-page: 2121 year: 2020 end-page: 2132 ident: b36 article-title: Discriminative topic mining via category-name guided text embedding publication-title: Proceedings of the Web Conference 2020 – start-page: 6177 year: 2022 end-page: 6181 ident: b37 article-title: Anno-MI: A dataset of expert-annotated counselling dialogues publication-title: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2022 ident: b17 article-title: BERTopic: Neural topic modeling with a class-based TF-IDF procedure – start-page: 399 year: 2015 end-page: 408 ident: b39 article-title: Exploring the space of topic coherence measures publication-title: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining – year: 2021 ident: b19 article-title: Pre-training is a hot topic: Contextualized document embeddings improve topic coherence – year: 2020 ident: b35 article-title: Tired of topic models? Clusters of pretrained word embeddings make for fast and good topics too! – year: 2019 ident: b9 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – volume: 23 start-page: 33 year: 1997 end-page: 64 ident: b12 article-title: TextTiling: segmenting text into multi-paragraph subtopic passages publication-title: Comput. Linguist. – volume: 56 year: 2019 ident: b27 article-title: Fuzzy topic modeling approach for text mining over short text publication-title: Inf. Process. Manage. – start-page: 261 year: 2010 ident: b22 article-title: TwitterRank: finding topic-sensitive influential twitterers publication-title: Proceedings of the Third ACM International Conference on Web Search and Data Mining - WSDM ’10 – start-page: 671 year: 2021 end-page: 688 ident: b38 article-title: TSDAE: Using transformer-based sequential denoising auto-encoderfor unsupervised sentence embedding learning publication-title: Findings of the Association for Computational Linguistics: EMNLP 2021 – reference: Y. Meng, Y. Zhang, J. Huang, Y. Zhang, J. Han, Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, in: The Web Conference, 2022. – start-page: 1526 year: 2011 end-page: 1535 ident: b5 article-title: Structural topic model for latent topical structure analysis publication-title: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1 – year: 2017 ident: b28 article-title: Autoencoding variational inference for topic models – volume: 61 start-page: 247 year: 2016 end-page: 259 ident: b21 article-title: On mining latent topics from healthcare chat logs publication-title: J. Biomed. Inform. – volume: 8 start-page: 439 year: 2020 end-page: 453 ident: b30 article-title: Topic modeling in embedding spaces publication-title: Trans. Assoc. Comput. Linguist. – year: 2020 ident: b32 article-title: UMAP: Uniform manifold approximation and projection for dimension reduction – year: 2017 ident: b8 article-title: Attention is all you need – start-page: 1445 year: 2013 end-page: 1456 ident: b24 article-title: A biterm topic model for short texts publication-title: Proceedings of the 22nd International Conference on World Wide Web - WWW ’13 – volume: Vol. 2 start-page: 163 year: 2007 end-page: 170 ident: b4 article-title: Hidden topic markov models publication-title: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics – volume: 31 start-page: 475 year: 2012 end-page: 503 ident: b6 article-title: Sequential latent Dirichlet allocation publication-title: Knowl. Inf. Syst. – volume: 456 start-page: 83 year: 2018 end-page: 96 ident: b26 article-title: Filtering out the noise in short text topic modeling publication-title: Inform. Sci. – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: b1 article-title: Latent Dirichlet allocation publication-title: J. Mach. Learn. Res. – year: 2021 ident: b40 article-title: NVAE: A deep hierarchical variational autoencoder – start-page: 417 year: 2015 end-page: 426 ident: b20 article-title: Mixed-initiative real-time topic modeling & visualization for crisis counseling publication-title: Proceedings of the 20th International Conference on Intelligent User Interfaces – year: 2020 ident: b11 article-title: XLNet: Generalized autoregressive pretraining for language understanding – year: 2021 ident: b15 article-title: Unsupervised topic segmentation of meetings with BERT embeddings – year: 2019 ident: b34 article-title: Sentence-BERT: Sentence embeddings using siamese BERT-networks – start-page: 160 year: 2013 end-page: 172 ident: b33 article-title: Density-based clustering based on hierarchical density estimates publication-title: Advances in Knowledge Discovery and Data Mining – start-page: 17 year: 2003 end-page: 24 ident: b3 article-title: Hierarchical topic models and the nested Chinese restaurant process publication-title: Proceedings of the 16th International Conference on Neural Information Processing Systems – year: 2020 ident: b31 article-title: Top2Vec: Distributed representations of topics – year: 2023 ident: b13 article-title: Unsupervised dialogue topic segmentation with topic-aware utterance representation – year: 2016 ident: 10.1016/j.teler.2024.100126_b7 – year: 2021 ident: 10.1016/j.teler.2024.100126_b15 – volume: 8 start-page: 439 year: 2020 ident: 10.1016/j.teler.2024.100126_b30 article-title: Topic modeling in embedding spaces publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00325 – volume: 23 start-page: 33 issue: 1 year: 1997 ident: 10.1016/j.teler.2024.100126_b12 article-title: TextTiling: segmenting text into multi-paragraph subtopic passages publication-title: Comput. Linguist. – volume: Vol. 2 start-page: 163 year: 2007 ident: 10.1016/j.teler.2024.100126_b4 article-title: Hidden topic markov models – start-page: 80 year: 2010 ident: 10.1016/j.teler.2024.100126_b23 article-title: Empirical study of topic modeling in Twitter – year: 2017 ident: 10.1016/j.teler.2024.100126_b28 – year: 2021 ident: 10.1016/j.teler.2024.100126_b40 – year: 2021 ident: 10.1016/j.teler.2024.100126_b14 – year: 2020 ident: 10.1016/j.teler.2024.100126_b11 – start-page: 399 year: 2015 ident: 10.1016/j.teler.2024.100126_b39 article-title: Exploring the space of topic coherence measures – start-page: 417 year: 2015 ident: 10.1016/j.teler.2024.100126_b20 article-title: Mixed-initiative real-time topic modeling & visualization for crisis counseling – year: 2019 ident: 10.1016/j.teler.2024.100126_b9 – start-page: 261 year: 2010 ident: 10.1016/j.teler.2024.100126_b22 article-title: TwitterRank: finding topic-sensitive influential twitterers – year: 2015 ident: 10.1016/j.teler.2024.100126_b41 – start-page: 1445 year: 2013 ident: 10.1016/j.teler.2024.100126_b24 article-title: A biterm topic model for short texts – year: 2023 ident: 10.1016/j.teler.2024.100126_b13 – year: 2019 ident: 10.1016/j.teler.2024.100126_b34 – year: 2020 ident: 10.1016/j.teler.2024.100126_b35 – start-page: 6177 year: 2022 ident: 10.1016/j.teler.2024.100126_b37 article-title: Anno-MI: A dataset of expert-annotated counselling dialogues – volume: 31 start-page: 475 issue: 3 year: 2012 ident: 10.1016/j.teler.2024.100126_b6 article-title: Sequential latent Dirichlet allocation publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-011-0425-1 – volume: 3 start-page: 993 issue: null year: 2003 ident: 10.1016/j.teler.2024.100126_b1 article-title: Latent Dirichlet allocation publication-title: J. Mach. Learn. Res. – start-page: 1526 year: 2011 ident: 10.1016/j.teler.2024.100126_b5 article-title: Structural topic model for latent topical structure analysis – year: 2017 ident: 10.1016/j.teler.2024.100126_b8 – start-page: 233 year: 2014 ident: 10.1016/j.teler.2024.100126_b16 article-title: A dirichlet multinomial mixture model-based approach for short text clustering – start-page: 671 year: 2021 ident: 10.1016/j.teler.2024.100126_b38 article-title: TSDAE: Using transformer-based sequential denoising auto-encoderfor unsupervised sentence embedding learning – year: 2021 ident: 10.1016/j.teler.2024.100126_b19 – volume: 61 start-page: 247 year: 2016 ident: 10.1016/j.teler.2024.100126_b21 article-title: On mining latent topics from healthcare chat logs publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2016.04.008 – year: 2019 ident: 10.1016/j.teler.2024.100126_b10 – start-page: 160 year: 2013 ident: 10.1016/j.teler.2024.100126_b33 article-title: Density-based clustering based on hierarchical density estimates – volume: 56 issue: 6 year: 2019 ident: 10.1016/j.teler.2024.100126_b27 article-title: Fuzzy topic modeling approach for text mining over short text publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2019.102060 – year: 2020 ident: 10.1016/j.teler.2024.100126_b32 – year: 2020 ident: 10.1016/j.teler.2024.100126_b31 – ident: 10.1016/j.teler.2024.100126_b18 doi: 10.1145/3485447.3512034 – start-page: 2121 year: 2020 ident: 10.1016/j.teler.2024.100126_b36 article-title: Discriminative topic mining via category-name guided text embedding – volume: 62 start-page: 359 issue: 3 year: 2019 ident: 10.1016/j.teler.2024.100126_b25 article-title: Relational biterm topic model: short-text topic modeling using word embeddings publication-title: Comput. J. doi: 10.1093/comjnl/bxy037 – year: 2022 ident: 10.1016/j.teler.2024.100126_b17 – start-page: 3111 year: 2013 ident: 10.1016/j.teler.2024.100126_b29 article-title: Distributed representations of words and phrases and their compositionality – volume: 22 start-page: 530 issue: 1 year: 2022 ident: 10.1016/j.teler.2024.100126_b2 article-title: Detecting changes in help seeker conversations on a suicide prevention helpline during the COVID- 19 pandemic: in-depth analysis using encoder representations from transformers publication-title: BMC Public Health doi: 10.1186/s12889-022-12926-2 – start-page: 17 year: 2003 ident: 10.1016/j.teler.2024.100126_b3 article-title: Hierarchical topic models and the nested Chinese restaurant process – volume: 456 start-page: 83 year: 2018 ident: 10.1016/j.teler.2024.100126_b26 article-title: Filtering out the noise in short text topic modeling publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.04.071 |
SSID | ssj0002856896 |
Score | 2.255293 |
Snippet | Conversations with topics that are locally contextual often produces incoherent topic modeling results using standard methods. Splitting a conversation into... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 100126 |
SubjectTerms | Bert Conversations Mental health Sentence embedding Topic modeling |
Title | Topic modeling for conversations for mental health helplines with utterance embedding |
URI | https://dx.doi.org/10.1016/j.teler.2024.100126 https://doaj.org/article/28a8b1272d1148d9931ae850cf9461d4 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRVKwvcvDo4mbzPqq0FKGeWugt5Akt2pa6Xv3t5rGVPenFyy6EJdl8s-w3E2a-AeCOc1sT7upKel5XxAtcpcbalceYSuSRCSHVDk9f2WROXhZ00Wv1lXLCijxwAe6hEVoY1PDGJc_dRTpF2gta2yAJQy4rgday7gVTq3xkRJmQbC8zlBO62vgfTwqgDcnCQ0lOoUdFWbG_x0g9lhkfg6POPYSP5bVOwIFfn4L5bLNdWpib1kSmgdHPhDlbfNel4uSRotIPS2FjvL2lWlv_AdNJK8ztqJOBoX833iXCOgPz8Wj2PKm6dgiVxYy0VfDRt0HGOEFw3LqXppGaE2tJkJR6qhkPNsYnjHPj44DWTfASa2GxZTQGo-dgsN6s_QWAiCDHcUQ0tXthGMtgiEtK-rwWWgozBPd7ZNS2qF6ofTrYSmUgVQJSFSCH4Cmh9_NokqzOA9GQqjOk-suQQ8D22KuO_Qurx6mWv61--R-rX4HDNGXJLrsGg3b36W-iu9Ga2_xlxev0a_QN17fSYQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topic+modeling+for+conversations+for+mental+health+helplines+with+utterance+embedding&rft.jtitle=Telematics+and+Informatics+Reports&rft.au=Salmi%2C+Salim&rft.au=van+der+Mei%2C+Rob&rft.au=M%C3%A9relle%2C+Saskia&rft.au=Bhulai%2C+Sandjai&rft.date=2024-03-01&rft.issn=2772-5030&rft.eissn=2772-5030&rft.volume=13&rft.spage=100126&rft_id=info:doi/10.1016%2Fj.teler.2024.100126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_teler_2024_100126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-5030&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-5030&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-5030&client=summon |