Evaluation of lumbar motion with fabric strain sensors: A pilot study

Prolonged microgravity has been shown to have a deconditioning effect on the spine, increasing the risk of back issues at distant locations such as Mars. Therefore, studying the lumbar motion of astronauts inside a spacesuit during on ground assessments could be crucial for ensuring crew safety and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of industrial ergonomics Vol. 69; pp. 194 - 199
Main Authors Vu, Linh Q., Amick, Ryan Z., Kim, K. Han, Rajulu, Sudhakar L.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Prolonged microgravity has been shown to have a deconditioning effect on the spine, increasing the risk of back issues at distant locations such as Mars. Therefore, studying the lumbar motion of astronauts inside a spacesuit during on ground assessments could be crucial for ensuring crew safety and performance on planetary extravehicular activities. However, spacesuits present many challenges in performing kinematic evaluations with conventional motion capture systems. The purpose of this investigation is to develop a methodology for evaluating lumbar motion that can be worn inside a spacesuit. This method, based on flexible strain sensors, was tested with unsuited subjects in this pilot study. Twelve male volunteer subjects performed unloaded lumbar sagittal flexion and lateral bending motions. Lumbar kinematics were concurrently measured from 3D body scans and flexible strain sensors attached to the subjects. Mean R2 values for flexion and lateral bending were 0.93 (±0.06) and 0.96 (±0.03) respectively, and mean estimated 95% error of ±5.3° and ±2.8° were determined for flexion and lateral bending, respectively. The results indicate that flexible strain sensors yield useful metrics for lumbar kinematics. Measuring biomechanics of the astronaut inside of a spacesuit is critical to improving spacesuit design and development of prophylactic countermeasures. However, the spacesuit prevents most traditional evaluation techniques. The method developed here provides a wearable solution to measure lumbar motion within the spacesuit and during field assessments in other industries. •Flexible strain-sensors provides a potential solution for measuring lumbar motion.•The sensor-predicted lumbar angles showed good agreement to the measured body angles.•Sensor signals may have varied between subjects due to anthropometry.•Future work is needed to address subject variation and refine sensor placement.
AbstractList Prolonged microgravity has been shown to have a deconditioning effect on the spine, increasing the risk of back issues at distant locations such as Mars. Therefore, studying the lumbar motion of astronauts inside a spacesuit during on ground assessments could be crucial for ensuring crew safety and performance on planetary extravehicular activities. However, spacesuits present many challenges in performing kinematic evaluations with conventional motion capture systems. The purpose of this investigation is to develop a methodology for evaluating lumbar motion that can be worn inside a spacesuit. This method, based on flexible strain sensors, was tested with unsuited subjects in this pilot study. Twelve male volunteer subjects performed unloaded lumbar sagittal flexion and lateral bending motions. Lumbar kinematics were concurrently measured from 3D body scans and flexible strain sensors attached to the subjects. Mean R2 values for flexion and lateral bending were 0.93 (±0.06) and 0.96 (±0.03) respectively, and mean estimated 95% error of ±5.3° and ±2.8° were determined for flexion and lateral bending, respectively. The results indicate that flexible strain sensors yield useful metrics for lumbar kinematics. Measuring biomechanics of the astronaut inside of a spacesuit is critical to improving spacesuit design and development of prophylactic countermeasures. However, the spacesuit prevents most traditional evaluation techniques. The method developed here provides a wearable solution to measure lumbar motion within the spacesuit and during field assessments in other industries. •Flexible strain-sensors provides a potential solution for measuring lumbar motion.•The sensor-predicted lumbar angles showed good agreement to the measured body angles.•Sensor signals may have varied between subjects due to anthropometry.•Future work is needed to address subject variation and refine sensor placement.
Prolonged microgravity has been shown to have a deconditioning effect on the spine, increasing the risk of back issues at distant locations such as Mars. Therefore, studying the lumbar motion of astronauts inside a spacesuit during on ground assessments could be crucial for ensuring crew safety and performance on planetary extravehicular activities. However, spacesuits present many challenges in performing kinematic evaluations with conventional motion capture systems. The purpose of this investigation is to develop a methodology for evaluating lumbar motion that can be worn inside a spacesuit. This method, based on flexible strain sensors, was tested with unsuited subjects in this pilot study. Twelve male volunteer subjects performed unloaded lumbar sagittal flexion and lateral bending motions. Lumbar kinematics were concurrently measured from 3D body scans and flexible strain sensors attached to the subjects. Mean R2 values for flexion and lateral bending were 0.93 ( 0.06) and 0.96 ( 0.03) respectively, and mean estimated 95% error of 5.3 and 2.8 were determined for flexion and lateral bending, respectively. The results indicate that flexible strain sensors yield useful metrics for lumbar kinematics. Relevance to industry Measuring biomechanics of the astronaut inside of a spacesuit is critical to improving spacesuit design and development of prophylactic countermeasures. However, the spacesuit prevents most traditional evaluation techniques. The method developed here provides a wearable solution to measure lumbar motion within the spacesuit and during field assessments in other industries.
Author Vu, Linh Q.
Amick, Ryan Z.
Kim, K. Han
Rajulu, Sudhakar L.
Author_xml – sequence: 1
  givenname: Linh Q.
  surname: Vu
  fullname: Vu, Linh Q.
  email: linh.q.vu@nasa.gov
  organization: MEI Technologies, 2101 E NASA Pkwy, Houston, TX, 77058, USA
– sequence: 2
  givenname: Ryan Z.
  surname: Amick
  fullname: Amick, Ryan Z.
  organization: Wichita State University, 1845 Fairmount St, Wichita, KS, 67260, USA
– sequence: 3
  givenname: K. Han
  surname: Kim
  fullname: Kim, K. Han
  organization: Leidos Innovations, 2101 E NASA Pkwy, Houston, TX, 77058, USA
– sequence: 4
  givenname: Sudhakar L.
  surname: Rajulu
  fullname: Rajulu, Sudhakar L.
  organization: NASA Johnson Space Center, 2101 E NASA Pkwy, Houston, TX, 77058, USA
BookMark eNqFkE1Lw0AQhhepYFv9BV4CnhNnNh-bCB5KqR9Q8KLnZbMfuiHN1t2k0n9v2nryoKeBl_eZYZ4ZmXSu04RcIyQIWNw2ifbvrksoYJkgJgDsjEyxZDQuKVYTMh1bVVxihhdkFkIDgAxynJLVaifaQfTWdZEzUTtsauGjjTsGX7b_iIyovZVR6L2wXRR0F5wPd9Ei2trW9WM-qP0lOTeiDfrqZ87J28PqdfkUr18en5eLdSzTIutjoxB0JgQr0krnSpkcpKJZBgaxZpRmgqk615mmtFTM6KqitC5YkUlgqYEqnZOb096td5-DDj1v3OC78SSnWOY5AAUYW-mpJb0LwWvDt95uhN9zBH7wxRt-9MUPvjgiH32NVPWLkrY_ijl83v7D3p9YPT6_s9rzIK3upFbWa9lz5eyf_DdCJ4lU
CitedBy_id crossref_primary_10_3390_s21165453
crossref_primary_10_3390_s21206706
crossref_primary_10_1177_0018720820965302
crossref_primary_10_1016_j_compbiomed_2020_103624
crossref_primary_10_1016_j_ergon_2021_103237
Cites_doi 10.1016/S0030-5898(20)31651-5
10.1016/j.actaastro.2012.05.016
10.1016/S0966-6362(96)01066-1
10.1109/JSEN.2004.837498
10.1097/00007632-199304000-00015
10.3357/ASEM.1994.2008
10.1097/00007632-199802010-00017
10.1097/01.brs.0000197665.93559.04
10.3357/ASEM.2427.2010
10.1080/00140139508925111
10.1016/j.spinee.2012.01.022
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Jan 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2019
DBID AAYXX
CITATION
7T2
C1K
DOI 10.1016/j.ergon.2018.11.007
DatabaseName CrossRef
Health and Safety Science Abstracts (Full archive)
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Health & Safety Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Health & Safety Science Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-8219
EndPage 199
ExternalDocumentID 10_1016_j_ergon_2018_11_007
S0169814118302270
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABIVO
ABJNI
ABMAC
ABMMH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACIWK
ACKIV
ACNNM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
UHS
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7T2
C1K
EFKBS
ID FETCH-LOGICAL-c364t-fd10e4aa7639e5ddf50cd2440f11b7224a7db5e4e228d7fe9922b6764c073f093
IEDL.DBID .~1
ISSN 0169-8141
IngestDate Wed Aug 13 10:39:51 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Tue Jul 01 03:05:24 EDT 2025
Fri Feb 23 02:24:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motion prediction
Low back kinematics
Fabric strain sensors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-fd10e4aa7639e5ddf50cd2440f11b7224a7db5e4e228d7fe9922b6764c073f093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2185500200
PQPubID 105358
PageCount 6
ParticipantIDs proquest_journals_2185500200
crossref_primary_10_1016_j_ergon_2018_11_007
crossref_citationtrail_10_1016_j_ergon_2018_11_007
elsevier_sciencedirect_doi_10_1016_j_ergon_2018_11_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle International journal of industrial ergonomics
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Gill, Callaghan (bib4) 1998; 23
Martin (bib13) 1996
Crosbie, Vachalathiti, Smith (bib3) 1997; 5
Johnston, Campbell, Scheuring, Feiveson (bib6) 2010; 81
Marras, Lavender, Leurgans, Rajulu, Allread, Fathallah, Ferguson (bib12) 1993; 18
LeBlanc, Rowe, Schneider, Evans, Hedrick (bib8) 1995; 66
Lee, Hargens, Fredericson, Lang (bib9) 2003; 74
Morgan, Wilmington, Pandya, Maida, Demel (bib14) 1996
Wing, Tsang, Susak, Gagnon, Gagnon, Potts (bib19) 1991; 22
Sayson, Hargens (bib16) 2008; 79
Sayson, Lotz, Parazynski, Hargens (bib17) 2013; 86
Al-Eisa, Egan, Deluzio, Wassersug (bib1) 2006; 31
Yang, Ye (bib20) 2011
Vincent, Weir (bib18) 2012
Kershner, Binhammer (bib7) 2004; 75
Jin, Feng, Reames, Shimer, Shen, Li (bib5) 2013; 13
Lorussi, Rocchia, Scilingo, Tognetti, De Rossi (bib10) 2004; 4
National Institute for Occupational Safety and Health (bib15) 1997
Amick, Reid, England, Rajulu (bib2) 2015; vol. 59
Marras, Lavender, Leurgans, Fathallah, Ferguson, Allread, Rajulu (bib11) 1995; 38
Gill (10.1016/j.ergon.2018.11.007_bib4) 1998; 23
Lorussi (10.1016/j.ergon.2018.11.007_bib10) 2004; 4
Martin (10.1016/j.ergon.2018.11.007_bib13) 1996
Yang (10.1016/j.ergon.2018.11.007_bib20) 2011
Marras (10.1016/j.ergon.2018.11.007_bib11) 1995; 38
Sayson (10.1016/j.ergon.2018.11.007_bib17) 2013; 86
Crosbie (10.1016/j.ergon.2018.11.007_bib3) 1997; 5
Kershner (10.1016/j.ergon.2018.11.007_bib7) 2004; 75
Marras (10.1016/j.ergon.2018.11.007_bib12) 1993; 18
Wing (10.1016/j.ergon.2018.11.007_bib19) 1991; 22
Amick (10.1016/j.ergon.2018.11.007_bib2) 2015; vol. 59
Vincent (10.1016/j.ergon.2018.11.007_bib18) 2012
Jin (10.1016/j.ergon.2018.11.007_bib5) 2013; 13
Al-Eisa (10.1016/j.ergon.2018.11.007_bib1) 2006; 31
National Institute for Occupational Safety and Health (10.1016/j.ergon.2018.11.007_bib15) 1997
Morgan (10.1016/j.ergon.2018.11.007_bib14) 1996
Johnston (10.1016/j.ergon.2018.11.007_bib6) 2010; 81
LeBlanc (10.1016/j.ergon.2018.11.007_bib8) 1995; 66
Sayson (10.1016/j.ergon.2018.11.007_bib16) 2008; 79
Lee (10.1016/j.ergon.2018.11.007_bib9) 2003; 74
References_xml – volume: 86
  start-page: 24
  year: 2013
  end-page: 38
  ident: bib17
  article-title: Back pain in space and post-flight spine injury: mechanisms and countermeasure development
  publication-title: Acta Astronaut.
– year: 1996
  ident: bib13
  article-title: Space Medicine.
– volume: 13
  start-page: 235
  year: 2013
  end-page: 242
  ident: bib5
  article-title: The effects of simulated microgravity on intervertebral disc degeneration
  publication-title: Spine J.
– volume: 38
  start-page: 377
  year: 1995
  end-page: 410
  ident: bib11
  article-title: Biomechanical risk factors for occupationally related low back disorders
  publication-title: Ergonomics
– volume: 75
  start-page: 354
  year: 2004
  end-page: 358
  ident: bib7
  article-title: Intrathecal ligaments and nerve root tension: possible sources of lumbar pain during spaceflight
  publication-title: Aviat. Space Environ. Med.
– volume: 18
  start-page: 617
  year: 1993
  end-page: 628
  ident: bib12
  article-title: The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders: the effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury
  publication-title: Spine
– volume: vol. 59
  start-page: 1259
  year: 2015
  end-page: 1263
  ident: bib2
  article-title: Characterization of joint resistance and performance degradation of the extravehicular mobility unity spacesuit: a pilot study
  publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
– volume: 81
  start-page: 566
  year: 2010
  end-page: 574
  ident: bib6
  article-title: Risk of herniated nucleus pulposus among U.S
  publication-title: Astronauts. Aviat. Space Environ. Med.
– volume: 4
  start-page: 807
  year: 2004
  end-page: 818
  ident: bib10
  article-title: Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture
  publication-title: IEEE Sensor. J.
– volume: 5
  start-page: 6
  year: 1997
  end-page: 12
  ident: bib3
  article-title: Patterns of spinal motion during walking
  publication-title: Gait Posture
– volume: 23
  start-page: 371
  year: 1998
  end-page: 377
  ident: bib4
  article-title: The measurement of lumbar proprioception in individuals with and without low back pain
  publication-title: Spine
– year: 1997
  ident: bib15
  article-title: Musculoskeletal Disorders and Workplace Factors—A Critical Review of Epidemiologic Evidence for Work-related Musculoskeletal Disorders of the Neck, Upper Extremity and Low Back - Chapter 6: Low-back Musculoskeletal Disorders: Evidence for Work-relatedness
– volume: 79
  start-page: 365
  year: 2008
  end-page: 373
  ident: bib16
  article-title: Pathophysiology of low back pain during exposure to microgravity
  publication-title: Aviat. Space Environ. Med.
– year: 1996
  ident: bib14
  article-title: Comparison of Extravehicular Mobility Unit (EMU) Suited and Unsuited Isolated Joint Strength Measurements
– volume: 66
  start-page: 1151
  year: 1995
  end-page: 1154
  ident: bib8
  article-title: Regional muscle loss after short duration spaceflight
  publication-title: Aviat. Space Environ. Med.
– volume: 22
  start-page: 255
  year: 1991
  end-page: 262
  ident: bib19
  article-title: Back pain and spinal changes in microgravity
  publication-title: Orthop. Clin. N. Am.
– start-page: 618
  year: 2011
  end-page: 623
  ident: bib20
  article-title: A calibration process for tracking upper limb motion with inertial sensors
  publication-title: Mechatronics and Automation (ICMA), 2011 International Conference
– year: 2012
  ident: bib18
  article-title: Statistics in Kinesiology
– volume: 74
  start-page: 512
  year: 2003
  end-page: 516
  ident: bib9
  article-title: Lumbar spine disc heights and curvature: upright posture vs. Supine compression harness
  publication-title: Aviat. Space Environ. Med.
– volume: 31
  start-page: 71
  year: 2006
  end-page: 79
  ident: bib1
  article-title: Effects of pelvic skeletal asymmetry on trunk movement: three-dimensional analysis in healthy individuals versus patients with mechanical low back pain
  publication-title: Spine
– volume: 22
  start-page: 255
  issue: 2
  year: 1991
  ident: 10.1016/j.ergon.2018.11.007_bib19
  article-title: Back pain and spinal changes in microgravity
  publication-title: Orthop. Clin. N. Am.
  doi: 10.1016/S0030-5898(20)31651-5
– volume: 86
  start-page: 24
  year: 2013
  ident: 10.1016/j.ergon.2018.11.007_bib17
  article-title: Back pain in space and post-flight spine injury: mechanisms and countermeasure development
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2012.05.016
– volume: 5
  start-page: 6
  issue: 1
  year: 1997
  ident: 10.1016/j.ergon.2018.11.007_bib3
  article-title: Patterns of spinal motion during walking
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(96)01066-1
– year: 1996
  ident: 10.1016/j.ergon.2018.11.007_bib14
– volume: 4
  start-page: 807
  issue: 6
  year: 2004
  ident: 10.1016/j.ergon.2018.11.007_bib10
  article-title: Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2004.837498
– volume: 18
  start-page: 617
  issue: 5
  year: 1993
  ident: 10.1016/j.ergon.2018.11.007_bib12
  article-title: The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders: the effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury
  publication-title: Spine
  doi: 10.1097/00007632-199304000-00015
– volume: 66
  start-page: 1151
  issue: 12
  year: 1995
  ident: 10.1016/j.ergon.2018.11.007_bib8
  article-title: Regional muscle loss after short duration spaceflight
  publication-title: Aviat. Space Environ. Med.
– volume: 79
  start-page: 365
  issue: 4
  year: 2008
  ident: 10.1016/j.ergon.2018.11.007_bib16
  article-title: Pathophysiology of low back pain during exposure to microgravity
  publication-title: Aviat. Space Environ. Med.
  doi: 10.3357/ASEM.1994.2008
– volume: 23
  start-page: 371
  issue: 3
  year: 1998
  ident: 10.1016/j.ergon.2018.11.007_bib4
  article-title: The measurement of lumbar proprioception in individuals with and without low back pain
  publication-title: Spine
  doi: 10.1097/00007632-199802010-00017
– volume: 75
  start-page: 354
  issue: 4
  year: 2004
  ident: 10.1016/j.ergon.2018.11.007_bib7
  article-title: Intrathecal ligaments and nerve root tension: possible sources of lumbar pain during spaceflight
  publication-title: Aviat. Space Environ. Med.
– year: 2012
  ident: 10.1016/j.ergon.2018.11.007_bib18
– volume: 31
  start-page: 71
  issue: 3
  year: 2006
  ident: 10.1016/j.ergon.2018.11.007_bib1
  article-title: Effects of pelvic skeletal asymmetry on trunk movement: three-dimensional analysis in healthy individuals versus patients with mechanical low back pain
  publication-title: Spine
  doi: 10.1097/01.brs.0000197665.93559.04
– year: 1997
  ident: 10.1016/j.ergon.2018.11.007_bib15
– volume: 81
  start-page: 566
  issue: 6
  year: 2010
  ident: 10.1016/j.ergon.2018.11.007_bib6
  article-title: Risk of herniated nucleus pulposus among U.S
  publication-title: Astronauts. Aviat. Space Environ. Med.
  doi: 10.3357/ASEM.2427.2010
– volume: 38
  start-page: 377
  issue: 2
  year: 1995
  ident: 10.1016/j.ergon.2018.11.007_bib11
  article-title: Biomechanical risk factors for occupationally related low back disorders
  publication-title: Ergonomics
  doi: 10.1080/00140139508925111
– year: 1996
  ident: 10.1016/j.ergon.2018.11.007_bib13
– start-page: 618
  year: 2011
  ident: 10.1016/j.ergon.2018.11.007_bib20
  article-title: A calibration process for tracking upper limb motion with inertial sensors
– volume: 13
  start-page: 235
  issue: 3
  year: 2013
  ident: 10.1016/j.ergon.2018.11.007_bib5
  article-title: The effects of simulated microgravity on intervertebral disc degeneration
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2012.01.022
– volume: 74
  start-page: 512
  issue: 5
  year: 2003
  ident: 10.1016/j.ergon.2018.11.007_bib9
  article-title: Lumbar spine disc heights and curvature: upright posture vs. Supine compression harness
  publication-title: Aviat. Space Environ. Med.
– volume: vol. 59
  start-page: 1259
  year: 2015
  ident: 10.1016/j.ergon.2018.11.007_bib2
  article-title: Characterization of joint resistance and performance degradation of the extravehicular mobility unity spacesuit: a pilot study
SSID ssj0017051
Score 2.2285097
Snippet Prolonged microgravity has been shown to have a deconditioning effect on the spine, increasing the risk of back issues at distant locations such as Mars....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 194
SubjectTerms Assessments
Astronauts
Biomechanics
Biosensors
Deconditioning
Extravehicular activity
Fabric strain sensors
Kinematics
Low back kinematics
Mars
Microgravity
Motion capture
Motion prediction
Sensors
Space suits
Spinal manipulation
Spine
Spine (lumbar)
Three dimensional bodies
Title Evaluation of lumbar motion with fabric strain sensors: A pilot study
URI https://dx.doi.org/10.1016/j.ergon.2018.11.007
https://www.proquest.com/docview/2185500200
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sTpHDl4tFuTpb-8jbExFXbRwW4hSROZjHW09erf7kvaDhXZwWNLE8LLy_e-F16_h9BdSpUGmqA9FlDpsVgQTxARe4wxkwgqqdSuQHYezhbsaRksW2jc_Atjyypr7K8w3aF1_WZQW3OwXa0GL1ZHJCYMGPLQ6uDZvJ2xyHp5_3NX5mHVYqqehKG77iKN8pCr8dL5W2ZFUEnct1Ketqfs39HpF0674DM9Qcc1a8SjamGnqKU3Z-jom5bgOZpMdrrdODMYMEeKHFdNerC9bcVGSAA9XLiuELiA_DXLiwc8wtvVOiuxE5q9QIvp5HU88-oeCZ4ahqz0TEp8zYQAmEh0kKYm8FUKIds3hMgI4rOIUhlopimN08hoK0MrwyhkCs628ZPhJWpvso2-QjhJDGzo0DchSxlMlCQysnyP6phKpVQH0cY2XNUC4nbFa95Uir1zZ1BuDQqpBQeDdtD9btC20s_Y_3nYGJ3_cAMOCL9_YLfZIl6fwoIDfYEEDAixf_3feW_QITwl1aVLF7XL_EPfAg0pZc_5WQ8djB6fZ_MvAmvcYg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqGIAB8SkKBTwwkjZxnC-2qmpVoHShlbpZtmOjoqqp0rDy2zk7SQUIdWBNYss6-969sy7vELpLiVRAE5RDAyIcGnPP4R6PHUqpTjgRRChbIDsOh1P6NAtmDdSr_4UxZZUV9peYbtG6etKprNlZzeedV6MjEnsUGLJvdPAgb9-l4L6mjUH7c1PnYeRiyqaEob3v8mrpIVvkpfK3zKigenHbaHmaprJ_h6dfQG2jz-AIHVa0EXfLlR2jhlqeoINvYoKnqN_fCHfjTGMAHcFzXHbpwea6FWsuAPXw2raFwGtIYLN8_YC7eDVfZAW2SrNnaDroT3pDp2qS4Eg_pIWjU89VlHPAiUQFaaoDV6YQs13teSKCAM2jVASKKkLiNNLK6NCKMAqpBOfWbuKfo51ltlQXCCeJhh31XR3SlMJESSIiQ_iIiomQUjYRqW3DZKUgbla8YHWp2DuzBmXGoJBbMDBoE91vBq1KAY3tn4e10dmPc8AA4rcPbNVbxCo3XDPgL5CBASN2L_877y3aG05eRmz0OH6-QvvwJilvYFpop8g_1DVwkkLc2DP3BSnN3fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+lumbar+motion+with+fabric+strain+sensors%3A+A+pilot+study&rft.jtitle=International+journal+of+industrial+ergonomics&rft.au=Vu%2C+Linh+Q.&rft.au=Amick%2C+Ryan+Z.&rft.au=Kim%2C+K.+Han&rft.au=Rajulu%2C+Sudhakar+L.&rft.date=2019-01-01&rft.issn=0169-8141&rft.volume=69&rft.spage=194&rft.epage=199&rft_id=info:doi/10.1016%2Fj.ergon.2018.11.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ergon_2018_11_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-8141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-8141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-8141&client=summon