A novel U-Net based data-driven vanadium redox flow battery modelling approach

•The proposed approach employs a data-trained U-Net to accurately describe the nonlinear dynamics of VRB electrical variables, and the technique does not require any empirical parameter adjustment. Unlike most of the existing methods, the influence of varying input flow rate is considered, which fun...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 444; p. 141998
Main Authors Li, Ran, Xiong, Binyu, Zhang, Shaofeng, Zhang, Xinan, Li, Yifeng, Iu, Herbert, Fernando, Tyrone
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The proposed approach employs a data-trained U-Net to accurately describe the nonlinear dynamics of VRB electrical variables, and the technique does not require any empirical parameter adjustment. Unlike most of the existing methods, the influence of varying input flow rate is considered, which fundamentally improves model accuracy.•It is theoretically model parameter independent and can be utilized directly by electrical engineers with no electrochemical background.•U-Net is well-known for its high computational efficiency in training. More importantly, the trained U-Net is mathematically simple, allowing it to be easily incorporated into numerical simulation models of power system. This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed approach addresses the common problem of excessive model dependency in the existing electrochemical principle or equivalent circuit based VRB modelling methods. Furthermore, an experimentally trained U-Net is applied to directly learn the behavioral relationship between VRB current, flow rate, state-of-charge, and voltage with excellent accuracy, avoiding the usage of model parameters that are subject to variations. Once trained, the U-Net based neural network becomes mathematically very simple and thus, can be easily implemented in simulation studies. This contributes to substantially simplify the analysis of electrical systems with VRB. The validity of the proposed approach is verified experimentally.
AbstractList •The proposed approach employs a data-trained U-Net to accurately describe the nonlinear dynamics of VRB electrical variables, and the technique does not require any empirical parameter adjustment. Unlike most of the existing methods, the influence of varying input flow rate is considered, which fundamentally improves model accuracy.•It is theoretically model parameter independent and can be utilized directly by electrical engineers with no electrochemical background.•U-Net is well-known for its high computational efficiency in training. More importantly, the trained U-Net is mathematically simple, allowing it to be easily incorporated into numerical simulation models of power system. This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed approach addresses the common problem of excessive model dependency in the existing electrochemical principle or equivalent circuit based VRB modelling methods. Furthermore, an experimentally trained U-Net is applied to directly learn the behavioral relationship between VRB current, flow rate, state-of-charge, and voltage with excellent accuracy, avoiding the usage of model parameters that are subject to variations. Once trained, the U-Net based neural network becomes mathematically very simple and thus, can be easily implemented in simulation studies. This contributes to substantially simplify the analysis of electrical systems with VRB. The validity of the proposed approach is verified experimentally.
ArticleNumber 141998
Author Zhang, Xinan
Iu, Herbert
Fernando, Tyrone
Li, Yifeng
Li, Ran
Xiong, Binyu
Zhang, Shaofeng
Author_xml – sequence: 1
  givenname: Ran
  surname: Li
  fullname: Li, Ran
  organization: Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth 6009, Australia
– sequence: 2
  givenname: Binyu
  surname: Xiong
  fullname: Xiong, Binyu
  organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei 430070, China
– sequence: 3
  givenname: Shaofeng
  surname: Zhang
  fullname: Zhang, Shaofeng
  organization: School of Automation, Wuhan University of Technology, Wuhan, Hubei 430070, China
– sequence: 4
  givenname: Xinan
  surname: Zhang
  fullname: Zhang, Xinan
  email: xinan.zhang@uwa.edu.au
  organization: Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth 6009, Australia
– sequence: 5
  givenname: Yifeng
  orcidid: 0000-0002-4991-8643
  surname: Li
  fullname: Li, Yifeng
  organization: Voith Group, Germany
– sequence: 6
  givenname: Herbert
  orcidid: 0000-0002-0687-4038
  surname: Iu
  fullname: Iu, Herbert
  organization: Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth 6009, Australia
– sequence: 7
  givenname: Tyrone
  surname: Fernando
  fullname: Fernando, Tyrone
  organization: Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth 6009, Australia
BookMark eNqNkMtOwzAQRb0oEi3wDfgHEsZ5OMmCRVXxkqqyoWvLjzG4Su3KMYX-PamKWLABaaSZxT1XmjMjEx88EnLNIGfA-M0mxx51kuPkBRRlzirWde2ETAFYmVW85edkNgwbAGh4A1OymlMf9tjTdbbCRJUc0FAjk8xMdHv0dC-9NO59SyOa8EltHz7GVEoYD3QbDPa9869U7nYxSP12Sc6s7Ae8-t4XZH1_97J4zJbPD0-L-TLTJa9SZrXlinOt2qJTLYICy6xWUIJijcbSdtwUxpja6LoeT4lYdZXidQuytoyVF-T21KtjGIaIVmiXZHLBpyhdLxiIoxCxET9CxFGIOAkZ-eYXv4tuK-PhH-T8ROL43t5hFIN26DUaF8e8MMH92fEFe26F6A
CitedBy_id crossref_primary_10_1007_s11814_024_00152_y
crossref_primary_10_1039_D3DD00081H
crossref_primary_10_1002_est2_70087
crossref_primary_10_1109_TCSI_2023_3324248
crossref_primary_10_3390_batteries10010008
Cites_doi 10.1016/j.jpowsour.2021.230892
10.2352/J.ImagingSci.Technol.2020.64.2.020508
10.1016/j.rser.2015.09.098
10.1016/j.est.2022.104171
10.1016/j.jpowsour.2022.231668
10.1016/j.jpowsour.2016.09.123
10.1016/j.apenergy.2021.117177
10.1016/j.jpowsour.2021.230034
10.1109/TEC.2021.3061493
10.1016/j.apenergy.2015.08.028
10.1016/j.jpowsour.2015.04.169
10.1016/j.apenergy.2021.117962
10.1021/acssuschemeng.1c00233
10.1016/j.apenergy.2020.115530
10.1016/j.jpowsour.2019.227684
10.1016/j.jpowsour.2020.228375
10.1016/j.jpowsour.2022.231147
10.1016/j.ultras.2019.03.014
10.1016/j.jpowsour.2021.230087
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.electacta.2023.141998
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_electacta_2023_141998
S0013468623001858
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
ID FETCH-LOGICAL-c364t-fcf6b66cb829b8e0b0f1fcb030b17ce3f96d2ddd5dc556d2aee494b6580a5f113
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Thu Apr 24 23:05:52 EDT 2025
Tue Jul 01 03:58:07 EDT 2025
Tue Dec 03 03:44:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Modelling
Vanadium redox flow battery
Data-driven
U-Net
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-fcf6b66cb829b8e0b0f1fcb030b17ce3f96d2ddd5dc556d2aee494b6580a5f113
ORCID 0000-0002-4991-8643
0000-0002-0687-4038
OpenAccessLink https://doi.org/10.1016/j.electacta.2023.141998
ParticipantIDs crossref_citationtrail_10_1016_j_electacta_2023_141998
crossref_primary_10_1016_j_electacta_2023_141998
elsevier_sciencedirect_doi_10_1016_j_electacta_2023_141998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-10
PublicationDateYYYYMMDD 2023-03-10
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-10
  day: 10
PublicationDecade 2020
PublicationTitle Electrochimica acta
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Du (bib0017) 2020; 64
He, Stinis, Tartakovsky (bib0015) 2022; 528
Zhou (bib0005) 2015; 158
Chun, Kim, Han (bib0024) 2019; 52
Wei (bib0010) 2016; 332
Fasahat, Manthouri (bib0027) 2020; 469
Ra, Bhattacharjee (bib0013) 2022
Bao, Murugesan, Kamp, Shao, Yan, Wang (bib0007) 2020; 3
Choi, Kim, Kim, Choi (bib0012) 2020; 450
Cheng, Tenny, Pizzolato, Forner-Cuenca, Verda, Chiang, Behrou (bib0008) 2020; 279
Chen (bib0030) 2022; 521
Zhou (bib0023) 2018
Choi (bib0021) 2018
Yang, Faraji, Basu (bib0019) 2019; 96
Chou (bib0003) 2021; 9
Li (bib0028) 2021; 506
Howard, Yu, Wang, Tartakovsky (bib0014) 2022; 542
Lee (bib0025) 2021; 36
Xiong (bib0011) 2019; 7
Bao (bib0022) 2020
Zhang, Xing (bib0020) 2018
Ronneberger, Fischer, Brox (bib0016) 2015
Emmett, Roberts (bib0002) 2021; 506
Xi (bib0029) 2022; 305
Zhang (bib0009) 2015; 290
Shi (bib0004) 2022; 50
Hossain (bib0001) 2016; 60
Wan, Liang, Jiang, Sun, Djilali, Zhao (bib0006) 2021; 298
Gaál, G., B. Maga, and A. Lukács, Attention u-net based adversarial architectures for chest x-ray lung segmentation. arXiv preprint arXiv:2003.10304, 2020.
Li, Tao (bib0026) 2020
Wan (10.1016/j.electacta.2023.141998_bib0006) 2021; 298
Hossain (10.1016/j.electacta.2023.141998_bib0001) 2016; 60
10.1016/j.electacta.2023.141998_bib0018
Emmett (10.1016/j.electacta.2023.141998_bib0002) 2021; 506
Zhou (10.1016/j.electacta.2023.141998_bib0005) 2015; 158
Ronneberger (10.1016/j.electacta.2023.141998_bib0016) 2015
Cheng (10.1016/j.electacta.2023.141998_bib0008) 2020; 279
Li (10.1016/j.electacta.2023.141998_bib0026) 2020
Choi (10.1016/j.electacta.2023.141998_bib0021) 2018
Ra (10.1016/j.electacta.2023.141998_bib0013) 2022
Bao (10.1016/j.electacta.2023.141998_bib0022) 2020
Choi (10.1016/j.electacta.2023.141998_bib0012) 2020; 450
Du (10.1016/j.electacta.2023.141998_bib0017) 2020; 64
Yang (10.1016/j.electacta.2023.141998_bib0019) 2019; 96
Howard (10.1016/j.electacta.2023.141998_bib0014) 2022; 542
Chun (10.1016/j.electacta.2023.141998_bib0024) 2019; 52
Bao (10.1016/j.electacta.2023.141998_bib0007) 2020; 3
Chen (10.1016/j.electacta.2023.141998_bib0030) 2022; 521
He (10.1016/j.electacta.2023.141998_bib0015) 2022; 528
Wei (10.1016/j.electacta.2023.141998_bib0010) 2016; 332
Xi (10.1016/j.electacta.2023.141998_bib0029) 2022; 305
Chou (10.1016/j.electacta.2023.141998_bib0003) 2021; 9
Shi (10.1016/j.electacta.2023.141998_bib0004) 2022; 50
Li (10.1016/j.electacta.2023.141998_bib0028) 2021; 506
Xiong (10.1016/j.electacta.2023.141998_bib0011) 2019; 7
Zhang (10.1016/j.electacta.2023.141998_bib0020) 2018
Zhou (10.1016/j.electacta.2023.141998_bib0023) 2018
Fasahat (10.1016/j.electacta.2023.141998_bib0027) 2020; 469
Zhang (10.1016/j.electacta.2023.141998_bib0009) 2015; 290
Lee (10.1016/j.electacta.2023.141998_bib0025) 2021; 36
References_xml – volume: 60
  start-page: 1168
  year: 2016
  end-page: 1184
  ident: bib0001
  article-title: Role of smart grid in renewable energy: an overview
  publication-title: Renew. Sustain. Energy Rev.
– volume: 96
  start-page: 24
  year: 2019
  end-page: 33
  ident: bib0019
  article-title: Robust segmentation of arterial walls in intravascular ultrasound images using dual path U-Net
  publication-title: Ultrasonics
– volume: 64
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib0017
  article-title: Medical image segmentation based on u-net: a review
  publication-title: J. Imaging Sci. Technol.
– volume: 52
  start-page: 129
  year: 2019
  end-page: 134
  ident: bib0024
  article-title: Parameter identification of an electrochemical lithium-ion battery model with convolutional neural network
  publication-title: Proceedings of the IFAC-PapersOnLine
– volume: 521
  year: 2022
  ident: bib0030
  article-title: State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network
  publication-title: J. Power Sources
– volume: 528
  year: 2022
  ident: bib0015
  article-title: Physics-constrained deep neural network method for estimating parameters in a redox flow battery
  publication-title: J. Power Sources
– volume: 469
  year: 2020
  ident: bib0027
  article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short term memory neural networks
  publication-title: J. Power Sources
– year: 2018
  ident: bib0020
  article-title: CT artifact reduction via U-net CNN
  publication-title: Medical Imaging2018: Image Processing
– volume: 36
  start-page: 3108
  year: 2021
  end-page: 3117
  ident: bib0025
  article-title: Convolutional neural network-based false battery data detection and classification for battery energy storage systems
  publication-title: IEEE Trans. Energy Convers.
– year: 2020
  ident: bib0026
  article-title: CNN and transfer learning based online SOH estimation for lithium-ion battery
  publication-title: Proceedings of the Chinese Control And Decision Conference (CCDC)
– volume: 542
  year: 2022
  ident: bib0014
  article-title: Physics-informed CoKriging model of a redox flow battery
  publication-title: J. Power Sources
– volume: 9
  start-page: 5377
  year: 2021
  end-page: 5387
  ident: bib0003
  article-title: Mathematical model to study vanadium ion crossover in an all-vanadium redox flow battery
  publication-title: ACS Sustain. Chem. Eng.
– volume: 158
  start-page: 157
  year: 2015
  end-page: 166
  ident: bib0005
  article-title: A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility
  publication-title: Appl. Energy
– volume: 290
  start-page: 14
  year: 2015
  end-page: 24
  ident: bib0009
  article-title: A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis
  publication-title: J. Power Sources
– year: 2020
  ident: bib0022
  article-title: Real image denoising based on multi-scale residual dense block and cascaded U-Net with block-connection
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– volume: 298
  year: 2021
  ident: bib0006
  article-title: A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries
  publication-title: Appl. Energy
– year: 2022
  ident: bib0013
  article-title: Prediction of vanadium redox flow battery storage system power loss under different operating conditions: machine learning based approach
  publication-title: Int. J. Energy Res.
– year: 2015
  ident: bib0016
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 506
  year: 2021
  ident: bib0002
  article-title: Recent developments in alternative aqueous redox flow batteries for grid-scale energy storage
  publication-title: J. Power Sources
– volume: 450
  year: 2020
  ident: bib0012
  article-title: Multiple parameter identification using genetic algorithm in vanadium redox flow batteries
  publication-title: J. Power Sources
– volume: 50
  year: 2022
  ident: bib0004
  article-title: Dynamic modeling of long-term operations of vanadium/air redox flow battery with different membranes
  publication-title: J. Energy Storage
– reference: Gaál, G., B. Maga, and A. Lukács, Attention u-net based adversarial architectures for chest x-ray lung segmentation. arXiv preprint arXiv:2003.10304, 2020.
– year: 2018
  ident: bib0021
  article-title: Phase-aware speech enhancement with deep complex u-net
  publication-title: Proceedings of the International Conference on Learning Representations
– start-page: 3
  year: 2018
  end-page: 11
  ident: bib0023
  article-title: Unet++: a nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 305
  year: 2022
  ident: bib0029
  article-title: Accurate and reliable state of charge estimation of lithium ion batteries using time-delayed recurrent neural networks through the identification of overexcited neurons
  publication-title: Appl. Energy
– volume: 332
  start-page: 389
  year: 2016
  end-page: 398
  ident: bib0010
  article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery
  publication-title: J. Power Sources
– volume: 7
  start-page: 162297
  year: 2019
  end-page: 162308
  ident: bib0011
  article-title: An enhanced equivalent circuit model of vanadium redox flow battery energy storage systems considering thermal effects
  publication-title: IEEE Access
– volume: 3
  year: 2020
  ident: bib0007
  article-title: Machine learning coupled multi-scale modeling for redox flow batteries
  publication-title: Adv. Theory Simul.
– volume: 506
  year: 2021
  ident: bib0028
  article-title: Physics-informed neural networks for electrode-level state estimation in lithium-ion batteries
  publication-title: J. Power Sources
– volume: 279
  year: 2020
  ident: bib0008
  article-title: Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods
  publication-title: Appl. Energy
– year: 2022
  ident: 10.1016/j.electacta.2023.141998_bib0013
  article-title: Prediction of vanadium redox flow battery storage system power loss under different operating conditions: machine learning based approach
  publication-title: Int. J. Energy Res.
– volume: 521
  year: 2022
  ident: 10.1016/j.electacta.2023.141998_bib0030
  article-title: State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230892
– ident: 10.1016/j.electacta.2023.141998_bib0018
– volume: 64
  start-page: 1
  year: 2020
  ident: 10.1016/j.electacta.2023.141998_bib0017
  article-title: Medical image segmentation based on u-net: a review
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.2020.64.2.020508
– volume: 60
  start-page: 1168
  year: 2016
  ident: 10.1016/j.electacta.2023.141998_bib0001
  article-title: Role of smart grid in renewable energy: an overview
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.098
– volume: 50
  year: 2022
  ident: 10.1016/j.electacta.2023.141998_bib0004
  article-title: Dynamic modeling of long-term operations of vanadium/air redox flow battery with different membranes
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104171
– volume: 542
  year: 2022
  ident: 10.1016/j.electacta.2023.141998_bib0014
  article-title: Physics-informed CoKriging model of a redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231668
– volume: 332
  start-page: 389
  year: 2016
  ident: 10.1016/j.electacta.2023.141998_bib0010
  article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.123
– volume: 298
  year: 2021
  ident: 10.1016/j.electacta.2023.141998_bib0006
  article-title: A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117177
– volume: 506
  year: 2021
  ident: 10.1016/j.electacta.2023.141998_bib0028
  article-title: Physics-informed neural networks for electrode-level state estimation in lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230034
– volume: 36
  start-page: 3108
  issue: 4
  year: 2021
  ident: 10.1016/j.electacta.2023.141998_bib0025
  article-title: Convolutional neural network-based false battery data detection and classification for battery energy storage systems
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2021.3061493
– volume: 158
  start-page: 157
  year: 2015
  ident: 10.1016/j.electacta.2023.141998_bib0005
  article-title: A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.08.028
– volume: 290
  start-page: 14
  year: 2015
  ident: 10.1016/j.electacta.2023.141998_bib0009
  article-title: A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.169
– volume: 305
  year: 2022
  ident: 10.1016/j.electacta.2023.141998_bib0029
  article-title: Accurate and reliable state of charge estimation of lithium ion batteries using time-delayed recurrent neural networks through the identification of overexcited neurons
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117962
– start-page: 3
  year: 2018
  ident: 10.1016/j.electacta.2023.141998_bib0023
  article-title: Unet++: a nested u-net architecture for medical image segmentation
– volume: 9
  start-page: 5377
  issue: 15
  year: 2021
  ident: 10.1016/j.electacta.2023.141998_bib0003
  article-title: Mathematical model to study vanadium ion crossover in an all-vanadium redox flow battery
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c00233
– volume: 3
  issue: 2
  year: 2020
  ident: 10.1016/j.electacta.2023.141998_bib0007
  article-title: Machine learning coupled multi-scale modeling for redox flow batteries
  publication-title: Adv. Theory Simul.
– volume: 279
  year: 2020
  ident: 10.1016/j.electacta.2023.141998_bib0008
  article-title: Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115530
– volume: 52
  start-page: 129
  year: 2019
  ident: 10.1016/j.electacta.2023.141998_bib0024
  article-title: Parameter identification of an electrochemical lithium-ion battery model with convolutional neural network
– year: 2015
  ident: 10.1016/j.electacta.2023.141998_bib0016
  article-title: U-net: convolutional networks for biomedical image segmentation
– volume: 450
  year: 2020
  ident: 10.1016/j.electacta.2023.141998_bib0012
  article-title: Multiple parameter identification using genetic algorithm in vanadium redox flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227684
– volume: 469
  year: 2020
  ident: 10.1016/j.electacta.2023.141998_bib0027
  article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short term memory neural networks
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228375
– year: 2018
  ident: 10.1016/j.electacta.2023.141998_bib0021
  article-title: Phase-aware speech enhancement with deep complex u-net
– year: 2020
  ident: 10.1016/j.electacta.2023.141998_bib0022
  article-title: Real image denoising based on multi-scale residual dense block and cascaded U-Net with block-connection
– volume: 528
  year: 2022
  ident: 10.1016/j.electacta.2023.141998_bib0015
  article-title: Physics-constrained deep neural network method for estimating parameters in a redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231147
– year: 2020
  ident: 10.1016/j.electacta.2023.141998_bib0026
  article-title: CNN and transfer learning based online SOH estimation for lithium-ion battery
– volume: 7
  start-page: 162297
  year: 2019
  ident: 10.1016/j.electacta.2023.141998_bib0011
  article-title: An enhanced equivalent circuit model of vanadium redox flow battery energy storage systems considering thermal effects
– year: 2018
  ident: 10.1016/j.electacta.2023.141998_bib0020
  article-title: CT artifact reduction via U-net CNN
– volume: 96
  start-page: 24
  year: 2019
  ident: 10.1016/j.electacta.2023.141998_bib0019
  article-title: Robust segmentation of arterial walls in intravascular ultrasound images using dual path U-Net
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2019.03.014
– volume: 506
  year: 2021
  ident: 10.1016/j.electacta.2023.141998_bib0002
  article-title: Recent developments in alternative aqueous redox flow batteries for grid-scale energy storage
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230087
SSID ssj0007670
Score 2.4391983
Snippet •The proposed approach employs a data-trained U-Net to accurately describe the nonlinear dynamics of VRB electrical variables, and the technique does not...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 141998
SubjectTerms Data-driven
Modelling
U-Net
Vanadium redox flow battery
Title A novel U-Net based data-driven vanadium redox flow battery modelling approach
URI https://dx.doi.org/10.1016/j.electacta.2023.141998
Volume 444
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1KPagH0apYP8oevG6bj91N4q0US1XMyUJvIfsRqNS0lLTqxd_uziapLQgehBySsANhdvNmDu_NQ-hWKNfxtWIk5SElNGWcRMwThHERRSkLhLb2bc8xH43p44RNGmhQa2GAVllhf4npFq2rN70qm73FdAoaX9enIHDwwVmOgeCX0gBOeffrh-YR8MCpXQxg9Q7Hy1rNpObqgou4QQ1QnP1eobaqzvAYHVXtIu6XX3SCGjpvof1B7dLWQodbAwVPUdzH-XytZ3hMYl1gKFEKAwmUqCXAGl5bjtfqDcOc0A-czebvZhUoej6xNcUBdTquB42fofHw_mUwIpVjApE-pwXJZMYF51KEXiRC7QgnczMpzI8s3EBqP4u48pRSTEnGzG2qNY2oMF2Ik7LMdf1z1Mznub5AOGSp0IErfPAJl66Xhhm31Tw0HUAU-m3E6ywlshonDq4Ws6Tmjb0mm_QmkN6kTG8bOZvARTlR4--Qu3obkp3DkRjc_yv48j_BV-gAnogl8F2jZrFc6RvThRSiY49ZB-31H55G8TdkudyR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0gHtCDUdSIn3vwutDS7rb1RogEFXqChFvT7W4TDBZCCurF3-5OPxASEw8mPTTtTtJMd9_M4b15APdCmoalJKMhd21qh4xTj7UFZVx4XsgcoTL7tqHP-2P7ecImFeiWWhikVRbYn2N6htbFk1aRzdZiOkWNr2nZKHCw0FmOuXuwb-vjizYGza8fnofDHaO0McDlOySvzGsm1FcTbcQ1bKDk7PcStVV2esdwVPSLpJN_0glUVFKHWre0aavD4dZEwVPwOySZr9WMjKmvUoI1ShJkgVK5RFwj64zktXojOCj0g8Sz-btehZKeT5K54qA8nZSTxs9g3Hscdfu0sEygkcXtlMZRzAXnkXDbnnCVIYzYjCOhT7IwnUhZscdlW0rJZMSYvg2Vsj1b6DbECFlsmtY5VJN5oi6AuCwUyjGFhUbhkdkO3Zhn5dzVLYDnWg3gZZaCqJgnjrYWs6Akjr0Gm_QGmN4gT28DjE3gIh-p8XfIQ_kbgp3dEWjg_yv48j_Bd1Drj4aDYPDkv1zBAb6hGZvvGqrpcqVudEuSittsy30DjHveHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+U-Net+based+data-driven+vanadium+redox+flow+battery+modelling+approach&rft.jtitle=Electrochimica+acta&rft.au=Li%2C+Ran&rft.au=Xiong%2C+Binyu&rft.au=Zhang%2C+Shaofeng&rft.au=Zhang%2C+Xinan&rft.date=2023-03-10&rft.issn=0013-4686&rft.volume=444&rft.spage=141998&rft_id=info:doi/10.1016%2Fj.electacta.2023.141998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2023_141998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon