Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting

[Display omitted] Selective Electron Beam Melting (SEBM) refers to an additive manufacturing process of building near net shaped components layer wise by iteratively melting of metal powder using an electron beam. Due to the preheating of the material and very high scan velocities of the electron be...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 162; pp. 148 - 155
Main Authors Koepf, J.A., Soldner, D., Ramsperger, M., Mergheim, J., Markl, M., Körner, C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2019
Subjects
Online AccessGet full text
ISSN0927-0256
1879-0801
DOI10.1016/j.commatsci.2019.03.004

Cover

Abstract [Display omitted] Selective Electron Beam Melting (SEBM) refers to an additive manufacturing process of building near net shaped components layer wise by iteratively melting of metal powder using an electron beam. Due to the preheating of the material and very high scan velocities of the electron beam, the process allows large processing windows defined by different process strategies. This variety enables the adjustment of part properties by, e.g., targeting certain microstructures. However, this variety has its disadvantage in the need for costly trial and error experiments. Therefore, numerical predictions are inevitable in locating promising process parameter combinations. We present the weak coupling of a Finite-Element (FE) model with a cellular automaton (CA) model to predict the microstructure evolution during SEBM. We use an FE model for the computation of the heat input, since the temperature history mainly influences the subsequent microstructure evolution. The FE model provides precomputed temperature fields for our sophisticated CA-based crystal growth model, which successfully predicts bulk material microstructures. The compound is validated by accurately reproducing the microstructure of an additively build cylinder from CMSX-4 powder, a nickel based superalloy. Special emphasize is laid on the accurate prediction of the microstructure both in the shell as well as the core of the cylinder.
AbstractList [Display omitted] Selective Electron Beam Melting (SEBM) refers to an additive manufacturing process of building near net shaped components layer wise by iteratively melting of metal powder using an electron beam. Due to the preheating of the material and very high scan velocities of the electron beam, the process allows large processing windows defined by different process strategies. This variety enables the adjustment of part properties by, e.g., targeting certain microstructures. However, this variety has its disadvantage in the need for costly trial and error experiments. Therefore, numerical predictions are inevitable in locating promising process parameter combinations. We present the weak coupling of a Finite-Element (FE) model with a cellular automaton (CA) model to predict the microstructure evolution during SEBM. We use an FE model for the computation of the heat input, since the temperature history mainly influences the subsequent microstructure evolution. The FE model provides precomputed temperature fields for our sophisticated CA-based crystal growth model, which successfully predicts bulk material microstructures. The compound is validated by accurately reproducing the microstructure of an additively build cylinder from CMSX-4 powder, a nickel based superalloy. Special emphasize is laid on the accurate prediction of the microstructure both in the shell as well as the core of the cylinder.
Author Soldner, D.
Mergheim, J.
Ramsperger, M.
Koepf, J.A.
Körner, C.
Markl, M.
Author_xml – sequence: 1
  givenname: J.A.
  surname: Koepf
  fullname: Koepf, J.A.
  email: johannes.koepf@fau.de
  organization: Chair of Materials Science and Engineering for Metals, Martensstr. 5, 91058 Erlangen, Germany
– sequence: 2
  givenname: D.
  surname: Soldner
  fullname: Soldner, D.
  organization: Chair of Applied Mechanics, Egerlandstr. 5, 91058 Erlangen, Germany
– sequence: 3
  givenname: M.
  surname: Ramsperger
  fullname: Ramsperger, M.
  organization: Arcam AB, Krokslätts Fabriker 27A, 431 37 Mölndal, Sweden
– sequence: 4
  givenname: J.
  surname: Mergheim
  fullname: Mergheim, J.
  organization: Chair of Applied Mechanics, Egerlandstr. 5, 91058 Erlangen, Germany
– sequence: 5
  givenname: M.
  surname: Markl
  fullname: Markl, M.
  organization: Chair of Materials Science and Engineering for Metals, Martensstr. 5, 91058 Erlangen, Germany
– sequence: 6
  givenname: C.
  surname: Körner
  fullname: Körner, C.
  organization: Chair of Materials Science and Engineering for Metals, Martensstr. 5, 91058 Erlangen, Germany
BookMark eNqNkM1KxDAUhYOM4MzoM5gXaL1pO226cCHiHwy60XVIk1vJkDRDmgoDPrypigs3urqb8x3u-VZkMfgBCTlnkDNg9cUuV945GUdl8gJYm0OZA1RHZMl402bAgS3IEtqiyaDY1CdkNY47SGTLiyV5f5wcBqOkpc6o4McYJhWngHQfUBsVjR9od6CSKj_tLWram8FEpGjR4RCpQmsnKwOVU_TpjRR3XqOlvQ90TKlU8fYZVzHMXSgddWijGV5PyXEv7Yhn33dNXm5vnq_vs-3T3cP11TZTZV3FrJcbzgG0lrKpi6Yv-xawgI5xLCvdMg1dhQ32RYltXdW80E2DJdey64C3sCnX5PKrdx44BuyFMlHO02KQxgoGYlYpduJHpZhVCihFUpn45he_D8bJcPgHefVFYpr3ZjCIlMBBJbUhCRHamz87PgBN75o0
CitedBy_id crossref_primary_10_1016_j_mtla_2024_102279
crossref_primary_10_3390_met11010175
crossref_primary_10_1016_j_compind_2022_103667
crossref_primary_10_1016_j_jmapro_2023_03_071
crossref_primary_10_1016_j_mtla_2021_101305
crossref_primary_10_1007_s11837_024_06699_9
crossref_primary_10_3390_cryst10060532
crossref_primary_10_3390_ma15217844
crossref_primary_10_1016_j_addma_2022_103266
crossref_primary_10_1007_s11665_021_05725_0
crossref_primary_10_1080_09506608_2023_2169501
crossref_primary_10_1002_adem_202100112
crossref_primary_10_1016_j_addma_2020_101423
crossref_primary_10_3390_ma14123324
crossref_primary_10_1088_1361_651X_ab9734
crossref_primary_10_1016_j_addma_2022_102832
crossref_primary_10_1007_s00170_022_09017_2
crossref_primary_10_1007_s11837_020_04028_4
crossref_primary_10_26599_MAS_2025_9580003
crossref_primary_10_1016_j_pmatsci_2023_101153
crossref_primary_10_1016_j_ijmachtools_2023_104077
crossref_primary_10_1088_1757_899X_1310_1_012005
crossref_primary_10_1002_gamm_202100014
crossref_primary_10_1016_j_addma_2024_104380
crossref_primary_10_1016_j_addma_2019_100989
crossref_primary_10_1016_j_addma_2024_104500
crossref_primary_10_1016_j_commatsci_2022_111882
crossref_primary_10_1016_j_jmatprotec_2024_118603
crossref_primary_10_1016_j_addma_2024_104024
crossref_primary_10_1016_j_ijmecsci_2022_108089
crossref_primary_10_3390_ma14143785
crossref_primary_10_1002_adem_201901270
crossref_primary_10_1016_j_pmatsci_2024_101361
crossref_primary_10_1080_17452759_2019_1677345
crossref_primary_10_3390_cryst14020149
crossref_primary_10_1016_j_jmst_2022_02_015
crossref_primary_10_1007_s11837_025_07130_7
crossref_primary_10_1007_s11661_020_05946_3
crossref_primary_10_1016_j_pmatsci_2023_101129
crossref_primary_10_1007_s11661_023_07004_0
crossref_primary_10_1186_s40323_021_00201_9
crossref_primary_10_1016_j_ijmecsci_2022_107103
crossref_primary_10_1088_2053_1591_ab220a
crossref_primary_10_1080_17452759_2023_2301483
crossref_primary_10_1016_j_procir_2024_08_245
crossref_primary_10_1016_j_actamat_2019_07_041
crossref_primary_10_1016_j_mtcomm_2024_109180
crossref_primary_10_1016_j_addma_2020_101726
crossref_primary_10_3390_ma17061370
crossref_primary_10_1016_j_commatsci_2024_112901
crossref_primary_10_1016_j_actamat_2020_09_043
crossref_primary_10_1002_adem_202201682
crossref_primary_10_1016_j_commatsci_2022_111904
crossref_primary_10_1016_j_mtla_2023_101804
crossref_primary_10_1002_adem_202400661
crossref_primary_10_1016_j_actamat_2019_12_003
crossref_primary_10_1007_s40571_021_00397_y
crossref_primary_10_3390_met13111846
crossref_primary_10_1016_j_addma_2024_103994
crossref_primary_10_1016_j_matdes_2024_113248
crossref_primary_10_1016_j_commatsci_2022_111383
crossref_primary_10_1016_j_ijplas_2021_102941
Cites_doi 10.1007/BF01782368
10.1007/s11661-999-0226-2
10.1007/s11661-015-3300-y
10.1016/j.commatsci.2017.12.037
10.1007/BF02651604
10.1002/nme.1620191103
10.1016/j.actamat.2016.05.011
10.1007/s00231-006-0090-1
10.1179/1743284714Y.0000000734
10.1016/S1359-6454(96)00303-5
10.1016/0956-7151(94)90314-X
10.1007/s11740-009-0197-6
10.1002/nme.179.abs
10.1016/0001-6160(86)90056-8
10.1115/1.2816600
10.1007/BF02647605
10.1007/BF02648956
10.1016/1359-6454(95)00433-5
10.1016/j.matdes.2016.05.125
10.1016/j.actamat.2017.05.061
10.1016/0956-7151(94)90302-6
10.1515/jnma-2017-0058
10.1080/09506608.2016.1176289
10.1016/B978-0-08-050755-2.50034-8
10.1088/0965-0393/12/3/013
10.1007/s00170-016-8819-6
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.commatsci.2019.03.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
EndPage 155
ExternalDocumentID 10_1016_j_commatsci_2019_03_004
S0927025619301272
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c364t-fa58800ddaa7627f3f90e20b18e34d91d0b4e7ef23e964682d77e38dabb089053
IEDL.DBID AIKHN
ISSN 0927-0256
IngestDate Tue Jul 01 02:00:59 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Fri Feb 23 02:27:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Crystal growth
Finite element method
Selective electron beam melting
Powder bed fusion
Numerical heat solver
High performance computing
Nickel-base superalloy
Microstructure simulation
Additive manufacturing
Cellular automata
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-fa58800ddaa7627f3f90e20b18e34d91d0b4e7ef23e964682d77e38dabb089053
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0927025619301272
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_commatsci_2019_03_004
crossref_primary_10_1016_j_commatsci_2019_03_004
elsevier_sciencedirect_doi_10_1016_j_commatsci_2019_03_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationTitle Computational materials science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Soldner, Mergheim (b0095) 2018
Lian, Lin, Yan, Liu, Wagner (b0085) 2017
Krabbenhoft, Damkilde, Nazem (b0145) 2007; 43
Zinoviev, Zinovieva, Ploshikhin, Romanova, Balokhonov (b0045) 2016; 106
Ellsiepen, Hartmann (b0150) 2001; 51
Koepf, Gotterbarm, Markl, Körner (b0050) 2018
Gandin, Desbiolles, Rappaz, Thevoz (b0060) 1999; 30A
Gandin, Schaefer, Rappaz (b0135) 1996; 44
Mills (b0180) 2002
Gandin, Rappaz, West, Adams (b0020) 1995; 26A
Kurz, Giovanola, Trivedi (b0125) 1985; 34
Gandin, Rappaz (b0015) 1994; 42
J. Koepf, A. Rai, M. Markl, C. Körner, in: I. Drstevensek, D. Drummer, M. Schmidt (Eds.), 6th International Conference on Additive Technologies iCAT2016, Nuremberg, 2016.
Gosh, Ofori-Opoku, Guyer (b0055) 2018; 144
Arndt, Bangerth, Davydov, Heister (b0155) 2017; 25
ASTM, in: Specimens with Non-equiaxed Grain Shapes, 2013.
Guillemot, Gandin, Combeau, Heringer (b0065) 2004; 12
J. Arvo, Fast random rotation matrices, in: K.D. (Ed.), Graphics Gems III (IBM Version), Academic Press, 1992, pp. 117–112.
Ramsperger, Singer, Körner (b0105) 2016; 47A
Rothe (b0160) 1930; 102
Dehoff, Kirka, Sames, Bilheux, Tremsin, Lowe, Babu (b0040) 2015; 31
Rai, Körner, Helmer (b0030) 2017; 13
Rappaz, Gandin, Desbiolles, Thevoz (b0025) 1996; 27A
Zäh, Lutzmann (b0010) 2010; 4
Kelly, Gago, Zienkiewicz, Babuska (b0165) 1983; 19
Carazzani, Gandin, Digonnet (b0070) 2014; 22
Rappaz, Charbon, Sasikumar (b0130) 1993; 42
Chen, Guillemot, Gandin (b0075) 2016; 115
Fullagar, Broomfield, Hulands, Harris, Erickson, Sikkenga (b0100) 1996; 118
Gandin, Rappaz (b0115) 1996; 45
Klassen, Scharowsky, Körner (b0170) 2014; 47
Zhang, Liou, Seufzer, Taminger (b0080) 2016; 11
Yan, Ge, Quian, Lin, Zhou, Liu, Lin, Wagner (b0090) 2017; 134
Körner (b0005) 2016; 61
Riedlbauer, Scharowsky, Singer, Steinmann, Körner, Mergheim (b0175) 2017; 88
Gandin, Rappaz, Tintiller (b0120) 1994; 25A
Gandin (10.1016/j.commatsci.2019.03.004_b0020) 1995; 26A
Dehoff (10.1016/j.commatsci.2019.03.004_b0040) 2015; 31
Zäh (10.1016/j.commatsci.2019.03.004_b0010) 2010; 4
Chen (10.1016/j.commatsci.2019.03.004_b0075) 2016; 115
Zhang (10.1016/j.commatsci.2019.03.004_b0080) 2016; 11
Gandin (10.1016/j.commatsci.2019.03.004_b0115) 1996; 45
Rai (10.1016/j.commatsci.2019.03.004_b0030) 2017; 13
Riedlbauer (10.1016/j.commatsci.2019.03.004_b0175) 2017; 88
Gosh (10.1016/j.commatsci.2019.03.004_b0055) 2018; 144
Kurz (10.1016/j.commatsci.2019.03.004_b0125) 1985; 34
Gandin (10.1016/j.commatsci.2019.03.004_b0060) 1999; 30A
Körner (10.1016/j.commatsci.2019.03.004_b0005) 2016; 61
Gandin (10.1016/j.commatsci.2019.03.004_b0015) 1994; 42
Gandin (10.1016/j.commatsci.2019.03.004_b0135) 1996; 44
Krabbenhoft (10.1016/j.commatsci.2019.03.004_b0145) 2007; 43
Lian (10.1016/j.commatsci.2019.03.004_b0085) 2017
10.1016/j.commatsci.2019.03.004_b0035
Arndt (10.1016/j.commatsci.2019.03.004_b0155) 2017; 25
10.1016/j.commatsci.2019.03.004_b0110
Klassen (10.1016/j.commatsci.2019.03.004_b0170) 2014; 47
Yan (10.1016/j.commatsci.2019.03.004_b0090) 2017; 134
Guillemot (10.1016/j.commatsci.2019.03.004_b0065) 2004; 12
Fullagar (10.1016/j.commatsci.2019.03.004_b0100) 1996; 118
Mills (10.1016/j.commatsci.2019.03.004_b0180) 2002
Soldner (10.1016/j.commatsci.2019.03.004_b0095) 2018
Ramsperger (10.1016/j.commatsci.2019.03.004_b0105) 2016; 47A
Rothe (10.1016/j.commatsci.2019.03.004_b0160) 1930; 102
Zinoviev (10.1016/j.commatsci.2019.03.004_b0045) 2016; 106
Carazzani (10.1016/j.commatsci.2019.03.004_b0070) 2014; 22
Rappaz (10.1016/j.commatsci.2019.03.004_b0130) 1993; 42
Ellsiepen (10.1016/j.commatsci.2019.03.004_b0150) 2001; 51
10.1016/j.commatsci.2019.03.004_b0140
Rappaz (10.1016/j.commatsci.2019.03.004_b0025) 1996; 27A
Koepf (10.1016/j.commatsci.2019.03.004_b0050) 2018
Kelly (10.1016/j.commatsci.2019.03.004_b0165) 1983; 19
Gandin (10.1016/j.commatsci.2019.03.004_b0120) 1994; 25A
References_xml – volume: 11
  start-page: 32
  year: 2016
  end-page: 39
  ident: b0080
  publication-title: Addit. Manuf.
– volume: 43
  start-page: 233
  year: 2007
  end-page: 241
  ident: b0145
  publication-title: Heat Mass Transfer
– volume: 45
  start-page: 2187
  year: 1996
  end-page: 2195
  ident: b0115
  publication-title: Acta Mater.
– volume: 4
  start-page: 15
  year: 2010
  end-page: 23
  ident: b0010
  publication-title: Prod. Eng. Res. Devel
– volume: 19
  start-page: 1593
  year: 1983
  end-page: 1619
  ident: b0165
  publication-title: Int. J. Numer. Methods Eng.
– volume: 26A
  start-page: 1543
  year: 1995
  end-page: 1550
  ident: b0020
  publication-title: Metall. Mater. Trans. A
– volume: 22
  start-page: 1
  year: 2014
  end-page: 21
  ident: b0070
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 13
  start-page: 124
  year: 2017
  end-page: 134
  ident: b0030
  publication-title: Addit. Manuf.
– volume: 47
  start-page: 1
  year: 2014
  end-page: 12
  ident: b0170
  publication-title: J. Phys. D
– volume: 27A
  start-page: 695
  year: 1996
  end-page: 705
  ident: b0025
  publication-title: Metall. Mater. Trans. A
– volume: 31
  start-page: 931
  year: 2015
  end-page: 938
  ident: b0040
  publication-title: Mater. Sci. Technol.
– volume: 34
  start-page: 823
  year: 1985
  end-page: 830
  ident: b0125
  publication-title: Acta Metall.
– volume: 88
  start-page: 1309
  year: 2017
  end-page: 1317
  ident: b0175
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 134
  start-page: 324
  year: 2017
  end-page: 333
  ident: b0090
  publication-title: Acta Mater.
– volume: 42
  start-page: 2233
  year: 1994
  end-page: 2246
  ident: b0015
  publication-title: Acta Metall. Mater.
– volume: 42
  start-page: 2365
  year: 1993
  end-page: 2374
  ident: b0130
  publication-title: Acta Metall. Mater.
– volume: 51
  year: 2001
  ident: b0150
  publication-title: Numer. Methods Eng.
– reference: J. Arvo, Fast random rotation matrices, in: K.D. (Ed.), Graphics Gems III (IBM Version), Academic Press, 1992, pp. 117–112.
– reference: J. Koepf, A. Rai, M. Markl, C. Körner, in: I. Drstevensek, D. Drummer, M. Schmidt (Eds.), 6th International Conference on Additive Technologies iCAT2016, Nuremberg, 2016.
– volume: 61
  start-page: 361
  year: 2016
  end-page: 377
  ident: b0005
  publication-title: Int. Mater. Rev.
– volume: 12
  start-page: 545
  year: 2004
  end-page: 556
  ident: b0065
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 44
  start-page: 3339
  year: 1996
  end-page: 3347
  ident: b0135
  publication-title: Acta Mater.
– year: 2017
  ident: b0085
  publication-title: Comput. Mech.
– volume: 30A
  start-page: 3153
  year: 1999
  end-page: 3165
  ident: b0060
  publication-title: Metall. Mater. Trans. A
– volume: 25A
  start-page: 629
  year: 1994
  end-page: 635
  ident: b0120
  publication-title: Metall. Mater. Trans. A
– volume: 115
  start-page: 448
  year: 2016
  end-page: 467
  ident: b0075
  publication-title: Acta Mater.
– volume: 118
  start-page: 380
  year: 1996
  end-page: 388
  ident: b0100
  publication-title: J. Eng. Gas Turbines Power
– year: 2002
  ident: b0180
  article-title: Recommended Values of Thermophysical Properties for Selected Commercial Alloys
– year: 2018
  ident: b0050
  publication-title: Acta Mater.
– volume: 47A
  start-page: 1469
  year: 2016
  end-page: 1480
  ident: b0105
  publication-title: Metall. Mater. Trans. A
– reference: ASTM, in: Specimens with Non-equiaxed Grain Shapes, 2013.
– volume: 102
  start-page: 650
  year: 1930
  end-page: 670
  ident: b0160
  publication-title: Mathematische Annalen
– volume: 144
  start-page: 256
  year: 2018
  end-page: 264
  ident: b0055
  publication-title: Comput. Mater. Sci.
– year: 2018
  ident: b0095
  publication-title: J. Comput. Math. Appl.
– volume: 25
  start-page: 137
  year: 2017
  end-page: 146
  ident: b0155
  publication-title: J. Numer. Math.
– volume: 106
  start-page: 321
  year: 2016
  end-page: 329
  ident: b0045
  publication-title: Mater. Des.
– year: 2018
  ident: 10.1016/j.commatsci.2019.03.004_b0050
  publication-title: Acta Mater.
– volume: 102
  start-page: 650
  year: 1930
  ident: 10.1016/j.commatsci.2019.03.004_b0160
  publication-title: Mathematische Annalen
  doi: 10.1007/BF01782368
– volume: 30A
  start-page: 3153
  year: 1999
  ident: 10.1016/j.commatsci.2019.03.004_b0060
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-999-0226-2
– volume: 11
  start-page: 32
  year: 2016
  ident: 10.1016/j.commatsci.2019.03.004_b0080
  publication-title: Addit. Manuf.
– volume: 47A
  start-page: 1469
  year: 2016
  ident: 10.1016/j.commatsci.2019.03.004_b0105
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-015-3300-y
– volume: 144
  start-page: 256
  year: 2018
  ident: 10.1016/j.commatsci.2019.03.004_b0055
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.12.037
– volume: 25A
  start-page: 629
  year: 1994
  ident: 10.1016/j.commatsci.2019.03.004_b0120
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02651604
– volume: 19
  start-page: 1593
  year: 1983
  ident: 10.1016/j.commatsci.2019.03.004_b0165
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620191103
– volume: 115
  start-page: 448
  year: 2016
  ident: 10.1016/j.commatsci.2019.03.004_b0075
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.011
– volume: 43
  start-page: 233
  year: 2007
  ident: 10.1016/j.commatsci.2019.03.004_b0145
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-006-0090-1
– ident: 10.1016/j.commatsci.2019.03.004_b0110
– volume: 31
  start-page: 931
  year: 2015
  ident: 10.1016/j.commatsci.2019.03.004_b0040
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000734
– volume: 22
  start-page: 1
  year: 2014
  ident: 10.1016/j.commatsci.2019.03.004_b0070
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 45
  start-page: 2187
  year: 1996
  ident: 10.1016/j.commatsci.2019.03.004_b0115
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(96)00303-5
– volume: 42
  start-page: 2365
  year: 1993
  ident: 10.1016/j.commatsci.2019.03.004_b0130
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(94)90314-X
– volume: 4
  start-page: 15
  year: 2010
  ident: 10.1016/j.commatsci.2019.03.004_b0010
  publication-title: Prod. Eng. Res. Devel
  doi: 10.1007/s11740-009-0197-6
– volume: 51
  year: 2001
  ident: 10.1016/j.commatsci.2019.03.004_b0150
  publication-title: Numer. Methods Eng.
  doi: 10.1002/nme.179.abs
– ident: 10.1016/j.commatsci.2019.03.004_b0035
– volume: 34
  start-page: 823
  year: 1985
  ident: 10.1016/j.commatsci.2019.03.004_b0125
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(86)90056-8
– volume: 118
  start-page: 380
  year: 1996
  ident: 10.1016/j.commatsci.2019.03.004_b0100
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.2816600
– volume: 26A
  start-page: 1543
  year: 1995
  ident: 10.1016/j.commatsci.2019.03.004_b0020
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02647605
– volume: 27A
  start-page: 695
  year: 1996
  ident: 10.1016/j.commatsci.2019.03.004_b0025
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02648956
– volume: 44
  start-page: 3339
  year: 1996
  ident: 10.1016/j.commatsci.2019.03.004_b0135
  publication-title: Acta Mater.
  doi: 10.1016/1359-6454(95)00433-5
– year: 2002
  ident: 10.1016/j.commatsci.2019.03.004_b0180
– volume: 106
  start-page: 321
  year: 2016
  ident: 10.1016/j.commatsci.2019.03.004_b0045
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.125
– year: 2018
  ident: 10.1016/j.commatsci.2019.03.004_b0095
  publication-title: J. Comput. Math. Appl.
– volume: 134
  start-page: 324
  year: 2017
  ident: 10.1016/j.commatsci.2019.03.004_b0090
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.05.061
– volume: 42
  start-page: 2233
  year: 1994
  ident: 10.1016/j.commatsci.2019.03.004_b0015
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(94)90302-6
– volume: 25
  start-page: 137
  year: 2017
  ident: 10.1016/j.commatsci.2019.03.004_b0155
  publication-title: J. Numer. Math.
  doi: 10.1515/jnma-2017-0058
– volume: 61
  start-page: 361
  year: 2016
  ident: 10.1016/j.commatsci.2019.03.004_b0005
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2016.1176289
– year: 2017
  ident: 10.1016/j.commatsci.2019.03.004_b0085
  publication-title: Comput. Mech.
– ident: 10.1016/j.commatsci.2019.03.004_b0140
  doi: 10.1016/B978-0-08-050755-2.50034-8
– volume: 47
  start-page: 1
  year: 2014
  ident: 10.1016/j.commatsci.2019.03.004_b0170
  publication-title: J. Phys. D
– volume: 12
  start-page: 545
  year: 2004
  ident: 10.1016/j.commatsci.2019.03.004_b0065
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/12/3/013
– volume: 88
  start-page: 1309
  year: 2017
  ident: 10.1016/j.commatsci.2019.03.004_b0175
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8819-6
– volume: 13
  start-page: 124
  year: 2017
  ident: 10.1016/j.commatsci.2019.03.004_b0030
  publication-title: Addit. Manuf.
SSID ssj0016982
Score 2.4811513
Snippet [Display omitted] Selective Electron Beam Melting (SEBM) refers to an additive manufacturing process of building near net shaped components layer wise by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms Additive manufacturing
Cellular automata
Crystal growth
Finite element method
High performance computing
Microstructure simulation
Nickel-base superalloy
Numerical heat solver
Powder bed fusion
Selective electron beam melting
Title Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting
URI https://dx.doi.org/10.1016/j.commatsci.2019.03.004
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qe9GD-MT6KHvwGrvJbjaNt1IsVbEXLfQWstkJVPoItTkI4m93pklKC4IHjwk7yTLfZmY28-0MY7cGXawKgthJRWochfsex0jpOVYG0qd6UKDpcPLLUA9G6mnsj2usV52FIVplafsLm7621uWddqnNdjaZtF9FSGep0P-HkvKnaIcbngy1X2eN7uPzYLhJJuhw3TOKxjsksEPzwsdjaIgvIJpXWfBU_e6kthxP_4gdlhEj7xaTOmY1mJ-wg606gqfsa5gXiZcpnxHBrigKmy-BZ0tKxJDyufnkMU8WeTYFy9MJxZocCvI4p9_3xEflcb5a4ERx-LpFDseQln-sW-WgVeRVzxxuIJ7xGUyJM33GRv2Ht97AKdsqOInUauWksY8frbA2jtESBqlMQwGeMG4HpLKha4VREEDqSQi10h3PBgHIjo2NER2ET56z-nwxhwvGBe3nXE9bQxtF1yLywvchSQOjXVCyyXSlxygpa45T64tpVJHL3qMNABEBEAkZIQBNJjaCWVF242-R-wqoaGcFRegc_hK-_I_wFdunq4IGec3qiDHcYKiyMi22d_fttsoF-QOqvuwJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lHtSD-MT6zMHr2uwmm3S9iShVay9a6C1smlmo9IW2B0H87c7soygIPXjdzYQwX3Yemy8zjF04dLHKmDTIROYChXlP4KSMAi-NjKkeFGi6nPzU1e2eeujH_Rq7qe7CEK2ytP2FTc-tdfmkWWqzORsOm88iobtU6P8TSeenaIfXVCwN8fouv5Y8j1AneccoGh3Q8F8kL5wcA0OcnkheZblT9beL-uF27rbZVhkv8utiSTusBpNdtvmjiuAe--wuimOXER8Tva4oCbt4Az57o2MYUj13Hzzlg-liNgLPsyFFmhwK6jinn_fERuXpYj7FheLwvEEOx4CWv-eNctAm8qpjDneQjvkYRsSY3me9u9uXm3ZQNlUIBlKreZClMX6ywvs0RTtoMpklAiLhwhZI5ZPQC6fAQBZJSLTSrcgbA7LlU-dEC8GTB6w-mU7gkHFB2VwYae8oTQw94i7iGAaZcToEJRtMV3q0g7LiODW-GNmKWvZqlwBYAsAKaRGABhNLwVlRdGO1yFUFlP21fyy6hlXCR_8RPmfr7Zenju3cdx-P2Qa9KQiRJ6yOeMMpBi1zd5Zvym-wFOzU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+microstructure+prediction+by+a+coupled+finite+element+cellular+automaton+model+for+selective+electron+beam+melting&rft.jtitle=Computational+materials+science&rft.au=Koepf%2C+J.A.&rft.au=Soldner%2C+D.&rft.au=Ramsperger%2C+M.&rft.au=Mergheim%2C+J.&rft.date=2019-05-01&rft.pub=Elsevier+B.V&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=162&rft.spage=148&rft.epage=155&rft_id=info:doi/10.1016%2Fj.commatsci.2019.03.004&rft.externalDocID=S0927025619301272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon